Why $Pb(B, B')O_3$ Perovskites Disorder at Lower Temperatures than $Ba(B, B')O_3$ Perovskites

B.P. Burton and E. Cockayne

Materials Science and Engineering Laboratory, Ceramics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899

(September 26, 2002)

Published in Physical Review **B60** R12 542- (1999)

Abstract

Planewave pseudopotential calculations of total energies were performed for three ordered perovskite related supercells in each of the eight stoichiometries of $A(B_{1/3}B'_{2/3})O_3$; A = Pb, Ba and B = Zn, Mg and B' = Nb, Ta; and the eight stoichiometries of $A(B_{1/2}B'_{1/2})O_3$; B = Sc, In. A striking difference between the Pb- and $Ba(B_{1/3}B'_{2/3})O_3$ systems is that the differences in total energies for Pb-systems span ranges that are roughly an order of magnitude smaller than those for the corresponding Ba-systems. This indicates much lower energetic barriers to disordering in the Pb-systems, consistent with experiments. We explain this trend as a consequence of enhanced Pb-O bonding to underbonded oxygens in $B^{2+}-O-B^{2+}$ environments.

Accepted for Rapid publication in Phys. Rev. B, Octtober 1999

PACS Numbers: 64.60.Cn, 81.30.-t, 77.84.-s

Typeset using REVTEX

I. INTRODUCTION

Lead based $A(B,B')O_3$ perovskites $(A = Pb^{2+}, Ba^{2+}; B = Mg^{2+}, Zn^{2+}, In^{3+}, Sc^{3+}; B' = Nb^{5+}, Ta^{5+})$ are widely used as relaxor ferroelectric^{1,2} transducers, actuators, and multilayer capacitors; and their $Ba(B, B')O_3$ counterparts, particularly $Ba(Zn_{1/3}Ta_{2/3})O_3$, are the premier dielectric resonator materials³. Some B-site disorder is essential to obtain the relaxor properties of the Pb-systems^{1,2}, but disorder in the Ba-systems can degrade the dielectric "quality factor" by orders of magnitude^{4,5}. As indicated by the experimental data summarized in Table 1, B-site ordering in $A(B,B')O_3$ perovskites persists to higher temperatures when the A-cation is Ba^{2+} rather than Pb^{2+} , especially in the $A(B_{1/3}B'_{2/3})O_3$ systems^{4,6-8,10-13}. Clearly, the energetics of B-site ordering are dramatically altered by substituting Pbfor Ba on the A-sites, and it is not obvious why this should occur. Our computational results allow us to explain this surprizing result as a consequence of enhanced Pb-O hybridization between the Pb 6s- and O 2p-states of underbonded oxygens in $B^{2+} - O - B^{2+}$ or $B^{2+} - O - B^{2+}$ environments.

All the $Ba(B_{1/3}B'_{2/3})O_3$ systems, adopt the same 1:2 crystal structure at low temperatures (a B:B':B' layer sequence perpendicular to the cubic [111]—vector) but the only $Pb(B_{1/3}B'_{2/3})O_3$ system, that exhibits long range order is $Pb(Mg_{1/3}Ta_{2/3})O_3$. When maximally ordered, the PMT-1:1—structure, has two B-sites: one occupied by Ta; the other by a disordered $Mg_{2/3}Ta_{1/3}$ —mixture. Thus, 1:1—is a partially ordered intermediate temperature phase rather than the PMT—ground state (GS). In the $A(B_{1/2}, B'_{1/2})O_3$ systems, all stoichiometries adopt a 1:1—structure at low temperatures, and again the $Ba(B_{1/2}, B'_{1/2})O_3$ —systems have higher transition temperatures for cation ordering 10,14,19 .

II. TOTAL ENERGY CALCULATIONS

Total energies were calculated for three fifteen-atom perovskite based superstructures in each of the eight possible stoichiometries of $A(B_{1/3}B'_{2/3})O_3$; A = Pb, Ba B = Mg, Zn B' =Nb, Ta (Fig. 1). The three $A(B_{1/3}B'_{2/3})O_3$ superstructures ([111]_{1:2}, [110]_{1:2}, and [001]_{1:2}) are derived from ideal perovskite by adding a (B:B':B') layer sequence perpendicular to the [111], [110], and [001] cubic vectors, respectively. The three ten-atom $A(B_{1/2}B'_{1/2})O_3$ superstructures, $[111]_{1:1}$, $[110]_{1:1}$, and $[001]_{1:1}$, are derived by adding B:B' layer sequences perpendicular to the [111], [110], and [001] cubic vectors. All calculations were performed with the Vienna ab initio simulation program (VASP)²³ using ultrasoft Vanderbilt²⁴ type plane-wave pseudopotentials with a local density approximation for exchange and correlation energies. Electronic degrees of freedom were optimized with a conjugate gradient algorithm, and both cell constant and ionic positions were fully relaxed, but ferroelastic acentric relaxations were not investigated. Valence electron configurations for the pseudopotentials (Pb_d version); Ba $5p^66s^2$; Mg $2p^63s^2$; Zn $3d^{10}4s^2$; Sc $3p^63d4s^2$; are: $Pb \ 5d^{10}6p^26s^2$ In $4d^{10}5s^25p^1$; Nb $4p^65s4d^4$; Ta $5d^36s^2$; O $2p^6$. An energy cutoff of 395.7 eV was used, in the "high precision" option which guarantees that absolute energies are converged to within a few meV (a few tenths of kJ/mol; mol = ABO_3). To promote cancellation of errors, formation energies for the ABO_3 and $AB'O_3$ reference states, are calculated for each supercell with identical K-point meshes: 5x5x4, 4x4x10, and 6x6x2 for $[111]_{1:2}$, $[110]_{1:2}$,

and $[001]_{1:2}$ superstructures, respectively; 4x4x4, 7x7x10, and 8x8x4 for $[111]_{1:1}$, $[110]_{1:1}$, and $[001]_{1:1}$, respectively.

VASP results for $A(B_{1/3}B'_{2/3})O_3$ supercell total energies, relative to $E_{[111]_{1:2}}$, are plotted in Figure 1 with the corresponding supercell energies calculated with the ionic model of Bellaiche and Vanderbilt (BV)²⁵, in which:

$$E = \frac{e^2}{2\epsilon a} \sum_{l \neq l'} \frac{\Delta q_l \Delta q_{l'}}{|l - l'|} \tag{1}$$

Where: E is total energy; e is the electron charge; ϵ is an electronic dielectric constant $(\epsilon = 10 \text{ for } A(B_{1/3}B'_{2/3})O_3, \epsilon = 5 \text{ for } A(B_{1/2}B'_{1/2})O_3)$; a is the lattice constant $(a = 7.7 \text{ a.u.}, 4.07 \text{ Å})^{26}$; Δq_l is the difference in charge between the ion at site l and the average B - site charge of +4; i.e. $\Delta q_l = -2$ for Mg^{2+} and +1 for Nb^{5+} ; a|l-l'| is the interionic separation. For the $A(B_{1/3}B'_{2/3})O_3$ composition, this model predicts a 1:2 GS and a $1:2 \rightleftharpoons Disordered$ transition at high temperature, consistent with the experimental data for the $Ba(B_{1/3}B'_{2/3})O_3$ systems.

In Figs. 1 and 2, the BV (ionic) model values and all the Ba-systems, exhibit the same hierarchies: $\Delta E_{[111]_{1:2}} < \Delta E_{[110]_{1:2}} < \Delta E_{[001]_{1:2}}$. In the Pb-systems, however, this hierarchy only occurs in PMN and PZT. Experimentally, the 1 : 2 structure ([111]_{1:2}) is observed as the low temperature, presumably GS phase for all the Ba-systems, and it is the predicted GS of the BV model. In the Pb-systems however, the 1 : 2 structure may not be the GS for any of them; in PMN for example, at least one 30 atom superstructure is predicted to have lower energy²⁷. Energy ranges, $\Delta E_{[001]_{1:2}} - \Delta E_{[001]_{1:2}}$, for the BV values and the Ba-systems, are between 40 and 60 kJ/mol (mol = ABO_3), but analogous ranges for the Pb-systems, $\Delta E_{highest} - \Delta E_{lowest}$ are between 1 and 8 kJ/mol. In $A(B_{1/2}B'_{1/2})O_3$ systems (Fig. 2), ΔE -ranges for the Pb-systems are about half of those for the Ba-systems. A second trend that occurs in both Figs. 1 and 2 is that ΔE -ranges for $A(B, Nb)O_3$ systems are typically a little smaller than those for the corresponding $A(B, Ta)O_3$ systems; consistent with experimental data indicating higher transition temperatures for cation ordering in Ta-systems (Table 1).

III. DISCUSSION

The configurational energy is apparently dominated by two contributions: long-range Coulomb interactions which favor configurations that maximize unlike charges on nearest neighbor B-sites; and short-range interactions that are primarily associated with the optimization of A-O bonds. Long-range electrostatic interactions dominate when the A-cation is the larger more regularly coordinated Ba^{2+} , and short-range interactions become competitive when it is the smaller less regularly coordinated Pb^{2+} .

Concentrations of underbonded oxygens in $B^{2+} - O - B^{2+}$ or $B^{3+} - O - B^{3+}$ environments increase monotonically in the sequences of structures [111]_{1:2}, [110]_{1:2}, and [001]_{1:2}

(Fig. 3), and [111]_{1:1}, [110]_{1:1}, and [001]_{1:1} (Fig. 4), and in both cases, the energies for BV (ionic) model calculations and Ba—systems increase monotonically as well. The Pb—systems however, do not follow this trend and $Pb(B_{1/3}, B'_{2/3})O_3$ systems depart from it more strongly than $Pb(B_{1/2}B'_{1/2})O_3$ systems. Substitution of Pb for Ba drastically reduces the ΔE -ranges, which implies that energetically favorable Pb - O interactions anticorrelate with electrostatically favorable B-site configurations. That is, an increase in the concentration of electrostatically destabilizing configurations implies an increase in the concentration of stabilizing Pb - O bonds, leading to a reduced change in configurational energy for the $Pb(B_{1/3}, B'_{2/3})O_3$ systems. This trend is more pronounced in the $A(B_{1/3}, B'_{2/3})O_3$ systems than in the $A(B_{1/2}B'_{1/2})O_3$ systems because of the larger difference in B-ion charges, B^{2+} and B'^{5+} vs. B^{3+} and B'^{5+} , respectively. Note that in the $[110]_{1:1}$ structure (Fig. 4) the substitution of Pb for Ba causes almost no change in $\Delta E_{[110]_{1:1}}$.

The most plausible explanation for these results is that hybridization of Pb 6s- and O 2p-states^{25,28-31} stabilizes electrostatically unfavorable configurations; via enhanced (short) Pb-O bonds to the otherwise underbonded oxygens in $B^{2+}-O-B^{2+}$ or $B^{3+}-O-B^{3+}$ triplets. Even if the GS has no underbonded oxygens, thermal disordering will create them along with overbonded oxygens in $B^{5+}-O-B^{5+}$ triplets. In the Ba-systems this energetic cost is not as strongly mitigated by short-range interactions so ordered phases are stable to higher temperatures and the supercell ΔE -hierarchies for Ba-systems resemble those for the BV (ionic) model. In the Pb-systems however, Pb-O bonds to underbonded oxygens typically contract, and those towards overbonded oxygens elongate (symmetry permitting).

For example, in the PMN [110]_{1:2} supercell two thirds of the Pbs are in sites with only one $B^{2+} - O - B^{2+}$ triplet (one of 12) in configuration $Mg^{2+} - O - Mg^{2+}$. The Pb - O bond to this oxygen is predicted to be only 2.38 Å, whereas bonds to oxygens in the other triplets are: 2.62 Å for $Mg^{2+} - O - Nb^{5+}$, and 2.86, 3.09, and 3.36Å for the $Nb^{5+} - O - Nb^{5+}$ triplets. The remaining one third of Pbs in the [110]_{1:2} structure have two $Mg^{2+} - O - Mg^{2+}$ triplets (in the same [110]_{cubic} plane) that compete for the short Pb - O bond and the distances to oxygens in the different triplets are all about the same: 2.83 Å for $Mg^{2+} - O - Mg^{2+}$; 2.85 Å for $Mg^{2+} - O - Nb^{5+}$; 2.79°Å for $Nb^{5+} - O - Nb^{5+}$. Note that $\Delta E_{[110]1:1}$ (Fig. 4) is essentially unchanged by the substitution of Pb for Ba because the B-site coordination of Pb in this structure does not allow for contraction of some Pb - O bonds without stretching an equal number. The importance of hybridization between O 2p- and Pb 6s-states in the ferroelectricity of $PbTiO_3$ was emphasized by Cohen²⁸ and Cohen and Krakauer²⁹; and by Bellaiche et al.³¹ and Wensell and Krakauer³² in discussing the energetics of structural relaxation in PZN and BZN in the [111]_{1:2} and [001]_{1:2} structures.

Qualitatively, the BV model²⁵ captures the essence of cation ordering in the Ba-systems, but it fails for the Pb-systems. BV suggested that covalency of short Pb - O bonds might provide a mechanism for stabilizing 1:1 order in place of 1:2, but no specific mechanism was described. They preferred the proposal that Pb^{4+} on B-sites might be responsible for "the weak 1:1 order in PMN and PMT." This is a possible contributing factor in real samples with excess lead, but it fails to explain why, in the absence of octahedral Pb^{4+} , the ΔE -ranges for $Pb(B, B')O_3$ systems are so much smaller than those of the corresponding Ba-systems. Evidently, $Pb(B, B')O_3$ perovskites are more susceptible to B-site cation disorder than their Ba-counterparts because of the near cancellation of long- and short-range

IV. CONCLUSIONS

Comparing the first principles calculations for $Ba(B,B')O_3$ and $Pb(B,B')O_3$ perovskites indicates that the long-range Coulomb interactions which drive B-site ordering in Ba—systems do not dominate in Pb-systems. Apparently, hybridization between Pb 6s-and O 2p-states on otherwise underbonded oxygens, leads to a near cancellation of long- and short-range contributions to the configurational energies of $Pb(B_{1/3}, B'_{2/3})O_3$ systems, and to a partial cancellation in the $Pb(B_{1/2}B'_{1/2})O_3$ systems. This competition between long- and short-range many-body interactions explains why $Pb(B, B')O_3$ perovskites disorder at lower temperatures than $Ba(B, B')O_3$ perovskites.

V. ACKNOWLEDGEMENTS

The author gratefully acknowledges the assistance of G. Kresse with VASP calculations; E. Cockayne was supported by a National Research Council fellowship.

REFERENCES

- ¹ N. Setter and L.E. Cross J. App. Phys. **51** (8) 4356 (1980).
- ² L.E. Cross, Ferroelectrics **76** 241, (1987).
- ³ M.A. Akbas and P.K. Davies, Solid State Chemistry of Inorganic Materials, Ed. P.K. Davies, A.J. Jacofson, C.C. Torardi, T. Vanderah, Proc. 453 483 (1997).
- ⁴S. Kawashima, M. Nishida, I. Ueda, and H. Ouchi J. Am Ceram. Soc. **66**(6), 421 (1983).
- ⁵ C-C. Lee, C-C Chou, and D-S. Tsai, In press, Ferroelectrics **206-207** 293, (1998).
- ⁶C.A. Randall and A.S. Bhalla, Japn. J. Appl. Phys. 29(2), 327 (1990).
- ⁷ H.B. Krause, J.M. Cowley and J. Wheatley, Acta. Cryst. **A35** 1015- (1979).
- ⁸ J. Chen, H.M. Chan, and M. Harmer, J. Am Ceram. Soc. **72**[4], 593 (1989).
- ⁹"The Columbite route is not successful in eliminating pyrochlore formation in $Pb(Zn_{1/3}Ta_{2/3})O_3$," J. Chen, Ph.D thesis (1991).
- ¹⁰ M.A. Akbas and P.K. Davies J. Amer. Ceram. Soc. **80**(11), 2933 (1997).
- ¹¹ U. Treiber and S. Kemmler-Sack, J. Solid State Chem., 43, 51- (1982).
- ¹² K.S. Hong, I. T. Kim, and C-D. Kim, J. Am Ceram. Soc. **79**(12), 3218 (1996).
- ¹³ R. Guo, A.S. Bhalla, and L.E. Cross J. App. Phys. **75**,(9) 4704- (1994).
- ¹⁴ C.G.F. Stenger and A.J. Burggraaf, Phys. Stat. Solid. **A61** 275 (1980).
- ¹⁵ A. Kania, G.E. Kugel, K. Roleder, and M. Pawelczyk Ferroelectrics **125** 489 (1992). Also, A. Kania, K. Roleder, G.E. Kugel and M. Hafid Ferroelectrics 135 75 (1992).
- ¹⁶ N. Yasuda, H. Ohwa, J. Oohashi, K. Nomura, H. Terauchi, M. Iwata, and Y. Ishibashi J. Phys. Soc. Japan **67**(11) 3952 (1998).
- ¹⁷ A. Kania, and M. Pawelczyk Ferroelectrics **124** 261 (1991).
- ¹⁸ A.A. Bokov, I.P. Rayevsky, V.V. Neprin and V.G. Smotrakov Ferroelectrics **124** 271 (1991).
- ¹⁹ V.S. Filip'ev and E.G. Fesenko Soviet Phys. Crystal. **10**[5] 532- (1966).
- ²⁰ F.S. Galasso and W. Darby J. Chem. Phys. **66** 131 (1962). Also, F.S. Galasso Structure. Properties and Preparation of Perovskite type Compounds Pergamon Press (1969).
- ²¹ L. Brixner J. Chem. Phys. **64** 165 (1960).
- ²² G.G. Jones, C.A. Randall, S.J. Jang, and T.R. Shrout Ferroelectrics
- ²³G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993); G. Kresse, Thesis, Technische Universität Wien 1993; Phys. Rev. B 49, 14 251 (1994). G. Kresse and J. Furthmüller, Comput. Mat. Sci. 6, 15 (1996); Phys. Rev. 54, 11169 (1996); cf. http://tph.tuwien.ac.at/vasp/guide/vasp.html.
- ²⁴ D. Vanderbilt, Phys. Rev. **B41** 7892, (1990).
- ²⁵ L. Bellaiche and D. Vanderbilt, PRL **81**, 1318 (1998).
- ²⁶ For $A(B_{1/3}B'_{2/3})O_3$ systems a=7.7~a.u. and $\epsilon=10$ as in BV. For $A(B_{1/3}B'_{2/3})O_3$ systems $\epsilon=5$ so that $\Delta E_{[001]_{1:1}}\approx E(BSN)_{[001]_{1:1}}\approx E(BST)_{[001]_{1:1}}$.

 ²⁷ B.P. Burton, in press, J. Phys. Chem. Solids (1999).
- ²⁸ R. E. Cohen Nature **358**, 136 (1992).
- ²⁹ R. E. Cohen and H. Krakauer, Ferroelectrics **136**, 65 (1992).
- ³⁰ L. F. Mattheiss, Phys. Rev. **B6**, 4718 (1972).
- ³¹ L. Bellaiche, J. Padilla and D. Vanderbilt, PRB **59** 1834 (1999).
- ³² M. Wensell and H. Krakauer, in press, J. Phys. Chem. Solids (1999).

TABLES

TABLE I. Experimental data on ordering in $A(B,B^\prime)O_3$ perovskites.

System	abbreviation	Observed Ordering	Transition Temperature Range	Ref.
$Pb(Zn_{1/3}, Nb_{2/3})O_3$	PZN	1:1 Short Range Order		6
$Pb(Mg_{1/3}, Nb_{2/3})O_3$	PMN	1:1 Short Range Order		7,8
$Pb(Zn_{1/3}, Ta_{2/3})O_3$	PZT	?		9
$Pb(Mg_{1/3}, Ta_{2/3})O_3$	PMT	$1:1 \rightleftharpoons \text{Disordered}$	$1350 < T_t^* < 1400^{\circ}C$	10
$Ba(Zn_{1/3}, Nb_{2/3})O_3$	BZN	$1:2 \rightleftharpoons \text{Disordered}$	$1300 < T_t < 1350^{\circ}C$	11,12
$Ba(Mg_{1/3}, Nb_{2/3})O_3$	BMN	$1:2 \rightleftharpoons \text{Disordered}$	$1350 < T_t < 1400^{\circ}C$	10
$Ba(Zn_{1/3}, Ta_{2/3})O_3$	BZT	$1:2 \rightleftharpoons \text{Disordered}$	$T_t \geq 1650^{\circ}C$	4
$Ba(Mg_{1/3}, Ta_{2/3})O_3$	BMT	$1:2 \rightleftharpoons \text{Disordered}$	$T_t \approx 1655^{\circ}C$	13
$Pb(Sc_{1/2}, Nb_{1/2})O_3$	PSN	$1:1 \rightleftharpoons Disordered$	$1200 < T_t < 1220^{\circ}C$	14
$Pb(Sc_{1/2}, Ta_{1/2})O_3$	PST	$1:1 \rightleftharpoons Disordered$	$1350 < T_t < 1400^{\circ}C$	10
$Pb(In_{1/2}, Nb_{1/2})O_3$	PIN	$1:1 \rightleftharpoons Disordered$	$920^{\circ}C < T_t < 950^{\circ}C$	15,16
$Pb(In_{1/2}, Ta_{1/2})O_3$	PIT	1:1 ⇌ Disordered	$1070^{\circ}C < T_t < 1100^{\circ}C$	17,18
$Ba(Sc_{1/2}, Nb_{1/2})O_3$	BSN	1:1 ⇌ Disordered	$1400^{\circ}C < T_t$	19
$Ba(Sc_{1/2}, Ta_{1/2})O_3$	BST	$1:1 \rightleftharpoons \text{Disordered}$	$1400^{\circ}C < T_t$	19
$Ba(In_{1/2}, Nb_{1/2})O_3$	BIN	1:1	$1200^{\circ}C < T_t < 1400^{\circ}C$	20,21
$Ba(In_{1/2}, Ta_{1/2})O_3$	BIT	1:1	$1200^{\circ}C < T_t < 1650^{\circ}C$	20,22

 $[*]T_t = cation \ order - disorder \ transition \ temperature.$

FIGURES

FIG. 1. Total energies (mol = ABO_3), relative to $E_{[111]_{1:2}}$, for the perovskite based supercells with compositions $A(B_{1/3}B'_{2/3})O_3$; A = Pb, Ba; B = Mg, Zn; B' = Nb, Ta; and for ionic model of Bellaiche and Vanderbilt (BV)[18].

FIG. 2. Total energies, relative to $E_{[111]_{1:1}}$, for $A(B_{1/2}B'_{1/2})O_3$ perovskite based supercells.

FIG. 3. ΔE vs. the concentration of underbonded oxygens in the [111]_{1:2}, [110]_{1:2}, and [001]_{1:2} supercells.

FIG. 4. ΔE vs. the concentration of underbonded oxygens in the [111]_{1:1}, [110]_{1:1}, and [001]_{1:1} supercells.