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Basics on the algorithm.

Domain decomposition method is the general technique for the
parallelisation of problems modeled through Partial Differential
Equations.
The new generation of parallel computers provides more
processors than you can fill up efficiently with current algorithms.
A new type of parallelisation has to be added to this sole
argument.
The time directions has not received much attention right now for
large parallisation, mainly due to the intrinsic sequential nature of
this direction.
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Basics on the algorithm.

Consider the following time dependant problem
∂y
∂t

+Ay = 0, y(0) = y0

where, for the sake of simplicity, A does not depend on time.
We introduce the propagator E such that, Eτ (µ) is the solution, at
time τ of the problem

∂y
∂t

+Ay = 0, y(0) = µ −→ Eτ (µ) = y(τ)

Due to time invariance, it is well known that

∀τ ′ < τ, Eτ = Eτ−τ ′ ◦ Eτ ′

For instance, let 0 = T0 < T1 < ... < Tn < ... < TN = T be special
times at which we are interested to consider snapshots of the
solution y(Tn), then we have

y(Tn+1) = ETn+1(y
0) = ETn+1−Tn(y(Tn)
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Basics on the algorithm.

In most cases E is not achievable but only approximations based
on time discretization and the use of Euler or more involved
schemes.
For instance we can introduce a fine and precise approximated
propagator F defined through the resolution of

ym+1 − ym

δt
+Aym(+1) = 0 for an explicit implicit scheme

for any time T = Mδt the approximated propagator FT involves
the iterative resolution of M problems as above.
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Basics on the algorithm.

Similarly as for the continuous solution,

y(Tn+1) = ETn+1(y
0) = ETn+1−Tn(y(Tn))

we have the approximations Yn of y(Tn) given by

Yn+1 = FTn+1(y
0) = FTn+1−Tn(Yn)

Assuming, for the sake of simplicity that Tn+1 − Tn is constant
(= ∆T >> δt), then this reads

Yn+1 = F∆T (Yn)

where it appears that the approximated solution process is
sequential, which, a priori, prevents from a parallelization.
In what follows we propose an algorithm Y k

n −→ Yn as k goes to
infinity.
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Basics on the algorithm.

For this we assume that another propagator is achievable. It is
denoted as G and is assumed to be cheap but inaccurate.
One can think about F based on an Euler scheme with a very
small time step δt and G based on an Euler scheme with the larger
time step ∆T .
But other possibility are offered as e.g. F carries all the physics of
the phenomenon but G is based on a simplified physics (see
latter).
The iterative process is

Y k+1
n+1 = G∆T (Y k+1

n ) + F∆T (Y k
n )− G∆T (Y k

n )
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Basics on the algorithm.

The iterative process

Y k+1
n+1 = G∆T (Y k+1

n ) + F∆T (Y k
n )− G∆T (Y k

n )

provides a converging sequence, in the sense that

if |ET −FT | ' δt and if |G∆T −F∆T | ' ε∆T

after k iterations the error between Y k
n and y(Tn) is ' εk + δt

Allows to envision real time simulations
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An example

Figure: log of the error on ∂u
∂t + ∂u

∂x −∆u + 5u3 = 5 sin(2t)

∆T = 0.1 and δt = 810−4, speed-up factor of 14
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Another example... chaotic behavior

0.6
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Theta, T=10.0, N=10001, n=1001, dt=1.e-6, K=1

line 1
line 2

Figure: variation of the angle of a molecule A-A-B, after iteration 1, with
Leonado Baffico and Gilles Zerah
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Another example... chaotic behavior
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Figure: variation of the angle of a molecule A-A-B, after iteration 5, with
Leonado Baffico and Gilles Zerah
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Another example... molecular dynamics

Figure: 4 aluminium atoms in a liquid state, periodic BC, convergence after 4
iterations, with Leonado Baffico and Gilles Zerah
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Another example... molecular dynamics

Figure: 4 aluminium atoms in a liquid state, periodic BC, convergence after
.... 5 iterations, with Leonado Baffico and Gilles Zerah
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Summary

Y k+1
n+1 = G∆T (Y k+1

n ) + F∆T (Y k
n )− G∆T (Y k

n )

Initialization : Y 1
n+1 = G∆T (Y 1

n ) (sequential)
Assume every (Y k

n )n is known at step k
Resolution over each ]Tn,Tn+1[ : F∆T (Y k

n ) (parallel)
Resolution of the coarse predictor : G∆T (Y k+1

n ) (sequential)
Correction at each initial time Tn (sequential)
until convergence
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n ) (parallel)
Resolution of the coarse predictor : G∆T (Y k+1

n ) (sequential)
Correction at each initial time Tn (sequential)
until convergence
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Different concepts of coarse propagators

G can also differ in other ways ....
First, we can choose a coarser mesh for the spacial discretization
of the PDE.
Actually, this is quite consistant with the use of a coarser time step
for stability conditions.
As a first example, the viscous Burgers equation

∂u
∂t

+ u
∂u
∂x

= ν
∂2u
∂x2

u(t ,−1) = u(t ,1),ux(t ,−1) = ux(t ,1)

u(0, x) = u0(x) = −sinπx

with ν = 0.02, δt = 2.510−3, ∆T = 510−2 Runge Kutta Scheme
In space : Legendre spectral based on polynomial order 55. The
coarse propagation is based on polynomial orders 20 or 30.
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Different concepts of coarse propagators
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Figure: The left plot shows the numerical solution of the viscous Burger’s
equation at different times. The right plot shows the convergence of the
parareal-in-time algorithm using a coarse propagator with a time step
∆T = 510−2 and a lower order polynomial space (N=20, or 30).
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Different concepts of coarse propagators

With Fischer and Hecht, in 2004, we have also implemented this
method for the simulations of the Navier Stokes equation

Uk+1
n+1 = Πh

HG∆T (ΠH
h Uk+1

n ) + F∆T (Uk
n)− Πh

HG∆T (ΠH
h Uk

n),

e.g. spectral approximation, for the simulation of the growth of a
small-amplitude (10−5) Tollmien-Schlichting wave, superimposed on
plane Poiseuille chanel flow at Re = 7500, compared with linear
theory.
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Different concepts of coarse propagators
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Figure: Error histories in the y -component of velocity versus time : 15
spectral elements with degree =15, δt = .005 and ∆t = .333 using varying
fine/coarse approximation orders (M,M̃): ◦ = (13,13), × = (15,13), ∗ = (15,15)
with 3 restarts..... .
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Different concepts of coarse propagators
G can also differ in other ways ....

Another choice is the replacement of the model, by a coarser one
based on simpler physics.

A first example is given by the reduction procedure to help in the
solution procedure of stiff molecular kinetic reactions.
The problem of interest is written in a matricial system

dy
dt

= Jy

where J is a kinetic matrix, and the system is stiff due to different
speeds in the reactions
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Different concepts of coarse propagators
The reduction process

Rank the eigenvalues in increasing order of real part

Re(λ1) ≤ Re(λ2) ≤ · · · ≤ Re(λp) = Re(λp+1) = Re(λN) = 0

Get rid one after the other of the largest eigenvalues (in absolute
value) and corresponding eigenfunctions

Solve dyR

dt = JRyR

Reconstruct recursively the lacking eigenfunctions
If the propagated reduced species are such that
yR

j (t0)− yj(t0) ≤ ε, then, the non propagated species satisfy
yR

j (t0)− yj(t0) ≤ ε+ [Re(λj)]
−1 if t0 ' O(Re(λj)

−1 ln[Re(λj ])

The idea is then to use the reduced model as a propagator for the
coarse system and solve the exact problem on short time intervals in
parallel
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Different concepts of coarse propagators
The reduction process

We test this on the evolution in case of source terms
Done on the simple case

J =

−310 100 0
300 −100 0
10 0 0


in what follows, we have incorporated sources terms at times : 0.4,
0.8, 1.2, ...
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Different concepts of coarse propagators
More interesting.... exact solution

Figure: exact solution .
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Different concepts of coarse propagators
More interesting

Figure: effect of the reduced model, iteration 1 .
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Different concepts of coarse propagators
More interesting

Figure: effect of the reduced model, iteration 2 .
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Different concepts of coarse propagators
More interesting

Figure: effect of the reduced model, iteration 3... Bingo!! .
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Different concepts of coarse propagators
Even more interesting

Now on a more complex system of Thyroid metabolism

J =



−5.1 .01 0 0 .06 0
0 −2.516 0 0 0 .0008
0 0 −1.3 .001 .0003 0
0 0 0 −1.091 0 .00008
5 0 1 0 −.0603 0
0 2.5 0 1 0 −.00088


where 3 levels of reduction are required and the evolution is done for
only two species
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Different concepts of coarse propagators
Even more interesting

Figure: effect of the reduced model, iteration 1... not too bad .
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Different concepts of coarse propagators
Even more interesting

Figure: effect of the reduced model, iteration 2... oups .
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Different concepts of coarse propagators
Even more interesting

Figure: effect of the reduced model, iteration 3.... still far away??? .
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Different concepts of coarse propagators
Even more interesting

Figure: effect of the reduced model, iteration 4... wait .
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Different concepts of coarse propagators
Even more interesting

Figure: effect of the reduced model, iteration 5... it took more but Bingo again
. Y. Maday (Paris 6 + Brown Univ ) The parareal in time algorithm Dec 2007 35 / 58



Another example... the KdVB equation

Let us consider the following problem : Find u(x , t), x ∈ R, t > 0 such
that

∂tu + u∂xu = ∂x (ν∂xu) + M∂3
xxxu (1)

with boundary conditions

u(−∞) = U, u(+∞) = 0, ∂xu(−∞) = 0 (2)

and initial data
u(x ,0) = u0(x). (3)

where the viscosity parameter ν is very small.
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Another example

It is known that, if ν < ν0 the solution evolves to a very oscillatory
profile

!400 !300 !200 !100 0 100 200 300 400
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Figure 13: Chorin test, oscillatory profile.
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Figure 14: Chorin test, oscillatory profile.

13

Figure: evolution for ν < ν0.
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Another example

The problem is numerically difficult to solve and following the work of
Chorin and Barenblatt, the idea is to define the spacial averaging
operator

Mλ(ϕ)(x) =
1

2λ

∫ x+λ

x−λ
ϕ(z)dz

and set
ūλ(., t) = Mλ(u(., t))

Averaging equation yields to an effective equation

∂t ūλ + ūλ∂x ūλ = νeff∂
2
xx ūλ (4)

with
νeff = R3/4ψ(`)

and R ==
√

M U
ν , resulting in νeff >> ν so that the effective equation is

more simple to be solved
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Another example

We can overlap the two solutions
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Figure 19: Chorin test, oscillatory profile.
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Figure 20: Chorin test, oscillatory profile.

16

Figure: evolution for ν < ν0 and the effective equation.
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Another example

Our idea in this context is to use the effective equation for the
coarse solver and the complete model for the fine solver... the non
linearity does the remaining part
The algorithm (preliminary computations with only one grid and
different time steps) gives a convergence after only 3 iterations of
the parareal algorithm for 50 parareal intervals.
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Another example

This plot represents the error (absolute value) beetwen the parareal
solution and the direct solution after 3 iterations with 50 time
subintervals.
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Figure: This plot represents the error (absolute value) beetwen the parareal
solution and the direct solution after 3 iterations with 50 time subintervals.
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A control problem

Let A be a linear (or nonlinear) operator and let us consider the
following state equation:

∂y
∂t

+ Ay = Bv

with initial condition : y(0) = y0 and where the control v (boundary or
distributed) belongs to some space U and B is some appropriate
operator.
We assume that for any given v , this problem is well posed.
We complement this problem with a cost functional to be minimized

J (v) =
1
2

∫ T

0
‖v‖2

U +
α

2
‖y(T )− yT‖2, (2)

where α > 0, yT is a target and the norm is the H norm if, for instance
V ⊂ H ⊂ V ′.
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A control problem decomposed over sub-intervals

Let us decompose the time interval again

0 = T0 < T1 < ... < Tn < Tn+1 < ... < TN = T .

Then we define {y0, y1, ..., yn, ..., yN−1} solutions of

∂yn

∂t
+ Ayn = Bvn, over (Tn,Tn+1)

yn(T +
n ) = λn,

The collection of solutions {y0, y1, ..., yn, ..., yN−1} satisfies
yn = y|(Tn,Tn+1)) if and only if,

∀n, vn = v|(Tn,Tn+1) and λn = y(Tn),

or again ∀n, vn = v|(Tn,Tn+1) and λn = yn−1(T−
n ).

This way, λn can be interpreted as a “virtual” control (à la Lions) that
leads to the following development.

Y. Maday (Paris 6 + Brown Univ ) The parareal in time algorithm Dec 2007 43 / 58



A control problem decomposed over sub-intervals

Let us decompose the time interval again

0 = T0 < T1 < ... < Tn < Tn+1 < ... < TN = T .

Then we define {y0, y1, ..., yn, ..., yN−1} solutions of

∂yn

∂t
+ Ayn = Bvn, over (Tn,Tn+1)

yn(T +
n ) = λn,

The collection of solutions {y0, y1, ..., yn, ..., yN−1} satisfies
yn = y|(Tn,Tn+1)) if and only if,

∀n, vn = v|(Tn,Tn+1) and λn = y(Tn),

or again ∀n, vn = v|(Tn,Tn+1) and λn = yn−1(T−
n ).

This way, λn can be interpreted as a “virtual” control (à la Lions) that
leads to the following development.

Y. Maday (Paris 6 + Brown Univ ) The parareal in time algorithm Dec 2007 43 / 58



A control problem decomposed over sub-intervals

Let us decompose the time interval again

0 = T0 < T1 < ... < Tn < Tn+1 < ... < TN = T .

Then we define {y0, y1, ..., yn, ..., yN−1} solutions of

∂yn

∂t
+ Ayn = Bvn, over (Tn,Tn+1)

yn(T +
n ) = λn,

The collection of solutions {y0, y1, ..., yn, ..., yN−1} satisfies
yn = y|(Tn,Tn+1)) if and only if,

∀n, vn = v|(Tn,Tn+1) and λn = y(Tn),

or again ∀n, vn = v|(Tn,Tn+1) and λn = yn−1(T−
n ).

This way, λn can be interpreted as a “virtual” control (à la Lions) that
leads to the following development.

Y. Maday (Paris 6 + Brown Univ ) The parareal in time algorithm Dec 2007 43 / 58



A control problem decomposed over sub-intervals

Let us decompose the time interval again

0 = T0 < T1 < ... < Tn < Tn+1 < ... < TN = T .

Then we define {y0, y1, ..., yn, ..., yN−1} solutions of

∂yn

∂t
+ Ayn = Bvn, over (Tn,Tn+1)

yn(T +
n ) = λn,

The collection of solutions {y0, y1, ..., yn, ..., yN−1} satisfies
yn = y|(Tn,Tn+1)) if and only if,

∀n, vn = v|(Tn,Tn+1) and λn = y(Tn),

or again ∀n, vn = v|(Tn,Tn+1) and λn = yn−1(T−
n ).

This way, λn can be interpreted as a “virtual” control (à la Lions) that
leads to the following development.

Y. Maday (Paris 6 + Brown Univ ) The parareal in time algorithm Dec 2007 43 / 58



A control problem decomposed over sub-intervals

Let us decompose the time interval again

0 = T0 < T1 < ... < Tn < Tn+1 < ... < TN = T .

Then we define {y0, y1, ..., yn, ..., yN−1} solutions of

∂yn

∂t
+ Ayn = Bvn, over (Tn,Tn+1)

yn(T +
n ) = λn,

The collection of solutions {y0, y1, ..., yn, ..., yN−1} satisfies
yn = y|(Tn,Tn+1)) if and only if,

∀n, vn = v|(Tn,Tn+1) and λn = y(Tn),

or again ∀n, vn = v|(Tn,Tn+1) and λn = yn−1(T−
n ).

This way, λn can be interpreted as a “virtual” control (à la Lions) that
leads to the following development.

Y. Maday (Paris 6 + Brown Univ ) The parareal in time algorithm Dec 2007 43 / 58



A control problem decomposed over sub-intervals

We then propose to modify slightly the cost functional J as follows

Jε(v ,Λ) =
1
2

∫ T

0
‖v‖2

U+
α

2
‖yN−1(T )−yT‖2+

1
2ε∆T

N−1∑
n=1

‖yn−1(T−
n )−λn‖2,

where Λ = {λ1, ..., λn, ..., λN−1} and ε > 0 is small. In order to solve
this minimization problem, we compute the derivative of Jε(v ,Λ)

δJε(v ,Λ)(δv , δΛ) =
N−1∑
n=0

∫ Tn+1

Tn

(vn, δvn)U + α(yN−1(T )− yT , δyN−1(T ))

+
1

ε∆T

N−1∑
n=1

(yn−1(T−
n )− λn, δyn−1(T−

n )− δλn
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Minimization of the control problem

In order to get an expression of this derivative we introduce the adjoint
states
First pN−1 be the solution over (TN−1,TN) of

∂pN−1

∂t
+ A∗pN−1 = 0 over (TN−1,TN)

pN−1(T ) = α(yN−1(T )− yT )

and the collection pn, n = N − 2,N − 1, ...,0 of solutions of

∂pn

∂t
+ A∗pn = 0 over (Tn,Tn+1

pn(T−
n+1) =

1
ε∆T

(yn(T−
n+1)− λn+1).
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we get

δJε(v ,Λ)(δv , δΛ) =
N−1∑
n=0

∫ Tn+1

Tn

(vn + B∗pn, δvn)U

+
N−1∑
n=0

(pn(T +
n ), δyn(T +

n ))−
N−1∑
n=1

(pn−1(T−
n ), δλn),

=
N−1∑
n=0

∫ Tn+1

Tn

(vn + B∗pn, δvn)U +
N−1∑
n=1

(pn(T +
n )− pn−1(T−

n ), δλn)

since δλ0 = 0.
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From these computations, we can implement a gradient method :
Assume yk

n ,pk
n , vk

n , λ
k
n are known, then

vk+1
n = vk

n − ρ(vk
n + B∗pn) in (Tn,Tn+1)

λk+1
n = λk

n − ρ(pk
n(T +

n )− pk
n−1(T

−
n )), n = 1, ...,N − 1.

It is quite easy to realize that the speed of convergence of the latter
algorithm depends on the number N, of time steps Tn. Indeed, the
transfer of information between time 0 and time T for y and between
time T and time 0 for p can only be done by successive iteration
through the subintervals (Tn,Tn+1), and requires at least N steps.

In order to understand what kind of preconditioner can be added to the
previous iterative algorithm, we shall investigate in the next section the
(only) virtual control. This is done by letting B = 0 and α = 0.
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The parareal scheme revisited

What we want to solve here is thus simply

∂y
∂t

+ Ay = 0

y(0) = y0

over the time interval (0,T ).
The method of resolution through the virtual control involves a
decomposition of the time interval. It is interesting to note that the cost
functional becomes a function of Λ only (up to a multiplicative factor)

J̃ (Λ) =
N−1∑
n=1

‖yn−1(T−
n )− λn‖2,

The minimum of J̃ is zero and is obtained by the choice λn = y(Tn).
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The parareal scheme revisited : algebraic parareal

The succession of resolution of problems (3) is equivalent to the
resolution of the initial problem if and only if λn = F∆T (λn−1) as noted
in (4), or again, in a matricial form

Id 0 ... 0
−F∆T Id 0 ...

0 −F∆T Id ..
0 0 −F∆T Id




λ0
λ1
..

λN−1

 =


λ0
0
..
0

 (5)

that can also be written, with obvious notations

M Λ = F

The standard inversion of this triangular system involves O(N)
resolutions
In order to accelerate, we shall use now the formalism of the parareal
in time scheme
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The parareal scheme revisited : algebraic parareal

By introducing the matrix

M̃ =


Id 0 ... 0

−G∆T Id 0 ...
0 −G∆T Id ..
0 0 −G∆T Id

 (6)

the parareal in time scheme takes the matricial form

Λk+1 = Λk + M̃−1 Resk

where the residual Resk is defined by Resk = F −MΛk .
Since this method converges rapidly, independantly of N, whenever
the governing part in A is linear positive definite. It results that M̃−1

can be considered as close to M−1, in the sense that the amplification
matrix M̃−1M is close to Identity.
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Back to the extended control problem

First we note that the resolution of δJ̃ (Λ) = 0 can also be writen as

M∗ M Λ = M∗ F

Indeed, the vector of jumps pk
n(T +

n )− pk
n−1(T

−
n ) in the dual state is

exactely equal to the vector M∗Resk .
The reason why the original gradient scheme is slow comes from the
fact that the conditionning of M is O(N). The fact that we have
produced a good preconditioner for M allows to forsee that M̃−1(M̃−1)∗

may be a good preconditionner for M∗ M so that, going back to the
original control problem, we propose the following preconditionned
gradient method

vk+1
n = vk

n − ρ(vk
n + B∗pn) in (Tn,Tn+1)

λk+1
n = λk

n − ρ[M̃−1(M̃−1)∗](pk
n(T +

n )− pk
n−1(T

−
n )), n = 1, ...,N − 1
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A simple numerical example

Find y such that
∂y
∂t

− y ′′ = vχ over ]0,1[

where v is the control and χ is the indicator of ]1/2,2/3[. We have
simulated this equation over the time interval ]0,100[ from the initial
condition y0 = 10x(1− x) so as to drive it to the target yT = sin(2πx).
The fine simulations (corresponding to F∆T are performed with the
time step 2. 10−2 either without decomposition in time or by using the
preconditionned controled problem with ∆T = 1.

It is impressive (and not totally understood) to obtain that after 25
iterations of the preconditionned scheme, the cost function is about the
same as after 100 iterations of the plain control procedure. We have
used a gradient method with optimal step. The parareal scheme thus
achieves a speedup of about 4 (the time restitution is divided by 400!)

Y. Maday (Paris 6 + Brown Univ ) The parareal in time algorithm Dec 2007 52 / 58



A simple numerical example

Find y such that
∂y
∂t

− y ′′ = vχ over ]0,1[

where v is the control and χ is the indicator of ]1/2,2/3[. We have
simulated this equation over the time interval ]0,100[ from the initial
condition y0 = 10x(1− x) so as to drive it to the target yT = sin(2πx).
The fine simulations (corresponding to F∆T are performed with the
time step 2. 10−2 either without decomposition in time or by using the
preconditionned controled problem with ∆T = 1.

It is impressive (and not totally understood) to obtain that after 25
iterations of the preconditionned scheme, the cost function is about the
same as after 100 iterations of the plain control procedure. We have
used a gradient method with optimal step. The parareal scheme thus
achieves a speedup of about 4 (the time restitution is divided by 400!)

Y. Maday (Paris 6 + Brown Univ ) The parareal in time algorithm Dec 2007 52 / 58



A simple numerical example

Find y such that
∂y
∂t

− y ′′ = vχ over ]0,1[

where v is the control and χ is the indicator of ]1/2,2/3[. We have
simulated this equation over the time interval ]0,100[ from the initial
condition y0 = 10x(1− x) so as to drive it to the target yT = sin(2πx).
The fine simulations (corresponding to F∆T are performed with the
time step 2. 10−2 either without decomposition in time or by using the
preconditionned controled problem with ∆T = 1.

It is impressive (and not totally understood) to obtain that after 25
iterations of the preconditionned scheme, the cost function is about the
same as after 100 iterations of the plain control procedure. We have
used a gradient method with optimal step. The parareal scheme thus
achieves a speedup of about 4 (the time restitution is divided by 400!)

Y. Maday (Paris 6 + Brown Univ ) The parareal in time algorithm Dec 2007 52 / 58



Problem in laser chemistry control

The Schrödinger equation is to be solved and controled

i~
∂

∂t
ψ(x , t) = H0ψ(x , t)− ε(t)µψ(x , t)

ψ(x , t = 0) = ψ0(x)

the control variable is ε(t) and the target is an observable to be
optimized.

J(ε) = ‖ψ(T )− ψtarget‖L2 +

∫ T

0
α(t)ε2(t)dt

With G. Turinici, we have generalized a former monotonically
convergent algorithms for the iterative solution of this problem
proposed by Zhu-Rabitz or Tannor have proposed . The sequence that
is computed from their algorithm satisfies

J(εk+1) ≥ J(εk )
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Problem in laser chemistry control

The optimality system of equations

i~
∂

∂t
ψ(x , t) = H0ψ(x , t)−ε(t)µψ(x , t)

ψ(x , t = 0) = ψ0(x)

i~
∂

∂t
χ(x , t) = H0χ(x , t)−ε(t)µχ(x , t)

χ(x , t = T ) = ψtarget(x)

the control variable satisfies

α(t)ε(t) = −Im(χ(t)|µ|ψ(t))
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parareal simulation.. with Salomon and Turinici

8

In the sequel, the initial value ε0 of the monotonic scheme is considered fixed. The
most important property of this algorithm is given in the following theorem [9]:

Theorem 3.2. For any η, δ ∈ [0, 2] the algorithm given in Eqns. (3.21)-(3.20) is
well defined and converges monotonically in the sense that

∀$ = 0, ..., N − 1, J!(ε
k+1
! ,λ!,λ!+1) ≤ J!(ε

k
! ,λ!,λ!+1).(3.24)

We refer the reader to [8] for further details on this scheme.
This optimization procedure can be done in parallel on each interval [T!, T!+1]. Con-

sequently, the computations can be carried out with fine propagators F εk+1

! .
Remark 3. Note that m > 1 iterations of this scheme can be done during the

step 4 of the parallel algorithm, especially in case of slow convergence (see the section
5.4 for numerical results about it).
The parallel in time algorithm is schematically depicted in Fig. 3.1.
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0 TTime of control

Fig. 3.1. Symbolic representation of one iteration of the parallel in time algorithm.The opti-
mization is achieved in parallel on each subinterval [T!, T!+1]. The virtual controls λk

!
are updated

at each iteration.

3.4. Monotonicity of the parallel in time algorithm. The combination of
the two above strategies allows to define:

Λk = Λεk

,(3.25)

and εk+1 as the concatenation of the sequence (εk+1
! )!=0,...,N−1. We have thus ob-

tained a global monotonic algorithm since:

J(εk+1) = J‖(ε
k+1,Λk+1) ≤ J‖(ε

k+1,Λk) ≤ J‖(ε
k,Λk) = J(εk).(3.26)

4. Convergence of the algorithm. The convergence of the sequence (εk)k∈N
defined by the above algorithm is described in the next theorem.

Figure: the parareal procedure .
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CONCLUSIONS and perspectives

The parareal algorithm, a predictor corrector parallel algorithm is
an efficient way to get parallelism in the time direction
We have presented a matricial formulation that allows for new
ideas
It can be combined with other iterative process, here the control,
in other context with domain decomposition
The coarse propagator can be optimized as well
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