
Presented by

High Productivity Language Systems:
Next-Generation Petascale Programming

Aniruddha G. Shet, Wael R. Elwasif,

David E. Bernholdt, and Robert J. Harrison

Computer Science and Mathematics Division

Oak Ridge National Laboratory



2   Elwasif_HPCS_SC07

Revolutionary approach to large-
scale parallel programming
• Million-way concurrency (and more) will be required on

coming HPC systems.

• The current “Fortran+MPI+OpenMP” model will not scale.

• New languages from the DARPA HPCS program point the

way toward the next-generation programming environment.

• Emphasis on performance and productivity.

• Not SPMD:

Lightweight “threads,” LOTS of them

Different approaches to locality

awareness/management

• High-level (sequential) language

constructs:

Rich array data types

(part of the base languages)

Strongly typed object oriented base design

Extensible language model

Generic programming

Candidate

languages:

Chapel (Cray)

Fortress (Sun)

X10 (IBM)

Based on joint work with

Argonne National

Laboratory

Lawrence Berkeley

National Laboratory

Rice University

And the DARPA HPCS program



3   Elwasif_HPCS_SC07

Concurrency: The next generation

• Single initial thread of control

Parallelism through language constructs

• True global view of memory, one-sided access model

• Support task and data parallelism

• “Threads” grouped by “memory locality”

• Extensible, rich distributed array capability

• Advanced concurrency constructs:

Parallel loops

Generator-based looping and distributions

Local and remote futures



4   Elwasif_HPCS_SC07

What about productivity?

• Index sets/regions for arrays

“Array language” (Chapel, X10)

• Safe(r) and more powerful language constructs

Atomic sections vs locks

Sync variables and futures

Clocks (X10)

• Type inference

• Leverage advanced IDE capabilities

• Units and dimensions (Fortress)

• Component management, testing, contracts (Fortress)

• Math/science-based presentation (Fortress)



5   Elwasif_HPCS_SC07

Exploring new languages:
Quantum chemistry

• Fock matrix construction is a key kernel.

Used in pharmaceutical and materials design, understanding

combustion and catalysis, and many other areas.

• Scalable algorithm is irregular in both data and

work distribution.

Cannot be expressed efficiently using MPI.

D, F

global-view

distributed

arrays

task-local working blocks

work pool

of integral

blocks

Fμ  D  [ 2 (μ | ) - (μ | ) ]

D F

IntegralsCPU 0 CPU 1 CPU P-2 CPU P-1(μ | )



6   Elwasif_HPCS_SC07

Load balancing approaches
for Fock matrix build

Language constructs used
Load balancing approach

Not currently
specified

Multigenerator for

loops

Iterators +  forall

loops

Dynamic, language (runtime)

managed

Asynchronous

activities + locality

control

Explicit threads +

locality control

Unstructured

computations +

locality control
Static, program managed

Unconditional atomic

sections + futures
Atomic expressions

Synchronization

variables

Shared

counter

Conditional atomic

sections + futures

Abortable atomic

expressions

Synchronization

variables
Task poolDynamic,

program

managed

X10 (IBM)Fortress (Sun)Chapel (Cray)

D F

IntegralsCPU 0 CPU 1 CPU P-2 CPU P-1(μ | )



7   Elwasif_HPCS_SC07

Parallelism and global-view data
in Fock matrix build

Language constructs used
Operations

Restriction
Array factory

functions (subarray)
SlicingSub-array

Array class methods

(add,scale)

Fortress library

operators

(+,juxtaposition)

Array promotions of

scalar operators (+,*)
Arithmetic

Array initialization

functions

Comprehensions /

function expressions

Array initialization

expressions
Initialization

Global-view

array

operations

Finish async (task) +

ateach (data)

Tuple (task) + for

loop (data)

Cobegin (task) +

domain iterator (data)

Mixed data and task

parallelism

X10 (IBM)Fortress (Sun)Chapel (Cray)

D F

IntegralsCPU 0 CPU 1 CPU P-2 CPU P-1(μ | )



8   Elwasif_HPCS_SC07

Tradeoffs in HPLS language design

• Emphasis on parallel safety (X10) vs expressivity

(Chapel, Fortress)

• Locality control and awareness:

X10: explicit placement and access

Chapel: user-controlled placement, transparent access

Fortress: placement “guidance” only, local/remote access blurry

(data may move!!!)

What about mental performance models?

• Programming language representation:

Fortress: Allow math-like representation

Chapel, X10: Traditional programming language front end

How much do developers gain from mathematical representation?

• Productivity/performance tradeoff

Different users have different “sweet spots”



9   Elwasif_HPCS_SC07

Remaining challenges

• (Parallel) I/O model

• Interoperability with (existing) languages and

programming models

• Better (preferably portable) performance models

and scalable memory models

Especially for machines with 1M+ processors

• Other considerations:

Viable gradual adoption strategy

Building a complete development ecosystem



10   Elwasif_HPCS_SC07

Contacts

Aniruddha G. Shet
Computer Science Research Group

Computer Science and Mathematics Division

(865) 576-5606

shetag@ornl.gov

Wael R. Elwasif
Computer Science Research Group

Computer Science and Mathematics Division

(865) 241-0002

elwasifwr@ornl.gov

David E. Bernholdt
Computer Science Research Group

Computer Science and Mathematics Division

(865) 574-3147

bernholdtde@ornl.gov

Robert J. Harrison
Computational Chemical Sciences

Computer Science and Mathematics Division

(865) 241-3937

harrisonrj@ornl.gov

10   Elwasif_HPCS_SC07


