
CUG 2005 Proceedings - Evaluation of UPC on the Cray X1 - 1 of 10

Evaluation of UPC on the Cray X1

Tarek A. El-Ghazawi, François Cantonnet, Yiyi Yao,
Department of Electrical and Computer Engineering, The
George Washington University and Jeffrey Vetter,
Computer Science and Mathematics Division, Oak Ridge
National Laboratory

ABSTRACT: UPC is parallel programming language which enables programmers to
expose parallelism and data locality in applications with an efficient syntax. Recently,
UPC has been gaining attention from vendors and users as an alternative programming
model for distributed memory applications. Therefore, it is important to understand how
such a potentially powerful language interacts with one of today’s most powerful,
contemporary architectures: the Cray X1. In this paper, we evaluate UPC on the Cray
X1 and examine how the compiler exploits the important features of this architecture
including the use of the vector processors and multi-streaming. Our experimental results
on several benchmarks, such as STREAM, RandomAccess, and selected workloads from
the NAS Parallel Benchmark suite, show that UPC can provide a high-performance,
scalable programming model, and we show users how to leverage the power of X1 for
their applications. However, we have also identified areas where compiler analysis can
be more aggressive and potential performance caveats.

KEYWORDS: Cray X1, Unified Parallel C, Distributed Shared Memory paradigm,
programming model, STREAM, RandomAccess, NAS Parallel Benchmark, vector,
multistreaming

1. Introduction
Unified Parallel C (UPC) is an explicit parallel

programming language extension of ISO C based on the
partitioned global address space (PGAS) programming
model[ELG03]. UPC leverages the work done on may
predecessor efforts, such as Split-C[CUL93],
AC[CAR99], and PCP[BRO95], as well as the direct
input of a consortium of vendors, researchers, and
practitioners. Like C itself, UPC has an efficient syntax
and provides the programmer low-level access to the
underlying system and architecture from the perspective
of an abstract high-level language. UPC allows
programmers to manage data distributions explicitly.
Thus, like MPI and message passing paradigms, in
general, UPC allows application developers to co-locate
processing potentially in the same node and avoid
unnecessary overhead. UPC provides a global address
space view, therefore, like shared memory paradigms

such as OpenMP[OPE99], UPC can hide much of the
complexity of private and shared memory. In UPC, a
simple assignment statement can cause a remote memory
read and a remote memory write, which hides much of the
underlying data movement from the application
developer.

The Cray X1 combines the globally-addressable,

distributed shared memory architecture with vector and
traditional processing capabilities. In this study, we
examine Cray X1 UPC on several important benchmarks
including STREAM, RandomAccess, and selected
workloads from the NAS Parallel Benchmark suite. We
study the behavior of these workloads in response to
automatic compiler optimizations as well as to our
devised emulations that can mimic the effects of
automatic optimizations [ELG02]. We also examine
compiler output to determine how well the compiler takes
advantage of the architectural features of the Cray X1 and
characterize where improvements may still possible.

CUG 2005 Proceedings - Evaluation of UPC on the Cray X1 - 2 of 10

This paper is organized as follows. Section 2 gives a
brief description of the UPC language, while section 3
introduces the Cray X1 architecture. Next, Section 4
discusses the experimental testbed and workloads used.
Section 5 presents the performance measurements of
UPC, while Sections 6 and 7 highlight further
improvement capabilities, followed by conclusions in
section 8

2. Overview of UPC
Application memory consists of two separate spaces

in UPC: a shared memory space and a private memory
space. Figure 1 illustrates the memory and execution
model as viewed by UPC applications and programmers.
A number of independent threads work in a single-
program-multiple-data (SPMD) fashion, where each of
them can reference any address in both the shared space
and its own private space, but not in other thread’s private
spaces. The total number of threads is THREADS and
each thread can identify itself using MYTHREAD, where
THREADS and MYTHREAD can be seen as special
constants. The shared space, however, is logically divided
into portions: each with a special association (affinity) to
a given thread. Programmers can then, with proper
declarations, keep the shared data that is to be mainly
manipulated by a given thread (and less frequently
accessed by others) associated with that thread. Thus, a
thread and its pertinent data can likely be mapped by the
system into the same physical node. This can clearly
exploit inherent data locality in applications.

Figure 1. The UPC Memory and Execution Model

Since UPC is an explicit parallel extension of ISO C,

all language features of C are already embodied in UPC.
In addition, UPC declarations give the programmer
control of the distribution of data across the threads.
Among the interesting and complementary UPC features
is a work-sharing iteration statement, known as
upc_forall. This statement helps to distribute
independent loop iterations across the threads, such that
iterations and data that are processed by them are
assigned to the same thread. UPC also defines a number
of rich concepts for pointers to both private and shared
memory. Additionally, UPC supports dynamic shared
memory allocations. There is generally no implicit
synchronization in UPC. Therefore, the language offers a
broad range of synchronization and memory consistency

control constructs. Among the most interesting
synchronization concepts is the non-blocking barrier,
which allows overlapping local computations and inter-
thread communications. Parallel I/O and collective
operation libraries specifications have been developed
and are to be integrated into the next UPC language
specifications.

3. Cray X1 Overview
The Cray X1 is an attempt to incorporate the best

aspects of previous Cray vector systems and massively
parallel processing (MPP) systems into one design. The
design of the X1 is hierarchical in processor, memory,
and interconnect. The basic component in this hierarchy
is the multi-streaming processor (MSP), which is capable
of 12.8 GF/s for 64-bit operations. Each MSP, shown in
Figure 2, is comprised of four single-streaming
processors (SSPs), each with two 32-stage 64-bit floating-
point vector units and one 2-way super-scalar
unit[CRA04]. The SSP uses one clock frequency of 800
MHz for the vector units and another clock frequency of
400 MHz for the scalar unit. Each SSP is capable of 3.2
GF/s for 64-bit operations. These four SSPs share a 2 MB
“Ecache”

Figure 2. Cray MSP Module

Four MSPs and a flat, shared memory of 16 GB form

a Cray X1 node. The memory banks of a node provide
200 GB/s of bandwidth, enough to saturate the paths to
the local MSPs and service requests from remote MSPs.
Each bank of shared memory is connected to a number of
banks on remote nodes, with an aggregate bandwidth of
roughly 50 GByte/sec between nodes. This represents one
byte per flop of interconnect bandwidth per computation
rate. The collected nodes of an X1 have a single system
image.

The Cray X1 nodes are connected using X1 routing

modules. Each node has 32 1.6 GBs full duplex links.
Each memory module has an even and odd 64-bit (data)
link forming a plane with the corresponding memory
modules on neighbouring nodes. The local memory
bandwidth is 200 GB/s, enough to service both local and
remote memory requests. A 4-node X1 can be connected
directly via the memory modules links. With 8 or fewer

Thread 1 Thread 0 Thread THREADS-1

Private 1 Private THREADS -1Private 0

Shared

CUG 2005 Proceedings - Evaluation of UPC on the Cray X1 - 3 of 10

cabinets (up to 128 nodes or 512 MSPs), the interconnect
topology is a 4-D hypercube. However, larger
configurations use a modified 2D torus.

A single four-MSP X1 node behaves like a

traditional SMP. Like the T3E, each processor has the
additional capability of directly addressing memory on
any other node. Different, however, is the fact that these
remote memory accesses are issued directly from the
processors as load and store instructions, going
transparently over the X1 interconnect to the target
processor, bypassing the local cache. This mechanism is
more scalable than traditional shared memory, but it is not
appropriate for shared-memory programming models, like
OpenMP, outside of a given four-MSP node. In contrast
to the T3E’s E-registers, both scalar and vector loads are
blocking primitives, which limits the ability of the system
to overlap communication and computation. This remote
memory access mechanism is a natural match for
distributed-memory programming models, particularly
those using one-sided put/get operations, such as UPC
and Co-Array Fortran.

4. Applications and Testbed
The performance of the UPC language over the X1 is

studied over benchmarking workloads. These workloads
included the STREAM benchmark, Random Memory
Accesses benchmarks, and several selected benchmarks
from the NAS Parallel Benchmark (NPB) suite. In
addition, measurements of MPI [SNI98] implementations
are given as performance references. These workloads
can be downloaded from the UPC website [UPC]
(http://upc.gwu.edu), except the NPB MPI suite, which is
available from the official NAS website [NPB02]. All the
performance measurements have been collected under the
Cray X1 Programming Environment 5.2.

4.1 UPC Stream Benchmarks
The STREAM benchmark [MCC95] [ELG01] is a

simple synthetic benchmark program that measures
sustainable memory bandwidth (in MB/s) and the
corresponding computation rate for simple vector kernels.
The micro-benchmarks used were extracted from the
STREAM benchmark (e.g. Bulk as well as element-by-
element operations as shown in Table 1) and extended for
UPC, focusing on the UPC local shared and remote
shared as well as private memory accesses. For these
synthetic benchmarking experiments, the memory access
rates are measured and presented in MB/s. The higher the
bandwidth, the better and more complete are the compiler
optimizations.

Table 1. Operations of STREAM benchmark

4.2 RandomAccess Microbenchmark
Unlike the regular accesses of Stream, the Random

Access micro-benchmark is a program performing
updates to random locations in a large shared array. It is
used to evaluate the machine’s capability of performing
CPU-to-memory transactions. It is included as part of
HPC Challenge Benchmark suite [HPC04]. In the UPC
version of Random Access, the main table is located in
the global accessible shared memory space which
provides a similar programming view as the sequential
algorithm. Random numbers are generated on-the-fly by
each thread and are used to access and update the
according elements of the main table. These random
numbers are use to compute indices of the main table to
be updated. This is similar to the GigaUpdates per
Second, or GUPS, micro-benchmark [CAN03]. The
performance of UPC will be compared to available MPI-1
codes as well as one implementation in MPI-2. Three
different MPI-1 implementations are considered: using
bulk transfer, partially using asynchronous operations and
fully using asynchronous operations. The bulk transfer
offers typically the best performance but it is not in
accordance with the fine granularity nature of the problem
statement. The two other implementations are based on
element-by-element transfers. The MPI-2 implementation
has been developed using one-sided communications.

4.3 NAS Parallel Benchmark Suite
The NAS Parallel Benchmarks (NPB) are developed

by the Numerical Aerodynamic simulation (NAS)
program at NASA Ames Research Center for the
performance evaluation of parallel supercomputers
[NPB02]. The NPB mimics the computation and data
movement characteristics of large–scale computation
fluid dynamics (CFD) applications. The NPB suite
consists of five kernels (EP, MG, FT, CG, IS) and three
pseudo-applications (LU, SP, BT) programs. The bulk of
the computations is integer arithmetic in IS. The other
benchmarks are floating-point computation intensive.

Operation Detail
Memcpy
Memset

Structure-copy
Get B

U
LK

O

pe
ra

tio
ns

Put
Copy (array) c[j] = a[j]

Copy (pointer) *(ptr_a++) = *(ptr_c++)
Set b[j] = (set++)

Sum sum += a[j]
Scale c[j] = scalar * a[j]
Add a[j] = b[j] + c[j] El

em
en

t-b
y-

El
em

en
t

O
pe

ra
tio

ns

Triad b[j] = a[j] + scalar * c[j]

CUG 2005 Proceedings - Evaluation of UPC on the Cray X1 - 4 of 10

We will be considering the following workloads:
• BT (Block Tri-diagonal) is a simulated CFD

application that uses an implicit algorithm to solve
3-dimensional (3-D) compressible Navier-Stokes
equations. The finite differences solution to the
problem is based on an Alternating Direction
Implicit (ADI) approximate factorization that
decouples the x, y and z dimensions. The resulting
systems are Block-Tridiagonal of 5x5 blocks and
are solved sequentially along each dimension.

• CG (Conjugate Gradient) computes an

approximation to the smallest eigenvalue of
symmetric positive definite matrix. This kernel
features unstructured grid computations requiring
irregular long-range communications.

• EP (Embarrassingly Parallel) can run on any

number of processors with little communication. It
estimates the upper achievable limits for floating
point performance of a parallel computer. This
benchmark generates pairs of Gaussian random
deviates according to a specific scheme and
tabulates the number of pairs in successive annuli.

• FT (Fast Fourier Transform) solves a 3D partial

differential equation using an FFT-based spectral
method, also requiring long-range communication.
FT performs three one-dimensional (1-D) FFT’s,
one for each dimension.

• MG (MultiGrid) benchmark uses a V-cycle multi-

grid method to compute the solution of the 3-D
scalar Poisson equation. It performs both short and
long-range communications that are highly
structured.

There are different sizes/classes of the NPB including

Sample, Class A, Class B, Class C and even Class D,
introduced in the NPB 2.4 release. These classes differ
mainly in the size of the problem. The performance
analysis presented in this paper considers both NPB UPC
as well as the official MPI implementations, distributed
by NAS, in their NPB 2.4 release.

5. Performance of UPC

5.1 STREAM Benchmark Performance
Table 2 presents the results of the stream micro-

benchmark, using tables of 64M ‘double’. The
measurements were collected through 8 runs, and the
maximum bandwidth is reported for each operation in
MB/sec. In this table, C means the sequential code, UPC-
C means the sequential C code compiled and run under
the UPC environment. UPC private means that all data is
in the private memory space of the executing thread.

Likewise, in the local and remote shared cases, the data is
in the shared space, but in one case it is in the part of the
space that has affinity to the executing thread, and in the
other it has affinity with a different thread. These
measurements, collected from the Cray X1 machine,
show a consistent behavior with the exception of one
operation that has to do with the use of pointers in the
case of copy. In this case, the measured bandwidth was
much lower than the other cases. This indicates that for
private pointer implementations under UPC are not
efficient. Besides, UPC performs at similar levels to those
of C, regardless of the type of shared data, local or
remote. This indicates two important facts. First, the
hardware architecture global address space support on the
X1, such as the Remote Translation Table, must be quite
efficient. Secondly, the UPC compiler must be doing a
good job in exploiting such hardware features.

Bulk Operations

MB/sec
Memcpy Memset Struct

Cpy Get Put Copy
(ptr)

C 18897 5330 N/A N/A N/A N/A

UPC-C 18839 5281 N/A N/A N/A N/A

UPC
private 19609 5307 2429 N/A N/A 7859

UPC
local

shared
21155 5342 1904 19011 19751 6818

UPC
remote
shared

21764 5353 340 19842 19102 1297

Element-by-Element Operations

MB/sec Copy
(arr) Set Sum Scale Add Triad

C 7869 10412 18133 7872 5749 5731

UPC-C 7867 10260 18280 7666 5684 5752

UPC
private 7841 10564 18488 7888 10150 5746

UPC
local

shared
6814 10132 18263 7814 13110 9150

UPC
remote
shared

1297 12368 12367 5461 5794 7237

Table 2. UPC STREAM Measurements (in MB/sec)

5.2 UPC-NPB Performance
Figure 3 to Figure 7 show the performance of the

selected UPC NPB workloads (BT, CG, EP, FT and MG).
Part a in each figure shows the execution time of the
respective workload. All the variants of the UPC kernels,
integrating different levels of hand-tuning as described in

CUG 2005 Proceedings - Evaluation of UPC on the Cray X1 - 5 of 10

[ELG01] that emulate expected compiler optimizations
are shown. Part b in each of these figures shows the
corresponding scalability of UPC along with the linear
speedup. The O0 variant indicates a code without any
hand tuning, O1 indicates a code in which accesses into
local shared data are handled with the same low overhead
of private data, and O3 indicates that in addition to O1,
we also anticipate and prefetch remote data. The reason
for these particular variants is that it was discovered in
our previous work[ELG01] that they are easy to do under
the UPC locality conscious model, and they can result in
significant performance improvements.

Execution Time CG Class B

0

500

1000

1500

2000

2500

3000

3500

1 2 4 8 16 32 64
Processors

E
xe

cu
tio

n
tim

e
(s

ec
.)

Seq-C CG.O0 CG.O1 CG.O3
Figure 3. Performance of CG Class B

Execution Time EP Class B

0

50

100

150

200

250

300

350

400

450

1 2 4 8 16 32 64
Processors

E
xe

cu
tio

n
tim

e
(s

ec
.)

Seq-C EP.O0
Figure 4. Performance of EP Class B

All UPC variants available for each given workload

are providing similar level of performance, illustrating
that the compiler is using efficiently the underlying
architecture features, especially for fast address
translation. Thus, the un-optimized UPC code (noted O0),
is able to provide a level of performance similar to the
fully hand-tuned UPC code (noted O3), leading to faster
code development [CAN04].

Execution Time FT Class B

0

500

1000

1500

2000

2500

3000

1 2 4 8 16 32 64
Processors

E
xe

cu
tio

n
tim

e
(s

ec
.)

Seq-C FT.O0 FT.O1
Figure 5. Performance of FT Class B

Execution Time MG Class B

0

50

100

150

200

250

300

1 2 4 8 16 32 64
Processors

E
xe

cu
tio

n
tim

e
(s

ec
.)

Seq-C MG.O0 MG.O1 MG.O3
Figure 6. Performance of MG Class B

Execution Time BT Class B

0

2000

4000

6000

8000

10000

12000

1 4 9 16 25 36 49 64
Processors

E
xe

cu
tio

n
tim

e
(s

ec
.)

Seq-C BT.O0 BT.O1 BT.O3
Figure 7. Performance of BT Class B

For most of the tested workloads, UPC shows good

scalability up to the 64 processors. As vector processors
have shown great performance Fortran applications, and
since UPC is mainly based on C, we consider in the next
section the relative C to Fortran performance on the X1
and its implications for the execution times of UPC.

CUG 2005 Proceedings - Evaluation of UPC on the Cray X1 - 6 of 10

6. C and Fortran Performance
Table 3 summarizes the performance of the

STREAM benchmark in both C and Fortran. The Fortran
version, as well as the C, are based on the original
STREAM. Every effort however has been exerted to
make them both very similar on almost a line by line basis
in order to study the differences in C and Fortran
compilation. The measurements show that mostly with
operations that require element-by-element access, C is
performing at a lower level than Fortran, down to 2 times
slower.

To explain such differences in performance, the Cray

Performance Analysis Tools (PAT) [CRA04] have been
used to highlight fundamental differences in the behavior
of STREAM, in C and Fortran. The PAT tool set uses the
Performance Counters located in the MSP, Memory and
Cache levels to provide statistical measurements about the
usage of each hardware feature of the X1. Table 4 shows
the output gathered for a run with the Fortran and the C
implementations of STREAM. The major differences are
underlined in bold. The C version has issued more a lot
more operations than the Fortran code. The C code has
also more than 87 Millions synchronization instructions,
which implies a large overhead on synchronization
between the vector and the scalar units. This is generally
due to a concurrent usage of scalar and vector resources,
which is the case in execution scenarios such as
conditionally vectorized loop.

MB / sec Memcpy Memset Copy
(array) Set

F 14859 11038 14849 11558
C 19718 5330 6855 10671

MB / sec Sum Scale Add Triad

F 18568 14850 11477 16545
C 18571 7895 7015 9278

Table 3. Fortran and C STREAM Performances

To explain in further details the discrepancy in
performance in some operations, loopmarking for three
selected operations, memset, set and add, has been used.
These operations have been chosen for their different
behavior. The loopmark listing is a text-file output
created by the compiler exposing how each loop is
optimized, if any, during compilation. Different levels of
optimizations are available, as shown in Table 5. The
loopmarks of the three STREAM benchmark workloads
are shown in Figure 8.

Fortran
CPU Seconds 5.558187 sec
Vector instructions 267,437,036 instr
Scalar instructions 982,612,043 instr
Vector ops 7,115,749,285 ops
Total FP ops 3,825,686,927 ops
Scalar integer ops 92,457,548 ops
Scalar memory refs 2,741,604 refs
Total TLB misses 2,036 misses
Dcache references 2,738,735 refs
Dcache bypass refs 2,869 refs
Dcache misses 1,125,446 misses
Vector integer adds 2,013,284,993 ops
Vector memory refs 10,605,633,707 refs
Scalar memory refs 2,741,604 refs
Average vector length 63.999
Syncs Instr 11,644 instr
Stall VLSU 8,303,447,454 clks
Stall VU 8,500,732,702 clks

C
CPU Seconds 11.224599 sec
Vector instructions 275,791,321 instr
Scalar instructions 945,536,277 instr
Vector ops 17,650,368,988 ops
Total FP ops 5,368,736,843 ops
Scalar integer ops 76,032,146 ops
Scalar memory refs 203,338 refs
Total TLB misses 1,769 misses
Dcache references 201,822 refs
Dcache bypass refs 1,516 refs
Dcache misses 62,539 misses
Vector integer adds 1,342,184,547 ops
Vector memory refs 10,939,401,644 refs
Scalar memory refs 203,338 refs
Average vector length 63.999
Syncs Instr 87,038,205 instr
Stall VLSU 5,795,559,120 clks
Stall VU 11,657,918,576 clks

Table 4. Part of the output of the PAT tools over
STREAM C and STREAM Fortran

Primary Loop Type Modifiers
------- ---- ---- ---------
A - Pattern matched b - blocked
C - Collapsed f - fused
D - Deleted i - interchanged
E - Cloned m - streamed but
 not partitioned
I - Inlined p - conditional,
 partial and/or
 computed
M - Multistreamed r - unrolled
P - Parallel/Tasked s - shortloop
V - Vectorized t - array syntax
 temp used
W - Unwound w - unwound
(1 - no optimization performed to loop)

Table 5. Loopmark Legend, showing how loops are
optimized during compilation

First, let us consider the memset workload of the

STREAM benchmark. The memset operation is a library
call in C, which is basically a black box that cannot be
altered. On the other hand, the equivalent Fortran
statement, can be Multistreamed and fully-vectorized. A
fully vectorized loop is a loop that runs entirely on the
vector processor since all of its iterations are independent.

CUG 2005 Proceedings - Evaluation of UPC on the Cray X1 - 7 of 10

Fortran

MEMSET (bulk set)
146. 1 t = mysecond(tflag)
147. 1 V M--<><> a(1:n) = 1.0d0
148. 1 t = mysecond(tflag)-t
149. 1 times(2,k) = t

SET
158. 1 arrsum = 2.0d0;
159. 1 t = mysecond(tflag)
160. 1 MV------< DO i = 1,n
161. 1 MV c(i) = arrsum
162. 1 MV arrsum = arrsum + 1
163. 1 MV------> END DO
164. 1 t = mysecond(tflag)-t
165. 1 times(4,k) = t

ADD
180. 1 t = mysecond(tflag)
181. 1 V M--<><> c(1:n) = a(1:n) +
 b(1:n)
182. 1 t = mysecond(tflag)-t
183. 1 times(7,k) = t

C
MEMSET (bulk set)

163. 1 times[1][k] = mysecond_();
164. 1 memset(a, 1,
 NDIM*sizeof(elem_t));;
165. 1 times[1][k] = mysecond_()
 - times[1][k];

SET
217. 1 set = 2;
220. 1 times[5][k] = mysecond_();
222. 1 MV--< for (i=0; i<NDIM; i++)
223. 1 MV {
224. 1 MV c[i] = (set++);
225. 1 MV--> }
227. 1 times[5][k] = mysecond_()
 - times[5][k];

ADD
283. 1 times[10][k]= mysecond_();
285. 1 Vp--< for (j=0; j<NDIM; j++)
286. 1 Vp {
287. 1 Vp c[j] = a[j] + b[j];
288. 1 Vp--> }
290. 1 times[10][k] = mysecond_()
 - times[10][k];

Figure 8. Loopmark of MEMSET, SET and ADD
operations in Fortran and C

Due to the pipelining of vector operations, this

provides a much higher performance than the equivalent
execution on a scalar processor. Multistreaming, like
multithreading, is a mechanism which distributes a loop
iteration over the four SSPs. In this case, the lower
performance of C shows that the memset
implementation in the C library is not efficient and cannot
take advantage well of the underlying hardware, as
compared to Fortran.

Figure 8, however, shows that the set operation is
compiled with multistreamed and fully-vectorizable loop
optimizations, offering great performance in both Fortran
and C.

In the add operation, however, the Fortran loop is
found to be multistreamed and fully vectorized (MV),
whereas in the C case, it is compiled as a conditionally
vectorizable loop (Vp). A conditionally vectorized loop
results in two loops, duplicated in both the scalar and
vector units. During run-time, the conditional expression
chooses the scalar loop when needed to avoid recurrence;
otherwise the vector loop is chosen. This induces
synchronization between the two units, as well as
decision overhead at runtime, which leads to lower
performance by comparison to multistreamed and fully
vectorized loops.

7. Exploiting Vectorization and
Multistreaming for UPC Applications

The previous section demonstrated that in the case of
C, possible optimizations are not exploited. In this
section, exploiting vectorization and multistreaming
opportunities for UPC will be investigated. These
optimizations are considered to be critical for applications
to run efficiently on the Cray X1 architecture. Three
approaches to do so are studied in the following.

7.1 At the pragma level

MultiStreamed – C
ADD

283. 1 times[10][k] = mysecond_();
284. 1 #pragma csd parallel
285. 1 {
286. 1 #pragma _CRI ivdep
287. 1 #pragma csd for
288. 1 MV--< for (j=0; j<NDIM; j++)
289. 1 MV {
290. 1 MV c[j] = a[j] + b[j];
291. 1 MV--> }
292. 1 }
293. 1
294. 1 times[10][k] = mysecond_() -
 times[10][k];

Figure 9. Hand-tuning for the C ADD operations,
forcing it as a MV loop

Cray provides directives to enforce Vectorization and

Multistreaming at the code level, through the use of
pragmas. However, this requires an in-depth
understanding of the code and implies additional effort by
the developer. As far as the add operation of the
STREAM benchmark is concerned, the C compiler seems
not to be aggressive enough to consider it as
multistreamed and vectorizable loop, as it is the case with
Fortran. To remedy this, the add operation has been first
forced to be fully-vectorizable then transformed into a
multistreamed fully vectorized loop.

CUG 2005 Proceedings - Evaluation of UPC on the Cray X1 - 8 of 10

Figure 9 shows the transformation done to the code

and illustrates that use of pragmas to improve
performance. Table 6 summarizes the results and show
that multistreaming leads to the best performance boost,
as it splits the workload across SSPs.

MB /
sec F C

C
Fully

Vectorized

C
Multi-

Streamed

C
(MultiStreamed

and Fully
Vectorized)

Scale 11477 7015 7090 13045 13079
Table 6. Performance of the ADD operation with
hand-tuning (in MB/sec)

7.2 At the construct level
For each algorithm to be implemented there is

numerous ways to code it. However, these different ways
of coding can lead to significant performance drop or
boost.

By considering the RandomAccess micro-kernel and

introducing such hand-tuning, we have observed an
execution time reduced by half, as illustrated in Figure 10
and Figure 11. This was done by rephrasing a loop
initializing the local shared area of the main table,
replacing a upc_forall statement by its equivalent for
statement. This is due to the change at the loopmark level:
the upc_forall was marked as conditionally-
vectorizable (Vp) whereas the equivalent for statement is
marked as multistreamed and vectorized (MV). Such MV
loopmark should have been automatically enforced for
‘flat’ upc_forall loops, since these loops have
independent iterations by definition.

RandomAccess on X1

(128M*64bit-elements and 512M updates)

0

500

1000

1500

2000

2500

3000

1 2 4 8 16 32 64 128
Processors

E
xe

cu
tio

n
tim

e
(s

ec
.)

MPI-1 (bulk) MPI-1 (Send/iRecv) MPI-1 (iSend/iRecv)
MPI-2 UPC (upc_forall) UPC (for)

Figure 10. Execution Time of RandomAccess

As it is shown in Figure 10, the optimized UPC

implementation is outperforming the MPI-1 bulk
implementation, which highlights the high potential of
UPC when proper mapping to the architecture features is
done.

RandomAccess on X1
(128M*64bit-elements and 512M updates)

0.0001

0.001

0.01

0.1

1

10

1 2 4 8 16 32 64 128
Processors

G
ig

a
U

pd
at

es
 p

er
 S

ec
on

ds
 (G

U
Ps

)

MPI-1 (bulk) MPI-1 (Send/iRecv) MPI-1 (iSend/iRecv)
MPI-2 UPC (upc_forall) UPC (for)

Figure 11. GUPS Index of RandomAccess

7.3 At the execution level
Considering that each MSP on Cray X1 machine

contains 4 SSPs, the way the compiler distributes the
workload across the available SSPs (multi-streaming) is
quite critical to the performance. Thus, the ability of the
compiler to support multi-streaming is very important.
The following results focus on this point and uses
Fortran+MPI as a reference point.

MSP vs SSP - FT.B

0

500

1000

1500

2000

2500

3000

1 2 4 8 16 32
Processors (MSP-wise)

E
xe

cu
tio

n
tim

e
(s

ec
.)

UPC.MSP UPC.SSP F+MPI
Figure 12. FT in MPI+Fortran versus UPC-MSP and

 UPC-SSP

As we have just shown, one way to guarantee multi-

streaming for UPC codes that can advantage of it, is by
adding Cray CSD directives [CRA03]. This, however,
requires programmer’s efforts to refine the codes.
Another possible way is taking advantage of UPC’s
work-sharing constructs to distribute workload across
threads from one end, and compile and run with SSP
mode on Cray X1 machine from the other end. Thus UPC
will consider the SSP as the basic processor units, instead
of MSP, and distributes the workload among those SSPs.

CUG 2005 Proceedings - Evaluation of UPC on the Cray X1 - 9 of 10

MSP vs SSP - MG.B

0

50

100

150

200

250

1 2 4 8 16 32 64
Processors (MSP-wise)

E
xe

cu
tio

n
tim

e
(s

ec
.)

UPC.MSP UPC.SSP MPI+F
Figure 13. MG in MPI+Fortran versus UPC-MSP
and UPC-SSP

By taking the same amount of MSP processors, FT

and MG kernels perform much better in SSP mode than
MSP mode, as shown in Figure 12 and Figure 13. The
MPI FT and MG implementations, using the Fortran
compiler, are performing extremely well, making good
utilization of the vector resources.

8. Concluding Remarks
This paper illustrates the current standing of UPC on

the Cray X1 machine, by using selected workloads from
the NPB Suite. The analysis shows that Cray UPC
compiler is quite efficient in accessing the global address
space when compared with other cases
[CAN05][CAN03].

The vectorization and multi-streaming capabilities of

the compiler are critical to map applications effectively to
the Cray X1 architecture. One clear observation is that the
C compiler is not as aggressive as the Fortran compiler.
Thus, UPC as an extension of ISO-C, suffers from the
poor performance of its C compiler infrastructure.

While new versions of the UPC compiler are making

their way into existence, programmers can remedy the
problem using loopmark analysis to discover areas for
improvements. Should the dependency relations of the
code permit, three distinct approaches can be used. The
first is to add compiler directives to force vectorization
and multistreaming. The second is to write code which
can be seen as friendly for automatic vectorization and
multistreaming from the compiler. The third is to specify
the SSP execution mode and distribute independent
iterations using the UPC workload sharing constructs.
Both methods can improve the overall UPC performance
and can bring it closer to those of Fortran and MPI.
However, even with that it is clear that the C compilers
for X1 need dramatic improvements. Should this happen,
it is expected that the UPC compiler can perform similar

to parallel Fortran paradigms, such as Fortran+MPI, but
with a lot less programming effort.

References

[BRO95] Brooks, Eugene and Warren Karen,
Development and Evaluation of an Efficient Parallel
Programming Methodology, Spanning Uniprocessor,
Symmetric Shared-memory Multi-processor and
Distributed-memory massively Parallel Architectures,
Poster SuperComputing 1995, San Diego, CA, December
3-8, 1995.

[CAN05] Cantonnet François, El-Ghazawi Tarek, Lorenz
Pascal and Gaber Jaafar, Fast Address Translation
Techniques for Distributed Shared Memory Compilers,
International Parallel & Distributed Processing
Symposium (IPDPS), IEEE, Denver CO, April 3-8 2005

[CAN04] Cantonnet François, Yao Yiyi, Zahran
Mohamed, El-Ghazawi Tarek, On the Productivity of
UPC, International Parallel and Distributed Processing
Symposium (IPDPS), Performance Modeling, Evaluation
and Optimization of Parallel and Distributed Systems
(PMEO) Workshop, 2004, New Mexico

[CAN03] Cantonnet François, Yao Yiyi, Annareddy
Smita, Mohamed Ahmed, El-Ghazawi Tarek,
Performance Monitoring and Evaluation of a UPC
Implementation on a NUMA architecture, International
Parallel and Distributed Processing Symposium (IPDPS),
Performance Modeling, Evaluation and Optimization of
Parallel and Distributed Systems (PMEO) workshop,
2003, Nice France

[CAR99] Carlson William and Draper Jesse, Distributed
Data Access in AC, Proceedings of the Fifth ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPOPP), Santa Barbara, CA, July
19-21, 1995, pp.39-47

[CRA03] Cray C and C++ Reference Manual,
http://www.cray.com S-2179-50, 2003

[CRA04] Cray Inc., Online Cray Documentation,
http://www.cray.com/craydoc/, 2004

[CUL93] Culler, Dusseau Andrea, Goldstein Seth Copen,
Krishnamurthy Arvind, Lumetta Steven, Von Eicken
Thorsten and Yelick Katherine, Parallel Programming in
Split-C, Proceedings of SuperComputing 1993, Portland,
OR, November 15-19, 1993

[ELG03] El-Ghazawi Tarek, Carlson William and Draper
Jesse, UPC Language Specifications v1.1
(http://upc.gwu.edu), October 2003

CUG 2005 Proceedings - Evaluation of UPC on the Cray X1 - 10 of 10

[ELG02] El-Ghazawi Tarek and Cantonnet François,
UPC Performance and Potential: A NPB Experimental
Study, SuperComputing 2002, IEEE, Baltimore MD,
November 2002

[ELG01] El-Ghazawi Tarek and Chauvin Sébastien, UPC
Benchmarking Issues, 30th Annual Conference IEEE
International Conference on Parallel Processing,2001
(ICPP01) Pages: 365-372

[MCC95] McCalpin John, Sustainable Memory
Bandwidth in Current High Performance Computers,
Technical Report, Advanced Systems Division, SGI.
October 12, 1995

[NPB02] NAS Parallel Benchmark Suite, NASA
Advanced Supercomputing, 2002,
http://www.nas.nasa.gov/Software/NPB

[OPE99] OpenMP, OpenMP Reference,
http://www.openmp.org, 1999.

[HPC04] High Performance Computing Challenge
Benchmarks, University of Tennessee, Knoxville
http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/,
2004

[SNI98] Snir Marc, Gropp William, MPI: The Complete
Reference, Published by MIT Press, 1998

[UPC05] The UPC Website. http://upc.gwu.edu, May
2005.

About the Authors
Tarek El-Ghazawi is professor of the Electrical and

Computer Engineering department at The George
Washington University, and director of the High
Performance Computing Laboratory. François Cantonnet
is a Senior Research Scholar at the High Performance
Computing Laboratory. Yiyi Yao is a Research Assistant
in the High Performance Computing Laboratory. They
can be reached at (202) 994-3769 or at
gwu-upc@hermes.gwu.edu. Jeffrey Vetter is a computer
scientist in the Computer Science and Mathematics
Division (CSM) of Oak Ridge National Laboratory
(ORNL), where he leads the Future Technologies Group.
He can be reached at (865) 576-7115 or at
vetterjs@ornl.gov.

