
Presented by

Fault Tolerance Challenges
and Solutions

Al Geist

Computer Science Research Group
Computer Science and Mathematics Division

Research supported by the Department of Energy’s Office of Science
Office of Advanced Scientific Computing Research

2 Geist_FT_SC07

Example: ORNL LCFExample: ORNL LCF
hardware roadmaphardware roadmap

54 TF
(56 cabinets)
5294 nodes

10,588 processors
21 TB

119 TF
(124 cabinets)
11,706 nodes

23,412 processors
46 TB

300 TF
(84 quad)

71 TB

1 PF
(128 new cabinets)

175 TB

Rapid growth in scale
drives fault tolerance need

Jul
2006

Nov
2006

Dec
2007

Nov
2008

54 TF

100 TF

1 PF

250 TF

Cray XT3

Cray Baker
Cray XT4

25 TF

20X scale change
in 2.5 years

Today

Late
2006

2009

2007

3 Geist_FT_SC07

ORNL 1 PF Cray “Baker” system, 2009

Today’s applications and their runtime
libraries may scale, but they are not
prepared for the failure rates of
sustained petascale systems

• Assuming a linear model
and a failure rate 20X what
is seen today.

• The RAS system
automatically configures
around faults – up for days.

• But every one of these
failures kills the application
that was using that node!

4 Geist_FT_SC07

Good news: MTTI is better
than expected for LLNL BG/L

and ORNL XT4
(6–7 days, not minutes).

Today’s fault-tolerance paradigm
(checkpoint) ceases to be viable
on large systems

M
ea

n
tim

e
to

 in
te

rr
up

t (
ho

ur
s)

200

160

120

80

40

0
November December January

Time to checkpoint

increases with

problem size.

T
im

e

2009

(estimate)
2006

Crossover

point

MTTI decreases

as number

of parts increases.

5 Geist_FT_SC07

Need to develop new paradigms for
applications to handle faults

1. Restart from checkpoint file
[large apps today].

2. Restart from diskless checkpoint
[Avoids stressing the I/O system

and causing more faults].

3. Recalculate lost data from in-memory RAID.

4. Lossy recalculation of lost data
[for iterative methods].

Need to
develop rich

methodology to
“run through”

faults.

N
o
 c

h
e
c
k
p
o
in

t
S

o
m

e
 s

ta
te

 s
a
v
e
d

5. Recalculate lost data from initial
and remaining data.

6. Replicate computation across system.

7. Reassign lost work to another resource.

8. Use natural fault-tolerant algorithms.

Store checkpoint

in memory.

6 Geist_FT_SC07

Harness P2P

control research

So that tasks get
assigned around
failed components.

The schedulers
and other system

components must be
aware of dynamically

changing system
configurations.

For example:
A failed service
node shouldn’t take
out a bunch
of compute nodes.

The heterogeneous OS
must be able

to tolerate failures
of any of its node type

and instances.

I/O nodes must
recover and
cover failures.

The file system
can’t let data be

corrupted by faults. Fast
recovery
from fault

Parallel
recovery

from multiple
node failures

Support
simultaneous

updates

24/7 system can’t ignore faults

1. Restart–from checkpoint
or from beginning.

2. Notify application
and let it handle the problem.

3. Migrate task to other hardware
before failure.

4. Reassign work to spare processor(s).

5. Replicate tasks across machine.

6. Ignore the fault altogether.

6 options for system to handle failures

Need a mechanism for each application (or component)

to specify to the system what to do if a fault occurs.

7 Geist_FT_SC07

8 Geist_FT_SC07

5 recovery modes for MPI applications

1. ABORT: Just do as vendor implementations.

2. BLANK: Leave holes (but make sure collectives
do the right thing afterward).

3. SHRINK: Reorder processes to make
a contiguous communicator (some ranks change).

4. REBUILD: Respawn lost processes
and add them to MPI_COMM_WORLD.

5. REBUILD_ALL: Same as REBUILD except that
it rebuilds all communicators, and groups and
resets all key values, etc.

Harness project’s FT-MPI explored 5 modes of recovery

It may be time to consider

an MPI-3 standard that allows

applications to recover from faults.

These modes
affect the size
(extent) and

ordering of the
communicators.

Validation of an answer on such large systems is a growing
problem. Simulations are more complex, solutions are being
sought in regions never before explored.

• Can’t afford to run every job
three (or more) times.

• Yearly allocations
are like $5M–$10M grants.

4 ways to fail anyway

9 Geist_FT_SC07

1. Fault may not be detected.

2. Recovery introduces perturbations.

3. Result may depend on which nodes fail.

4. Result looks reasonable, but it is actually wrong.

1. Detection that something has gone wrong

• System: detection in hardware

• Framework: detection by runtime environment

• Library: detection in math or communication library

2. Notification of the application,
runtime, or system components

• Interrupt: signal sent to job or system component

• Error code returned by application routine

3. Recovery of the application to the fault

• By the system

• By the application

• Neither: natural fault tolerance
Subscription

notification

3 steps to fault tolerance

10 Geist_FT_SC07

11 Geist_FT_SC07

The drive for large-scale simulations

in biology, nanotechnology, medicine,
chemistry, materials, etc.

From a fault tolerance perspective:

• Space means that the job ‘state’ to be recovered is huge.

• Time means that many faults will occur during a single run.

2 reasons the problem
is only going to get worse

1. Require much larger problems (space):

• easily consume the 2 GB per core
in ORNL LCF systems.

2. Require much longer to run (time)

• science teams in climate, combustion, and fusion
want to run for a dedicated couple of months.

12 Geist_FT_SC07

1 holistic solution

Fault Tolerance Backplane

We need coordinated fault awareness, prediction, and recovery
across the entire HPC system from the application to the hardware.

Middleware

Applications

Operating System

Hardware

CIFTS project

“Prediction and prevention are critical because
the best fault is the one that never happens.”

Detection

Monitor

Logger

Configuration

Notification

Event
manager

Prediction
and

prevention

Recovery

Autonomic
actions

Recovery
services

Project under way at ANL, ORNL, LBL, UTK, IU, OSU

13 Geist_FT_SC07

Contact

Al Geist

Computer Science Research Group
Computer Science and Mathematics Division
(865) 574-3153
gst@ornl.gov

13 Geist_FT_SC07

