

Introduction to SWPC and Space Weather Supercomputing Needs

NOAF

Doug Biesecker NOAA/NWS/NCEP/SWPC

Space Weather Models

- What is space weather
- Space Weather Models for NCEP
 - IDEA

NOAA

- Whole Atmosphere and Ionosphere
 WSA/ENLIL
 - Solar Atmosphere and Heliosphere
- CMIT
 - Magnetosphere, Ionosphere, and Thermosphere
- Summarizing SWPC Future Needs

Space Weather Products and Services

SEC produces 42 Alert products

DOAA

Watches; expected disturbances, events that are forecast (i.e. The conditions are favorable for occurrence)

Warnings; disturbances that are imminent, likely, expected in the near future with high probability

Alerts; observed conditions meeting or exceeding thresholds

Summaries; report issued as storm thresholds change/end-of-event

Annual Number of Space Weather Products Issued during Solar Cycle 23

NOAA

The number of products above does not include the NOAA POES and GOES, or NASA ACE real time solar wind data sets, which account for over 14 million file transfers per month NOAA

Sample of Space Weather Economic and Societal Impacts

Impact Area	Customer (examples) Action (examples)		Cost (examples)
Spacecraft (Individual systems to complete spacecraft failure; comm and radiation effects)	Lockheed Martin, Orbital, Aerospace Corp, Boeing, Digital Globe, Sciences Corp, Space Systems Loral, NASA, NOAA, DoD	 ieed Martin, Orbital, Aerospace Boeing, Digital Globe, ces Corp, Space Systems NASA, NOAA, DoD - Postpone launch - In orbit - Reboot systems; Turn off/safe instruments and/or spacecraft 	
Electric Power (Equipment damage to electrical grid failure and blackout conditions)	U.S. Nuclear Regulatory, Northeast Power Coordinating Council, Allegheny Power, Central Maine, American Transmission Company		-Estimated loss ~\$400M from unexpected geomagnetic storms
		P P	- \$3-6B loss in GDP (blackout)
Airlines (Communications) (Loss of flight HF radio communications)	United, Continental, Northwest, American, Lufthansa, Qantas Virgin, British Airways, Fedex, Air New Zealand, ExecuJet, etc.	Divert polar flights, change flight plans Change altitude	Cost ~ \$100k per diverted flight \$10-50k for re-routes
Airlines (Radiation) (Radiation dose on crew and passengers)	United, Continental, Northwest, American, Lufthansa, Qantas Virgin, British Airways, Fedex, Air New Zealand, ExecuJet etc.Divert polar flights, char flight plans Change altitude (even a mid-latitudes)		- Cost ~\$100k per diverted flight - Health risks
Surveying & Navigation (Use of magnetic field or GPS could be impacted)	FAA-WAAS, New York and Texas Dept. of Transportation, BP Alaska, Schlumberger, GlobalSantaFe, etc.	A-WAAS, New York and Texas ot. of Transportation, BP Alaska, lumberger, GlobalSantaFe, etc. Postpone activities; Redo survey; Use alternate or backup navigation tools	
Vendor Industry (Servicing the Northeast Power Coordinating Council (NPCC), and National Grid)	Northwest Research Assoc., INC Solar Terrestrial Dispatch Metatech Corp.	Data used in real time to alert electric power companies of significant geomagnetic storms	

Towards weather prediction in the whole atmosphere-ionosphere system: A coupled model of Integrated Dynamics through Earth's Atmosphere (IDEA)

> R. A. Akmaev, T. J. Fuller-Rowell, F. Wu, A. F. Anghel, H. Wang, and N. Maruyama (CU/CIRES & NWS/NCEP/SWPC)

M. D. Iredell, S. Moorthi, H.-M. Juang, and Y.-T. Hou (NWS/NCEP/EMC)

G. H. Millward (CU/LASP)

Sponsored by NASA Heliophysics Theory Program & NWS/NCEP/EMC

Planetary wave periodicities in dayside ionosphere Vertical plasma drift

NOAA

Dayside electrodynamics during 2001 150

Electrodynamics \Rightarrow drift \Rightarrow EIA \Rightarrow scintillations (?)

Courtesy D. Anderson

Tidal signatures in nightside Equatorial lonospheric Anomaly

NOAA

The four peaks in diurnal temperature amplitude result from superposition of the migrating (to the west) tide (DW1) and nonmigrating eastward mode with zonal wavenumber 3 (DE3).

IMAGE composite of 135.6-nm O airglow (350 – 400 km) in March – April 2002 and amplitude of simulated diurnal temperature oscillation at 115 km (Immel et al., 2006).

Coupled IDEA model

NOAA

WAM = Extended GFS + Physics

NOAA

Operational Global Forecast System

- T382L64 (~ 0.3°×0.3°, ~ 0 62 km)
- Hydrology, surface exchange processes, ozone transport, radiation, cloud physics, etc.
- 4 forecasts daily
- Ensemble (14 members) forecast up to 16 days

Spectral Dynamical Core

Horizontal Diffusion, Viscosity, & Conductivity

WAM

- 150 layers (~ 0 600 km) $\Rightarrow \rho_s / \rho_T \sim 10^{13}$
- Numerical stability issues
- Variable composition \Rightarrow thermodynamics
- Column + surface physics
- Timing: ~ 18 min/day on 32 nodes @ T62L150

Validation: Migrating Diurnal T amplitude

TIMED/SABER amplitude courtesy J. M. Forbes

IDEA Future work

~ 3 – 5 yrs

(Newly funded joint NASA grant: CU/EMC/NRL/SWPC)

 Simple upward extension of GSI: assess operational potential of WAM (extended GFS)

NOAA

Finish development and validation of the coupled model

~ 5 – 10 yrs

- Incorporate IDEA into an advanced data assimilation scheme, including assimilation of ionospheric measurements
- Transition of the coupled model to operations?

WSA/ENLIL Solar Wind Forecast Model

Currently being ported to NOAA Forecast Systems Lab JET supercomputer

FY10 start at EMC

NOAA

CPU: 32 (continuous operations)

Data output: 200 GB/day

NOAA

CMIT Geospace Forecast Model

NOAA

FY12 start at EMC CPU: 64 (continuous operations) Data output: 100 GB/day

NOAA

	FY10	FY12	FY14	FY17
		•		
# CPUs	32→	1 60 →	256 →	512 →
(continous operation)	128	256	512	1024
Data output GB/day	200	300	600	
	+IDEA	+IDEA	+IDEA	
Budget request	\$2.95M	\$4.58M	\$4.58M	
EMP POP				

Includes margin to account for computing needs and runs per day