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The Most Promising Concept for Power Production
by Fusion Reactions is the Tokamak
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The Construction of a Tokamak Burning Plasma Facility
is a Prudent Scientific and Humanitarian Undertaking
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The Gyrokinetic-Maxwell Equations Provide the Foundation
for Direct Numerical Simulation of Plasma Turbulence
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The Gyrokinetic Equations Replace the Older,
Simpler Gyrofluid Model (below)
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Gyrokinetic Equations Look Deceptively Simple

∂f

∂t
= Laf + Lb〈Φ〉 + {f, 〈Φ〉}

FΦ =

∫ ∫

dv1 dv2 〈f〉

• f is the gyrocenter distribution (measures the deviation from a

Maxwellian), and Φ(r) = [φ, A‖] are EM fields.

• Lb, Lb and F are linear operators

• 〈·〉 is a gyroaveraging operator

• The function f(r, v1, v2) is discretized over a 5-dimensional grid
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Eulerian Schemes Solve the GKM Equations on a Fixed Grid

f(r, τ, ntor, λ, E) −→ f(i, j, n, k, e)

i = 1, 2, . . . , Ni

j = 1, 2, . . . , Nj

n = 1, 2, . . . , Nn

k = 1, 2, . . . , Nk

e = 1, 2, . . . , Ne

BASE DISTRIBUTION: f([n], {e, k}, i, j) (1)
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Distribution requirements for different code stages
(i.e., evaluation of different operators)

• The distribution of an index across processors is incompatible with the

evaluation of operators on that index

• For example, a derivative in r requires that all i should be on a processor

Stage On-processor indices

Linear with field solve i, j

Pitch-angle scattering j, k

Energy diffusion e

Nonlinear i, n
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Base Distribution: Velocity-Space over Columns
and Toroidal Modes over Rows.

{e, k}1 {e, k}2 {e, k}3 {e, k}4

{e, k}5 {e, k}6 {e, k}7

n1 i, j i, j i, j i, j

n2 i, j i, j i, j i, j

n3 i, j i, j i, j i, j

n4 i, j i, j i, j i, j
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3-index Row Transpose: Symbolic Notation

We can define a generalized 3-index transpose operator, R, which acts

individually on processor rows

R : {e, k}, i −→ {i, e}, k

The omitted index, j, is left on-processor. Because there are three indices,

three applications of the operator R yields the identity:

R3 : {e, k}, i = R2 : {i, e}, k

= R : {k, i}, e

= {e, k}, i
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3-index Row Transpose: Schematic Description

{e, k}1 {e, k}2 {e, k}3 {e, k}4

{e, k}5 {e, k}6 {e, k}7

n1 i, j i, j i, j i, j

n1 k, j k, j k, j k, j

{i, e}1 {i, e}2 {i, e}3 {i, e}4

{i, e}5 {i, e}6
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2-index Column Transpose: Schematic Description

{e, k}1 {e, k}1

{e, k}5 {e, k}5

n1 i, j i, n j1, j5

n2 i, j i, n j2, j6

n3 i, j i, n j3, j7

n4 i, j i, n j4
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Distributions of Indices in Each Stage

Stage Distribution

Linear terms with field solve f ([n], {e, k}, i, j)

Pitch-angle scattering f ([n], {i, e}, k, j)

Energy diffusion f ([n], {k, i}, e, j)

Nonlinear f ([j], {e, k}, i, n)

Typical sizes:

Nn = 16 Ne = 8 Nk = 8 Ni = 128 Nj = 28
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GYRO: Overall Performance Comparison on 5 MPP Systems
using the Waltz Standard Case Parameters (B1-std)
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Summary of Overall GYRO Performance

• All systems scale well up to and past 128 processors.

• The Cray X1 is the hands-down winner in per-processor performance:

– 8× the Power3

– 4× the Power4

– 2× the Opteron-IB

• The IBM Power 4 is twice as fast as the IBM Power 3

• The Opteron cluster is four times as fast as the IBM Power 3
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Absolute Communication Time For Forward+Reverse
Column Transpose (fixed problem size)
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Ratio of Communication Time to Computation Time for
Evaluation of Nonlinear Terms (fixed problem size)
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Summary of Essential Results for Column Transpose Timing

• Communication scales perfectly on the Cray and Opteron systems

• Communication scales reasonably well on the IBM Power3

• The communication-to-computation ratio is near unity on the Opteron

and Power3 systems, and about 0.25 on the Cray

• The Cray X1 is the only system for which GYRO is not significantly

communication-bound.
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Preliminary Consideration for the FFT Algorithm:
Libraries and Transform Length

• The fields to be transformed are complex

• The real-space products need to be dealiased for conservation of

density, as well as (generalized) energy and enstrophy (fluid vorticity in

NS turbulence).

• We compute 6Ni FFTs of length 3Nn during each call

• The FFT libraries are different on each machine:

– FFTW 2.1.5 on the AMD

– ESSL on the IBM

– LibSci on the Cray
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Preliminary Consideration for the FFT Algorithm:
Algebraic Structure

• The discretization uses the Arakawa symmetrization to enforce

conservation laws
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Comparison of Direct vs. FFT Method for Poisson Bracket
Evaluation: Dotted Line is FFT
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Conclusions Regarding Use of FFT Method (in place of
direct method) for GYRO Simulations

• The FFT method (dotted curve) is preferred over the direct method (solid

curve) for:

– Nn ≥ 16 modes on the IBM Power3

– Nn ≥ 32 modes on the AMD Opteron cluster

– Nn ≥ 48 modes on the Cray X1
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Comparison of Direct vs. FFT Method Using Large
Poloidal Grid: Dotted Line is FFT
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Conclusions Regarding Use of FFT Method for
(perfectly load balanced) GYRO Simulations

The FFT behaviours on the IBM and Cray differ.

• The IBM FFT cost is, surprisingly, linear in Nn over the range

16 ≤ Nn ≤ 64.

• The Cray FFT cost is comparable to the direct cost over the range

Nn ≤ 16 ≤ 64

• We are never in a truly asymptotic O (Nn log Nn) regime for which the

FFT is “spectacular”


