Next-Generation Simulations in Biology: Investigating biomolecular structure, dynamics, and function through multiscale modeling

Presented by Pratul K. Agarwal

Computer Science Research Group Computer Science and Mathematics Division

Why study biomolecules?

Biomolecules including proteins, enzymes and DNA are highly efficient molecular machines working in all cells

- Atomistic-level biomolecular modeling and simulations
 - Provides detailed biophysical characterization of molecular machines, protein structure prediction, and docking
 - Power of computational method: novel insights that are beyond the reach of experimental techniques
 - Enables multiscale approach: investigate a wide range of time and length scales

Multidisciplinary approach for multiscale problem

- Biomolecular structure spans multiple scales of length, and dynamics and function spans multiple scales of time.
- Multidisciplinary approach combining experimental and computational techniques is being developed at ORNL.
- Petascale computing at the LCF and neutron scattering at the SNS will provide novel insights into biomolecules.

Modeling and simulations April 2005 Nov 2006 Long term goal 10⁻¹⁵ s 10⁻¹² 10⁻⁹ 10⁻⁶ 10⁻³ 10⁰ s

National Laboratory

Using supercomputers to study biomolecules

 Desktop computers can simulate only a fraction of scales.

Multiscale modeling – structure, dynamics, and function *Desired/current capability ratio: 10⁴-10⁶*

- Using LCF supercomputer Jaguar (Cray XT4), we can simulate scales relevant to the biomolecular processes.
- Using molecular dynamics (MD) and QM/MM codes for multiscale modeling.

Enzymes: Nature's efficient molecular machines

- Enzymes are naturally occurring catalysts that participate in most biochemical processes in all living cells.
- Enhance reaction rates by many orders of magnitude.
- Studies suggest biomolecules, including enzymes, are dynamical assemblies.
- Increasing interest in the interconnection between structure, dynamics, and function.
- Hydration-shell and bulk solvent fluctuations impact internal motions.

Modeling the enzymes at molecular level

- Investigating enzyme structure, dynamics, and catalytic step at multiple scales
- Detailed atomistic modeling using molecular mechanics
- Quantum effects investigated using electronic structure calculations (ab initio)
- Provides novel insights into the mechanism of the enzyme catalysis
- Small changes in the electronic environment lead to important events in the reaction

Novel computational insights into enzymes: Protein vibrations promote catalysis

- Investigating the enzyme catalysis step using transition state theory framework
- Free energy profile generation using MD with umbrella sampling
- Discovered protein vibrational events that promote the reaction

Enzymes have evolved to use dynamical effects

Genomic and structural analysis show conservation of dynamically active portions of the enzymes

Science breakthrough

- Novel insights into linkage of enzyme structure, dynamics, and function
 - Evolutionary conservation of protein structure is based on the reaction-promoting vibrations.
- New insights into the mechanism of enzyme *cellulase*
 - Implications for low-cost bio-ethanol production.

Vital insight: Dynamics are conserved through evolution

- Biomolecular modeling expanded to real systems
 - Enzymes: cyclophilin A, DHFR, and ribonuclease A
 - Human, bacteria, and other species
- Detailed analysis of the protein structure and dynamics
 - Multiscale dynamics: fast, intermediate, and slow modes
 - Active-site and distal to active-site residues explored

Impact of the recent results

- Computational modeling indicates that the "dynamic core" of proteins is conserved over evolution!
- New insights into the "dynamic personality" of enzymes
 - Insight into molecular basis of life
 - Better understanding of the biochemical processes
 - Drug design and protein engineering
- Future investigations exploring
 - Linking dynamics and function
 - Energetic coupling at long range

Modeling the cellulase enzyme

- Investigating enzyme structure, dynamics and catalytic step at multiple scales
- Cel9A from *Thermobifida fusca* based on public data (PDB 4TF4), cellulose crystal structure, GLYCAM force-field
- Mechanism of the processive activity of cellulase and the mechanism of glycosidic bond hydrolysis

Model of Cel9A from *Thermobifida fusca* in complex with Iβ crystalline cellulose

T. fusca Cellulase enzyme in action

Benefits of the discovery: Improving enzymes

- Wide implications:
 - Protein engineering
 - More efficient enzymes
 - Novel enzymes

15 Agarwal SimBio SC07

Cleaner environment

- Role in carbon sequestration
- Enzyme acts on order of seconds
- Very large enzyme
- Multiscale modeling needed

Ethanol production from biomass

- Enzymatic degradation of cellulose (biomass) to simple sugars
- Sugars converted to ethanol by fermentation
- Naturally occurring cellulose degrading enzymes are very inefficient
- Computational studies will help in engineering better enzymes and therefore lower costs for ethanol production

National Laborator

RuBisCO

Contact

Pratul K. Agarwal

Computer Science Research Group Computer Science and Mathematics Division (865) 574-7184 agarwalpk@ornl.gov

