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ABSTRACT: UPC is parallel programming language which enables programmers to 
expose parallelism and data locality in applications with an efficient syntax. Recently, 
UPC has been gaining attention from vendors and users as an alternative programming 
model for distributed memory applications. Therefore, it is important to understand how 
such a potentially powerful language interacts with one of today’s most powerful, 
contemporary architectures: the Cray X1. In this paper, we evaluate UPC on the Cray 
X1 and examine how the compiler exploits the important features of this architecture 
including the use of the vector processors and multi-streaming. Our experimental results 
on several benchmarks, such as STREAM, RandomAccess, and selected workloads from 
the NAS Parallel Benchmark suite, show that UPC can provide a high-performance, 
scalable programming model, and we show users how to leverage the power of X1 for 
their applications. However, we have also identified areas where compiler analysis can 
be more aggressive and potential performance caveats.  
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1. Introduction 
Unified Parallel C (UPC) is an explicit parallel 

programming language extension of ISO C based on the 
partitioned global address space (PGAS) programming 
model[ELG03]. UPC leverages the work done on may 
predecessor efforts, such as Split-C[CUL93], 
AC[CAR99], and PCP[BRO95], as well as the direct 
input of a consortium of vendors, researchers, and 
practitioners. Like C itself, UPC has an efficient syntax 
and provides the programmer low-level access to the 
underlying system and architecture from the perspective 
of an abstract high-level language. UPC allows 
programmers to manage data distributions explicitly. 
Thus, like MPI and message passing paradigms, in 
general, UPC allows application developers to co-locate 
processing potentially in the same node and avoid 
unnecessary overhead. UPC provides a global address 
space view, therefore, like shared memory paradigms 

such as OpenMP[OPE99], UPC can hide much of the 
complexity of private and shared memory. In UPC, a 
simple assignment statement can cause a remote memory 
read and a remote memory write, which hides much of the 
underlying data movement from the application 
developer. 

 
The Cray X1 combines the globally-addressable, 

distributed shared memory architecture with vector and 
traditional processing capabilities. In this study, we 
examine Cray X1 UPC on several important benchmarks 
including STREAM, RandomAccess, and selected 
workloads from the NAS Parallel Benchmark suite. We 
study the behavior of these workloads in response to 
automatic compiler optimizations as well as to our 
devised emulations that can mimic the effects of 
automatic optimizations [ELG02]. We also examine 
compiler output to determine how well the compiler takes 
advantage of the architectural features of the Cray X1 and 
characterize where improvements may still possible. 
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This paper is organized as follows. Section 2 gives a 
brief description of the UPC language, while section 3 
introduces the Cray X1 architecture. Next, Section 4 
discusses the experimental testbed and workloads used. 
Section 5 presents the performance measurements of 
UPC, while Sections 6 and 7 highlight further 
improvement capabilities, followed by conclusions in 
section 8 

2.  Overview of UPC 
Application memory consists of two separate spaces 

in UPC: a shared memory space and a private memory 
space. Figure 1 illustrates the memory and execution 
model as viewed by UPC applications and programmers. 
A number of independent threads work in a single-
program-multiple-data (SPMD) fashion, where each of 
them can reference any address in both the shared space 
and its own private space, but not in other thread’s private 
spaces. The total number of threads is THREADS and 
each thread can identify itself using MYTHREAD, where 
THREADS and MYTHREAD can be seen as special 
constants. The shared space, however, is logically divided 
into portions: each with a special association (affinity) to 
a given thread. Programmers can then, with proper 
declarations, keep the shared data that is to be mainly 
manipulated by a given thread (and less frequently 
accessed by others) associated with that thread. Thus, a 
thread and its pertinent data can likely be mapped by the 
system into the same physical node. This can clearly 
exploit inherent data locality in applications. 

 

 
Figure 1. The UPC Memory and Execution Model 

 
Since UPC is an explicit parallel extension of ISO C, 

all language features of C are already embodied in UPC. 
In addition, UPC declarations give the programmer 
control of the distribution of data across the threads. 
Among the interesting and complementary UPC features 
is a work-sharing iteration statement, known as 
upc_forall. This statement helps to distribute 
independent loop iterations across the threads, such that 
iterations and data that are processed by them are 
assigned to the same thread. UPC also defines a number 
of rich concepts for pointers to both private and shared 
memory. Additionally, UPC supports dynamic shared 
memory allocations. There is generally no implicit 
synchronization in UPC. Therefore, the language offers a 
broad range of synchronization and memory consistency 

control constructs. Among the most interesting 
synchronization concepts is the non-blocking barrier, 
which allows overlapping local computations and inter-
thread communications. Parallel I/O and collective 
operation libraries specifications have been developed 
and are to be integrated into the next UPC language 
specifications. 

3. Cray X1 Overview 
The Cray X1 is an attempt to incorporate the best 

aspects of previous Cray vector systems and massively 
parallel processing (MPP) systems into one design. The 
design of the X1 is hierarchical in processor, memory, 
and interconnect. The basic component in this hierarchy 
is the multi-streaming processor (MSP), which is capable 
of 12.8 GF/s for 64-bit operations. Each MSP, shown in 
Figure 2, is comprised of four single-streaming 
processors (SSPs), each with two 32-stage 64-bit floating-
point vector units and one 2-way super-scalar 
unit[CRA04]. The SSP uses one clock frequency of 800 
MHz for the vector units and another clock frequency of 
400 MHz for the scalar unit. Each SSP is capable of 3.2 
GF/s for 64-bit operations. These four SSPs share a 2 MB 
“Ecache” 
 

 
Figure 2. Cray MSP Module 

 
Four MSPs and a flat, shared memory of 16 GB form 

a Cray X1 node. The memory banks of a node provide 
200 GB/s of bandwidth, enough to saturate the paths to 
the local MSPs and service requests from remote MSPs. 
Each bank of shared memory is connected to a number of 
banks on remote nodes, with an aggregate bandwidth of 
roughly 50 GByte/sec between nodes. This represents one 
byte per flop of interconnect bandwidth per computation 
rate. The collected nodes of an X1 have a single system 
image. 

 
The Cray X1 nodes are connected using X1 routing 

modules. Each node has 32 1.6 GBs full duplex links. 
Each memory module has an even and odd 64-bit (data) 
link forming a plane with the corresponding memory 
modules on neighbouring nodes. The local memory 
bandwidth is 200 GB/s, enough to service both local and 
remote memory requests. A 4-node X1 can be connected 
directly via the memory modules links. With 8 or fewer 

 
Thread 1 Thread 0 Thread THREADS-1 

Private 1 Private THREADS -1Private 0 
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cabinets (up to 128 nodes or 512 MSPs), the interconnect 
topology is a 4-D hypercube. However, larger 
configurations use a modified 2D torus.  

 
A single four-MSP X1 node behaves like a 

traditional SMP. Like the T3E, each processor has the 
additional capability of directly addressing memory on 
any other node. Different, however, is the fact that these 
remote memory accesses are issued directly from the 
processors as load and store instructions, going 
transparently over the X1 interconnect to the target 
processor, bypassing the local cache. This mechanism is 
more scalable than traditional shared memory, but it is not 
appropriate for shared-memory programming models, like 
OpenMP, outside of a given four-MSP node. In contrast 
to the T3E’s E-registers, both scalar and vector loads are 
blocking primitives, which limits the ability of the system 
to overlap communication and computation. This remote 
memory access mechanism is a natural match for 
distributed-memory programming models, particularly 
those using one-sided put/get operations, such as UPC 
and Co-Array Fortran. 

4. Applications and Testbed 
The performance of the UPC language over the X1 is 

studied over benchmarking workloads. These workloads 
included the STREAM benchmark, Random Memory 
Accesses benchmarks, and several selected benchmarks 
from the NAS Parallel Benchmark (NPB) suite. In 
addition, measurements of MPI [SNI98] implementations 
are given as performance references. These workloads 
can be downloaded from the UPC website [UPC] 
(http://upc.gwu.edu), except the NPB MPI suite, which is 
available from the official NAS website [NPB02]. All the 
performance measurements have been collected under the 
Cray X1 Programming Environment 5.2. 

4.1 UPC Stream Benchmarks 
The STREAM benchmark [MCC95] [ELG01] is a 

simple synthetic benchmark program that measures 
sustainable memory bandwidth (in MB/s) and the 
corresponding computation rate for simple vector kernels. 
The micro-benchmarks used were extracted from the 
STREAM benchmark (e.g. Bulk as well as element-by-
element operations as shown in Table 1) and extended for 
UPC, focusing on the UPC local shared and remote 
shared as well as private memory accesses. For these 
synthetic benchmarking experiments, the memory access 
rates are measured and presented in MB/s. The higher the 
bandwidth, the better and more complete are the compiler 
optimizations. 
 

Table 1. Operations of STREAM benchmark 
 

4.2 RandomAccess Microbenchmark 
Unlike the regular accesses of Stream, the Random 

Access micro-benchmark is a program performing 
updates to random locations in a large shared array. It is 
used to evaluate the machine’s capability of performing 
CPU-to-memory transactions. It is included as part of 
HPC Challenge Benchmark suite [HPC04]. In the UPC 
version of Random Access, the main table is located in 
the global accessible shared memory space which 
provides a similar programming view as the sequential 
algorithm. Random numbers are generated on-the-fly by 
each thread and are used to access and update the 
according elements of the main table. These random 
numbers are use to compute indices of the main table to 
be updated. This is similar to the GigaUpdates per 
Second, or GUPS, micro-benchmark [CAN03]. The 
performance of UPC will be compared to available MPI-1 
codes as well as one implementation in MPI-2. Three 
different MPI-1 implementations are considered: using 
bulk transfer, partially using asynchronous operations and 
fully using asynchronous operations. The bulk transfer 
offers typically the best performance but it is not in 
accordance with the fine granularity nature of the problem 
statement. The two other implementations are based on 
element-by-element transfers. The MPI-2 implementation 
has been developed using one-sided communications. 
 

4.3 NAS Parallel Benchmark Suite 
The NAS Parallel Benchmarks (NPB) are developed 

by the Numerical Aerodynamic simulation (NAS) 
program at NASA Ames Research Center for the 
performance evaluation of parallel supercomputers 
[NPB02]. The NPB mimics the computation and data 
movement characteristics of large–scale computation 
fluid dynamics (CFD) applications. The NPB suite 
consists of five kernels (EP, MG, FT, CG, IS) and three 
pseudo-applications (LU, SP, BT) programs. The bulk of 
the computations is integer arithmetic in IS. The other 
benchmarks are floating-point computation intensive. 
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We will be considering the following workloads: 
• BT (Block Tri-diagonal) is a simulated CFD 

application that uses an implicit algorithm to solve 
3-dimensional (3-D) compressible Navier-Stokes 
equations. The finite differences solution to the 
problem is based on an Alternating Direction 
Implicit (ADI) approximate factorization that 
decouples the x, y and z dimensions. The resulting 
systems are Block-Tridiagonal of 5x5 blocks and 
are solved sequentially along each dimension. 

 
• CG (Conjugate Gradient) computes an 

approximation to the smallest eigenvalue of 
symmetric positive definite matrix. This kernel 
features unstructured grid computations requiring 
irregular long-range communications. 

 
• EP (Embarrassingly Parallel) can run on any 

number of processors with little communication. It 
estimates the upper achievable limits for floating 
point performance of a parallel computer. This 
benchmark generates pairs of Gaussian random 
deviates according to a specific scheme and 
tabulates the number of pairs in successive annuli. 

 
• FT (Fast Fourier Transform) solves a 3D partial 

differential equation using an FFT-based spectral 
method, also requiring long-range communication. 
FT performs three one-dimensional (1-D) FFT’s, 
one for each dimension. 

 
• MG (MultiGrid) benchmark uses a V-cycle multi-

grid method to compute the solution of the 3-D 
scalar Poisson equation. It performs both short and 
long-range communications that are highly 
structured. 

 
There are different sizes/classes of the NPB including 

Sample, Class A, Class B, Class C and even Class D, 
introduced in the NPB 2.4 release. These classes differ 
mainly in the size of the problem. The performance 
analysis presented in this paper considers both NPB UPC 
as well as the official MPI implementations, distributed 
by NAS, in their NPB 2.4 release. 

5. Performance of UPC 

5.1 STREAM Benchmark Performance 
Table 2 presents the results of the stream micro-

benchmark, using tables of 64M ‘double’. The 
measurements were collected through 8 runs, and the 
maximum bandwidth is reported for each operation in 
MB/sec. In this table, C means the sequential code, UPC-
C means the sequential C code compiled and run under 
the UPC environment. UPC private means that all data is 
in the private memory space of the executing thread. 

Likewise, in the local and remote shared cases, the data is 
in the shared space, but in one case it is in the part of the 
space that has affinity to the executing thread, and in the 
other it has affinity with a different thread. These 
measurements, collected from the Cray X1 machine, 
show a consistent behavior with the exception of one 
operation that has to do with the use of pointers in the 
case of copy. In this case, the measured bandwidth was 
much lower than the other cases. This indicates that for 
private pointer implementations under UPC are not 
efficient. Besides, UPC performs at similar levels to those 
of C, regardless of the type of shared data, local or 
remote. This indicates two important facts. First, the 
hardware architecture global address space support on the 
X1, such as the Remote Translation Table, must be quite 
efficient. Secondly, the UPC compiler must be doing a 
good job in exploiting such hardware features. 

 
Bulk Operations 

MB/sec 
Memcpy Memset Struct 

Cpy Get Put Copy 
(ptr) 

C 18897 5330 N/A N/A N/A N/A 

UPC-C 18839 5281 N/A N/A N/A N/A 

UPC 
private 19609 5307 2429 N/A N/A 7859 

UPC 
local 

shared 
21155 5342 1904 19011 19751 6818 

UPC 
remote 
shared 

21764 5353 340 19842 19102 1297 

Element-by-Element Operations 

MB/sec Copy 
(arr) Set Sum Scale Add Triad 

C 7869 10412 18133 7872 5749 5731 

UPC-C 7867 10260 18280 7666 5684 5752 

UPC 
private 7841 10564 18488 7888 10150 5746 

UPC 
local 

shared 
6814 10132 18263 7814 13110 9150 

UPC 
remote 
shared 

1297 12368 12367 5461 5794 7237 

Table 2. UPC STREAM Measurements (in MB/sec) 
 

5.2 UPC-NPB Performance 
Figure 3 to Figure 7 show the performance of the 

selected UPC NPB workloads (BT, CG, EP, FT and MG). 
Part a in each figure shows the execution time of the 
respective workload. All the variants of the UPC kernels, 
integrating different levels of hand-tuning as described in 
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[ELG01] that emulate expected compiler optimizations 
are shown. Part b in each of these figures shows the 
corresponding scalability of UPC along with the linear 
speedup. The O0 variant indicates a code without any 
hand tuning, O1 indicates a code in which accesses into 
local shared data are handled with the same low overhead 
of private data, and O3 indicates that in addition to O1, 
we also anticipate and prefetch remote data. The reason 
for these particular variants is that it was discovered in 
our previous work[ELG01] that they are easy to do under 
the UPC locality conscious model, and they can result in 
significant performance improvements. 
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Figure 4. Performance of EP Class B 
 
All UPC variants available for each given workload 

are providing similar level of performance, illustrating 
that the compiler is using efficiently the underlying 
architecture features, especially for fast address 
translation. Thus, the un-optimized UPC code (noted O0), 
is able to provide a level of performance similar to the 
fully hand-tuned UPC code (noted O3), leading to faster 
code development [CAN04]. 
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For most of the tested workloads, UPC shows good 

scalability up to the 64 processors. As vector processors 
have shown great performance Fortran applications, and 
since UPC is mainly based on C, we consider in the next 
section the relative C to Fortran performance on the X1 
and its implications for the execution times of UPC. 
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6. C and Fortran Performance 
Table 3 summarizes the performance of the 

STREAM benchmark in both C and Fortran. The Fortran 
version, as well as the C, are based on the original 
STREAM. Every effort however has been exerted to 
make them both very similar on almost a line by line basis 
in order to study the differences in C and Fortran 
compilation. The measurements show that mostly with 
operations that require element-by-element access, C is 
performing at a lower level than Fortran, down to 2 times 
slower. 

 
To explain such differences in performance, the Cray 

Performance Analysis Tools (PAT) [CRA04] have been 
used to highlight fundamental differences in the behavior 
of STREAM, in C and Fortran. The PAT tool set uses the 
Performance Counters located in the MSP, Memory and 
Cache levels to provide statistical measurements about the 
usage of each hardware feature of the X1. Table 4 shows 
the output gathered for a run with the Fortran and the C 
implementations of STREAM. The major differences are 
underlined in bold. The C version has issued more a lot 
more operations than the Fortran code. The C code has 
also more than 87 Millions synchronization instructions, 
which implies a large overhead on synchronization 
between the vector and the scalar units. This is generally 
due to a concurrent usage of scalar and vector resources, 
which is the case in execution scenarios such as 
conditionally vectorized loop. 
 

MB / sec Memcpy Memset Copy 
(array) Set 

F 14859 11038 14849 11558 
C 19718 5330 6855 10671 

MB / sec Sum Scale Add Triad 

F 18568 14850 11477 16545 
C 18571 7895 7015 9278 

Table 3. Fortran and C STREAM Performances 
 

To explain in further details the discrepancy in 
performance in some operations, loopmarking for three 
selected operations, memset, set and add, has been used. 
These operations have been chosen for their different 
behavior. The loopmark listing is a text-file output 
created by the compiler exposing how each loop is 
optimized, if any, during compilation. Different levels of 
optimizations are available, as shown in Table 5. The 
loopmarks of the three STREAM benchmark workloads 
are shown in Figure 8. 

 
 
 
 
 
 

Fortran 
CPU Seconds             5.558187 sec 
Vector instructions  267,437,036 instr  
Scalar instructions  982,612,043 instr  
Vector ops         7,115,749,285 ops 
Total FP ops       3,825,686,927 ops 
Scalar integer ops    92,457,548 ops 
Scalar memory refs     2,741,604 refs  
Total TLB misses           2,036 misses 
Dcache references      2,738,735 refs  
Dcache bypass refs         2,869 refs  
Dcache misses          1,125,446 misses 
Vector integer adds 2,013,284,993 ops 
Vector memory refs 10,605,633,707 refs  
Scalar memory refs     2,741,604 refs  
Average vector length     63.999  
Syncs Instr               11,644 instr 
Stall VLSU         8,303,447,454 clks 
Stall VU           8,500,732,702 clks 

C 
CPU Seconds            11.224599 sec 
Vector instructions  275,791,321 instr  
Scalar instructions  945,536,277 instr  
Vector ops        17,650,368,988 ops 
Total FP ops       5,368,736,843 ops 
Scalar integer ops    76,032,146 ops 
Scalar memory refs       203,338 refs   
Total TLB misses           1,769 misses 
Dcache references        201,822 refs   
Dcache bypass refs         1,516 refs   
Dcache misses             62,539 misses 
Vector integer adds 1,342,184,547 ops 
Vector memory refs 10,939,401,644 refs   
Scalar memory refs       203,338 refs   
Average vector length     63.999  
Syncs Instr           87,038,205 instr 
Stall VLSU         5,795,559,120 clks 
Stall VU          11,657,918,576 clks 

Table 4. Part of the output of the PAT tools over 
STREAM C and STREAM Fortran 

 
Primary Loop Type        Modifiers 
------- ---- ----        --------- 
A  - Pattern matched     b - blocked 
C  - Collapsed           f - fused 
D  - Deleted             i - interchanged 
E  - Cloned              m - streamed but  
                           not partitioned 
I  - Inlined             p - conditional,  
                           partial and/or  
                           computed 
M  - Multistreamed       r - unrolled 
P  - Parallel/Tasked     s - shortloop 
V  - Vectorized          t - array syntax  
                           temp used 
W  - Unwound             w - unwound 
(1  - no optimization performed to loop) 

Table 5. Loopmark Legend, showing how loops are 
optimized during compilation 
 
First, let us consider the memset workload of the 

STREAM benchmark. The memset operation is a library 
call in C, which is basically a black box that cannot be 
altered. On the other hand, the equivalent Fortran 
statement, can be Multistreamed and fully-vectorized. A 
fully vectorized loop is a loop that runs entirely on the 
vector processor since all of its iterations are independent. 
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Fortran 

MEMSET (bulk set) 
146. 1      t = mysecond(tflag) 
147. 1 V M--<><> a(1:n) = 1.0d0  
148. 1      t = mysecond(tflag)-t 
149. 1      times(2,k) = t 
 
 

SET 
158. 1      arrsum = 2.0d0; 
159. 1      t = mysecond(tflag) 
160. 1 MV------< DO i = 1,n 
161. 1 MV      c(i) = arrsum  
162. 1 MV      arrsum = arrsum + 1 
163. 1 MV------> END DO 
164. 1      t = mysecond(tflag)-t 
165. 1      times(4,k) = t 
 

ADD 
180. 1      t = mysecond(tflag) 
181. 1 V M--<><> c(1:n) = a(1:n) +   
          b(1:n) 
182. 1      t = mysecond(tflag)-t 
183. 1      times(7,k) = t 
 

C 
MEMSET (bulk set) 

163. 1    times[1][k] = mysecond_(); 
164. 1    memset(a, 1, 
        NDIM*sizeof(elem_t));; 
165. 1    times[1][k] = mysecond_() 
        - times[1][k]; 
 

SET 
217. 1    set = 2; 
220. 1    times[5][k] = mysecond_(); 
222. 1 MV--< for (i=0; i<NDIM; i++) 
223. 1 MV   { 
224. 1 MV    c[i] = (set++); 
225. 1 MV-->  } 
227. 1    times[5][k] = mysecond_()  
        - times[5][k]; 
 

ADD 
283. 1    times[10][k]= mysecond_(); 
285. 1 Vp--< for (j=0; j<NDIM; j++) 
286. 1 Vp   { 
287. 1 Vp    c[j] = a[j] + b[j]; 
288. 1 Vp-->  } 
290. 1    times[10][k] = mysecond_() 
        - times[10][k]; 
 
 

Figure 8. Loopmark of MEMSET, SET and ADD 
operations in Fortran and C 
 
Due to the pipelining of vector operations, this 

provides a much higher performance than the equivalent 
execution on a scalar processor. Multistreaming, like 
multithreading, is a mechanism which distributes a loop 
iteration over the four SSPs. In this case, the lower 
performance of C shows that the memset 
implementation in the C library is not efficient and cannot 
take advantage well of the underlying hardware, as 
compared to Fortran. 

 

Figure 8, however, shows that the set operation is 
compiled with multistreamed and fully-vectorizable loop 
optimizations, offering great performance in both Fortran 
and C. 

In the add operation, however, the Fortran loop is 
found to be multistreamed and fully vectorized (MV), 
whereas in the C case, it is compiled as a conditionally 
vectorizable loop (Vp). A conditionally vectorized loop 
results in two loops, duplicated in both the scalar and 
vector units. During run-time, the conditional expression 
chooses the scalar loop when needed to avoid recurrence; 
otherwise the vector loop is chosen. This induces 
synchronization between the two units, as well as 
decision overhead at runtime, which leads to lower 
performance by comparison to multistreamed and fully 
vectorized loops. 

7. Exploiting Vectorization and 
Multistreaming for UPC Applications 

The previous section demonstrated that in the case of 
C, possible optimizations are not exploited. In this 
section, exploiting vectorization and multistreaming 
opportunities for UPC will be investigated. These 
optimizations are considered to be critical for applications 
to run efficiently on the Cray X1 architecture. Three 
approaches to do so are studied in the following. 

7.1 At the pragma level 
 

MultiStreamed – C 
ADD 

283. 1         times[10][k] = mysecond_(); 
284. 1    #pragma csd parallel 
285. 1         { 
286. 1    #pragma _CRI ivdep 
287. 1    #pragma csd for 
288. 1 MV--<       for (j=0; j<NDIM; j++) 
289. 1 MV         { 
290. 1 MV          c[j] = a[j] + b[j]; 
291. 1 MV-->        } 
292. 1         } 
293. 1     
294. 1         times[10][k] = mysecond_() - 
                    times[10][k]; 
 

Figure 9. Hand-tuning for the C ADD operations, 
forcing it as a MV loop 
 
Cray provides directives to enforce Vectorization and 

Multistreaming at the code level, through the use of 
pragmas. However, this requires an in-depth 
understanding of the code and implies additional effort by 
the developer. As far as the add operation of the 
STREAM benchmark is concerned, the C compiler seems 
not to be aggressive enough to consider it as 
multistreamed and vectorizable loop, as it is the case with 
Fortran. To remedy this, the add operation has been first 
forced to be fully-vectorizable then transformed into a 
multistreamed fully vectorized loop. 
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Figure 9 shows the transformation done to the code 

and illustrates that use of pragmas to improve 
performance. Table 6 summarizes the results and show 
that multistreaming leads to the best performance boost, 
as it splits the workload across SSPs. 

 

MB / 
sec F C 

C 
Fully 

Vectorized 

C 
Multi-

Streamed 

C  
(MultiStreamed 

and Fully 
Vectorized) 

Scale 11477 7015 7090 13045 13079 
Table 6. Performance of the ADD operation with 
hand-tuning (in MB/sec) 
 

7.2 At the construct level 
For each algorithm to be implemented there is 

numerous ways to code it. However, these different ways 
of coding can lead to significant performance drop or 
boost.  

 
By considering the RandomAccess micro-kernel and 

introducing such hand-tuning, we have observed an 
execution time reduced by half, as illustrated in Figure 10 
and Figure 11. This was done by rephrasing a loop 
initializing the local shared area of the main table, 
replacing a upc_forall statement by its equivalent for 
statement. This is due to the change at the loopmark level: 
the upc_forall was marked as conditionally-
vectorizable (Vp) whereas the equivalent for statement is 
marked as multistreamed and vectorized (MV). Such MV 
loopmark should have been automatically enforced for 
‘flat’ upc_forall loops, since these loops have 
independent iterations by definition. 

 
RandomAccess on X1 
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Figure 10. Execution Time of RandomAccess 
 
As it is shown in Figure 10, the optimized UPC 

implementation is outperforming the MPI-1 bulk 
implementation, which highlights the high potential of 
UPC when proper mapping to the architecture features is 
done. 
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Figure 11. GUPS Index of RandomAccess 
 

7.3 At the execution level 
Considering that each MSP on Cray X1 machine 

contains 4 SSPs, the way the compiler distributes the 
workload across the available SSPs (multi-streaming) is 
quite critical to the performance. Thus, the ability of the 
compiler to support multi-streaming is very important. 
The following results focus on this point and uses 
Fortran+MPI as a reference point. 
 

MSP vs SSP - FT.B
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Figure 12. FT in MPI+Fortran versus UPC-MSP and  

       UPC-SSP 
 
As we have just shown, one way to guarantee multi-

streaming for UPC codes that can advantage of it, is by 
adding Cray CSD directives [CRA03]. This, however, 
requires programmer’s efforts to refine the codes. 
Another possible way is taking advantage of UPC’s 
work-sharing constructs to distribute workload across 
threads from one end, and compile and run with SSP 
mode on Cray X1 machine from the other end. Thus UPC 
will consider the SSP as the basic processor units, instead 
of MSP, and distributes the workload among those SSPs. 
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MSP vs SSP - MG.B
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Figure 13. MG in MPI+Fortran versus UPC-MSP  
and UPC-SSP 
 
By taking the same amount of MSP processors, FT 

and MG kernels perform much better in SSP mode than 
MSP mode, as shown in Figure 12 and Figure 13. The 
MPI FT and MG implementations, using the Fortran 
compiler, are performing extremely well, making good 
utilization of the vector resources. 

8. Concluding Remarks 
This paper illustrates the current standing of UPC on 

the Cray X1 machine, by using selected workloads from 
the NPB Suite. The analysis shows that Cray UPC 
compiler is quite efficient in accessing the global address 
space when compared with other cases 
[CAN05][CAN03].  

 
The vectorization and multi-streaming capabilities of 

the compiler are critical to map applications effectively to 
the Cray X1 architecture. One clear observation is that the 
C compiler is not as aggressive as the Fortran compiler. 
Thus, UPC as an extension of ISO-C, suffers from the 
poor performance of its C compiler infrastructure.  

 
While new versions of the UPC compiler are making 

their way into existence, programmers can remedy the 
problem using loopmark analysis to discover areas for 
improvements. Should the dependency relations of the 
code permit, three distinct approaches can be used. The 
first is to add compiler directives to force vectorization 
and multistreaming. The second is to write code which 
can be seen as friendly for automatic vectorization and 
multistreaming from the compiler. The third is to specify 
the SSP execution mode and distribute independent 
iterations using the UPC workload sharing constructs. 
Both methods can improve the overall UPC performance 
and can bring it closer to those of Fortran and MPI. 
However, even with that it is clear that the C compilers 
for X1 need dramatic improvements. Should this happen, 
it is expected that the UPC compiler can perform similar 

to parallel Fortran paradigms, such as Fortran+MPI, but 
with a lot less programming effort. 
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