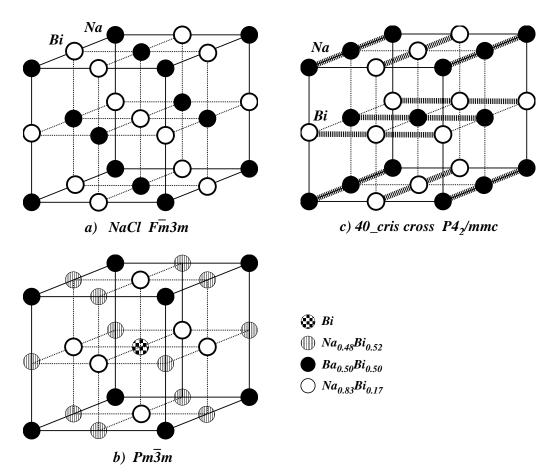
Prediction of the $[Na_{1/2}Bi_{1/2}]TiO_3$ Ground State


B.P. Burton, and E. Cockayne

National Institute of Standards and Technology Gaithersburg, MD 20899; benjamin.burton@nist.gov, cockayne@nist.gov Published in Fundamental Physics of Ferroelectrics 2001, AIP Conference Proceedings **582**, 82- (2001) Henry Krakauer Ed.

Abstract. The Vienna Ab-initio Simulation Package (VASP) was used to perform fully relaxed, planewave pseudopotential calculations of formation energies (ΔE_{VASP}) for a large number of ordered supercells in the perovskite based system $NaTiO_3 - BiTiO_3$, including 38 supercells with the $[Na_{1/2}Bi_{1/2}]TiO_3$ (NBT) composition. The ΔE_{VASP} were used to fit a cluster expansion Hamiltonian to verify that the no other superstructure is predicted to have lower energy than the lowest ΔE_{VASP} , which is a 40 atom supercell with space group symmetry P11m. Its chemical ordering is characterized by pseudocubic doubling of the cell constants, with alternating [100] rows of Na and Bi atoms in (hk0) planes plus alternating [010] rows in (hk $\frac{1}{2}$) planes. Chemical ordering alone reduces space group symmetry from cubic, $Pm\overline{3}m$, to tetragonal, $P4_2/mmc$, and octahedral tilting $(a^-a^-c^+)$ system) further reduces it to monoclinic, P11m.

INTRODUCTION

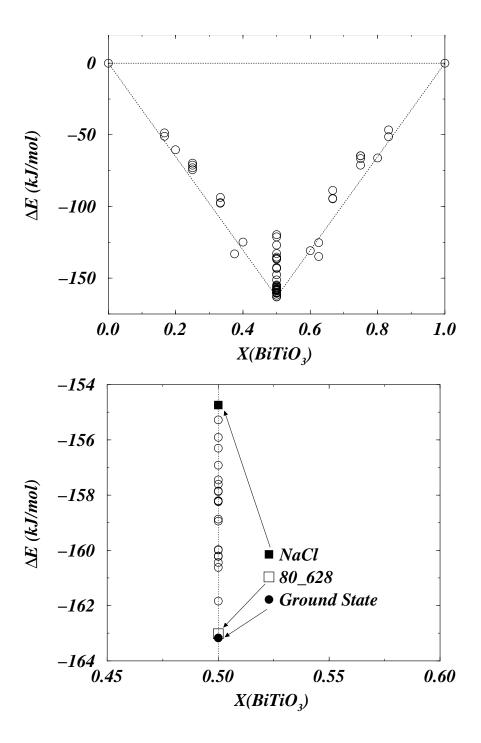
Sodium bismuth titanate, $[Na_{1/2}Bi_{1/2}]TiO_3$ (NBT), has attracted much attention as a lead-free piezoceramic [1–14] with properties intermediate between those of $Pb(Zr_{1-x}Ti_x)O_3$ -based materials and Pb-based relaxor ferroelectrics such as $Pb(Mg_{1/3}Nb_{2/3})O_3$. Many studies concentrated on temperature induced phase transitions (rhombohedral? $\rightarrow 530K$ \rightarrow tetragonal; tetragonal $\rightarrow 783$ – 813K \rightarrow cubic) in samples of NBT, NBT- $BaTiO_3$, or NBT- $PbTiO_3$ [6,11,12]; subject to the implicit assumption that A-site cations were disordered [12–14]. Some studies [4,5,7,9–11] however, invoked chemical long-range-order (LRO) or short-range-order (SRO) to explain diffraction data [7,9–11] or Raman spectra [4,5]. In all of these latter studies [4,5,7,9,10] it was assumed that cation ordering was of NaCl-type, $Fm\overline{3}m$, (Figure 1a) although Chiang et al. [11] proposed a $Pm\overline{3}m$ structure as a possible ordering for a sample with composition

FIGURE 1. A-site patterns of chemical ordering: a) NaCl-type; b) A $Pm\overline{3}m$ partially ordered configuration proposed by Chiang et al. [11]; c) The predicted ground-state configuration 40_{CC} , $P4_2/mmc$.

It is reasonable to expect that the 1:1 mixture of Na¹⁺ and Bi³⁺ in $[Na_{1/2}Bi_{1/2}]TiO_3$ would exhibit NaCl-type ordering, because NaCl is the ground-state (GS) structure for equal numbers of plus and minus charges on a simple cubic array of sites; and in NBT, Bi³⁺ and Na¹⁺ have effective charges of +1 and -1 respectively, because the average A-site charge is +2. Also, the low-temperature ferroelectric phase has generally been described as rhombohedral [1,2,10] with $a^-a^-a^-$ octahedral tilting [18] which is, for example, the ferroelectric state for NaCl-ordered perovskites such as $Pb(Sc_{1/2}Ta_{1/2})O_3$ [15] in which ordering occurs on the B-sites. Soukhojak et al. [12], however, observed only $(h+\frac{1}{2},k+\frac{1}{2},0)$ type superlattice reflections, not $(h+\frac{1}{2},k+\frac{1}{2},l+\frac{1}{2})$, and reported $a^0a^0c^+$ tilting which implies space group symmetry that is tetragonal or lower; and they found no evidence for NaCl-type LRO. The calculations discussed below clearly rule out NaCl-type LRO in the NBT GS, and predict instead that the GS is the 40_{CC} structure; a 40

atom supercell with "crisscross" (CC) rows of Na^{1+} and Bi^{3+} cations perpendiculat to [001] (Figure 1c).

TOTAL ENERGY CALCULATIONS


Total energies were calculated for 65 perovskite based superstructures in the system $NaTiO_3 - BiTiO_3$, including 38 supercells with the NBT composition; these results are plotted as formation energies, relative to mechanical mixtures of $(1-X) \circ NaTiO_3 + X \circ BiTiO_3$, in Figures 2a and b. All calculations were performed with the Vienna ab initio—simulation program (VASP) [16] using ultrasoft Vanderbilt [17] type plane-wave pseudopotentials with a local density approximation for exchange and correlation energies. Electronic degrees of freedom were optimized with a conjugate gradient algorithm, and both cell constant and ionic positions were fully relaxed. Valence electron configurations for the pseudopotentials are: Na $3s^1$; Bi $6s^26p^3$; Ti $4s^23d^2$; O $2p^6$. An energy cutoff of 395.7 eV was used, in the "high precision" option which guarantees that absolute—energies are converged to within a few meV (a few tenths of kJ/mol; mol = ABO_3). To promote cancellation of errors, all of the calculations for low-energy structures were performed with equivalent K-point meshes: 8x8x8 within the Brillouin zone for ABO_3 pseudo-primitive unit cells.

As seen in (Figure 2a) there is approximately linear variation of $\Delta E_{VASP}(X)$ between the calculated GS (40_{CC}) and the fictive end members $NaTiO_3$ and $BiTiO_3$. This trend reflects linear variation of the concentrations of electrons that are either: forced into the conduction band $(X<\frac{1}{2})$; or depleted from the valence band $(X>\frac{1}{2})$, as functions of composition. At the $X=\frac{1}{2}$, $[Na_{1/2}Bi_{1/2}]TiO_3$, composition (Figure 2b), it is clear that many superstructures have lower ΔE_{VASP} than the NaCl-type. Therefore, if cation ordering is present in the NBT samples used for experiments, it is clearly not LRO, or SRO, of the NaCl-type.

GROUND STATE SEARCH

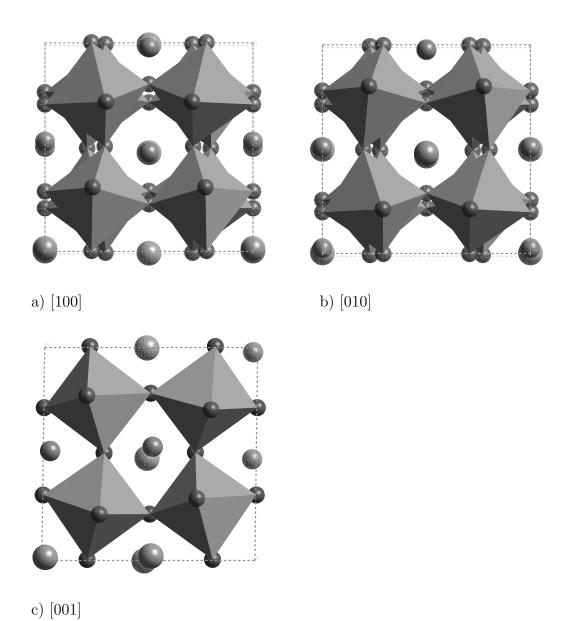
The 40_{CC} structure is *not only* the lowest energy configuration that was tried, GS_{VASP} , it is also the predicted GS that one obtains by fitting a cluster expansion (CE) Hamiltonian [19,20] to the set $\{\Delta E_{VASP}\}$, GS_{CE} . The fitting was done as follows:

- Fit a CE to the set of formation energies $\{\Delta E_{VASP}\}$.
- Use the CE to predict a new GS_{CE} ; by performing a brute force GS search on a 2x2x4 supercell (16 A-sites).

FIGURE 2. a) Formation energies per ABO_3 mol for supercells in the system $NaTiO_3 - BiTiO_3$. b) Formation energies near the 40_{CC} GS structure which is the predicted ground-state. Also marked are the formation energies for NaCl-type ordering (\bullet) and the 80_{628} structure (\square).

- If GS_{CE} is not an element of the set $\{\Delta E_{VASP}\}\$, then calculate ΔE_{VASP} for the predicted GS.
- If GS_{CE} is the same as GS_{VASP} calculate ΔE_{VASP} for the lowest predicted excited states that are not elements of $\{\Delta E_{VASP}\}$.
- The last step was repeated three times, and did not lead to a new predicted GS; did not predict $GS_{CE} < GS_{VASP}$.

As noted above, chemical ordering in the 40_{CC} structure (Figure 1c) reduces its space group symmetry from $Pm\overline{3}m$ to $P4_2/mmc$. Octahedral tilting [18] in the $a^-a^-c^+$ system (Figures 3a-c) further reduces space group symmetry to the acentric monoclinic group P11m (c-axis unique).


[0, 1/2, 0] AND [1/2, 0, 0] STACKING FAULTS

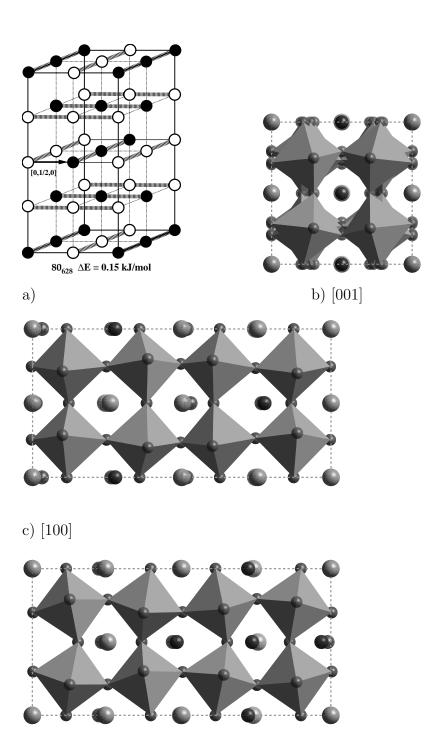
Disregarding octahedral tilting, the introduction of [0, 1/2, 0], or [1/2, 0, 0], stacking faults in every other (h,k,0) layer of the 40_{CC} GS structure leads to the 80_{628} structure (Figures 4a-d and 2b); called 80_{628} because there are 80 atoms in the supercell, and it is the 628'th 1:1 configuration in a brute force enumeration for the 2x2x4 supercell. Performing the VASP calculation, and allowing atomic positions to relax, leads to $a^+a^+c^-$ octahedral tilting in the orthorhombic space group Pmm2. The energy difference between 80_{628} and 40_{CC} is tiny $(0.15 \text{ kJ/mol})^{-1}$ and 80₆₂₈ is the lowest excited state shown in Figure 2b. This very small difference is expected because 80_{628} has identical (chemical) correlations [19] for all clusters within the pseudoprimitive unit cube. Such a small energy difference implies that cation ordering in 80_{628} is highly susceptible to [0, 1/2, 0] and [1/2, 0, 0] stacking faults. Note that in the relaxed structure a- and b-axes are symmetrically distinct, so one might expect different energies for [0, 1/2, 0] and [1/2, 0, 0] stacking faults; however, in terms of chemical ordering alone, [0, 1/2, 0] and [1/2, 0, 0] stacking faults are equivalent. It is only the tetragonal to monoclinic symmetry breaking associated with octahedral tilting that allows symmetrically distinct a- and b-axis relaxations.

DISCUSSION

The VASP results (Figure 2b) clearly rule out NaCl-type ordering of Na¹⁺ and Bi³⁺ on A-sites, and the electron diffraction results of Soukhojak et al. [12] suggest that their samples exhibited no NaCl-type LRO, or SRO; their samples were cooled from 1350-800°C at 5°C per hr, and TEM hot-stage measurements were made between 20°C and 600°C. The predicted 40_{CC} GS with $a^-a^-c^+$ octahedral tilting is consistent with the diffraction data of Soukhojak et al. [12], but the extremely

 $^{^{1)}}$ 0.15 kJ/mol is about three times the precision of VASP calculations.

FIGURE 3. The monoclinic 40_{CC} structure, space group P11m (c-axis unique), $a^-a^-c^+$ tilt system, projected on a) [001]; b) [010]; c) [100].


low energy difference between 40_{CC} and 80_{628} structures suggests that real samples probably have substantial disorder. Disordered samples are permissive of all tilting systems; so, the essential unanswered question is, does 40_{CC} -related LRO, or more likely SRO, influence observed octahedral tilting? Answering this question requires a reexamination of the diffraction data to see if 40_{CC} -related SRO is detectable.

CONCLUSIONS

If A-site cation ordering occurs in NBT it is clearly not of the NaCl-type. The predicted GS is the 40_{CC} structure (Figures 1c, 3a-c). Because the stacking fault energy that relates the 40_{CC} and 80_{628} structures is so small, one expects the 40_{CC} structure to be highly susceptible to disorder. Therefore, if cation ordering has a significant effect on the observed properties of NBT it is most probably SRO related to the 40_{CC} structure.

ACKNOWLEDGEMENT

The authors thank Igor Levin for many helpful discussions about octahedral tilting.

d) [010]

FIGURE 4. The orthorhombic 80_{628} structure, space group Pmm2, tilt system $a^+a^+c^-$, which is related to the 40_{CC} structure by a [0,1/2,0] stacking fault; a) Chemical ordering configuration; $\Delta E = 1.5 \text{ kJ/mol}$ relative to the 40_{CC} GS. Projections on: b) [001]; c) [100], d) [010].

REFERENCES

- 1. Zvigzds, J.A., Kapostinis, P.P. and Kruzina, T.V. Ferroelectrics 40, 75 (1982).
- Vakhrushev, S.B., Kvyatkovskii, B.E., Malysheva, R.S., Okuneva, N.M., Plachenova, E.L. and Syrnikov, P.P. Sov. Phys. Crystallogr. 34, 89 (1989).
- 3. Suchanicz, J. and Ptak, W.S. Ferroelectrics Lett. 12, 71 (1990).
- 4. Siny, I.G., Smirnova, T.A., and Kruzina, T.V. Ferroelectrics 124, 207 (1991).
- 5. Siny, I.G., Smirnova, T.A., and Kruzina, T.V. Sov. Phys. Solid State **33(1)**, 61 (1991).
- 6. Takenaka, T., Maruyama, K-I. and Sakata, K. Japan. J. Appl. Phys. 30, 2236 (1991).
- Park, S-E. Chung, S-J., Kim, I-T. and Hong, K.S. J. Am. Ceram. Soc. 77, 2641 (1994).
- 8. Suchanicz, J. and Kwapuliński, J. Ferroelectrics 165, 249 (1995).
- 9. Park, S-E. Chung, S-J., Kim I-T. J. Am. Ceram. Soc. 79, 1290 (1996).
- 10. Park, S-E., and Hong, K.S. J. Appl. Phys. **79**, 383 (1996).
- 11. Chiang, Y-M., Farrey, G.W., and Soukhojak, A.N. Appl. Phys. Lett. 73, 3683 (1998).
- 12. Soukhojak, A.N., Wang, G.W., Farrey, G.W., and Chiang, Y-M. *J. Phys. Chem. Solids* **61**, 301 (2000).
- 13. Jones, G.O. and Thomas, P.A. Acta Cryst. **B56**, 426 (2000).
- 14. Lushnikov S.G., Gvasaliya S.N., Siny, I.G., Sashin I.L., Schmidt V.H. and Uesu Y. Solid State Comm. 116, 41 (2000).
- 15. Groves, P. J. Phys. C: Solid State Phys. 18 L1073 (1985).
- Kresse, G. and Hafner, J. Phys. Rev. B 47, 558 (1993); Kresse, G. Thesis, Technische Universität Wien 1993; Phys. Rev. B 49, 14 251 (1994). Kresse, G. and Furthmüller, J. Comput. Mat. Sci. 6, 15 (1996); Phys. Rev. 54, 11169 (1996); cf. http://cms.mpi.univie.ac.at/vasp/
- 17. Vanderbilt, D. Phys. Rev. **B41** 7892, (1990).
- 18. Glazer, A.M. Acta Cryst **B28**, 3384 (1972), and Acta Cryst **A31**, 756 (1975).
- 19. Sanchez, J.M., Ducastelle, F. and Gratias, D. Physica 128A, 334 (1984).
- 20. McCormack, R.P., Burton, B.P. Comp. Mater. Sci. 8, 153 (1997).