
 

 

 

A Thermobaric Instability of Lagrangian Vertical 

Coordinate Ocean Models 

ROBERT HALLBERG 

NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey 

Submitted to Ocean Modelling, October 29, 2003; in revised form December 19, 2003 

 

 

 

 

Corresponding author address:  Robert Hallberg, NOAA GFDL, Princeton University, 
Forrestal Campus, U.S. Rt. 1, P.O. Box 308, Princeton, NJ 08542 

E-mail: Robert.Hallberg@noaa.gov 

 



ABSTRACT 

Lagrangian- (and isopycnic-) vertical coordinate ocean models are subject to an exponentially 
growing numerical instability in weakly stratified regions when thermobaricity is not accurately 
compensated. Inaccurate compensation for compressibility in the pressure gradient terms leads to 
pressure gradient truncation errors (due to the vertical discretization) that can drive the 
Lagrangian coordinate surfaces to reinforce these errors. It is possible to avoid this instability 
while using the full nonlinear equation of state for seawater by using an optimal alternate 
discretization of the pressure gradient terms and extracting a slowly spatially varying reference 
compressibility that approximates the compressibility of the ocean’s mean state. 

 

1. Introduction 

The full nonlinear equation of state is trivial to incorporate into ocean models cast in Eulerian 
vertical coordinates. Potential temperature and salinity are simply prognostic variables, and the 
hydrostatic pressure at a grid point varies minimally with time. By contrast, in models that use a 
Lagrangian vertical coordinate, the hydrostatic pressure of a grid point can vary substantially 
with time as a result of the ocean circulation. Sun et al. (1999) present a method for using the full 
nonlinear equation of state in isopycnic coordinate ocean models. They propose extracting the 
portion of compressibility that is a function of pressure only from the calculations of pressure 
gradient accelerations. This technique has proven to be useful, but it is illustrated here that an 
inexact compensation for compressibility in the calculation of accelerations due to pressure 
gradients can lead to a numerical instability that is unique to weakly stratified regions of 
Lagrangian vertical coordinate ocean models. 

In essence, an imperfect compensation for compressibility leads to pressure gradient errors.  
These are equivalent to the well-known pressure gradient errors in sigma-coordinate ocean 
models, although usually of much smaller magnitude. In sigma-coordinate models, these lead to 
finite steady circulations in an ocean that is initially at rest, but are not a source of unbounded 
growth (e.g., Mellor and Wang, 1996). With a Lagrangian vertical coordinate, the pressure 
gradient errors can cause the coordinate interfaces in weakly stratified regions to migrate in a 
way that amplifies the pressure gradient errors, leading to an exponentially growing instability. 

The consequences of this instability are readily evident in the five-day average sea surface 
height fields shown in Fig. 1.  The two panels differ only in the treatment of compressibility in 
the calculation of the pressure gradient accelerations. The source of the instability lies in the very 
warm and weakly stratified abyssal Mediterranean; the abyssal velocities in the top case are very 
noisy and tens of cm s-1, compared with smooth velocities of order mm s-1 in the lower case. This 
instability also shows up very clearly in the isopycnal surfaces, as seen in Fig. 2. With any 
globally uniform compressibility profile, this instability will occur in either the weakly stratified 
and cold Arctic and Antarctic waters or in the weakly stratified but warm Mediterranean. As will 
be discussed later, this instability can be avoided by using a spatially variable reference 
compressibility that closely follows the actual compressibility, while alternate discretizations of 
the pressure gradient terms can greatly increase the tolerance to discrepancies between the 
reference and actual compressibilities. 
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Fig. 1.  Five day average sea surface height of a 48-layer 1-degree resolution global isopycnic coordinate 

model after 20 days. The two panels differ only in their treatment of compressibility – the top panel uses a 
compressibility that is typical of the Weddell Sea [and essentially the same as proposed by Sun et al. 
(1999)], while the bottom panel uses a horizontally variable fit to the observed compressibility and the 
optimal discretization of compressibility in the pressure gradient calculation (described later). Both panels 
use a contour interval of 10 cm. 

 

This instability can be illustrated easily in a simple two-layer system. Analysis of this system 
shows that compressibility must be compensated accurately relative to the stratification to avoid 
instability, and that stability can be enhanced by using an optimal alternate pressure gradient 
discretization. This two-layer system represents any two layers of an isopycnic coordinate 
model, and the results can be applied directly to a system with an arbitrarily large number of 
layers. 

 It is found that the instability described here can be avoided in Lagrangian coordinate 
simulations of the current ocean state, while still using the full nonlinear equation of state of 
seawater, by extracting a compressibility that slowly varies horizontally from the density used in 
the pressure gradient calculations and by using a pressure gradient discretization that minimizes 
the impact of inexact extraction of compressibility. 
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Fig. 2.  Five-day average interface heights in the eastern Mediterranean along 33.5 N after 20 days for the 

same two simulations shown in Fig. 1. The solid lines use the compressibility that is typical of the Weddell 
Sea, while the dotted line uses a horizontally variable reference compressibility. Note the large excursions 
of the abyssal and thermocline interface heights that only occur with an inappropriate reference 
compressibility. Note also that in the western subbasin where the chosen target density surfaces provides 
no resolution of the abyssal structure, the thermocline interfaces do not show the abrupt excursions, even 
when the reference compressibility from the Weddell Sea is used. 

 

2. Pressure gradient calculations in isopycnic models 

Isopycnic-coordinate ocean models are a specific instance of Lagrangian vertical coordinate 
models, in which the vertical coordinate tracks a potential density surface. Isopycnic-coordinate 
ocean models have been extensively used because of their unique ability to capture the nearly 
adiabatic nature of the ocean interior (Bleck, 1998), their ability to represent dynamically 
interesting flows with relatively few degrees of freedom (e.g. Hallberg and Gnanadesikan, 2001), 
and the very transparent form in which potential vorticity dynamics appear in the model 
equations (e.g. Hallberg and Rhines, 1996 or Williams and Roussenov, 2003). Although the 
thermobaric instability is described here in the context of isopycnic models, it is generic to any 
ocean model in which the circulation substantially determines the hydrostatic pressure (as 
opposed to the much smaller dynamically active residual) of the grid points. 

If the horizontal pressure accelerations can be cast as the gradients along the coordinate 
surfaces of a scalar field, the discrete form of the equations tends to have better conservation of 
discrete analogs of energy and potential vorticity. Such a non-solenoidal form of the hydrostatic 
pressure gradient accelerations can be found whenever the vertical coordinate is a function of 
pressure and in situ density only (deSzoeke et al., 2000). 

)()( ppppp ssssp αφααφαφφα αφ +∇=∇−+∇=∇+∇=∇=∇  

Here α is the in situ specific volume (the inverse of density), p is pressure, )( Refzzg −=φ  is the 
geopotential, and s is an arbitrary vertical coordinate. The subscripts on the grads indicate the 
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surfaces along which horizontal gradients are taken. Unfortunately, there is no materially 
conserved function of pressure and in situ density only for the real equation of state of seawater. 

To avoid solenoidal pressure gradient discretization errors, isopycnic models have traditionally 
simply approximated the equations of motion as if the equation of state were that of some 
potential density and ignored compressibility altogether (e.g. Oberhuber, 1993). The circulation 
errors that result from this approximation can be unacceptably large (Sun et al., 1999; deSzoeke, 
2000). 

Sun et al. (1999) propose that the full effects of the nonlinear equation of state can be included 
with little algorithmic modification to existing isopycnic models by changing specific volume 
and geopotential variables to closely related variables that compensate for compressibility. 
Similar results can be derived more simply by defining a compressibility-compensated specific 
volume (α*) and a corresponding counterpart of pressure (p*) as: 

)(and)(/),,( ** pFppFpS =′= θαα  (1) 
where F(p) is a function of pressure that remains to be determined. The compressibility-
compensation will be achieved if F(p) is chosen so that α* is nearly constant in regions of 
constant potential temperature and salinity.  The definitions (1) ensure that 

pppF
pF

pF
pF

p ssss ∇=∇′
′

=∇
′

=∇ αααα )(
)(

)(
)(

** . 

Using the hydrostatic equations  

αφ
−=

∂
∂

p
  and  *

* αφ
−=

∂
∂
p

, (2) 

where φ is geopotential, the horizontal pressure gradient acceleration becomes 

****** )( ααφαφαφφφφ ssssssssp ppppp
p

∇−+∇=∇+∇=∇+∇=∇
∂
∂

−∇=∇ . (3) 

In (3) the subscript s denotes horizontal gradients taken along surfaces of an unspecified, 
monotonic-with-depth quantity s. In common isopycnic modeling practice, s might be potential 
density referenced to 2000 dbar pressure (e.g. Sun and Bleck, 2001). 

Eq. (3) can be simplified to 
*** αφ ssp pM ∇−∇=∇ . (4) 

by using a compressibility-compensated Montgomery potential 
*** αφ pM += . (5) 

The compensated Montgomery potential can be calculated from a differential equation with 
exactly the form of the traditional, uncompensated Montgomery potential, as is seen by using the 
hydrostatic equation (2) in the derivative of (5) with α*: 

*
*

*
pM

=
∂
∂

α
. (6) 

The function F(p) is completely arbitrary at this point. Ideally, α* is nearly independent of 
pressure in the absence of changes in potential temperature or salinity.  This can be 
accomplished by choosing F(p) such that 
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The interpretation of these equations is greatly simplified if the scaling of F is chosen so that 
. When compressibility is compensated over the depth of the ocean, to within 

about 3%, so it is possible to set  to within about 1.5%. To the extent that  satisfies 
(8), the compressibility effects in the solenoidal term of (4) are minimized. But since F is a 
function only of pressure, there is discretion in deciding which compressibility profile to fit. For 
example, Sun et al. (1999) use a profile with a constant salinity of 35 psu and a potential 
temperature of 0ºC. The specific choice of a compressibility profile will be shown to have a great 
impact on whether the discrete flow is in fact subject to thermobaric instabilities. 

pp ≈* 1)( ≈′ pF

(F ′pp ≈* )p

3. Thermobaric Instability in a Discrete Two-layer Example 

The thermobaric numerical instability is most easily illustrated with a two-layer case (Fig. 3. ), 
where the potential temperature and salinity in each layer are constant. There are no dynamically 
active density anomalies within the two layers, but the dynamically inert background density 
varies with pressure due to compressibility. The solutions closely follow the familiar calculation 
of internal gravity wave frequencies (e.g. Gill, 1982). As such, the growth rates can be simply 
quoted once the pressure gradient differences between the two layers are determined. This two-
layer example represents any two layers of an isopycnic coordinate model. The conditions that 
lead to the instability are identical if there are many layers, although the growth rates of the 
instability may be larger if there are more layers involved. 

The stability of the discrete system will be determined by calculating the differences between 
the pressure-driven accelerations of the two layers. The system is assumed to be unstable when 
these accelerations tend to reinforce perturbations to the depth of the interface between the two 
layers, but neglected terms such as rotation or dissipation could balance these tendencies. 
Comparison with the vertically continuous two-layer system will reveal that these instabilities 
are entirely due to vertical discrete truncation errors.  

    Z 

p= π(x,y)

p=po(x,y) 

p=pB(x,y)
φ=φΒ(x,y) 

θ= θ1; S= S1; π-po=∆ p1 

θ= θ2; S= S2; pB-π =∆ p2

 
Fig. 3.  Schematic side view diagram of variables in two-layer calculation. 
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a. The continuous solution with two layers 

The continuous pressure gradient forces in the two-layer system are instructive to calculate for 
several reasons. First, it is possible to directly calculate the differences in the accelerations both 
using the gradient of geopotential along pressure surfaces, and via the Montgomery potential; 
both are included for the benefit of a reader who may be more comfortable with one form or the 
other. The steps in calculating the Montgomery potential form are essentially identical to those 
used in the discrete version, and both the final form and the intermediate steps will prove useful 
for comparison with the corresponding discrete expressions. 

In this two-layer case, the specific volume profiles in the layers are given by: 

),,()( 1111 pSpA θαα ==  , (9) 
DD pApSpSpA ααθαθαα ∆−=∆−≈== )(),,(),,()( 1112222  , (10) 

where θ1 and θ2 and S1 and S2 are the constant potential temperatures and salinities of the two 
layers. The layers are separated by an interface at pressure ),( yxp π= . These variables are 
depicted schematically in Fig. 3.  The dynamically active specific volume difference between 
layers is constant and given by )π,,(),,( 2211 θαπθαα SSD −=∆ , where π  is the average value of π. 
The actual specific volume difference between the layers at pressure π is not constant, but for 
sufficiently small perturbations to the interface pressure that ( )21 ,min pp ∆∆<<−ππ , it can be 
approximated as  with a smaller error than the other approximations that will be made here. 
In equations, 

Dα∆

( ) ( ) D

pSSpSS

D O
pp

AA αππ
αα

ππαππ
πθθπθθ

∆≈−+













∂
∂

−
∂
∂

−+∆=−
======

)()()( 2

,,,,
21

2211

. 

Henceforth this small amplitude approximation will be made without comment. 

Starting at the bottom of the lower layer, the continuous geopotentials in the two layers are 
readily calculated from the hydrostatic equation (2): 

∫−= p
pB B

pdpAp ~)~()( 22 φφ  , (11) 

∫∫ −−=
p

pB pdpApdpAp
B π

π
φφ ~)~(~)~()( 121  . (12) 

The difference in the horizontal pressure gradient accelerations between the two layers is 
[ ] [ ]
[ ]

πα

πππ

φππππφφφ

∇∆≈

∇−=

∇+∇−∇+∇−∇+∇=∇−∇

D

BBBBBBpp

AA

ppAAAppA

)()(

)()()()(

21

212221

 . (13) 

In the non-rotating case, displacements to the internal interface propagate away as internal 
gravity waves with speed  

)/( 2121 ppppc D
Int ∆+∆∆∆∆≈ α   (14) 

(e.g. Gill (1982), section 6.2), where opp −=∆ π1  and π−=∆ Bpp2  are the pressure thicknesses of 
the two layers, as shown in Fig. 3.  

For later comparison with the discrete calculations, it is useful to calculate the horizontal 
pressure gradient accelerations in the two layers again using the Montgomery potential form, (4). 
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Integrating the differential equation for the Montgomery potential (6) upward, the Montgomery 
potentials of the two layers are 
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The difference in the horizontal pressure gradient accelerations of the two layers must agree with 
(13): 

( ) ( ) [ ] παπππαα ∇∆≈∇−=∇−∇−∇−∇ D
ssss AApMpM )()( 21

*
2

**
2

*
1

**
1  . (17) 

The discrete case will later be shown to agree with (17) at leading order, but will also contain 
thermobaric truncation error terms. 

b. The vertically discrete solution with two layers 

When the two-layer system is vertically discretized but kept horizontally continuous, the only 
real discretization choice is the pressure at which to evaluate the layer specific volume, α. It is 
assumed that this layer specific volume is used in the hydrostatic equation, (2). In isopycnic 
models, it is customary to use the pressure at the top of a layer so that topography will not cause 
accelerations when the isopycnals are flat (Sun and Bleck, 2001). In this section this convention 
will be followed, although it will be shown later that the thermobaric instability still occurs if 
other choices are made. 

The difference in the discrete pressure-force accelerations of the two layers is straightforward 
to calculate once the layer specific volumes are specified. Using the pressure at the top of the 
layer to determine the layer specific volumes gives 

)(
),,(

0

011*
1 pF

pS
′

=
θαα  and 
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),,( 22*

2 π
πθαα

F
S

′
= . (18) 

From the differential equation for the Montgomery potential (6), the horizontal gradients of the 
Montgomery potential in the upper and lower layers are related by 
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From the Mean Value Theorem, for some pressure 1
~p  within the range of the first layer (near the 

mean pressure of the layer), 

 7



( )

1

111

~,1

*

1
*
2

~,,

*

0
11*

1

)(

)(
),,(

p

D

ppSS

p
p

F

p
p

F
S

∂
∂

∆−
′

∆
+=

∂
∂

−−
′

=
===

α
π

αα

απ
π

πθα
α

θθ . (20) 

In the second line of (20), the subscript indicating that the partial derivative of α* with pressure 
is taken at values appropriate to the upper layer has been abbreviated as 1

~, p1  for notational 
convenience. Eq. (19) can be rewritten as 
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The solenoidal term that arises with the Montgomery potential form of the horizontal pressure 
gradient acceleration (4) typically uses the central pressure of a layer (Bleck, 2002) and the same 
choice of layer specific volume as in the calculation of M.1 The solenoidal terms in the two 
layers become: 
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Combining (21) and (22), the difference in the horizontal pressure gradient accelerations (4) 
become: 
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If compressibility is well-compensated (i.e. (8) is satisfied), 1)( ≈′ pF  to within about 3% for 
oceanographic conditions, so 
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 The difference between this discrete solution and the true solution, (17), is 
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1The Montgomery potential-based form of the pressure gradient terms described by Bleck (2002), and in long-
standing use in isopycnal models, is mathematically identical to the Jacobian form advocated by Lin (1997), once 
the density profiles are chosen to be vertically constant within a layer. 
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so this is a first order discrete truncation error in layer thickness, as is consistent with the formal 
order of accuracy in the choice of α in the layers. 

The last term in (24) is irrelevant for the purposes of evaluating the linear stability of the two-
layer system to perturbations of the internal interface height, as it provides no direct feedback of 
perturbations to π on the flow. Substituting the entire term in parentheses in (24) for  in the 
internal wave dispersion relation (14) shows that the flow in these two layers is unstable at all 
horizontal wavelengths if 
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In a non-rotating two-layer system, the growth of perturbations with horizontal wavenumber k is 
given by 

  )exp( t
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The mathematics behind this statement are identical to the calculation of the two-layer internal 
gravity wave dispersion relation (e.g. Gill, 1982).  The growth rates here may be comparable to 
the frequencies of high mode internal gravity waves. Refining the vertical resolution of a model 
will tend to simultaneously reduce ∆  and Dα np∆  proportionally, so while it may reduce the 
growth rates, the conditions for instability (26) are essentially independent of vertical resolution. 
The sole controllable consideration in whether a Lagrangian vertical coordinate ocean model is 
subject to this instability is the relative accuracy of the thermobaric compensation to the 
stratification of the ocean. 

There are two distinct manifestations of the pressure gradient truncation errors that lead to the 
condition (26) for instability being satisfied; these are illustrated in Fig. 4. If the instability is 
satisfied because  
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(illustrated in Fig. 4. b.), there will appear to be a negative apparent reduced gravity across the 
interface (i.e. ), leading to changes in M* between layers from (6) that depend on the 
interface pressure with the opposite of the usual sign. On the other hand, if the instability occurs 
predominantly because 
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2 αα >
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(illustrated in Fig. 4. c.), the layer below an interface that is displaced upward appears to become 
lighter and the non-solenoidal term (i.e. − )  acts to reinforce this displacement; the 
hydrostatic pressure forces generated within a layer are toward lighter fluid. Instability occurs 
when the sensitivity of the non-solenoidal term to the interface depth overwhelms the restoring 

** α∇p
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tendency in the gradient of the Montgomery potential. The former instability occurs at the base 
of thick layers in waters that are much warmer than the reference profile upon which the 
compensating compressibility is based. The latter manifestation occurs at the top of thick layers 
that are much colder than the reference profile.  

 

p 

ρ*=1/α* 

(a) 

ρ*=1/α* 

p

(c) 

ρ*=1/α* 

p

(b)

 
Fig. 4.  Profiles of α* in layers of constant potential temperature and salinity in instances where (a) 

compressibility is perfectly compensated, (b) compressibility is over-compensated (i.e. a colder profile 
is used to determine the reference compressibility), and (c) the compressibility is under- or un-
compensated. The circles in (b) and (c) and the dotted line in (b) show the assumed values for the whole 
layer when α* is evaluated at the top of each layer.  The lines and arrows in (c) indicate how α* 
changes when the interface atop the layer moves – this occurs in the cases sketched in both (b) and (c), 
but it is in case (c) that these changes are destabilizing. 

 

4. Physical conditions for instability 

The stratification of the ocean itself determines how prone a Lagrangian vertical coordinate 
model will be to thermobaric instability. The buoyancy frequency can be expressed as  
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The ∆p in (31) would be some appropriate (undetermined) average of 1p∆  and  in the two-
layer example. This interpretation is most accurate in the limit of fine vertical resolution. The 
two-layer instability condition, (26), can be reinterpreted as a constraint on how well 
compressibility must be compensated, relative to the stratification, to avoid the instability. 
Assuming that the sign of the errors in the compressibility does not change in adjacent layers 
where the errors themselves are large, stability is ensured if 
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Introducing the sound speed, cs, given by 
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instability will be avoided if 
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In the NODC 1998 ocean atlas (Levitus et al., 1998), there are many areas of the ocean with 
stratifications weak enough that  over vertical scales of hundreds of meters. 
Notably, this value is typical of both the Weddell Sea and the Mediterranean Sea at depths of 1-3 
km. But the temperatures and salinities of the two areas are very different - the Mediterranean is 
about 13 K warmer and 3.7 psu saltier than the Weddell Sea at these depths – implying very 
different compressibilities. As seen in Fig. 5. , the compressibility of sea water, , varies with 

temperature and salinity at rates of order 

272 s102 −−×≈N

2−
scα

( ) 1-1-122 KPa103.2 −×−≈−

∂
∂

scα
θ

 and 

( ) 1-1-122 psuPa101.1 −− ×−≈
∂
∂

sc
S

α

2 102×≈N

, compared with its mean value of order 4 . To satisfy 

(34) in water with , the compressibility must be characteristic of water that is no 
more than 1.8 K warmer or 0.9 K colder than is actually found (assuming the right salinity) and 
no more than 4.2 psu saltier or 2.1 psu fresher (now assuming the right temperature). Clearly 
there is no single reference compressibility profile that will avoid the thermobaric numerical 
instability for both the Weddell Sea and the Mediterranean. 

-1Pa10105. −×

27 s−−

 
Fig. 5.  The compressibility of seawater in 10-12 Pa-1 as a function of salinity and potential temperature (left) 

at pressures of 0 (solid) and 40 MPa (dashed) and as a function of potential temperature and pressure 
(right) at a salinity of 35 PSU. The contour interval is 10x10-12 Pa-1 in both cases. 
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5. Alternate discrete forms 

Returning to the two-layer example, there are three other discrete forms that are worth 
considering. As the derivation is essentially the same as in section 3, the pertinent results will 
simply be quoted. In each case the thermobaric instability is still present, but with a greater 
tolerance for inaccuracy in the compensation of compressibility. The first two alternatives are 
obvious possibilities – taking the layer average specific volume or the layer average 
Montgomery potential. These can be combined to give an optimal form that eliminates the 
thermobaric error terms to leading order. 

First, suppose that the compensated layer specific volume is taken as the average of the values 
at the top and bottom of a layer. Then the equivalent of (18) is  









′

+
′

=
)(

),,(
)(

),,(
2
1 11

0

011*
1 π

πθαθαα
F

S
pF

pS  and 







′

+
′

=
)(

),,(
)(

),,(
2
1 2222*

2
B

B

pF
pS

F
S θα
π

πθαα , (35) 

while the counterpart of (20) is 
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The difference in the horizontal pressure gradient accelerations (corresponding to (23)) with this 
first alternate discretization is 
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The approximations leading to the final line of (37) are that the mismatches between the true 
compressibility and the reference compressibility are roughly constant within a layer and that 

 [as was assumed in deriving (24)]. This alternative is intriguing, both because the 
thresholds for instability are easier to avoid by a factor of 2 or 4, and because the thermodynamic 
instability itself can be avoided by choosing F(p) such that 

1)( ≈′ pF

0* <∂∂ pα  wherever the stratification 
is weak. (Underestimating the compressibility is the equivalent of choosing a warm reference 
profile.) This form gives formal second order accuracy, as should be expected from a centered 
discretization, but as with the previous scheme, the necessary conditions for stability (i.e. the 
accuracy with which the reference compressibility must approximate the actual compressibility 
for a given stratification) do not change with increasing resolution. 

Unfortunately, there is a significant price to be paid for using this form in that the bottom 
pressure gradients induce shears between the two layers. Since the bottom pressure gradients are 
usually dominated by topography, using this form leads to a model that does not sit quiescently 
when all of the interior isopycnals are flat. In the limit where the dynamically active density 
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gradients in (37) are much larger than the spurious compressibility terms, the internal interface 
shape that does not drive acceleration of a shear is approximately given by  
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Unless the compressibility is extremely well compensated in α*, the internal interfaces far above 
topography may unphysically reflect the bottom topography where the near bottom stratification 
is quite weak. In addition, if interface height diffusion is used as an eddy or numerical closure, 
the interface will not match the resting depth (38) and there will be an unphysical flow around 
topography.   

If the layer specific volumes are evaluated at the mean pressure of the layers, the results are 
equivalent to the previous case, except that the pressures at which p∂∂ *α  is evaluated in (37) are 
different. 

Another alternative that is worth considering is to assume that the α* within each layer vary 
linearly with p*, and to calculate the average compensated Montgomery potentials of the layers 
accordingly. From the hydrostatic equation in the form (6), if the pressure at the top and bottom 
of layer N are  and , then using the definitions T

Np B
Np

)(
),,(*

T
N

T
NNNT

N pF
pS

′
=

θαα , 
)(

),,(*
B
N

B
NNNB

N pF
pS

′
=

θαα , , and , (39) )(* T
N

T
N pFp = )(* B

N
B

N pFp =

the relationship between the Montgomery potentials at the layer’s top and bottom (denoted by 
superscripts T and B) and its average over a layer are 
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These can be combined with the Montgomery potential jump between layers given by (6), 
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to give the relationship between the Montgomery potentials averaged over the two layers: 
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Eq. (43) is useful for analyzing the stability of this discrete form. A rearrangement of the first 
line of (43) gives an alternate form of the same expression that will guide the discretization of 

*
NM : 
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The difference in the horizontal pressure gradient accelerations (corresponding to (23)) with this 
discretization is: 
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The assumptions leading to the final line of (45) are the same as for (37). The proclivity to 
thermobaric instability is greatly reduced with this form of the equations, by a factor of 6 or 12 
compared with evaluating the specific volumes at the top of each layer, and by a factor of 3 
compared with using the central pressure of each layer to obtain a vertically constant specific 
volume. With this form, the instability can be avoided by overestimating compressibility 
(equivalent to taking a cold reference profile). While the impact of bottom pressures on the shear 
between layers is reduced by a factor of 3 compared with the previous alternate scheme, it is still 
present, along with the undesirable consequences. 

Finally, it is worth noting that if the first two alternate discretizations (using a constant specific 
volume at the average pressure and a linearly varying specific volume) are combined in a ratio of 
1:3 as *

4
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NNN MMM +=
(

, the difference in the horizontal pressure gradient accelerations 
becomes 
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The final approximation in (46) is at the same level of error as the approximations in (24), (37), 
and (45) – namely that the  and the compressibility mismatches ()( pF ′ p∂∂ *α ) are both constant 
through a layer. This final approximation agrees with the true solution, (17). The dependence of 
the pressure-driven shear on the layer structure is localized to a single interface to one higher 
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power in ∆p than in any of the discretizations discussed previously. With this discretization the 
necessary conditions for instability become less restrictive as the vertical resolution is increased. 
Put differently, to the extent that higher resolutions in density space enable the representation of 
weaker stratification, this discretization is much less likely than the others to become unstable as 
resolution is increased. 

This optimal combination can be discretized quite readily. Eq. (44) implies that the vertically 
averaged Montgomery potential assuming a linear specific volume profile ( *

NM
*
N

) is related to the 
Montgomery potential based on a constant layer-mean specific volume ( ) by: M̂

( )( T
N

B
N

T
N

B
NNN ppMM ******

6
1ˆ −−=− αα ). (47) 

This potentially optimal discretization of M ( *
NM

(
) can then be found quite simply from 
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1ˆ −−=− αα )(

. (48) 

In practice this scheme works quite well, provided that the local compressibility is reasonably 
well approximated. It is also relatively tolerant of mismatches between the reference and actual 
compressibility, as seen in Fig. 6.  

Simulations with a 48-layer isopycnic model show the behavior predicted by the analysis of 
the two-layer system.  Using a compressibility that is typical of the Weddell Sea, the abyssal 
Mediterranean is ill-behaved with all the discretizations (see Fig. 1. ). If the compressibility is 
typical of the Mediterranean, the first alternate form exhibits strong interface excursions that 
reflect the topography in weakly stratified abyssal waters in the rest of the ocean, as seen in Fig. 
6. Also illustrated in the same figure, the optimal form gives much more reasonable solutions, 
even with strongly mismatched compressibilities. It remains to be seen whether it is ultimately 
better to use the original discretization using the pressure at the top of a layer to calculate the 
compressibility compensated layer density or this optimal form. The original form avoids having 
resting interfaces that are artificially deformed to reflect the topography, while the optimal form 
minimizes both the topographically induced excursions of resting interfaces and the propensity 
for the thermobaric instability to occur. In either case, a horizontally varying reference 
compressibility dramatically improves the simulations of global isopycnic models using the full 
nonlinear equation of state. 

6. Horizontally varying compressibility corrections. 

One way that the thermobaric instability might be avoided would be by defining the 
compressibility compensation function to be a function of both pressure and horizontal location, 
i.e.  and . Doing so can ensure that compressibility is well compensated 
everywhere, but it leads to a third pressure gradient term. In this case 
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so 
********** )( pppppp psspssssp ∇−∇−+∇=∇−∇+∇=∇+∇=∇ αααφααφαφφ . (50) 
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Fig. 6.  Height of a selected interface in the abyssal Pacific along 10.5° N using different reference 
compressibilities and discretizations of the pressure gradient terms. This interface is atop the bottommost 
layer in much of this section and within a few layers of the bottom in the remainder. The dot-dashed 
(jagged) lines use a compressibility that is characteristic of the Mediterranean (12° C warmer than the 
ambient water). The dashed lines use a compressibility that is characteristic of the Weddell Sea (2° C 
colder than the ambient waters). Panel (a) uses the average layer pressure to calculate the constant layer 
density ( M̂ ), while (b) uses the optimal Montgomery potential ( M

(
). The smoother black line in both 

panels uses a locally appropriate compressibility (by using the spatially varying compressibility described 
in section 6), and it is indistinguishable regardless of which of the available discretizations are used. The 
bottom depth along this transect is shown with the very heavy line, using the scale in the middle, which 
compresses the topography 12-fold relative to the interface height. Note the strong correlation between the 
spikes in the dot-dashed line in (a) and the topography. 

The hydrostatic equation is unchanged by allowing the compressibility compensation to vary 
with horizontal location, 

*
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pp
p

p
, (51) 

and so is the equation used to calculate the Montgomery potential, 
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. (52) 

Although there are three pressure gradient terms in (50) that must be discretized, the third term 
is not necessarily a great impediment. It is always possible to offset F so that it is a constant at 
some chosen pressure, p( . For example, if the compressibility compensation function satisfies (8) 
for a reference profile for which 

2
,
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sS cp
R αα

α θ

=
∂
∂

−= , (53) 

where c  is the speed of sound, an appropriate functional form for F is s
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The first approximation here is valid since variations in R are small compared with its mean 
value, while the second is based on the observation that , so for typical ocean 
depths 

-110 Pa104 −×≈R

1016.0)Pa104)(Pa104(~ 7-110 <<=××≤− −ppR ( . Both approximations applied in deriving the 
second and third lines of (54) are here only for illustration – in practice F(p) might be a direct fit 
of an analytically integrable function to the exponential inside of the integral on the first line of 
(54) making any further approximation unnecessary. With these assumptions, the third pressure 
gradient term becomes 

Rppp pp ∇−−≈∇ 2*
2
1** )( (αα . (55) 

The reference compressibility can be forced to vary slowly in space, so that the magnitude of its 
gradient is small. For typical ocean properties, if the compressibility change due to a 1 oC 
difference in temperature occurs over a horizontal distance of 1000 km, ∇ , 
so a typical acceleration from this term evaluated 1000 dbar from the chosen pressure where it 
vanishes (

1-118 mPa105.2 −−×≈Rp

p( ) is . Even after discretization, this term will likely be 
balanced by the other pressure gradient terms (as is mathematically true in the continuous limit), 
but if (as a worst-case estimate) it is balanced instead by a typical midlatitude Coriolis 
acceleration, the resultant velocity is only about 1 . 

27** sm102.1 −−×≈∇ ppα

13 sm102. −−×

It is possible to further reduce the impact of this third pressure gradient term by minimizing a 
cost-function based on the volume integrated square of the third pressure gradient term and 
(motivated by (32)) the inverse stratification weighted misfit between the observed and 
compensated compressibilities. That is, the cost function should ideally be something like 
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where Γ is the relative weight of the two terms in units of an acceleration squared. A slightly 
different stratification weighting should probably be used to avoid singularities in the cost 
function where the stratification vanishes and to introduce an estimate of the observed variability 
or uncertainty in the compressibility, but it is useful to emphasize that more heavily stratified 
regions are much more tolerant of mismatches in the compensation of compressibility. Actually 
solving for the full three-dimensional compressibility function that minimizes (56) is likely to be 
overkill. 

Instead of minimizing (56), it has been found in practice that an acceptable cost function 
obtained by first fitting the observed compressibility with a function whose integral with 
pressure is Fo(x,y,p), and then setting the cost function to be 

( ) ( ) dAFFDDFDFDDS o
2222 ))(( −+∇⋅∇= ∫∫ γ , (57) 

where D is the local depth of the ocean and γ is a relative weight, now with units of an inverse 
length squared. The D2 in the first term (57) reflects the dependence of the magnitudes of this 
additional pressure gradient term on pressure in (55), now assuming that F is chosen to be 
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constant at p=0, while in the second term the D2 is simply a guess based on the observation that 
the ocean’s stratification is far weaker deeper in the abyss than near the surface. The F ′′  
anomalies in (56) are replaced with anomalies in F in (57) so that the equation will become 
separable; this is justified by noting from (54) that the leading order anomalies in F are quadratic 
in pressure. The model performance is not found to vary much with changes to either the value 
of γ or even to the power of D in the second term in (57). Choosing (57) as the cost function 
effectively concentrates the significant gradients into shallow areas (such as Gibraltar) where the 
third pressure gradient term has a minimal impact on the solution, while ensuring that the broad 
spatial variations of compressibility are reasonably well captured. 

The minimum of the cost function (57) is the steady-state solution of the equation 
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If F follows the same functional form as Fo and that functional form is chosen to be the sum of 
horizontally varying fit coefficients times nonlinear but analytically differentiable vertical 
functions of pressure, (58) has the virtue that the optimal fit coefficients are independent of 
pressure. The minimization need not be perfect, so (58) only needs to be integrated long enough 
to suppress the smaller scales. Eq. (58) can be iterated independently for each of the fit 
coefficients for the same amount of time, and the resulting smooth function will be the solution 
to (58) at every pressure. 

In practice, the compensation for the third pressure gradient term in (50) does appear to occur 
almost entirely within the other pressure gradient terms.  In the 48-layer global example, there is 
very little difference between simulations with reference compressibilities generated using 

 and , even though there is typically a 4-fold difference in the magnitude 
of the third pressure gradient term. (The velocity differences are of typically order of 10

26 )m10( −=γ 24 )m10( −=γ
-4 m s-1 

out to a few tens of days, at which point nonlinearities make exact comparison less meaningful.)  
This result provides strong assurance that the full nonlinear equation of state can be used without 
an excessively strong dependence on the details of the reference compressibility that is being 
extracted. 

7. Discussion: Avoiding the thermobaric instability. 

There are a number of ways that the thermobaric instability can be avoided. Some of these 
have been mentioned previously in this manuscript, but they will be mentioned again here to 
present all of the options in the same context. 

Thermobaricity can be avoided altogether. This is essentially what is done when a potential 
density is used for both the coordinate variable and for calculating pressure gradient 
accelerations (e.g. Oberhuber, 1993). As discussed earlier, this introduces significant errors in 
the model’s thermal wind shear (Sun et al., 1999).  Eden and Willebrand (1999) suggest that by 
using a regional fit to observed properties to obtain a quasi-neutral density variable that is a 
function only of potential temperature and salinity, thermal wind shears and buoyancy frequency 
can be evaluated quite accurately without consideration of thermobaricity. While this works well 
in a North Atlantic simulation (Eden and Willebrand, 1999) (and probably would work equally 
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well in other regional simulations) it is problematic for global simulations and for long 
simulations in which the regional watermass structure can change. 

In isopycnic coordinate models, it is always an option to choose the layer target densities to 
avoid resolving the internal structure of very weakly stratified watermasses with anomalous 
properties. In fact, since the target layer densities are chosen a priori, it is always possible to 
limit the minimum resolvable stratification. For example, suppose that the smallest permissible 
stratification that is desired in the coarse-resolution version of (32) is , which 
would give a roughly 6K range of stability (adequate for the open ocean). Stability can then be 
ensured if the smallest prescribed density difference between layers is 

272
min, s104 −−×≈EffN

32-272722
EffMin,Min mkg17.0)s mPa)/(9.8104)(s104(/ −−− ≈××≈=∆ gpN Maxρ . (59) 

This is not much coarser than resolutions typically used in models with relatively few layers, but 
of course such density differences preclude resolution of the structure in weakly stratified 
regions.  It is possible to use finer resolution, provided that any weakly stratified regions that are 
then resolved have compressibilities that are close to the reference value. For example, Sun and 
Bleck (2001) have successfully run a global model using the full nonlinear equation of state and 
the Sun et al. (1999) treatment of thermobaricity without encountering the thermobaric 
instability.  But with only 15 interior layers, none of which capture the structure of the deep 
Mediterranean, they avoid altogether the possibility that the interior Mediterranean would be 
unstable. They do choose layers that describe the density of the Weddell sea, but the Sun et al. 
(1999) techniques essentially extract a compressibility characteristic of a water column with a 
uniform temperature and salinity of 0oC and 35 psu. These values are close enough to the 
properties found in the Weddell Sea to avoid instability. Subsequent HYCOM simulations using 
the Sun et al. (1999) treatment of compressibility with higher vertical resolutions in the density 
range of Labrador Sea water [which at its source is very weakly stratified and has temperatures 
that have ranged over the twentieth century between 2.7 and 3.6oC, (Dickson et al., 1996)] do 
appear to exhibit this instability (A. Wallcraft, pers. comm.). The illustrations of the instability 
presented in the current paper used 45 interior isopycnal layers, including some with densities 
specifically chosen to resolve the vertical structure of both the Mediterranean and Weddell Seas. 

Orthobaric density (de Szoeke et al., 2000) is derived by fitting the observed sound speed 
(essentially the compressibility) as a function of in situ density and pressure. Because of salinity 
variations in the ocean, this can never be perfect, but with the added degrees of freedom from a 
fit in two-dimensions, the typical standard deviations of sound speeds from the fit are less than 5 
m s-1 (roughly equivalent to 1°C) below the top few hundred meters (de Szoeke et al., 2000). The 
thermobaric instability could only occur in weakly stratified water masses with atypically large 
salinity anomalies, but as weakly stratified watermasses tend to be heavily weighted in the fitting 
procedure, this is unlikely. Using orthobaric density for both the coordinate variable and for 
calculating pressure gradients will likely avoid the instability described here. Although there are 
other considerations apart from the calculation of pressure-driven accelerations (such as non-
materiality of the coordinate variable and a larger departure from current practice) that also arise 
from using orthobaric density, it is a promising approach that should be further explored for use 
in Lagrangian vertical coordinate modeling. 

It might be possible to suppress the thermobaric numerical instability by choosing a maximal 
estimate for compressibility, so that the instability would always appear as a negative apparent 
reduced gravity between layers. It is easy to catch instances of negative apparent reduced 
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gravities, and the consequences can then be avoided by artificially adjusting the α* of one of the 
layers. This would have the effect of altering the apparent stratification of the water column and 
locally increasing the internal gravity wave speeds. This would seem to be an undesirable option, 
as it alters the physics of the solution, even in instances where compensation between the two 
pressure gradient terms would stabilize the solution anyway. 

Finally, it has been demonstrated here that the combination of a more careful treatment of the 
discretization of the pressure gradient terms and extracting a slowly horizontally varying 
reference compressibility eliminates the thermobaric instability in a global isopycnic model 
simulation of the current ocean state, even one with high resolution in density space. Each of 
these two measures alone may be adequate in some circumstances. Using the optimal 
discretization of the pressure gradient term is likely to be sufficient in regional simulations where 
the horizontal variations of compressibility are not especially large. In global models with coarse 
resolution in density or small temporal variations of the compressibility, the current 
discretizations can probably be used effectively when a spatially varying compressibility is 
extracted. The two measures taken together provide a robust solution to the thermobaric 
instability, useful even for global ocean simulations with high resolution in density. 

 The price of the more careful discretization of the pressure gradient term is that the resting 
isopycnal depths will weakly reflect the bottom topography, and there will be a weak abyssal 
flow unless compressibility is well compensated. But note that if compressibility is perfectly 
compensated, the changes to the discretization have no effect at all. 

The price of extracting a spatially varying reference compressibility from the pressure gradient 
calculations is that a third pressure gradient term enters the equations of motions. Like the 
second term, this term is solenoidal, but it can be made small by choosing the reference 
compressibility to vary slowly in the horizontal. By adding this third term, both the second and 
third terms can be made much smaller than the along-coordinate gradient of the Montgomery 
potential, and the cumulative truncation errors will be much smaller than the physical pressure 
gradient acceleration. In adding this spatially varying compressibility, it could be argued that the 
“correct” state of the ocean is somehow being fed to the model, but in the continuous limit none 
of the modifications suggested here change the equations being solved. In addition, if this 
approach is used in a very long simulation in which the state of the ocean drifts substantially, it 
is always possible to periodically re-fit the reference compressibility, provided that there is a 
gradual change between old and new reference compressibilities to avoid an excessively 
vigorous adjustment. 

With the new developments presented here, built upon the insights of Sun et al. (1999), or the 
orthobaric density techniques of deSzoeke et al. (2000), it is very likely that difficulties with the 
calculation of pressure gradient accelerations with the full nonlinear equation of state will no 
longer present a compelling barrier to the use of Lagrangian vertical coordinate ocean models in 
realistic applications. 
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