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Abstract

Planewave pseudopotential calculations of total energies were performed
for three ordered perovskite related supercells in each of the eight stoichiome-
tries of A(B1/3Bé/3)03; A=Pb, Ba and B=Zn, Mg and B' = Nb, Ta;
and the eight stoichiometries of A(Bl/QBi/Z)Og; B = Sc, In. A striking
difference between the Pb- and Ba(B, /3B, /3)03 systems is that the differ-
ences in total energies for Pb-systems span ranges that are roughly an order
of magnitude smaller than those for the corresponding Ba-systems. This
indicates much lower energetic barriers to disordering in the Pb-systems, con-
sistent with experiments. We explain this trend as a consequence of enhanced
Pb— 0O bonding to underbonded oxygens in B>t — O — B?>t  environments.
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I. INTRODUCTION

Lead based A(B, B')O3 per-
ovskites (A = Pb*', Ba**; B = Mg**, Zn** In*", Sc*t; B' = Nb°*,Ta’") are widely
used as relaxor ferroelectrich? transducers, actuators, and multilayer capacitors; and their
Ba(B, B")Os counterparts, particularly Ba(Zn,/3Taz/3)O3, are the premier dielectric res-
onator materials®. Some B — site disorder is essential to obtain the relaxor properties of the
Pb-systems'?, but disorder in the Ba-systems can degrade the dielectric ”quality factor”
by orders of magnitude®S. As indicated by the experimental data summarized in Table 1,
B — site ordering in A(B, B')O3; perovskites persists to higher temperatures when the
A—cation is Ba®" rather than Pb**, especially in the A(By/3Bj/3)03 systems™® 10713,
Clearly, the energetics of B — site ordering are dramatically altered by substituting Pb
for Ba on the A — sites, and it is not obvious why this should occur. Our computational
results allow us to explain this surprizing result as a consequence of enhanced Pb— O hy-
bridization between the Pb 6s- and O 2p-states of underbonded oxygens in B?** — O — B*+
or B2 — O — B?* environments.

All the Ba(B 3B, /3)03 systems, adopt the same 1 : 2 crystal structure at low tem-
peratures (a B : B': B' layer sequence perpendicular to the cubic [111] vector) but the
only Pb(Bl/3B§/3)O3 system, that exhibits long range order is Pb(Mg,/3Taz/3)0s. When
maximally ordered, the PMT 1:1 structure, has two B — sites: one occupied by Ta;
the other by a disordered Mgs/3Ta1/3 mixture. Thus, 1:1 is a partially ordered interme-
diate temperature phase rather than the PMT ground state (GS). In the A(Bi/2, B 5)O3
systems, all stoichiometries adopt a 1 : 1  structure at low temperatures, and again the
Ba(Byjs, B} ;)O3 systems have higher transition temperatures for cation ordering'®'%!?,

II. TOTAL ENERGY CALCULATIONS

Total energies were calculated for three fifteen-atom perovskite based superstructures in
each of the eight possible stoichiometries of A(Bl/gBé/g)O?,; A=Pb, Ba B= Mg, Zn B' =
Nb, Ta (Fig. 1). The three A(By/3B;,3)O3 superstructures ([111];.5, [110];.9, and [001];.)
are derived from ideal perovskite by adding a (B : B' : B) layer sequence perpendicular to
the [111], [110], and [001] cubic vectors, respectively. , The three ten-atom A(Bi/2Bj ;)O3
superstructures, [111]y.1, [110]1.1, and [001].1, are derived by adding B : B’ layer sequences
perpendicular to the [111], [110], and [001] cubic vectors. All calculations were performed
with the Vienna ab initio simulation program (VASP)?® using ultrasoft Vanderbilt** type
plane-wave pseudopotentials with a local density approximation for exchange and correlation
energies. Electronic degrees of freedom were optimized with a conjugate gradient algorithm,
and both cell constant and ionic positions were fully relaxed, but ferroelastic acentric re-
laxations were not investigated. Valence electron configurations for the pseudopotentials
are: Pb 5d'%6p?6s> (Pby version); Ba 5p®6s?; Mg 2pb3s?; Zn 3d'%4s?; Sc 3p53d4s?;
In 4d*5s%5p'; Nb 4p55s4d*; Ta 5d36s%; O 2pS. An energy cutoff of 395.7 eV was used,
in the ”high precision” option which guarantees that absolute energies are converged to
within a few meV (a few tenths of kJ/mol; mol = ABQO;). To promote cancellation of
errors, formation energies for the ABO3; and AB'O; reference states, are calculated for
each supercell with identical K-point meshes: 5x5x4, 4x4x10, and 6x6x2 for [111].9, [110];.o,



and [001];., superstructures, respectively; 4x4x4, 7x7x10, and 8x8x4 for [111].1, [110].1,
and [001];.1, respectively.

VASP results for A(B /3B, /3)03 supercell total energies, relative to Ej111,,, are plotted
in Figure 1 with the corresponding supercell energies calculated with the ionic model of
Bellaiche and Vanderbilt (BV)?, in which:
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Where: E is total energy; e is the electron charge; e is an electronic dielectric constant
(e=10 for A(Bl/gB§/3)03, e=>5 for A(Bl/QB{/Q)Og); a is the lattice constant

(a=7.7 a.u.,4.07 A)®; Aq, is the difference in charge between the ion at site [ and the
average B — site charge of +4;i.e. Aq=—2 for Mg?>" and +1 for Nb°*; a|l — I'| is
the interionic separation. For the A(Bj/3B;,3)03 composition, this model predicts a 1 : 2
GS and a 1:2 = Disordered transition at high temperature, consistent with the
experimental data for the Ba(B/3Bj/3)03 systems.

In Figs. 1 and 2, the BV (ionic) model values and all the Ba-systems, exhibit the same
hierarchies: AE1y),,, < AEq10],., < AFEjgo1},,- In the Pb-systems, however, this hierarchy
only occurs in PMN and PZT. Experimentally, the 1 : 2 structure ([111];.5) is observed
as the low temperature, presumably GS phase for all the Ba-systems, and it is the predicted
GS of the BV model. In the Pb-systems however, the 1 : 2 structure may not be the GS
for any of them; in PMN for example, at least one 30 atom superstructure is predicted
to have lower energy?’. Energy ranges, AEoi},,, — AEjpoi},.,, for the BV values and the
Ba-systems, are between 40 and 60 kJ/mol (mol = ABOQOj3), but analogous ranges for the
Pb-systems, AEpighest — AEjouwest  are between 1 and 8 kJ/mol. In A(B; ;B /2)03 systems
(Fig. 2), AE-ranges for the Pb-systems are about half of those for the Ba-systems. A second
trend that occurs in both Figs. 1 and 2 is that AFE-ranges for A(B, Nb)O3; systems are
typically a little smaller than those for the corresponding A(B,Ta)O3 systems; consistent
with experimental data indicating higher transition temperatures for cation ordering in T'a-
systems (Table 1).

IT1. DISCUSSION

The configurational energy is apparently dominated by two contributions: long-range
Coulomb interactions which favor configurations that maximize unlike charges on nearest
neighbor B — sites; and short-range interactions that are primarily associated with the
optimization of A — O bonds. Long-range electrostatic interactions dominate when the
A — cation is the larger more regularly coordinated Ba?", and short-range interactions
become competitive when it is the smaller less regularly coordinated Pb**.

Concentrations of underbonded oxygens in B>t — O — B** or B3 — O — B3t envi-
ronments increase monotonically in the sequences of structures [111];.9, [110]1.2, and [001];.5
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(Fig. 3), and [111];.1, [110];.1, and [001];.; (Fig. 4), and in both cases, the energies for BV
(ionic) model calculations and Ba—systems increase monotonically as well. The Pb—systems
however, do not follow this trend and Pb(B 3, B, /3)03 systems depart from it more strongly
than Pb(Bi/2Bj /)03 systems. Substitution of Pb for Ba drastically reduces the AE-
ranges, which implies that energetically favorable Pb — O interactions anticorrelate with
electrostatically favorable B — site configurations. That is, an increase in the concentration
of electrostatically destabilizing configurations implies an increase in the concentration of
stabilizing Pb — O bonds, leading to a reduced change in configurational energy for the
Pb(By3, B§/3)O3 systems. This trend is more pronounced in the A(B;/3, B§/3)03 systems
than in the A(By/2B),,)Os systems because of the larger difference in B —ion charges,
B?* and Bt vs. B¥ and B"7", respectively. Note that in the [110].; structure (Fig.
4) the substitution of Pb for Ba causes almost no change in AEj ), ;.

The most plausible explanation for these results is that hybridization of Pb 6s- and O 2p-
states?>?®73 stabilizes electrostatically unfavorable configurations; via enhanced (short)
Pb— O bonds to the otherwise underbonded oxygens in B>t — O — B>** or B> — O — B3*
triplets. Even if the GS has no underbonded oxygens, thermal disordering will create them
along with overbonded oxygens in B> — O — B" triplets. In the Ba-systems this energetic
cost is not as strongly mitigated by short-range interactions so ordered phases are stable
to higher temperatures and the supercell AE-hierarchies for Ba-systems resemble those for
the BV (ionic) model. In the Pb-systems however, Pb— O bonds to underbonded oxygens
typically contract, and those towards overbonded oxygens elongate (symmetry permitting).

For example, in the PMN  [110];.2 supercell two thirds of the Pd's are in sites with
only one B** — O — B?* triplet (one of 12) in configuration Mg¢** — O — Mg?*. The
Pb— O bond to this oxygen is predicted to be only 2.38 A, whereas bonds to oxygens
in the other triplets are: 2.62 A for Mg>t — O — Nb®*, and 2.86, 3.09, and 3.36A4 for
the Nt — O — Nb°* triplets. The remaining one third of Pb's in the [110];., structure
have two Mg?>T — O — Mg*" triplets (in the same [110].u5; plane) that compete for the
short Pb — O bond and the distances to oxygens in the different triplets are all about
the same: 2.83 A for Mgt — O — Mg®*; 285 A for M¢g*>t — O — Nb**; 2,794 for
Nt —O—Nb*. Note that AE} gy, (Fig. 4) is essentially unchanged by the substitution
of Pb for Ba because the B — site coordination of Pb in this structure does not allow for
contraction of some Pb— O bonds without stretching an equal number. The importance
of hybridization between O 2p- and Pb 6s-states in the ferroelectricity of PbTi0O3 was
emphasized by Cohen?® and Cohen and Krakauer?®; and by Bellaiche et al.3! and Wensell
and Krakauer®? in discussing the energetics of structural relaxation in PZN and BZN in
the [111];.2 and [001];.2 structures.

Qualitatively, the BV model?® captures the essence of cation ordering in the Ba-systems,
but it fails for the Pb-systems. BV suggested that covalency of short Pb— (O bonds might
provide a mechanism for stabilizing 1 : 1 order in place of 1 : 2, but no specific mechanism
was described. They preferred the proposal that Pb*t on B — sites might be responsible
for ”the weak 1:1 order in PMN and PMT.” This is a possible contributing factor in real
samples with excess lead, but it fails to explain why, in the absence of octahedral Pb**, the
AE-ranges for Pb(B, B')O3 systems are so much smaller than those of the corresponding
Ba-systems. Evidently, Pb(B, B')O3 perovskites are more susceptible to B — site cation
disorder than their Ba-counterparts because of the near cancellation of long- and short-range



contributions to the configurational energy.

IV. CONCLUSIONS

Comparing the first principles calculations for Ba(B,B')Os; and Pb(B,B')O; per-
ovskites indicates that the long-range Coulomb interactions which drive B — site ordering
in Ba—systems do not dominate in Pb-systems. Apparently, hybridization between Pb 6s-
and O 2p-states on otherwise underbonded oxygens, leads to a near cancellation of long- and
short-range contributions to the configurational energies of Pb(B 3, B, /3)03 systems, and
to a partial cancellation in the Pb(B1/2B],,)O3 systems. This competition between long-
and short-range many-body interactions explains why Pb(B, B')Os; perovskites disorder at
lower temperatures than Ba(B, B')O; perovskites.
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TABLES

TABLE I. Experimental data on ordering in A(B, B')Os perovskites.

System abbreviation Observed Ordering  |Transition Temperature Range|Ref.
Pb(Zny/3, Nby3)03 PZN 1:1 Short Range Order 6
Pb(Mg, 3, Nby3)O3| PMN |1:1 Short Range Order 7.8
Pb(Zny 3, Tas3)03 PZT ? 9
Pb(Mgy/3,Tag;3)03| PMT 1:1 & Disordered 1350 < T} < 1400°C 10
Ba(Zny3,Nby;3)03| BZN 1:2 = Disordered 1300 < T} < 1350°C 11,12
Ba(Mgy3,Nbyy3)O3) BMN 1:2 = Disordered 1350 < T} < 1400°C 10
Ba(Zn,3,Tay/3)03 BZT 1:2 & Disordered T, > 1650°C 4
Ba(Mgy/3,Tay3)03 BMT 1:2 = Disordered T, =~ 1655°C 13
Pb(Scy /9, Nby/2)O3 PSN 1:1 & Disordered 1200 < T} < 1220°C 14
Pb(Sci/2,Tay)03 PST 1:1 & Disordered 1350 < T} < 1400°C 10
Pb(Iny 9, Nby3)Os PIN 1:1 & Disordered 920°C < T, < 950°C 15,16
Pb(Iny/y,Ta1/9)03 PIT 1:1 = Disordered 1070°C < T} < 1100°C 17,18
Ba(Scy/2, Nbyj2)O3 BSN 1:1 & Disordered 1400°C < Ty 19
Ba(Scy/3,Tay/2)03 BST 1:1 & Disordered 1400°C < Ty 19
Ba(In o, Nby/5)O3 BIN 1:1 1200°C < T, < 1400°C 20,21
Ba(In 2, Tay/2)0s BIT 1:1 1200°C < T, < 1650°C 20,22
*T, = cation order — disorder transition temperature.
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FIG. 3. AF vs. the concentration of underbonded oxygens in the [111];.2, [110]1.2, and [001];.2
supercells.
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FIG. 4. AFE vs. the concentration of underbonded oxygens in the [111]1.1, [110]1.1, and [001]1.1
supercells.



