ACETONE 165

3. CHEMICAL AND PHYSICAL INFORMATION

3.1 CHEMICAL IDENTITY

Data pertaining to the chemical identities of acetone, the simplest aliphatic ketone, are listed in Table 3-1.

3.2 PHYSICAL AND CHEMICAL PROPERTIES

The physical and chemical properties of acetone are given in Table 3-2. The physical properties of acetone, such as high evaporation rate, low viscosity, and miscibility with water and several organic solvents make it suitable for use as a solvent (Krasavage et al. 1982). Because of its ability to undergo addition, oxidation/reduction, and condensation reactions, acetone is used as a raw material in the chemical synthesis of many commercial products (Nelson and Webb 1978).

TABLE 3-1. Chemical Identity of Acetone

Characteristic	Information	Reference HSDB 1992		
Chemical name	Acetone			
Synonym(s)	Dimethyl ketone; 2-propanone; beta-ketopropane	HSDB 1992		
Registered trade name(s)	No data			
Chemical formula	C ₃ H ₆ O			
Chemical structure	O CH ₃ -C-CH ₃			
Identification numbers: CAS registry NIOSH RTECS	67-64-1 AL3150000	HSDB 1992 HSDB 1992		
EPA hazardous waste OHM/TADS	U002; F003 7216568	HSDB 1992 HSDB 1992		
DOT/UN/NA/IMCO shipping HSDB NCI	UN1090 41 ND	HSDB 1992 HSDB 1992 HSDB 1992		

CAS = Chemical Abstracts Services; DOT/UN/NA/IMCO = Department of Transportation/United Nations/North America/International Maritime Dangerous Goods Code; EPA = Environmental Protection Agency; HSDB = Hazardous Substances Data Bank; NCI = National Cancer Institute; NIOSH = National Institute for Occupational Safety and Health; OHM/TADS = Oil and Hazardous Materials/Technical Assistance Data System; RTECS = Registry of Toxic Effects of Chemical Substances

TABLE 3-2. Physical and Chemical Properties of Acetone

Property	Information	Reference		
Molecular weight	58.08	Riddick et al. 1986		
Color	Colorless	HSDB 1992		
Physical state	Liquid	HSDB 1992		
Melting point	-95.35°C	HSDB 1992		
Boiling point	56.2°C at 1 atm	HSDB 1992		
Density:				
at 20°C	0.78998 g/mL	Riddick et al. 1986		
at 25°C	0.78440 g/mL	Riddick et al. 1986		
at 30°C	0.78033 g/mL	Riddick et al. 1986		
Odor	Mildly pungent and aromatic	Nelson and Webb 1978		
Odor threshold:				
Water	20 ppm (w/v)	Amoore and Hautala 1983		
Air (absolute)	13–20 ppm (v/v)	Amoore and Hautala 1983 Hellman and Small 1974		
100% odor recognition	100–140 ppm	Hellman and Small 1974; Leonardos et al. 1969		
Solubility:		200144,000 00 411, 1707		
Water at 20°C	Completely miscible	HSDB 1992		
Organic solvent(s)	Soluble in benzene	HSDB 1992		
.,	and ethanol			
Partition coefficients:				
$Log K_{ow}$	-0.24 (recommended value)	Collander 1951; Sangster 1989		
Log K _{oc}	0.73 (estimated) ^a	Lyman 1982		
Vapor pressure at 20°C	181.72 mmHg	Riddick et al. 1986		
Henry's law constant:				
at 25°C	4.26×10^{-5} atm·m ³ /mol	Rathbun and Tai 1987		
Autoignition temperature	465°C	HSDB 1992		
Flashpoint (closed cup)	-20°C	HSDB 1992		
Flammability limits	Lower, 2.15%;	HSDB 1992		
in air at 25°C	upper, 13.0%			
Conversion factors:				
in air at 25°C	1 ppm = 2.374 mg/m^3	HSDB 1992		
Explosive limits	Lower, 2.6% in air (v/v) ;	HSDB 1992		
	upper, 12.8% in air (v/v)	HSDB 1992		

^aEstimated by regression equation 4-13 in Lyman (1982)

w/v = weight per volume; v/v = volume per volume

	1			