Using Ab Initio Calculations in the Calphad
Environment

B.P. Burton', N. Dupin?, S. G. Fries®, G. Grimvall*, A. Fernandez
Guillermet®, P. Miodownik®, W. Alan Oates’, and V. Vinograd®

1A226/223 NIST, Gaithersburg MD 20899-8520 USA; benjamin.burton@nist.gov
2Calcul Thermodynamique, 3, rue de ’avenir, 63670 Orcet, France; dupin@ltpcm.inpg.fr
3ACCESS e.V., RWTH-Aachen, Intzestr. 5, D-52072 Aachen, Germany; sufries@aldix.mpi-
stuttgart.mpg.de *Department of Theoretical Physics, The Royal Institute of
Technology, S-100 44 Stockholm, Sweden; grimvall@theophys.kth.se 3Consejo
Nacional de Investigaciones Cientificas y Tecnicas Centro Atomico Bariloche,
8400 Bariloche, Argentina; afg@cab.cnea.gov.ar $ThermoTech, Surrey Technol-
ogy Centre, Guildford. UK; p.miodownik@btinternet.com ?Science Research In-
stitute, University of Salford, Salford M5 4WT, UK; ctguest@chorus.net 8Institut
fur Mineralogie, Universitat Miinster Corrensstr. 24, D-48149 Miinster Ger-
many; vinogra@uni-muenster.de

Published in Zeitschrift fur Metallkunde 92, 514- (2001)
Abstract

Methods for applying first principles (FP) calculations to CALPHAD mod-
eling, are discussed, with emphasis on easily calculated quantities that can be
used to estimate input parameters for CALPHAD optimizations. Estimations
of vibrational entropies, and melting points, from chemical systematics of mea-
sured elastic constants, or via semiempirical methods based on FP-calculations
are reviewed. Some strategies for including higher-order (clusters larger than
pairs) short range order correlations in CALPHAD calculations are considered.

1 Introduction

Previous Ringberg working groups have discussed possible applications of first
principles (FP) calculations to CALPHAD modeling, and have considered the
problems arising from neglect of short range order (SRO) in CALPHAD Gibbs
energy models [1]. Particular attention has been directed towards understand-
ing how mechanical instabilities account for the large differences between FP-
calculated lattice stabilities and those derived from extrapolations of CALPHAD
Gibbs energy models[2, 3]. Related issues are addressed in this report with
emphasis on insulating materials. Also, strategies for estimating vibrational
entropies and melting points from FP-calculations or chemical systematics are
discussed. Some strategies for including SRO (beyond pair correlations) in CAL-
PHAD calculations are discussed in the final section. Sections 2 and 5 are con-



cerned with using FP electronic structure calculations to obtain composition
dependent thermodynamic functions and physical properties. Sections 3 and
4 (primarily) deal with stoichiometric compounds, and semiempirical chemical
systematics.

2 Uses of Electronic Structure Calculations in
support of CALPHAD Optimizations

At present, it seems impractical to incorporate complete first principles (FP)
phase diagram (FPPD) calculations into the CALPHAD method, however, cer-
tain elements of the FPPD technique can easily be used to augment, or com-
plement, CALPHAD optimizations. In particular, electronic structure codes
based on density functional theory, in the local density approximation (LDA);
the Vienna Abinitio Simulation Package; VASP [4] are becoming sufficiently
user friendly that CALPHAD practitioners may find them useful for generating
initial estimates of various physical properties. For example, VASP calculations
of such quantities as: equations of state (EOS), molar volumes (V'), and bulk
moduli (B, B') are trivial; as are calculations of formation energies (AEy) for
pure compounds with fewer than about 80 atoms per unit cell. More difficult
to calculate, but not excessively so, are elastic constants, ¢;; and force-constant
matricies, for stability analyses. In addition, the VASP package can perform
finite temperature calculations from which one might, for example, calculate
vibrational entropies.

2.1 Using EOS Data
2.1.1 Bulk Moduli and Equilibrium Volumes

VASP EOS (E(V)) calculations were performed for the B1, NaCl-structure,
carbides: VC, TiC, NbC, and ZrC, and some results are listed in Table 1 and
plotted in Fig. 1. Fits to the E(V) data, with second, third, and fourth order
polynomials, were considered. Results for B and B':

B=v [dzﬂf )]V )
B= - (1 + [%/V)]V) @)

(where V is molar volume and Vj is the equilibrium molar volume at 0K)
are in good agreement with previous calculations [5] that were mostly done with
full potential linear muffin tin orbital (FPLMTO) code. For EOS calculations of
this sort, however, the VASP program is generally preferable because it performs
ionic relaxations routinely, whereas the FPLMTO and other LMTO codes do
not. This makes no difference for B1 structure compounds, but is important for
lower symmetry phases.



Table 1: VASP-calculated equation of state related quantities

System | Polynomial | Vggp/Atom | Vo/Atom | Eo/Atom | B B’

Fit Order (A3) (A3) (eV) GPa | GPa

vC 2 8.9983 8.615 -10.543 2.09

TiC 2 10.061 9.741 -10.246 1.72

NbC 2 11.164 11.068 -11.146 1.99

7rC 2 12.942 12.705 -10.540 1.49

vC 3 8.613 -10.543 2.16 | 3.98

TiC 3 9.733 -10.246 1.75 | 3.79

NbC 3 11.065 -11.146 2.05 | 4.37

7rC 3 12.698 -10.540 1.52 | 3.96

VC 4 8.613 -10.543 2.16 | 3.91

TiC 4 9.733 -10.246 1.75 | 3.89

NbC 4 11.065 -11.146 2.05 | 4.13

7rC 4 12.698 -10.540 1.51 | 4.06

The VASP calculations yield typical LDA results for V5 (Fig. 1); i.e. LDA
systematically underestimates V4 such that Vg & 0.96Vg,,. The dashed line
in Fig. 1 indicates where the Vg4 results would plot if they agreed perfectly
with experiment, and the dotted line indicates a deviation of —4 % from perfect
agreement. As discussed in Section 2 the B and B’ parameters can be used to
estimate Debye temperatures.

2.1.2 Estimating AEg,sic from EOS Calculations

Ferreira et al. [6], approximated the elastic contribution to the excess enthalpy
of mixing, AHejqstic, with their e—G approximation (in which € is a short range
chemical interaction and G is a long-range elastic interaction). The advantage
of this approach is that AHjqstic, which is approximated as equal to AFE,qstic,
can be estimated from the EOS of two pure end member phases.

The procedure is:

e Calculate EOS for the end members, TiC and ZrC in this case (Fig. 2).

e Transform, E = E(V), into E = E(X) via the approximation that, V' is
linear in bulk composition, X = Xz,¢, such that (V = a + bX); this is
probably a good approximation for the random alloy.

e Approximate AE(X) as a linear combination of partials from the two
end member EOS (Fig. 3).

The final step can be written formally as:
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Figure 1: Comparison of experimental and VASP calculated volumes for some
B1 carbides.
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Figure 2: Equations of State for TiC and ZrC plotted as functions of volume,
which can be converted to functions of bulk composition (Xz,) via the approx-
imation V =9.73 + 2.97X z,.
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Figure 3: The approximate curve for Fqsic-

AEelastic(X) = (1 - X)ETzC'(X) + XEZTC(X) (3)

Where Eric(X) is the energy of pure TiC evaluated at the value of V' corre-
sponding to value of X specified by the solid square, and similarly for Ez,.(X) (i-e.
to calculate one value of AFE,4c, corresponding to a single solid square: calcu-
late Vi and Vz,.¢ from V = 9.73+2.97X; evaluate E1;c(V) and Ez,¢(V) at
this value of V; plug Eric(V) and Ez.c(V) into Equation 3.)

Fig. 3 shows the approximation based on VASP EOS (solid squares plus the
dotted curve fit to them). In addition, nine VASP supercell calculations are
indicated by the open squares which are formation energies for selected ordered
compounds: L1y; [001]; [110]; and [111] superlattices; /16 and tP16 (tetrag-
onal 16 atom cells that are doubled NaCl cells). The rough coincidence be-
tween the envelope of values defined by the supercell formation energies and
the AFE.qstic(X) curve suggests that for the Ti;_,Zr,C system, AHXS ~
AFE¢.stic 1s a reasonable approximation. Note that supercell volumes, Fig. 4
deviate little from Vegards’ law (V' linear in X), which also suggests that the
main source of nonideal mixing in Ti; ,Zr,C is a size effect; and therefore
AFEa5tic(X) & AHXS. Note that AFE,jqs.(X) has the appropriate asymme-
try; i.e. it requires more energy to insert larger Zr atoms in TiC-rich solutions
than to insert smaller Ti atoms in ZrC-rich solutions. That the [111] supercell
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Figure 4: Calculated supercell volumes: Dashed line is Vegards’ Law; Dotted
line indicates a five percent deviation from Vegards’ law.

formation energy, AFEj 11y, is only about 70% of AE,qstic(X = 1/2) suggests
that SRO related to this structure will reduce AHX 9, relative to AEejqstic(X),
in the neighborhood of X a 0.5. Therefore, the approximation AHXS =
APFgstic may be a good starting point for an unknown system, but it should
be treated as an upper bound, because SRO may significantly reduce AHX5,

2.2 “Charged” Reference States in CEF Models
2.2.1 Formation Energies and Band-Filling Energy

Compound energy formalism (CEF) [7] often have fictive end members to which
a formal charge is attributed. For example, in the perovskite structure quasi-
binary system PbNbO3-PbMgO3, only Pb(Mg;/3,Nb,/3)O3 occurs in nature,
and if one insists on formal valences: Pb*2, Nb*3 Mg*2, O~2, the end mem-
bers would be PbNbO3! and PbMgO;2. Alternatively, one can assume that
valences change to maintain global electrical neutrality. The former approach
is fundamentally unphysical, and therefore can not be modeled directly with
FP-calculations, but the latter often can. In PbNbO3-PbMgO; (Fig. 5), one
can calculate formation energies for PbNbOgs, PbMgOs, and a variety of ordered
supercells of intermediate composition (these AE; values are the formation en-
ergies that one may use to fit a Cluster Expansion Hamiltonian, as discussed in
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Figure 5: VASP calculations of formation energies in the quasibinary system
PbNbO3-PbMgQOgs; dashed line is to emphasize the approximately linear trends
of AE(X).

Section 5. The electronic structure calculation begins with neutral atoms, and
adjusts the electron density to obtain a minimum energy configuration, but that
configuration need not respect formal valences; electrical neutrality is a more
important physical constraint. Fictive neutral end members are typically high
in energy, and the energies of fictive compounds, between them and the min-
imum (where nominal valences apply) follow two approximately linear trends
(Fig. 5, Pb(Mg,Nb1_,)0s; Fig. 6, [Na;_,Bi,]TiO3). The approximate linear-
ities of these trends are consequences of the linear composition-dependencies
of the concentrations of holes [1/3 < X (PbMgO3) < 1], or electrons pro-
moted to the conduction band [0 < X(PbMgOs3) < 1/3]. Because the
form of the band changes slowly with composition, and little with ordering, this
noncon figurational band-filling (BF) energy (Epr) is approximately the den-
sity of holes, or promoted electrons, times the energy per hole (e~ promoted).

A naive attempt was made to calculate Epp for a series of [001] superstruc-
tures with the following approximations.

1) For 1/3 < X(PbMgOs) < 1, calculating the energy associated with
depleting the band:
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Figure 6: VASP calculations of formation energies in the quasibinary system
NaTiO3-BiTiOj3; dashed line is to emphasize the approximately linear trends of
AE;(X).

1 Top of Band
Epp ~ 5 / E-D(e")dE @)

E—Fermi

where D(e™) is the electronic density of states.

For 0 < X(PbMgOs) < 1/3, calculating the energy associated with
promoting electrons into the conduction band:

1 E—Fermi
Epp =~ _/ E-D(e”)dE (5)
2 Bottom of Conduction Band

Factors of 1/2 are present to avoid double counting.

Results of this calculation are plotted in Fig. 7, along with the formation en-
ergies from Fig. 5. Apparently, these naive approximations for Egr(X) fail, be-
cause they yield corrections that are more negative than the formation energies,
by a factor of about two. Qualitatively however, linear trends for Egp(X) are
clearly apparent. It follows that, when fitting the energetics of a quasibinary
system with fictive end members (that have nonstandard ionic valences) one
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Figure 7: Calculations of the band-filling energy associated with depleting a
band 0 < X(PbMgOs;) < 1/3, or forcing electrons into the conduction
band 1/3 < X(PbMgOs) < 1. Supercell formation energies are plotted for
comparison.
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should include two or more nonconfigurational Epr(X) terms that are linear
in composition.

Therefore, it may sometimes be possible to abandon the fundamentally un-
physical construct of charged reference states that occur in CEF, in favor of more
physical end members with formation energies that can be calculated from first
principles.

2.2.2 Mechanical Stability

Fictive end members are, of course, subject to the same mechanical stability
issues that arise with lattice stabilities for various metals; e.g. body centered
cubic (bec) Al Stability analyses of the Pm3m  perovskite structure phases
PbMgOs and PbNbQOjs, were performed by using VASP calculations to ob-
tain force-constant matrices, and then performing eigenvalue analyses. These
calculations clearly revealed mechanical (tetragonal ferroelectric) instabilities
of the sort that are observed in PbTiO3 [8]. Instabilities of this type can in-
volve substantial, or trivial, energies depending on particular composition (Fig.
8 and 9). For example:

AE(PngO3) = EtetTagonal — Ecupic = =70 kJ/mOl
AE(PbNbOg) = Etetragonal — Ecupic = —0.1 kJ/mOl

11
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3 Calculation of Vibrational Entropy and Elas-
tic Properties

3.1 Basic Concepts and Definitions

The temperature dependent part of the Gibbs energy of an element or a stoi-
chiometric compound is usually dominated by the lattice vibrations, which may
be described by a properly defined Debye temperature, ©. Following [9] we
shall use an ”entropy Debye temperature”, ©g. It is obtained from the ©5(T)
function that reproduces the experimental vibrational entropy per atom of the
compound, Sy, if Og is inserted in the expression for entropy Sp, in the Debye
model,

Sun(T) =5 | 257 ©)
At low temperatures (I' << Og), Og(T") varies with T because the true
vibrational spectrum is not of Debye form, and at high temperatures (T' > Og)
it shows a smooth decrease with increasing T', caused by anharmonic softening
of the lattice vibrations. To obtain stable values for ©g, we evaluated it at
T~ 0g. At T > %, Og essentially measures a logarithmic average of the
phonon frequencies, and in that particular average, the masses separate from
the interatomic forces [10]. Therefore one can define a quantity kg, with the
dimension of a force constant (i.e. force per length), by

h ks
= 3k \| M., 0

Ogs

Here M.yy is a "effective mass” defined as the logarithmic average of the
atomic masses, k is Boltzmanns’ constant and h is Plancks’ constant. The
quantity ks, which contains information about the strength of the average in-
teratomic forces in the compound, has been referred to as ”effective force con-
stant”.

Other k; quantities with the dimension of a force constant have been intro-
duced by Fernandez et al. [11]. The quantity kg is defined in terms of the
bulk modulus (B) and the volume per atom of the compound, V, as follows

kg = BV'/3 (8)

As seen in Section 1, B and V' may be calculated ab initio when experi-
ments are missing or impossible.

Fig. 10 (a), (b) and (c) are plots of experimental values of B, V and kg,
versus group number (GN) in the periodic table, for several elements. These
characteristic variations of cohesive properties across the periodic table have

14



been used to estimate unknown values and to judge theoretical predictions. In
what follows we will consider correlations between kg and two kinds of Debye
temperatures.

3.2 Systematics and Correlations for Debye Temperatures

Moruzzi et al. [12] proposed a semi-empirical equation for estimating the low-
temperature Debye temperature ©p of elements from information obtained in
ab initio calculations (i. e. V, B) and the atomic mass (M), viz.,

Op = a\/% 9)

where a is an empirical constant [12].

The purpose of this section is to establish a new correlation with kg which
allows estimations of ©g for both elements and compounds. The experimental
relation between ©p and a+/kp/M for various elements is shown in Fig. 11a
and 11b. Dashed lines represent the relation proposed by Moruzzi et al.; how-
ever, recent theoretical work [13] casts doubt on the use of such empirical cor-
relation methods.

3.2.1 Analysis of Og Data

In Fig. 11b, we plot ©g temperatures obtained from experimental determina-
tions of vibrational entropies [14] versus experimental values for the quantity
V kB /M, for several elements. The symbols in Fig. 11a represent the O p values
for the same elements. The solid lines in these graphics represent the expression
proposed by Moruzzi et al. [12] to predict © p (Equation 9). The scatter of the
Og values is considerably less than that of the © p values. In addition, we find
that Equation 9 accounts remarkably well for the experimental ©g tempera-
ture whereas agreement with ©p could be improved by increasing the empirical
constant, a; Note that ®g and ©p values for Be are significantly larger than
those predicted by a linear extrapolation of the data. The anomalous behavior
of Be is related to its unusal elastic properties, with a Poisson’s constant close
to zero that makes the shear modulus significantly larger than the bulk modulus
[14].

3.2.2 Using Ab Initio Results

Fig. 12a is a plot of \/kp/M versus number of valence electrons per atom, n.,
that we constructed with ab initio B and V values from Nguyen-Manh and
Pettifor [15] for the transition metal aluminides ScAl, TiAl, CrAl, FeAl, CoAl,
NiAl, YAL ZrAl, MoAl, TcAl, RuAl, RhAl, PdAl and AgAl. Fig. 12b is a plot
of B as a function of n.. We expect a similar trend for Og.

15
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4 Using Elastic Properties to Establish Stabili-
ties of Intermetallic Compounds

An important feature of the CALPHAD method is the characterization of
metastable, or fictive unstable, intermetallic compounds that are sometimes
called counter-phases. For example, there is no known FeC phase, but one
needs an enthalpy of formation AH; for FeC in the NaCl (B1) structure to
model solid solutions of TiC with some Fe substituting for Ti. Often, ther-
modynamic functions and physical properties of counter-phases are estimated
by extrapolation or interpolation of experimental data for isostructural phases.
Alternatively, first principles (FP) calculations can be used; e.g. one can eas-
ily calculate the AE; for FeC in the B1 structure (relative to bcc Fe and
Graphite) and make the approximation AFE; =~ AH;. Computational studies
of pure elements have demonstrated, however, [16, 17, 18] that counter-phases
may be mechanically unstable, and their FP-values for AE; may be sub-
stantially higher than those obtained by CALPHAD extrapolation. Therefore,
mechanical stability analysis must become a routine step in the use of FP cal-
culations for estimating counter-phase energetics or physical properties (section
2.2.2: Mechanical Stability).

Stability criteria, with respect to elastic deformations, vary in complexity
with crystal symmetry. In cubic structures (the following discussion is restricted
to cubic structures) the criterion is:

(11 —¢12)/2>0 (10)

Note that temperature dependencies of elastic constants are ignored, because
of the scarcity of data, but a rigorous treatment would include them ( e.g. [19]
for N13A1)

4.1 Relationships Between Elastic Parameters

The stability criterion in Eq. 10 only requires two constants, ¢11 and c¢i9, as
does the the bulk modulus B (Eq. 1). However the degree of anisotropy (A)
is given by the ratio of the two shear moduli (G/C") where G is the modulus
corresponding to shear on (100) planes in the [010] direction and C' is the
modulus corresponding to a shear on (110) planes in the [110] direction [14]:

B=(c11 + 2012)/3 (11)
Cl = (611 — C12)/2 (12)
G100 = caa (13)

The degree of anisotropy is:

A= 2644/(611 - 012) (].4)

19



which requires a value for c44. To obtain a correlation between macroscopic
elastic properties and certain thermodynamic functions, it is useful to see how
single crystal constants are related to B, C', G, and Poisson’s Ratio (v) in (quasi-
) isotropic polycrystalline materials. A procedure devised by Hill [20] allows
the effective engineering shear modulus G to be calculated for such materials,
despite the presence of anisotropy in single crystals (A # 1), and its absence in
polycrystalline aggregates. One averages the values that are obtained when it
is assumed that both strain and stress are uniform throughout the aggregate:

Gaverage = (GV + GR)/2 (15)

where Gy and Ggr stand for the values calculated by Voigt and Reuss,
respectively, [20] and are:

Gr = 5caa(crr — c12)/[4cas + 3(c11 — c12)] (16)
Gy = (e11 — c12 + 3caa) /5 (17)

The value of B is independent of orientation, so the standard relationship
between G and B can then be used to calculate a value of v for such a
quasi-isotropic polycrystalline aggregate [21]:

3B - 2G
V= —————— (18)
2(3B+ @)

Differences between v199 and v, as calculated via Voigt-Reuss averaging,
arises from differences in the the Anisotropy constant A. Youngs’ modulus (F)
can be derived from a combination of v and B or G and B:

E =3B(1-2v) (19)

Such relationships are particularly useful for extrapolating variations in elas-
tic properties from stable to metastable isostructural phases. Ideally a combi-
nation of different extrapolations should be used to obtain self-consistent re-
sults that give some indication of the mechanical stabilities, or instabilities, of
metastable phases.

Unmeasured, values of some single crystal elastic constants may be derived
by combining various forms of data. Values of C' for 3d aluminides [15](¢> )
and values of B may be combined via Eq. 11 and 12 to extract ¢;; and c¢qa-
An advantage of this route is that B does not vary much for close-packed
structures ( See Fig 8 of [21] drawn from [22] or Table 2 of [23]), even when
there is a substantial mechanical instability [18]. The data for Al-V in Table 2
were obtained by combining information from [15, 24]. Approximating single
crystal elastic constants from the macroscopic elastic parameters, E, G, B and
v, leads to systematic errors because one always obtains A = 1, which implies
an isotropic or quasi-isotropic material. When single crystal elastic constants
have not been measured, however, this approach may give reasonable estimates.

20



Table 2: Calculated Elastic Properties of Some B2 Transitions Metal Com-
pounds
System C11 C12 C44 Cl A B V100 REF
Sc-Al 90 |63 |98 |14 726 | 72 | 041 ||
Ti-Al 85 | 149 | 82 | -32 | -2.56 | 128 | 0.64 | |
V-Al 23 | 227 | 73 |-102|-0.72 | 159 | 0.91 | [1
[
[
[

Nb-Al |1 227 | 38 | -113 | -0.34 | 152 | 1.00
Fe-Al 292 | 136 | 166 | 78 2.13 | 188 | 0.32
Co-Al | 325 | 125 | 161 | 100 | 1.61 | 192 | 0.28
Ni-Al 239 | 157 | 131 | 41 3.20 | 184 | 040 | [1
Co-Ti 203 | 129 | 68 | 37 1.84 | 154 | 0.39 | [2

Table 3: Calculated Elastic Properties of Some B1 Transitions Metal Carbides

System | c11 Ci2 | C44 C' A B vioo | vvr | Gv | GRr Gaverage REF
TiC 513 | 106 | 178 | 204 | 0.87 | 242 | 0.17 | 0.19 | 188 | 187 | 188 14
TiCp.o1 | 515 | 106 | 179 | 205 | 0.88 | 242 | 0.17 | 0.19 | 189 | 188 | 189 26
7ZrC 441 | 60 151 | 191 | 0.79 | 187 | 0.12 | 0.16 | 167 | 165 | 166 14
ZrCogq4 | 472 | 99 159 | 187 | 0.85 | 223 | 0.17 | 0.20 | 170 | 169 | 169 26
VCoss | 366 | 110 | 192 | 128 | 1.50 | 195 | 0.23 | 0.17 | 166 | 160 | 163 14
VCogs | 501 | 84 | 155|209 | 0.74 | 223 | 0.14 | 0.19 | 176 | 173 | 175 26
NbCpg | 413 | 111 | 206 | 151 | 1.36 | 212 | 0.21 | 0.17 | 184 | 180 | 182 14
TaCp.go | 505 | 79 73 213 | 0.34 | 221 | 0.14 | 0.28 | 129 | 99 114 26, 14]
TaCg97 | 610 | 210 | 230 | 200 | 1.15 | 343 | 0.26 | 0.24 | 218 | 217 | 217 26)

4.1.1 Transition-Metal B2 Aluminides and B1 Carbides

The most significant conclusion to be drawn from Table 2 is that there can be
significant variations, in both the sign and magnitude of C’, even though the
predicted variation of B versus n. is smooth (Figure 13). Values obtained
by Voigt-Reuss averaging are clearly invalid when C’ becomes negative. In
systems where alloying induces a sign change in C’, e.g. Al-Nb and Al-V,
metastable phases such as the w or ”Q” phase appear on rapid cooling [15].
These metastable phases are related to the high-T stable phases by mechanical
instabilities, so they form more easily than stable low-T phases, or assemblages
of phases, when cooling is sufficiently rapid. Although it is generally assumed
that Poisson’s Ratio cannot exceed 0.5, this only holds for mechanically stable
phases, and calculated values for vyg9 that exceed 0.5 are invariably associated
with negative values for C".
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Figure 13: Calculated values of B and C' versus the number of d-electrons n.,
for B2 structure transition metal aluminides.
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Unlike some of the aluminides in Table 2, the carbides (Table 3) are very
stable and do not exhibit negative values for C’'. It would however be useful
to know what happens with isomorphous counter-phases such as FeC. Probably
the most significant feature is that the experimental values of ¢;; appear to be
very sensitive to the degree of non-stoichiometry, as do the Debye temperatures
[27]. Tt might be interesting to check what role the elastic constants play in
the experimental observation that many of these carbides have their maximum
stability away from the stoichiometric composition.

4.2 Correlation of Elastic Constants with Melting Tem-
peratures

4.2.1 Melting Points

There have been a number of attempts to correlate the melting point 7,,, with
various combinations of elastic constants (Figure 14 [28]). Predictions of melting
points from first principles are unreliable, but elastic constants can be calculated
by this route. Also, there are known examples of metastable melting points,
and it would be useful to estimate the corresponding elastic constants. One
of the simplest assumptions is that 73, is proportional to the bulk modulus
B (Figure 14a) however this correlation is associated with large error bars so
attempts have been made to correlate T;, with other elastic constants. It can
be seen from Figure 14b that there is a significant reduction in the scatter when
c11 is substituted for B. This apparently surprising result is understood by
combining Eq. 11 and 12 and solving for ¢11:

C11 =B+4CI/3 (20)

Eq. 20 shows that ¢;; depends upon both B, and C’ and therefore includes
more information about the mechanical stability. As expected, a compound that
is approaching a mechanical instability (e.g. C'>0 — 0 via alloying) typically
has a lower T}, than a more stable compound with the same B, but a large
positive C’. Inter-relationships between the various elastic constants allow ciq
to be expressed as a function of E and v:

c11 = E(1 = v100) /(1 = 2v100) (1 + v100) (21)

This provides some theoretical justification for a correlation between T, and
E found for silicides [29] and should also work for other structures provided they
do not exhibit much variation in v. This holds for close -packed structures such
as Al, A2, A3 (fcc, bee, HCP) but there are significant variations in v when
materials of the same structure exhibit a range of ionic or covalent character [30].
Better knowledge of c;; values would allow improved testing of such predictions
and should lead to better correlations involving c11, ¢12 and ca4.
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