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Kamel to Keplerian Transformation
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1.   MATHEMATICAL BACKGROUND

The Kamel orbital parameters are a set of four parameters used in the GOES I/M Image Navigation
and Registration (INR) system. These parameters depict the deviation of the true spacecraft orbit
from the reference geostationary orbit.

KAMEL PARAMETER DEFINITIONS

The four Kamel parameters are defined as follows:

DR = The difference between the radial distance to the true instantaneous satellite
position, R, and the nominal geostationary radial distance, R0 (R0 = 42164.365
km.):

DR = R - R0 (1)

Dlambda = The difference between the subsatellite longitude of the spacecraft orbit and the
reference subsatellite longitude:

Dlambda = ATAN2[(yvz - zvy)/(xvz - zvx)]

+ ATAN2(Ls/PSIs) - GHA - Lambda0 (2)

where (x,y,z) are the Geocentric Inertial Cartesian coordinates of the
spacecraft position vector

(vx,vy,vz) are the Geocentric Inertial Cartesian components of the
spacecraft velocity vector

Ls and PSIs are the Kamel parameters defined below

GHA is the Greenwich hour angle

Lambda0 is the reference subsatellite longitude of the spacecraft
(for example, Lambda0  = -75 degrees East for GOES-East and
Lambda0 = -135 degrees East for GOES-West)

ATAN2 is an arctangent function that determines the proper
quadrant of the resultant angle by evaluating the signs of the
numerator and denominator terms of the argument.
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Figure 1 shows the geometry of the orbit plane and the orbital angular
momentum vector, H

r
, in a Cartesian coordinate system.

The magnitude of the orbital angular momentum is

H = sqrt [ Hx
2 + Hy

2 + Hz
2]

where

Hx = yvz - zvy;  Hy = zvx - xvz; Hz = xvy - yvx

In this Figure, sqrt[Hx
2 + Hy

2] is the magnitude of the projection of the angular
momentum vector onto the x-y plane and a is the angle that this projection
makes with the x-axis. Then,

cos(a) = Hx/sqrt[Hx
2 + Hy

2]

sin(a) = -Hy/sqrt[Hx
2 + Hy

2]

However, a + RANODE = 90 degrees where RANODE is the right ascension of
the ascending node. Consequently,

a = (90 - RANODE)

cos(a) = cos(90 - RANODE) = sin(RANODE)

sin(a) = sin(90 - RANODE) = cos(RANODE)

Then

tan(RANODE) = Hx/(-Hy) = (yvz - zvy)/(xvz - zvx)

and

RANODE = ATAN2[(yvz -zvy)/(xvz - zvx)]

which is the first term of Dlambda.  Thus, Dlambda is

Dlambda  =  RANODE + ATAN2(Ls/PSIs) - GHA - Lambda0 (3)

where Lambda0 is the reference longitude contained in the GVAR
documentation block.
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Figure 1.  Orbital Angular Momentum Geometry

 a
RANODE

RIGHT ASCENSION OF THE
ASCENDING NODE

EQUATORIAL
PLANE

ORBIT
PLANE

X

i

Z

H

Z

i

YHX
2 + HY

2



NOAA/NESDIS NOAA/OSD3-1998-015R1UD0
DRL 504-11 March 16, 1998

DCN 1

C-8

Ls = the sine of the geocentric latitude (the angle between the equatorial plane and the
instantaneous latitude position):

Ls = z/R (4)

PSIs = the sine of the orbit yaw (the angle between the equatorial plane and the
instantaneous velocity vector):

PSIs = [vzR - z(xvx + yvy + zvz)/R]/H (5)

The parameters Ls and PSIs can also be expressed in terms of orbital angular variables.  Figure 2
shows the geometry of an arc of the true spacecraft orbit relative to the equatorial plane.  The arc
u is along the orbital plane and is measured from the intersection of the orbital plane and equatorial
plane (the ascending node) to the spacecraft position. In orbital mechanics, this angle, u, is called
the argument of latitude.  The arc S is along the equatorial plane and is measured from the
ascending node to a point that is along the meridian containing the spacecraft position.  The arc T
is the angle measured along that meridian from the equatorial plane to the spacecraft position.
This angle, T, is called the geocentric latitude.  The arcs (u,S,T) form a spherical right triangle.
From spherical trigonometry

sin(T) = sin(u)sin(i)

where i, the inside angle formed by u and S, is the orbit inclination.  Since T is the geocentric
latitude, this equation defines the Kamel parameter Ls (the sine of the geocentric latitude) in terms
of orbital angles:

Ls = sin(u)sin(i) (6)

Also shown in Figure 2 is the angle a, or the orbit yaw, which is the angle that the instantaneous
velocity vector makes with a parallel projection of the equatorial plane.  From the geometry of
Figure 2 it is evident that

a + b = 90 degrees

Then from spherical trigonometry,

cos(b) = cos(90 - a) = sin(a) = cos(S)sin(i)
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Figure 2.  Relationship Between Orbit Geometry and the Angles
of Geocentric Latitude and Orbit Yaw
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For small inclination orbits, the angle S can be approximated to be the angle u with a high degree of
accuracy.  (For example, for an orbit with 0.5-degree inclination, this approximation is good to
within 0.004 percent).  Making this approximation,

sin(a) = cos(u)sin(i)

Since a is the orbit yaw, this equation defines the Kamel parameter PSIs (the sine of the orbit yaw) in
terms of orbital angles:

PSIs = cos(u)sin(i) (7)

Dividing equation (7) by equation (6) gives

tan(u) = Ls/PSIs

or

u = ATAN2(Ls/PSIs)

which is the second term in equation (3) for Dlambda.  Substituting the above expression for u into
equation (3) gives an expression for Dlambda completely in terms of orbital angles:

Dlambda = RANODE + u - GHA - Lambda0 (8)

Note that a singularity exists as PSIs (or orbit yaw) goes to zero.  In the event that this occurs, then

u is determined from Ls in the following manner:

•  If Ls > 0 then u = 90 degrees.

• If Ls < 0 then u = 270 degrees.

• If Ls = PSIs = 0 then the inclination and right ascension of the ascending node also go

to zero and

u = Dlambda + GHA + Lambda0.



NOAA/NESDIS NOAA/OSD3-1998-015R1UD0
DRL 504-11 March 16, 1998

DCN 1

C-11

EXPRESSION OF KAMEL PARAMETERS IN TERMS OF IMC ORBIT COEFFICIENTS

The four Kamel parameters are obtained from the 42 IMC orbit coefficients in documentation block
of the GVAR data for the Imager and Sounder. Table 1 lists the word locations in the respective
documentation blocks for these IMC coefficients. In terms of these coefficients, the Kamel
parameters are the following:

DR = A14 + A15cos(w0t) + A16sin(w0t) + A17cos(2w0t)

+ A18sin(2w0t) + A19cos(w1t) + A20sin(w1t)

+ A21cos(w2t) + A22sin(w2t)

+ w0t { A23cos(w0t) + A24sin(w0t) } (9)

Dlambda = A1+ A2w0t + A3w0
2t2

+ 2[ A4sin(w0t) + A5cos(w0t) + A6sin(2w0t)

+ A8sin(w1t) + A9cos(w1t) + A10sin(w2t) (10)

+ A7cos(2w0t)+ A11cos(w2t)]

+ 2w0t[ A12sin(w0t) + A13cos(w0t)]

Ls = A25 + A26cos(w0t) + A27sin(w0t) + A28cos(2w0t)

+ A29sin(2w0t) + w0t[A30cos(w0t) + A31sin(w0t)] (11)

+ A32cos(w2t) + A33sin(w2t)

PSIs = A34 + A35sin(w0t) + A36cos(w0t)

+ A37sin(2w0t) + A38cos(2w0t) (12)

+ w0t[ A39sin(w0t) + A40cos(w0t) ]

+ A41sin(w2t) + A42cos(w2t)

where w0 = 0.7292115D-4 radians/second

= the sidereal rotation rate of the Earth

2*w0 = 1.458423D-4 radians/second

= the second harmonic of the Earth's rotation rate
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Table 1.  Word Locations of the 42 IMC Orbit Coefficients in the
Imager and Sounder Documentation Block 0

Coefficient Description (Units) Imager Documentation
Block 0 Word Location

Sounder Documentation
Block 0 Word Location

A1 Change in longitude from reference (radians) 347 375

A2 Change in longitude from reference (radians) 351 379

A3 Change in longitude from reference (radians) 355 383

A4 Change in longitude from reference (radians) 359 387

A5 Change in longitude from reference (radians) 363 391

A6 Change in longitude from reference (radians) 367 395

A7 Change in longitude from reference (radians) 371 399

A8 Change in longitude from reference (radians) 375 403

A9 Change in longitude from reference (radians) 379 407

A10 Change in longitude from reference (radians) 383 411

A11 Change in longitude from reference (radians) 387 415

A12 Change in longitude from reference (radians) 391 419

A13 Change in longitude from reference (radians) 395 423

A14 Change in radial distance from reference (km) 399 427

A15 Change in radial distance from reference (km) 403 431

A16 Change in radial distance from reference (km) 407 435

A17 Change in radial distance from reference (km) 411 439

A18 Change in radial distance from reference (km) 415 443

A19 Change in radial distance from reference (km) 419 447

A20 Change in radial distance from reference (km) 423 451

A21 Change in radial distance from reference (km) 427 455

A22 Change in radial distance from reference (km) 431 459

A23 Change in radial distance from reference (km) 435 463

A24 Change in radial distance from reference (km) 439 467

A25 Sine of geocentric latitude (no units) 443 471

A26 Sine of geocentric latitude (no units) 447 475

A27 Sine of geocentric latitude (no units) 451 479

A28 Sine of geocentric latitude (no units) 455 483

A29 Sine of geocentric latitude (no units) 459 487

A30 Sine of geocentric latitude (no units) 463 491

A31 Sine of geocentric latitude (no units) 467 495

A32 Sine of geocentric latitude (no units) 471 499

A33 Sine of geocentric latitude (no units) 475 503

A34 Sine of orbit yaw (no units) 479 507

A35 Sine of orbit yaw (no units) 483 511

A36 Sine of orbit yaw (no units) 487 515

A37 Sine of orbit yaw (no units) 491 519

A38 Sine of orbit yaw (no units) 495 523

A39 Sine of orbit yaw (no units) 499 527

A40 Sine of orbit yaw (no units) 503 531

A41 Sine of orbit yaw (no units) 507 535

A42 Sine of orbit yaw (no units) 511 539
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w1 = 0.1405004D-3 radians/second

= 2*w0 - 2*wm

= the frequency of twice the mean spacecraft orbital motion relative to the mean
lunar

motion, wm

w2 = 0.6759791D-4 radians/second

= w0 - 2*wm

= the frequency of the mean spacecraft orbital motion relative to the mean lunar
motion

wm = 0.0533219D-4 radians/second

= the mean lunar motion defined as the rate of change of the mean longitude of the
moon, measured along the lunar orbit from the mean equinox of date of the

ecliptic
plane to the ascending node of the lunar orbit, then along the lunar orbit

t = the time elapsed since epoch in seconds

DERIVATION OF THE SATELLITE POSITION VECTOR

The equations (1), (6), (7), and (8) can be used to find the spacecraft position vector in the
following manner. Figure 3 shows two coordinate systems—the Cartesian coordinate system
(x,y,z) and the Coordinate system (U,V,W) where:

U is in the direction pointing to the spacecraft position

W is in the direction of orbit normal

V completes the right-handed coordinate system

A vector in the Cartesian coordinate system can be rotated into the (UVW)-system through the
following three rotations:

(13)
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Figure 3.  Geometry of Rotation from Inertial Coordinates to Orbital Coordinates
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(14)

(15)

The full rotation is a product of these three rotations:
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Using this rotation, the Cartesian components of the unit vector U, which is the unit vector pointing
to the spacecraft position vector, are the following:

Ux = cos(u)cos(RANODE) - sin(u)sin(RANODE)cos(i) (17)

Uy = cos(u)sin(RANODE) + sin(u)cos(RANODE)cos(i) (18)

UZ = sin(u)sin(i) (19)

The angles u, RANODE, and i can be obtained from the Kamel parameter equations (6), (7), and (8):

u = ATAN2(Ls/PSIs) (20)

where

if PSIs = 0 and Ls > 0 then u = 90 degrees;

if PSIs = 0 and Ls < 0 then u = 270 degrees;

if Ls = PSIs = 0 then u = Dlambda + GHA + Lambda0

RANODE = Dlambda - u + GHA + Lambda0 (21)

i = arcsin[sqrt(Ls
2 + PSIs

2)] (22)

The Kamel parameter equation (1) can then be used to obtain the spacecraft position vector.  From

equation (1), the magnitude of the spacecraft position vector is

R = R0 + DR (23)

Then the (x,y,z) Cartesian components of the spacecraft position are:

x = RUx (24)

y = RUy (25)

z = RUz (26)
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DERIVATION OF THE SATELLITE VELOCITY VECTOR

The velocity is derived using the partial derivatives of the position vector given in equations (24)

through (26) as follows:

vx = dx/dt = (dR/dt)Ux + R(dUx/dt) (27)

vy = dy/dt = (dR/dt)Uy + R(dUy/dt) (28)

vz = dz/dt = (dR/dt)Uz + R(dUz/dt) (29)

Using equations (17) through (23) the following expressions are obtained for the quantities dR/dt and
dUi/dt (i = x,y,z) in terms of the four Kamel parameters and their time derivatives:

dR/dt = d(DR)/dt (30)

dUx/dt = - (du/dt)sin(u)cos(RANODE)

- (dRANODE/dt)cos(u)sin(RANODE)

- (du/dt)cos(u)sin(RANODE)cos(i)

- (dRANODE/dt)sin(u)cos(RANODE)cos(i)

+ (di/dt)sin(u)sin(RANODE)sin(i) (31)

dUy/dt = - (du/dt)sin(u)sin(RANODE)

+ (dRANODE/dt)cos(u)cos(RANODE)

+ (du/dt)cos(u)cos(RANODE)cos(i)

- (dRANODE/dt)sin(u)sin(RANODE)cos(i)

- (di/dt)sin(u)cos(RANODE)sin(i) (32)

dUz/dt = dLs/dt (33)
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where

du/dt = [ (dLs/dt)PSIs - (dPSIs/dt)Ls]/sin2(i) (34)

dRANODE/dt = dDlambda/dt - du/dt + dGHA/dt (35)

(dGHA/dt is the sidereal rate of the Earth's rotation
  = w0 = 0.7292115D-4 radians/second)

di/dt = [Ls(dLs/dt) + PSIs(dPSIs/dt)]/(sin(i)cos(i)) (36)

Equations (34) and (36) encounter singularities when the inclination goes to zero. These singularities
are avoided, however, when these equations, along with equation (35), are directly substituted into
equations (31) and (32). Using the following three trigonometric relations

(1 – cos i)/sin2 i  =  1/[2cos2(i/2)]

sin(RANODE)cos(u) - cos(RANODE)sin(u) = sin(RANODE - u)

sin(RANODE)sin(u) + cos(RANODE)cos(u) = cos(RANODE - u)

the expressions for dUx/dt (equation (31)) and dUy/dt (equation (32)) reduce to forms that are more
appropriate for small inclination orbits:

dUx/dt =  ((dLs/dt)PSIs - (dPSIs/dt)Ls)sin(RANODE - u)/(2cos2(i/2))

+ ((dLs/dt)Ls + (dPSIs/dt)PSIs)(sin(u)sin(RANODE)/cos(i))

- dDlambda/dt(cos(u)sin(RANODE) + sin(u)cos(RANODE)cos(i)) (37)

- dGHA/dt[ cos(u)sin(RANODE) + sin(u)cos(RANODE)cos(i)]

dUy/dt =   ((dPSIs/dt)Ls - (dLs/dt)PSIs)cos(RANODE - u)/ [2cos2(i/2)]

- ((dLs/dt)Ls + (dPSIs/dt)PSIs)sin(u)cos(RANODE)/cos(i)

+ dDlambda/dt(cos(u)cos(RANODE) - sin(u)sin(RANODE)cos(i)) (38)

+ dGHA/dt[ cos(u)cos(RANODE) - sin(u)sin(RANODE)cos(i)]
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Using equations (9) through (12) the time derivatives of the Kamel parameters are the following:

dDR/dt =   w0[ -Al5sin(w0t) + Al6cos(w0t) ]

+ 2w0[ -Al7sin(2w0t) + Al8cos(2w0t) ]

+ w1[ -A19sin(w1t) + A20cos(w1t) ]

+ w2[ -A21sin(w2t) + A22cos(w2t) ] (39)

+ w0[ A23cos(w0t) + A24sin(w0t) ]

+ w0
2t[ -A23sin(w0t) + A24cos(w0t) ]

dDlambda/dt =  A2w0 + 2A3w0
2t + 2w0[ A4cos(w0t) - A5sin(w0t) ]

+ 4w0[ A6cos(2w0t) - A7sin(2w0t) ]

+ 2w1[ A8cos(w1t) - A9sin(w1t) ]

+ 2w2[ A10cos(w2t) - A11sin(w2t) ] (40)

+ 2w0[ A12sin(w0t) + A13cos(w0t) ]

+ 2w0
2t[ A12cos(w0t) - A13sin(w0t) ]

dLs/dt =  w0[ -A26sin(w0t) + A27cos(w0t)]

+ 2w0[ -A28sin(2w0t) + A29cos(2w0t)]

+ w0[ A30cos(w0t) + A31sin(w0t)]

+ w0
2t[ -A30sin(w0t) + A31cos(w0t)]

+ w2[ -A32sin(w2t) + A33cos(w2t) ] (41)

dPSIs/dt =  w0[A35cos(w0t) - A36sin(w0t)]

+ 2w0[ A37cos(2w0t) - A38sin(2w0t)]

+ w0[ A39sin(w0t) + A40cos(w0t)]

+ w0
2t[ A39cos(w0t) - A40sin(w0t)]

+ w2[ A41cos(w2t) - A42sin(w2t)] (42)

The velocity vector components (equations (27) through (29)) are then obtained with substitutions
of equations (39) through (42) into equations (30), (33), (37), and (38) followed by substitution of
equations (30), (33), (37), and (38) into equations (27) through (29).
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CARTESIAN ELEMENT CONVERSION TO KEPLERIAN ELEMENTS

The Keplerian elements can now be obtained from the position and velocity vectors through the
following:

Semi-major axis (sma):

sma = R/[2 - (RV2)/mu] (43)

where R = the magnitude of the position vector
V = the magnitude of the velocity vector
mu = the Earth's gravitational constant

Eccentricity (ecc):

ecc = sqrt[ 1 - (p/sma) ] (44)

where  p = [(RV)2-( VR
rr

〈 )2]/mu

          VR
rr

〈  = xvx + yvy + zvz

Inclination (inc):

inc = arcsin [sqrt(Ls
2 + PSIs

2)] (45)

Right ascension of the ascending node (RANODE):

RANODE = Dlambda - u + GHA + Lambda0 (46)

True anomaly (TA):

TA = ATAN2 [{( VR
rr

〈 )sqrt(p/mu)} /(p - R)] (47a)

If (p - R) is zero (or, equivalently, if the eccentricity is zero) then the argument of perigee
is undefined. (Note: When the eccentricity is near zero the argument of perigee is ill-
defined due to limitations in mathematical algorithms and floating point computations.)
In that case, the argument of perigee is set to zero and the true anomaly is

TA = u (47b)
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Argument of perigee (ARGPER):

If the eccentricity is zero then

ARGPER = 0 (48a)

else

ARGPER = u - TA (48b)

Eccentric anomaly (EA):

arg = sqrt[(1 - ecc)/(1 + ecc)]

EA = 2*arctangent[arg*tangent (TA/2)] (49)

Mean anomaly (MA):

MA = EA - ecc*sin(EA) (50)
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2.   GENERAL ALGORITHM

The following algorithm can be used as the basis for a computer program that will obtain the
Keplerian elements from the 42 IMC coefficients contained in the imager and sounder
documentation blocks (see Table 1). It is organized in four steps, each of which can be programmed
as subroutines if desired. These steps are the following:

1. Compute the four Kamel parameters and their time derivatives from the 42 IMC
coefficients.

2. Compute three orbit angles, their time derivatives, and the magnitude of the spacecraft
position from the four Kamel parameters and their time derivatives.

3. Compute the position and velocity vectors from three orbit angles, their time derivatives,
and the magnitude of the spacecraft position.

4. Compute the Keplerian elements from the position and velocity vectors.

The algorithm is written in pseudocode form with variable names given in FORTRAN like form.
Comments that are not part of the algorithm are contained within double parentheses.

((  ALGORITHM TO CONVERT THE KAMEL PARAMETERS TO ))
((  KEPLERIAN ELEMENTS. ))
(( ))
(( NOTES: ))
(( ))
(( ))
(( 1. THIS ALGORITHM SHOULD BE PROGRAMMED IN DOUBLE ))
(( PRECISION. ))
(( ))
(( 2. INTRINSIC FUNCTIONS (SUCH AS SINE, COSINE, ETC.) ))
(( ARE LISTED IN LOWER CASE IN THIS ALGORITHM. ))
(( ))
(( ))
(( INPUT PARAMETERS: ))
(( ))
(( A(42) - A 1 X 42 ARRAY CONTAINING THE 42 IMC ORBIT ))
(( COEFFICIENTS ))

(( ))
(( T - TIME IN SECONDS SINCE EPOCH ))
(( ))
(( ))
(( GHA - THE GREENWICH HOUR ANGLE (IN RADIANS) AT THE ))
(( TIME OF THE ABOVE COEFFICIENTS ))
(( ))



NOAA/NESDIS NOAA/OSD3-1998-015R1UD0
DRL 504-11 March 16, 1998

DCN 1

C-24

(( LAM0 - THE REFERENCE SUBSATELLITE LONGITUDE FOR ))
(( THE SPACECRAFT IN RADIANS (FOR EXAMPLE, -1.308997 ))
(( RADIANS (-75 DEGREES EAST) FOR GOES-EAST OR ))
(( -2.356194 RADIANS (-135 DEGREES EAST) FOR ))
(( GOES-WEST) ))
(( ))
(( ))
(( CONSTANT PARAMETERS: ))
(( ))
(( W0  - (THE FUNDAMENTAL FREQUENCY IN THE IMC ))
(( EXPANSION) = 0.7292115D-4 RADIANS/SECOND ))
(( ))
(( ))
(( W1  - (THE FREQUENCY OF TWICE THE MEAN ))
(( SPACECRAFT ORBITAL MOTION RELATIVE TO THE ))
(( MEAN LUNAR MOTION) = 0.1405004D-3 RADIANS/ ))
(( SECOND ))
(( ))
(( ))
(( W2  - (THE FREQUENCY OF THE MEAN SPACECRAFT ))
(( ORBITAL MOTION RELATIVE TO THE MEAN LUNAR ))
(( MOTION) = 0.6759791D-4 RADIANS/SECOND ))
(( ))
(( ))
(( MU - (THE EARTH'S GRAVITATIONAL CONSTANT) ))
(( = 3.9860044D5 KM**3/SECOND**2 ))
(( ))
(( ))
(( R0 - (THE NOMINAL GEOSTATIONARY ORBIT RADIAL ))
(( DISTANCE) = 42164.365D0 KM ))
(( ))
(( ))
(( GHADT - (THE RATE OF CHANGE OF THE GREENWICH ))
(( HOUR ANGLE) = 0.7292115D-4 RADIANS/SECOND ))
(( ))
(( ))
(( BEGIN COMPUTATION: ))
(( ))
(( 1. COMPUTE THE FOUR KAMEL PARAMETERS AND THEIR ))
(( TIME DERIVATIVES FROM THE 42 IMC COEFFICIENTS: ))
(( ))
(( 1.1 COMPUTE INTERMEDIATE SINE AND COSINE VALUES: ))
(( ))

C0 = cosine(W0*T)

S0 = sine(W0*T)

C20 = cosine(2.0D0*W0*T)

S20 = sine(2.0D0*W0*T)
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Cl = cosine(W1*T)

S1 = sine(W1*T)

C2 = cosine(W2*T)

S2 = sine(W2*T)

(( ))
(( 1.2 COMPUTE DR, THE RADIAL DISTANCE KAMEL ))
(( PARAMETER: ))
(( ))

DR =  A(14) + A(l5)*C0 + A(16)*S0 + A(17)*C20 + A(18)*S20
+ A(19)*C1 + A(20)*S1 + A(21)*C2 + A(22)*S2
+ W0*T*(A(23)*C0 + A(24)*S0)

(( ))
(( 1.3 COMPUTE DRDT, THE TIME DERIVATIVE OF THE ))
(( RADIAL DISTANCE KAMEL PARAMETER: ))
(( ))

DRDT =W0*(-A(15)*S0 + A(16)*C0) + 2.0D0*W0*(-A(17)*S20
+ A(18)*C20) + W1*(-A(19)*S1 + A(20)*C1)
+ W2*(-A(21)*S2 + A(22)*C2) + W0*(A(23)*C0
+ A(24)*S0) + (W0**2)*T*(-A(23)*S0 + A(24)*C0)

(( ))

(( 1.4 COMPUTE DLAM, THE LONGITUDINAL KAMEL ))
(( PARAMETER: ))
(( ))

DLAM =A(1) + A(2)*W0*T + A(3)*((W0*T)**2)

+ 2.0D0*(A(4)*S0 + A(5)*C0 + A(6)*S20 + A(7)*C20

+ A(8)*S1 + A(9)*C1 + A(10)*S2 + A(11)*C2)

+ 2.0D0*W0*T*(A(12)*S0 + A(13)*C0)

(( ))
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(( 1.5 COMPUTE DLAMDT, THE TIME DERIVATIVE OF THE ))
(( LONGITUDINAL KAMEL PARAMETER: ))
(( ))

DLAMDT = A(2)*W0 + 2.0D0*A(3)*(W0**2)*T

+ 2.0D0*W0*(A(4)*C0 - A(5)*S0)

+ 4.0D0*W0*(A(6)*C20 - A(7)*S20)

+ 2.0D0*(W1*(A(8)*C1 - A(9)*S1) + W2*(A(10)*C2

- A(11)*S2)) + 2.0D0*W0*(A(12)*S0 + A(13)*C0)

+ 2.0D0*(W0**2)*T*(A(12)*C0 - A(13)*S0)

(( ))
(( 1.6 COMPUTE LS, THE LATITUDINAL KAMEL PARAMETER: ))
(( ))

LS = A(25) + A(26)*C0 + A(27)*S0 + A(28)*C20 + A(29)*S20

+ W0*T*(A(30)*C0 + A(31)*S0) + A(32)*C2 + A(33)*S2

(( ))
(( 1.7 COMPUTE LSDT, THE TIME DERIVATIVE OF THE ))
(( LATITUDINAL KAMEL PARAMETER: ))

(( ))

LSDT = W0*(-A(26)*S0 + A(27)*C0) + 2.0D0*W0*(-A(28)*S20

+ A(29)*C20) + W0*(A(30)*C0 + A(31)*S0

+ (W0**2)*T*(-A(30)*S0 + A(31 )*C0)

+ W2*(-A(32)*S2 + A(33)*C2)

(( ))
(( 1.8 COMPUTE PSIS, THE ORBIT YAW KAMEL PARAMETER: ))

(( ))

PSIS = A(34) + A(35)*S0 + A(36)*C0 + A(37)*S20

+ A(38)*C20 + W0*T*(A(39)*S0 + A(40)*C0)

+ A(41)*S2 + A(42)*C2
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(( ))

(( 1.9 COMPUTE PSISDT, THE TIME DERIVATIVE OF THE ))

(( ORBIT YAW KAMEL PARAMETER: ))

(( ))

PSISDT =  W0*(A(35)*C0 - A(36)*S0) + 2.0D0*W0*(A(37)*C20

- A(38)*S20) + W0*(A(39)*S0 + A(40)*C0)

+ (W0**2)*T*(A(39)*C0 - A(40)*S0)

+ W2*(A(41)*C2 - A(42)*S2)

(( 2. COMPUTE THREE ORBIT ANGLES, THEIR TIME ))
(( DERIVATIVES AND THE MAGNITUDE OF THE SPACECRAFT ))
(( POSITION FROM THE FOUR KAMEL PARAMETERS AND ))
(( THEIR TIME DERIVATIVES: ))
(( ))

(( ))
(( 2.1 COMPUTE R, THE MAGNITUDE OF THE SPACECRAFT ))
(( POSITION: ))
(( ))

R = R0 + DR

(( ))
(( 2.2 COMPUTE RDOT, THE TIME DERIVATIVE OF THE ))
(( MAGNITUDE OF THE SPACECRAFT POSITION: ))
(( ))

RDOT = DRDT

(( ))
(( 2.3 COMPUTE I, THE INCLINATION: ))
(( ))

I = arcsine(sqrt(LS**2 + PSIS**2))
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(( ))
(( 2.4 COMPUTE ULAT, THE ARGUMENT OF LATITUDE: ))
(( ))

IF absolute-value(PSIS) > 0.0D0 THEN
ULAT = ATAN2(LS/PSIS)

ELSE
IF LS > 0.0D0 THEN

ULAT = 1.570796D0
ELSEIF LS = 0.0D0 THEN

ULAT = DLAM + GHA + LAM0
ELSE

ULAT = 4.712389D0
ENDIF

ENDIF

(( ))
(( 2.5 COMPUTE RA, THE RIGHT ASCENSION OF THE ))
(( ASCENDING NODE: ))
(( ))

RA = DLAM - ULAT + GHA + LAM0

 (( ))
(( 3. COMPUTE THE POSITION AND VELOCITY VECTORS FROM ))
(( THREE ORBIT ANGLES, THEIR TIME DERIVATIVES AND THE ))
(( MAGNITUDE OF THE SPACECRAFT POSITION: ))
(( ))
(( ))
(( 3.1 COMPUTE INTERMEDIATE SINE AND COSINE VALUES: ))
(( ))

SU = sine(ULAT)

CU = cosine(ULAT)

SI = sine(I)

CI = cosine(I)

SRA = sine(RA)

CRA = cosine(RA)

(( ))
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(( 3.2 COMPUTE RU(I) (I=1,2,3), THE (X,Y,Z) COMPONENTS ))
(( OF THE UNIT VECTOR POINTING TO THE SPACECRAFT ))
(( POSITION: ))

RU(1) = CU*CRA - SU*SRA*CI

RU(2) = CU*SRA + SU*CRA*CI

RU(3) = LS

(( ))
(( 3.3 COMPUTE FUDOT(I) (I=1,2,3), THE TIME DERIVATIVE ))
(( OF THE (X,Y,Z) COMPONENTS OF THE UNIT VECTOR ))
(( POINTING TO THE SPACECRAFT POSITION: ))

SRAU = sine(RA - ULAT)

CRAU = cosine(RA - ULAT)

C2I2 = (cosine(I/2))**2

RUDOT(1) =   (LSDT*PSIS - PSISDT*LS)*(SRAU/2.0D0/C2I2)
+ (LSDT*LS + PSISDT*PSIS)*(SU*SRA/CI)
- DLAMDT*(CU*SRA + SU*CRA*CI)
- GHADT*(CU*SRA + SU*CRA*CI)

RUDOT(2) =   (PSISDT*LS - LSDT*PSIS)*(CRAU/2.0D0/C2I2)
- (LSDT*LS + PSISDT*PSIS)*(SU*CRA/CI)
+ DLAMDT*(CU*CRA - SU*SRA*CI)
+ GHADT*(CU*CRA - SU*SRA*CI)

RUDOT(3) =   LSDT

(( ))
(( 3.4 COMPUTE POS(I) (I=1,2,3), THE (X,Y,Z) ))
(( COMPONENTS OF THE SPACECRAFT POSITION: ))
(( ))

POS(l) = R*RU(1)

POS(2) = R*RU(2)

POS(3) = R*RU(3)
(( ))
(( 3.5 COMPUTE VEL(I) (I=1,2,3), THE (X,Y,Z) ))
(( COMPONENTS OF THE SPACECRAFT VELOCITY: ))
(( ))



NOAA/NESDIS NOAA/OSD3-1998-015R1UD0
DRL 504-11 March 16, 1998

DCN 1

C-30

VEL(1) = RDOT*RU(1) + R*RUDOT(1)

VEL(2) = RDOT*RU(2) + R*RUDOT(2)

VEL(3) = RDOT*RU(3) + R*RUDOT(3)

(( ))
(( 4. COMPUTE THE KEPLERIAN ELEMENTS: ))
(( ))
(( ))
(( 4.1 SEMI-MAJOR AXIS, SMA: ))
(( ))

VELMAG = sqrt(VEL(1)**2 + VEL(2)**2 + VEL(3)**2)

SMA = R/(2.0D0 - (R*(VELMAG**2)/MU))

(( ))
(( 4.2 ECCENTRICITY, ECC: ))
(( ))

RDOTV = POS(1)*VEL(1) + POS(2)*VEL(2) + POS(3)*VEL(3)

P = ( (R*VELMAG)**2 - RDOTV**2 )/MU

ECC = sqrt(1 - (P/SMA))

 (( ))
(( 4.3 INCLINATION, XINC (THIS HAS ALREADY BEEN ))
(( COMPUTED FROM THE KAMEL PARAMETERS LS & PSIS): ))
(( ))

XINC = I

(( ))
(( 4.4 RIGHT ASCENSION OF THE ASCENDING NODE, RANODE ))
(( (THIS HAS ALREADY BEEN COMPUTED FROM THE ))
(( KAMEL PARAMETER DLAM): ))
(( ))

RANODE = RA
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(( ))
(( 4.5 TRUE ANOMALY, TA: ))
(( ))

IF (P - R) > 0.0D0 THEN
TA = ATAN2((sqrt(P/MU)*RDOTV)/(P-R))

ELSE
TA = ULAT

ENDIF

(( ))
(( 4.6 ARGUMENT OF PERIGEE, ARGPER: ))
(( ))

ARGPER= ULAT-TA

(( ))
(( 4.7 ECCENTRIC ANOMALY, EA: ))
(( ))

ARG = sqrt[(1.0D0 - ECC)/(1.0D0 + ECC)]

EA = 2.0D0*arctangent(arg*tangent(TA/2.0D0))

(( ))
(( SET THE ECCENTRICITY BETWEEN 0 DEGREES ))
(( (0 RADIANS) AND 360 DEGREES (2*PI RADIANS): ))
(( ))

TWOPI = 2.0D0*3.1415926535898D0

IF EA < 0.0D0 THEN
EA = EA + TWOPI

ENDIF

(( ))
(( 4.8 MEAN ANOMALY ))
(( ))

MA = EA - ECC*sine(EA)

(( ))
(( THIS COMPLETES COMPUTATION OF THE KEPLERIAN ELEMENTS. ))


