Using analysis uncertainty estimates from the Real-Time Mesoscale Analysis (RTMA) in the verification of grid-based forecasts

David Myrick

Western Region Headquarters Scientific Services Division

Points \rightarrow Grids

Forecast Grid Flagship Product

How did I do away from ASOS stations?

Need an analysis of observations to compare to

Motivation

- Forecaster concerns:
 - "The objective analysis never draws for the cold air that pools in the X valley!"
 - "I'll be penalized for adding detail to my grids!"
 - "The analysis never matches the observations in my northern mountain zones!"
- Forecasters <u>need feedback</u> on how they are doing <u>across the entire forecast grid</u> (CWA)

Current grid-based verification efforts

✓ Choose Verification Options ×				
Grid Displays Grid Stats Distributions Point/Area Stats				
Parameter:		Model:	Forecaster:	Dates:
□ MaxRH		🗆 ADJDGX	ALL 🔼	🔷 Verifying on
🗖 MaxT		☐ ADJDGXBC	awipsusr	💠 Forecast on
☐ MinRH		☐ ADJFWC	cdecker	Choose Dates by:
⊒ MinT		□ ADJFWCBC	ddecker	Period Length
⊒ RH		🗆 ADJKAF	dfishler	List of dates
⊒ T		☐ ADJKAFBC	dgroener	Length (days)
🖵 Td		🗆 ADJMAV	dhuston	365
□ TdAft		☐ ADJMAVBC	iallen	
☐ TdMm		I ADJMEH	jjannuzz	Before:
🔲 WindDir		🗆 ADJMEL	jsmith	2006/05/17
☐ WindSpd		🗆 ADJMEN	jtannenn	2006/05/16
Edit Area:		F ADJMET	Icolin	2006/05/15
Entire Grid		ADJMETBC	lholt	2006/05/13
Boise CWA			mhurlbut	2006/05/12
West Central Mountain	3		pflatt	2006/05/11
Boise Mountains			sparker	2006/05/10
Camas Prarie			vmills	2006/05/09
Linner Treasure Valley			VIIIIII	2006/05/07
Magic Valley		i Eta12		2006/05/06
Owyhee Mountains		⊒ Eta12BC		2006/05/05
Southwest Highlands		☐ GFS40		2006/05/04
Southern Twin Falls Co	unty 🔽	□ GFS40BC		2006/05/03
Display:		☐ GMOS		2006/05/02
🗇 Bias		☐ NGM80		2006/03/01
RMS Error		I NGM80BC		Cycle:
💠 Std Dev		Cofficial		🗖 00 🗖 12
💠 Avg Abs Err		⊒ gfsLR	∇	🗖 06 🧖 18
R	un	Run/Dismiss	Cancel	

BOIVerify

MDL – NDFD vs. RTMA

Objective Analyses are NOT perfect

Errors are introduced by:

Background field
Assimilated observations
Observations that are not "representative" of the nearby area

Representativeness Issue

C. Kahler

Alta Ski Area Example

Alta Ski Area Example

Looking up the mountain

Looking up Little Cottonwood Canyon

Alta Ski Area Example

Variation in a Grid Box

- Subtle differences also exist over flat(er) terrain
- Variation in temps walking around your neighborhood at night (Andy E's analogy)
- Proposed technique helps to account for the variation across a grid box

Objective Analyses are NOT perfect

- Analysis quality can vary by location:
 - Data density
 - Terrain structure
- Analysis errors can be estimated mathematically
 - Result can be used as an estimate of "uncertainty"

RTMA Uncertainty Estimates

Experimental product

- RTMA: uncertainty is calculated at observation locations by taking the inverse of a simplified version of the Hessian matrix of the variational cost function (inexpensive)
- Parallel RTMA: compute error using Lanczos method in conjunction with the conjugate gradient method of the GSI minimization procedure
- Goal:
 - Higher uncertainty in data sparse areas
 - Lower uncertainty in data dense areas
- Currently available for T, T_d, Wind

Idea

- Can we use the RTMA analysis uncertainty estimate as a proxy for a good forecast?
 - Lower margin of error in areas with obs
 - Forecasters would not be penalized as much in areas where the analysis struggles

Suppose the forecast high temperature for tomorrow for your area is 75°F. What do you think the actual high temperature will be?

Example

- Forecast = $64^{\circ}F$
- Analysis Value = 66°F
- Analysis Uncertainty = +/- 3°F
- Reward forecasts between 63-69°F

Temperature (°F) Forecast Example

Temperature (°F) Forecast Example

Utah Example

 NDFD terrain (used by the RTMA) captures the complex mountain/valley topography of the Great Basin

GFS40 T (°F) Initialization 1200 UTC 5 October 2007

• Using model data to test technique

• GFS40 smartinit does a fairly good job downscaling to the terrain

• GFS40 – does not capture cold front along Wasatch Front

RTMA T (^oF) 1200 UTC 5 October 2007

Cold front evident in the RTMA

RTMA T (°F) Uncertainty 1200 UTC 5 October 2007

• NCEP/EMC working to incorporate vertical & terrain constraints into analysis of uncertainty

• Goal: lower values in data dense areas/valleys, higher values in data sparse areas/mountains

Uncertainty Verification T (°F) 1800 UTC 21 June 2007

Gray areas = good
 forecasts (forecast is
 within bounds of analysis
 uncertainty)

• GFS40 too warm behind cold front

 GFS40 too cold ahead of cold front

Summary

- <u>Challenge</u>: How can we use an analysis in grid based verification without penalizing forecasters in areas with the analysis struggles?
- <u>Proposal</u>: Verify against RTMA ± Uncertainty
 - Give the forecaster credit for areas that are within the bounds of analysis uncertainty
- <u>Goal</u>: Provide feedback across the entire forecast grid
 - Where were temperatures too warm? Winds too weak? Dew points too dry?

More Information on the RTMA

RTMA COMET module (S. Jascourt) <u>http://www.meted.ucar.edu/</u>

Benjamin, S., J. M. Brown, G. Manikin, and G. Mann, 2007: The RTMA background – hourly downscaling of RUC data to 5-km detail. Preprints, 22nd Conf. on WAF/18th Conf. on NWP, Park City, UT, Amer. Meteor. Soc., 4A.6.

De Pondeca, M., and Coauthors, 2007: The status of the Real Time Mesoscale Analysis at NCEP. Preprints, 22nd Conf. on WAF/18th Conf. on NWP, Park City, UT, Amer. Meteor. Soc., 4A.5.

Horel, J., and B. Colman, 2005: Real-time and retrospective mesoscale objective analyses. Bull. Amer. Meteor. Soc., **86**, 1477-1480.

