Argonne
 NATIONAL

LABORATORY
... for a brighter future Science

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Pt nanoparticles for fuel cell applications: In-situ observation of electrocatalyst deterioration

Matt C. Smith
Hydrogen and Fuel Cell Materials Group
Argonne National Laboratory

Postdoc Seminar Series
Argonne National Laboratory
April 2nd

What is a Fuel Cell?

- Electrochemical device that converts a fuel directly to electrical energy

$$
\begin{aligned}
& \mathrm{H}_{2}+1 / 2 \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{E}^{\circ}=1.1 \text { Volts }
\end{aligned}
$$

Fuel Cell Types and Characteristics

Type
Alkaline (AFC)
$25-100^{\circ} \mathrm{C}$
Phosphoric Acid
(PAFC) $200^{\circ} \mathrm{C}$
Polymer-Electrolyte
(PEFC or PEM)
Molten Carbonate
(MCFC) $650^{\circ} \mathrm{C}$
Solid Oxide
(SOFC)
$800-1000^{\circ} \mathrm{C}$

Features
Used on Apollo and
Space Shuttle Missions
First "commercial" units
200 kW units
Quick start up
Direct Methanol
$60-90^{\circ} \mathrm{C}$
2 MW units built
Runs on Natural Gas
High Power Density
Solid State
Fuel flexible

Weaknesses
Pt electrodes
CO_{2} intolerant
Low CO tolerance (1-2\%)

Very low CO tolerance High Materials Cost

Molten electrolyte is corrosive

High Temperature Slow start up

Polymer electrolyte fuel cells have been selected for automotive applications

- Advantages
- Low temperature operation $\left(60-90^{\circ} \mathrm{C}\right)$
- Non-corrosive solid-state construction
- Quick start-up time
- Challenges
- Hydrogen storage
- Low tolerance to impurities in the hydrogen fuel
- Maintaining membrane's high proton conductivity
- Cost of platinum catalyst, membrane production, and bipolar plate manufacturing
- Durability of platinum catalyst and membrane

Pt Electrocatalyst Durability at the Cathode in Polymer Electrolyte Membrane Fuel Cells

- Cathode is responsible for the oxygen reduction reaction (ORR)
■ ORR is limiting kinetic event (higher loadings of Pt required compared to anode)

$$
\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O}
$$

- Platinum cathode catalyst is not stable under long-term operation.
- Electrochemically active surface area decreases by $\sim 1 / 3$ in 1000 hours.
Pt particles can
coarsen 100% in 500 hours
- Pt enrichment at membrane/catalyst interface

Fresh

Aged 500 hrs

Pt Degradation Mechanism

- Pt dissolution of smaller particles and redepostion onto larger particles (3D)
- Pt coalescence via migration across support (2D)
- Erosion of [Carbon] support

- Analysis is often post mortem
- X-rays offer non-interacting noninvasive in-situ spectroscopic study of the catalyst environment

X-ray Absorption Fine Structure (XAFS)

Gives information about:-
Distances between atoms
Number of neighbouring atoms

Nature of neighbouring atoms
Changes in central-atom coordination with changes in experimental condition Oxidation state of central atom

In-situ XAFS for Pt electrocatalysts in an Aqueous Cell

potentiostat

NOT TO SCALE!

APS
X-ray
\cdots

Pt/C electrocatalyst in an aqueous cell

Pt/C electrocatalyst in an aqueous cell

Current vs. Edge-Step

(Left) Current vs Time per cycle (Cycle 1 is orange and progesses thru to Cycle 6 - pink). (Right) Loss in current at 0.5 V compared to loss in edgestep height with respect to potential cycle.

Size Agglomeration

Normalized $\mathrm{Pt}_{\mathrm{L}_{3} \text {-edge }}$ XANES for Pt/C catalyst at different potentials.
(Electrochemical cycle 1 (-), cycle 3 ($\bullet \bullet$), cycle 6 (•••). Other cycles omitted for clarity)

Small-Angle X-Ray Scattering (SAXS)

SAXS - Aqueous Cell

Summary

- Pt electrocatalyst loss and growth can be observed using x-ray spectroscopies
- Loss of Pt occurs during anodic and cathodic sweeps, but is greater during reduction, for Pt and $\mathrm{Pt}_{3} \mathrm{Co}$
■ No evidence for $\mathrm{Pt}_{3} \mathrm{Co}$ alloy being more stable than pure Pt under our aggressive conditions

Future Work

- Complete EXAFS analysis to provide full details on changing atomic environment - relate to mechanism and electrochemical dissolution data
- Analysis of in-situ working fuel cell XAFS data
- Fuel Cell SAXS

Acknowledgements

■ CSE (ANL)

- Debbie Myers
- James Gilbert
- Jeremy Kropf
- Xiaoping Wang
- Nancy Kariuki
- Di-Jia Liu
- Junbing Yang
- Jennifer Mawdsley
- Romesh Kumar
- APS (ANL)
- Mali Balasubramanian
- Sector 20 (PNC-CAT)
- Nadia Leyaroskva
- Sönke Seifert
- Sector 12 (BESSRC-CAT)
- DOE,Office of Science, Basic Energy Science

