Local horizon needed for clear GOES view Dennis Chesters, NASA-GSFC, 21 January 1994


```
R1 = vector to me on a sphere, polar angle a1 and equitorial angle b1.
    = r1 [sin(a1)cos(b1), sin(a1)cos(b1), cos(a1)], x,y,z-components
r1 = |R1 | = radius of the earth
R2 = vector from center of earth to satellite in orbit
R3 = vector from me to satellite in orbit = R2 - R1
c = angle from local zenith to satellite,
determined by dot product of local zenith with vector from me to satellite
    cos(c) = R1•R3/|R1| | 3 |
Azimuthal angle from me to GOES is computed using projections of R3 onto my
horizonal plane by first removing its projection onto my zenith vector:
    R4 = R3 - [( (R3\bulletR1)/r1][R1/r1] = part of R3 in my horizontal plane
    Rs = [cos(a1)cos(b1), cos(a1)cos(b1), -sin(a1)]
        = unit vector to my south horizon
and then computing the direction cosine between R4 and my south-look point
    cos(azimuth) = R4•Rs/|R4|
```

Tabular results

SATELLITE STATION	geo-longitude $\left({ }^{\circ} \mathrm{W}\right)$	azimuth angle, east of south $\left({ }^{\circ}\right)$:	altitude angle, up from horizon $\left({ }^{\circ}\right)$:
METEOSAT	0	82	1
METEO-alt	30	60	24
METEO-now	50	39	37
GOES-EAST	75	3	45
GOES-I/ M	90	-20	43
GOES-7now	110	-46	33
GOES-7alt	120	-56	27
GOES-WEST	135	-69	16
GOES-WEST+	140	-72	12

