

Materials Technology

CERAMICRETE Provides Concrete Evidence of Superior Performance

2000 Federal Laboratory **Consortium Award**

BENEFITS

- √ Specialty applications are favored to take advantage of excellent physical properties, including porosity, nonflammability, and strength.
- √ Process uses conventional concrete mixing and handling equipment.
- √ Use of common waste materials extends value (e.g., sh, styrofoam, sawdust).
- √ No formation energy is required, in contrast to fired Ceramics or vitrification.

Links to Online Information:

Further details about Ceramicrete: http://www.anl.gov/techtransfer/ Available Technologies/ Material Science/Ceramicrete/ index.html:

Ceramicrete properties (Table 2): http://www.anl.gov/techtransfer/ Available Technologies/ Material Science/Ceramicrete/ properties-table2.pdf

Patents issued and licenses: http://www.anl.gov/techtransfer/ Available Technologies/ Material Science/Ceramicrete/ Ceramicrete Patents.html

1996 R&D 100 Award Winner Argonne National Laboratory has developed an innovative, chemically bonded phosphate ceramic (CBPC), called Ceramicrete, strong enough to both construct buildings and fill teeth. The material was developed initially to serve as a binder in solving waste management problems. However, Ceramicrete's strength and versatility have made it ideal for a variety of applications.

How Ceramicrete Works

CBPCs are formed by acid-base reactions between an acid phosphate (e.g., potassium, ammonium, or aluminum) and a metal oxide (e.g., magnesium, calcium, or zinc). A powder blend of the two is mixed with water to make a slurry. The slurry sets at room temperature within minutes or hours, depending on the additives. It forms a dense ceramic that can be tailored to possess desirable properties. For example, adding fly ash enhances this mixture's strength to between two and three times that of conventional cement.

Building, Construction, and Architectural Products

Ceramicrete can recycle high-volume wastes such as fly ash, mineral waste, and natural fibers by binding them into value-added products. Combined with natural fibers, Ceramicrete forms a compound that could replace particle board for home construction. Fireproof insulation, bricks, and tiles can all be made from Ceramicrete. It also offers an alternative material for decorative terra cotta. In developing countries in Central and South America and the Caribbean, homes that use Ceramicrete have the potential to be cost-competitive with cement structures. Ceramicrete holds promise for homes located in cold climates as well. Because it sets hard even in freezing temperatures, it is an ideal cement for frigid regions.

Oil and Gas Well Cement and Sealant

Photo courtesy of GTI and the GTI CatoosaTM Test Facility.

Unlike conventional drilling cement, Ceramicrete bonds tightly to earth materials and casings in the presence of drilling fluids or hydrocarbons. It slightly expands during setting and is drillable and machinable. The hardened Ceramicrete is not affected by severe downhole conditions and is stable in a wide range of chemical environments. It is especially useful as a drilling cement in permafrost regions because it has low thermal conductivity and can be pumped at very low viscosity. Moreover, it is an excellent insulating cement that protects permafrost surroundings.

KEY CERAMICRETE MARKETS

Application	Properties	Benefits	Status
Building, Construction, and Architectural Products	Modern, high-tech binder that strengthens end- product (e.g., wallboard) or serves as a property- enhancing coating.	Versatile Flame-Resistant Strong Environmentally friendly	Licensed and used commercially; new product applications being developed for alternative construction techniques and products.
Oil and Gas Well Cement and Sealant	By changing additives, user can engineer its properties and character- istics to meet varying downhole conditions.	Offers the mechanical strength and bonding required in deep, high-pressure wells and wells drilled in permafrost regions.	Proven in the lab. Yard and field tests in progress. License available.
Dental and Bone Cements	Biocompatible; sets quickly; bonds with most other materials; more durable; performs better than existing materials.	Holds promise for filling teeth and repairing bone. Proven to be compatible in dental and orthodontic applications.	Lab testing has yielded positive results. Ready to proceed to next phase of testing and development.

GENERAL PROPERTIES

- $\sqrt{}$ Offers 2-3 times the strength of cement
- $\sqrt{\text{Mixes at ambient temperatures}}$
- √ Hardens quickly
- $\sqrt{}$ Bonds with most materials
- √ Resists corrosion
- √ Does not absorb water
- √ Stable in acidic and high-temperature environments

"Ceramicrete's

properties make it ideal
for building and construction. It
lends itself well to virtually any application
where a cement binder is required. It's easy to
use, cures quickly, has a high compressive strength,
and bonds well to metal. To date, 15 Departments
of Transportation have approved it for use in
repairing tollways. Our customers have also
purchased it for architectural molding and casting,
as well as refractory applications."

Tom Lally President, Bindan Corp, Phosphate Binder Products Developer Oak Brook, Illinois

Dental and Bone Cements

Ceramicrete holds good promise as a dental cement for tooth fillings and for repairing bone damage. Ceramicrete offers density and rigidity that are comparable to bone, and calcium-based CBPCs are biocompatible with bone and dentine. They can be formed at room temperature as a paste and implanted in the body, where they harden and form a suitable microstructure, simulating biological materials.

Licensing Available

Ceramicrete is available for licensing. Samples of Ceramicrete can be purchased for testing and evaluation. See "Ceramicrete: Acquiring the Technology"

http://www.anl.gov/techtransfer/Available_Technologies/ Material_Science/Ceramicrete/Properties_Samples.html

General Contact

For general information and inquiries, contact Argonne's Office of Technology Transfer at 1-800-627-2596 or email us partners@anl.gov.

Media Contact (not for publication)

Contact Terry Maynard at 630-252-9771 (maynard@anl.gov)

Working with Argonne

Argonne is actively seeking partners for further development of Ceramicrete and licensees to utilize the potential of this material commercially. Argonne provides many types of contractual agreements to meet the needs and interests of its partners. To learn how you can work with Argonne or license Ceramicrete, go to the technology transfer website http://

www.anl.gov/Working_with_Argonne/index.html

April 2003

