Advanced Geosynchronous Studies - Imager (AGSI)

Dennis Chesters

GOES project scientist

NASA-GSFC

January 1999

AGS Imager design in 1998

- Scan mirror design
- Fit on a satellite like GOES-N
- Fit in the 5-band Imager slot
- Trade-up from NOAA baseline (ABI 8-band imager, circa 2010)
- Ready for flight circa 2005
- Next millenium science on GOES

AGS Imager Structure

AGS Imager Schematic

Detectors & Beamsplitters inside Cooled Dewars

AGS Imager technical requirements

- National Weather Service requirements (GOES-R, circa 2010)
 - rates:
 - regional (1000x1000 km) @ 1 minute intervals for nowcasts
 - CONUS (3000x5000 km) @ 3.5-, 5-, 6-minute intervals for NEXRAD
 - full disk (16000x16000 km) @ 15 minute intervals for winds and storms
 - resolution: 0.5 km vis & 2 km infrared
 - navigation: ± 1 km earth-location
 - 8 spectral bands: 0.6, 1.6, 3.7, 6.7, 7.3, 11, 12, 13 microns
 - Signal/Noise 250/1 vis., NEDT 0.3 K infrared
 - operate through eclipse and local midnight
 - selectable sectors, data and products deliverable within 3 minutes
- Science goals (earth science supplement, circa 2003-2005)
 - emulate MODIS and POES bands in all atmospheric windows
 - diurnal cycle at full-disk; cloud phase, aerosols, winds, water vapor layers
 - shotwave and longwave calibration: internal, terrestrial, lunar, solar
 - cross-references with polar-orbiting satellites
 - long-term radiance data and products in standard servers on the network
 - National observatory for unpredictable events

Science and operational products from an Advanced Geosynchronous Imager

- Episodic & sporadic events
- Clouds
- Surface conditions
- Atmospheric moisture
- Winds
- New and improved weather and climate data
- Cirrus and Aerosols, calibrated
- Colorimetry ocean, land; smoke and haze
- Observe variations in the diurnal cycle
- Cross correlations with EOS
- Regional dynamic process studies
- Gap-filling in space-time, in statistics, and in physical budgets
- Long duration science archive for trends

ITT-AB-AGS Imager Performance

	<u>PERFORMANCE</u>	<u>ITT</u>	<u>ABI</u>	<u>AGSI</u>
	Speed (full disk)	27 min	5 min	5 min
	Resolution (IFOV)	1 & 4 km	0.5 & 2 km	0.3 & 0.7& 1.3 km
	Channels	5	8	18*
	Signal/Noise	250-1000:1	500-2000:1	500-2000:1
	Navigation	±4 km	TBD	±1 km
•	Registration	±25%	±15% FOV	±10% FOV
•	Calibration (IR) (vis & NIR)	1 K ± 0.1 K none	1 K ± 0.1 K 5% ± TBD	1 K ± 0.1 K 1% ± 0.1%*

^{*} more spectral bands and calibration enables science

AGSI-ABI Imager Channels

(µm)	FOV(km)	Noise	Heritage*	<u>Purpose</u>
0.47	0.5	1/500	IVI	smoke, dust and haze
03.0	0.5	1/500	AR <mark>M</mark> ISm	cloud albedo, wind
08.0	0.5	1/400	m \mathbb{N} \mathbb{A}	vegetation
1.37	1	1/300	IVI	cirrus
1.65	1	1/500	MRm	cloud/snow, fires
2.22	1	1/400	IVI	cloud ice, ice, fires
3,50	2	0.1K	MS	sfc, total water vapor
3.95	2	0.1K	ARMISm	sfc. & cloud temp., fires, fog
4.15	2	0.2K	MS	sfc, low air temp.
6.55	2	0.1K	Sm	tropopause water vapor
6.85	2	0.1K	RMIS	high water vapor
7.15	2	0.1K	RSm	mid. water vapor
7.45	2	0.1K	MS	low water vapor
8.50	2	0.2K	<mark>l\/l</mark> m	total water vapor
9.70	2	1.0K	<mark>∭</mark> Sm	total ozone
11.0	2	0.1K	ARMISm	sfc. & cloud temp., fires, fog
12.4	2	0.3K	ARMISm	sfc, total water vapor, volcanic ash
13.3	2	0.5K	MRISm	high cloud cover

*M=MODIS, A=AVHRR, R=GOES-R, I=GOES-8 Imager, S=GOES-8 Sounder, m=MSG

AGS Imager Spectrum

Current Imager GOES-N 5 band simulation

Baseline Imager GOES-R 8 band simulation

Advanced Imager GOES-P/Q 18 band simulation

Future of NASA-NOAA?

Dan Goldin at AGU, December 1998

- "We need to work out a larger architecture that encompasses more than 2-5 day weather & climate forecasts. It should consider Geostationary Earth Orbiters (GEO) as well as polar orbiters."
- "NASA will step up to being the technology supplier, but there must be a commitment and a process to infuse new technologies into the operational systems. Otherwise, they will never be able to produce more than they are producing today."

Priority Interrupt Tests GOES-10 -- May 1998

- Full Disk every hour CONUS every 6 minutes 24 hours/day for integration with radar
- Gulf coast every hour
 Gulf coast every 1.2 minutes
 24 hours/day
 for local severe storms