

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Pt nanoparticles for fuel cell applications: *In-situ* observation of electrocatalyst deterioration

Matt C. Smith Hydrogen and Fuel Cell Materials Group Argonne National Laboratory

Postdoc Seminar Series Argonne National Laboratory April 2nd

What is a Fuel Cell?

Electrochemical device that converts a fuel directly to electrical energy

Fuel Cell Types and Characteristics

Туре

Alkaline (AFC) 25-100°C

Phosphoric Acid (PAFC) 200°C

Polymer-Electrolyte (PEFC or PEM)

Molten Carbonate (MCFC) 650°C

Solid Oxide (SOFC) 800-1000°C

Features

Used on Apollo and Space Shuttle Missions

First "commercial" units 200 kW units

Quick start up Direct Methanol 60-90°C

2 MW units built Runs on Natural Gas

High Power Density Solid State Fuel flexible

Weaknesses

Pt electrodes CO_2 intolerant

Low CO tolerance (1-2%)

Very low CO tolerance High Materials Cost

Molten electrolyte is corrosive

High Temperature Slow start up

Polymer electrolyte fuel cells have been selected for automotive applications

- Advantages
 - Low temperature operation (60-90°C)
 - Non-corrosive solid-state construction
 - Quick start-up time
- Challenges
 - Hydrogen storage
 - Low tolerance to impurities in the hydrogen fuel
 - Maintaining membrane's high proton conductivity
 - Cost of platinum catalyst, membrane production, and bipolar plate manufacturing
 - Durability of platinum catalyst and membrane

Pt Electrocatalyst Durability at the Cathode in Polymer Electrolyte Membrane Fuel Cells

- Cathode is responsible for the oxygen reduction reaction (ORR)
- ORR is limiting kinetic event (higher loadings of Pt required compared to anode)

Argonr

- Platinum cathode catalyst is not stable under long-term operation.
- Electrochemically active surface area decreases by ~1/3 in 1000 hours.
 - Pt particles can coarsen 100 % in 500 hours
- Pt enrichment at membrane/catalyst interface

Fresh

Aged 500 hrs

Pt Degradation Mechanism

- Pt dissolution of smaller particles and redeposition onto larger particles (3D)
- Pt coalescence via migration across support (2D)
- Erosion of [Carbon] support

- Analysis is often post mortem
- X-rays offer non-interacting noninvasive *in-situ* spectroscopic study of the catalyst environment

X-ray Absorption Fine Structure (XAFS)

Gives information about:-Distances between atoms Number of neighbouring atoms Nature of neighbouring atoms Changes in central-atom coordination with changes in experimental condition

Oxidation state of central atom

hν

In-situ XAFS for Pt electrocatalysts in an Aqueous Cell

Pt/C electrocatalyst in an aqueous cell

Pt/C electrocatalyst in an aqueous cell

Pt L₃-edge XANES (0.5 V \Box ; anodic 0.8 V \checkmark ; anodic 1.1 V \blacktriangle ; 1.4 V \blacklozenge ; cathodic 1.1 V \blacksquare ; cathodic 0.8 V \bigcirc).

Pt loss as a function of edge-step intensity (overall loss from initial point □; change in loss with potential step ▼ and weighted fit (—); potential is shown as grey histogram)

Current vs. Edge-Step

(Left) Current vs Time per cycle (Cycle 1 is orange and progesses thru to Cycle 6 - pink). (Right) Loss in current at 0.5 V compared to loss in edge-step height with respect to potential cycle.

Size Agglomeration

Normalized Pt L_3 -edge XANES for Pt/C catalyst at different potentials. (Electrochemical cycle 1 (—), cycle 3 (•••), cycle 6 (•••). Other cycles omitted for clarity)

Small-Angle X-Ray Scattering (SAXS)

SAXS - Aqueous Cell

Summary

- Pt electrocatalyst loss and growth can be observed using x-ray spectroscopies
- Loss of Pt occurs during anodic and cathodic sweeps, but is greater during reduction, for Pt and Pt₃Co
- No evidence for Pt₃Co alloy being more stable than pure Pt under our aggressive conditions

Future Work

- Complete EXAFS analysis to provide full details on changing atomic environment - relate to mechanism and electrochemical dissolution data
- Analysis of *in-situ* working fuel cell XAFS data
- Fuel Cell SAXS

Acknowledgements

- CSE (ANL)
 - Debbie Myers
 - James Gilbert
 - Jeremy Kropf
 - Xiaoping Wang
 - Nancy Kariuki
 - Di-Jia Liu
 - Junbing Yang
 - Jennifer Mawdsley
 - Romesh Kumar

- APS (ANL)
 - Mali Balasubramanian
 - Sector 20 (PNC-CAT)
 - Nadia Leyaroskva
 - Sönke Seifert
 - Sector 12 (BESSRC-CAT)
- DOE,Office of Science, Basic Energy Science

