Reliability, Availability, and Serviceability (RAS) for High-Performance Computing

Presented by

Stephen L. Scott Christian Engelmann

Computer Science Research Group Computer Science and Mathematics Division

Research and development goals

- Provide high-level RAS capabilities for current terascale and next-generation petascale high-performance computing (HPC) systems
- Eliminate many of the numerous single points of failure and control in today's HPC systems
 - Develop techniques to enable HPC systems to run computational jobs 24/7
 - Develop proof-of-concept prototypes and production-type RAS solutions

MOLAR: Adaptive runtime support for high-end computing operating and runtime systems

- Addresses the challenges for operating and runtime systems to run large applications efficiently on future ultrascale high-end computers
- Part of the Forum to Address Scalable Technology for Runtime and Operating Systems (FAST-OS)
- MOLAR is a collaborative research effort (www.fastos.org/molar)

Symmetric active/active redundancy

- Many active head nodes
- Workload distribution
- Symmetric replication between head nodes
- Continuous service
- Always up to date
- No fail-over necessary
- No restore-over necessary
- Virtual synchrony model
- Complex algorithms

Prototypes for Torque and Parallel Virtual File System metadata server

Symmetric active/active Parallel Virtual File System metadata server

Nodes	Availability	Est. annual downtime
1	98.58%	5d, 4h, 21m
2	99.97%	1h, 45m
3	99.9997%	1m, 30s

Reactive fault tolerance for HPC with LAM/MPI+BLCR job-pause mechanism

- Operational nodes: Pause
 - BLCR reuses existing processes
 - LAM/MPI reuses existing connections
 - Restore partial process state from checkpoint
- Failed nodes: Migrate
 - Restart process on new node from checkpoint
 - Reconnect with paused processes
- Scalable MPI membership management for low overhead
- Efficient, transparent, and automatic failure recovery

LAM/MPI+BLCR job pause performance

- 3.4% overhead over job restart, but
 - No LAM reboot overhead
 - Transparent continuation of execution

- No requeue penalty
- Less staging overhead

Proactive fault tolerance for HPC using Xen virtualization

- Standby Xen host (spare node without guest VM)
- Deteriorating health
 - Migrate guest VM to spare node
- New host generates unsolicited ARP reply
 - Indicates that guest VM has moved
 - ARP tells peers to resend to new host
- Novel fault-tolerance scheme that acts before a failure impacts a system

VM migration performance impact

Double node failure

- Single node failure: 0.5–5% additional cost over total wall clock time
- Double node failure: 2-8% additional cost over total wall clock time

HPC reliability analysis and modeling

- Programming paradigm and system scale impact reliability
- Reliability analysis
- Estimate mean time to failure (MTTF)
- Obtain failure distribution: exponential, Weibull, gamma, etc.
- Feedback into fault-tolerance schemes for adaptation

Contacts regarding RAS research

Stephen L. Scott

Computer Science Research Group Computer Science and Mathematics Division (865) 574-3144 scottsl@ornl.ornl

Christian Engelmann

Computer Science Research Group Computer Science and Mathematics Division (865) 574-3132 engelmannc@ornl.ornl

