GYRO Performance on MPP Systems

J. Candy General Atomics, San Diego, CA

M.R. Fahey Oak Ridge National Laboratory, Oak Ridge, TN

Cray User Group 2005 Meeting *Petroglyphs to Petaflops* Albuquerque, NM 16–19 May 2005

The Most Promising Concept for Power Production by Fusion Reactions is the Tokamak

The Construction of a Tokamak Burning Plasma Facility is a Prudent Scientific and Humanitarian Undertaking

The Gyrokinetic-Maxwell Equations Provide the Foundation for Direct Numerical Simulation of Plasma Turbulence

The Gyrokinetic Equations Replace the Older, Simpler Gyrofluid Model (below)

$$\begin{split} &\frac{dn}{dt} + [\frac{1}{2}\hat{\nabla}_{\perp}^{2}\mathbf{v}_{\Psi}] \cdot \nabla T_{\perp} + B \nabla \|_{B}^{u} - \left(1 + \frac{\eta_{\perp}}{2}\hat{\nabla}_{\perp}^{2}\right) i\omega_{*}\Psi + (2 + \frac{1}{2}\hat{\nabla}_{\perp}^{2})i\omega_{d}\Psi + i\omega_{d}(p_{\parallel} + p_{\perp}) = 0, \\ &\frac{du_{\parallel}}{dt} + [\frac{1}{2}\hat{\nabla}_{\perp}^{2}\mathbf{v}_{\Psi}] \cdot \nabla q_{\perp} + B \nabla \|_{B}^{u} + \nabla \|\Psi + \left(p_{\perp} + \frac{1}{2}\hat{\nabla}_{\perp}^{2}\Psi\right) \nabla \|\ln B + i\omega_{d}(q_{\parallel} + q_{\perp} + 4u_{\parallel}) = 0, \\ &\frac{dp_{\parallel}}{dt} + [\frac{1}{2}\hat{\nabla}_{\perp}^{2}\mathbf{v}_{\Psi}] \cdot \nabla T_{\perp} + B \nabla \|\frac{q_{\parallel} + 3u_{\parallel}}{B} + 2(q_{\perp} + u_{\parallel}) \nabla \|\ln B - \left(1 + \eta_{\parallel} + \frac{\eta_{\perp}}{2}\hat{\nabla}_{\perp}^{2}\right) i\omega_{*}\Psi + \left(4 + \frac{1}{2}\hat{\nabla}_{\perp}^{2}\right) i\omega_{d}\Psi \\ &+ i\omega_{d}(7p_{\parallel} + p_{\perp} - 4n) + 2|\omega_{d}|(v_{1}T_{\parallel} + v_{2}T_{\perp}) = -\frac{2}{3}v_{ii}(p_{\parallel} - p_{\perp}), \\ &\frac{dp_{\perp}}{dt} + [\frac{1}{2}\hat{\nabla}_{\perp}^{2}\mathbf{v}_{\Psi}] \cdot \nabla p_{\perp} + [\hat{\nabla}_{\perp}^{2}\mathbf{v}_{\Psi}] \cdot \nabla T_{\perp} + B^{2}\nabla \|\frac{q_{\perp} + u_{\parallel}}{B^{2}} - \left[1 + \frac{1}{2}\hat{\nabla}_{\perp}^{2} + \eta_{\perp}\left(1 + \frac{1}{2}\hat{\nabla}_{\perp}^{2} + \hat{\nabla}_{\perp}^{2}\right)\right] i\omega_{*}\Psi \\ &+ \left(3 + \frac{3}{2}\hat{\nabla}_{\perp}^{2} + \hat{\nabla}_{\perp}^{2}\right) i\omega_{d}\Psi + i\omega_{d}(5p_{\perp} + p_{\parallel} - 3n) + 2|\omega_{d}|(v_{3}T_{\parallel} + v_{4}T_{\perp}) = \frac{1}{3}v_{ii}(p_{\parallel} - p_{\perp}), \\ &\frac{dq_{\parallel}}{dt} + (3 + \beta_{\parallel})\nabla_{\parallel}T_{\parallel} + \sqrt{2}D_{\parallel}\|k_{\parallel}\|q_{\parallel} + i\omega_{d}(-3q_{\parallel} - 3q_{\perp} + 6u_{\parallel}) + |\omega_{d}|(v_{5}u_{\parallel} + v_{6}q_{\parallel} + v_{7}q_{\perp}) = -v_{ii}q_{\parallel}, \\ &\frac{dq_{\perp}}{dt} + [\frac{1}{2}\hat{\nabla}_{\perp}^{2}\mathbf{v}_{\Psi}] \cdot \nabla u_{\parallel} + [\hat{\nabla}_{\perp}^{2}\mathbf{v}_{\parallel}] \cdot \nabla q_{\perp} + \nabla q_{\parallel} + \frac{1}{2}\hat{\nabla}_{\perp}^{2}\Psi\right) + \sqrt{2}D_{\perp}\|k_{\parallel}\|q_{\perp} + \left(p_{\perp} - p_{\parallel} + \hat{\nabla}_{\perp}^{2}\Psi) + \nabla q_{\parallel}\ln B \\ &+ i\omega_{d}(-q_{\parallel} - q_{\perp} + u_{\parallel}) + |\omega_{d}|(v_{8}u_{\parallel} + v_{9}q_{\parallel}) + v_{1}q_{\perp}) = -v_{ii}q_{\perp}. \end{split}$$

Gyrokinetic Equations Look Deceptively Simple

$$\frac{\partial f}{\partial t} = \mathcal{L}_a f + \mathcal{L}_b \langle \Phi \rangle + \{ f, \langle \Phi \rangle \}$$
$$\mathcal{F}\Phi = \int \int dv_1 \, dv_2 \, \langle f \rangle$$

- f is the gyrocenter distribution (measures the deviation from a Maxwellian), and $\Phi(\mathbf{r}) = [\phi, A_{\parallel}]$ are EM fields.
- \mathcal{L}_b , \mathcal{L}_b and \mathcal{F} are linear operators
- $\langle \cdot \rangle$ is a gyroaveraging operator
- The function $f(\mathbf{r}, v_1, v_2)$ is discretized over a 5-dimensional grid

$$f(r, \tau, n_{\text{tor}}, \lambda, E) \longrightarrow f(i, j, n, k, e)$$

 $i = 1, 2, ..., N_i$ $j = 1, 2, ..., N_j$ $n = 1, 2, ..., N_n$ $k = 1, 2, ..., N_k$ $e = 1, 2, ..., N_e$

BASE DISTRIBUTION:
$$f([n], \{e, k\}, i, j)$$
 (1)

Distribution requirements for different code stages (i.e., evaluation of different operators)

- The distribution of an index across processors is incompatible with the evaluation of operators on that index
- For example, a derivative in r requires that all i should be on a processor

Stage	On-processor indices
Linear with field solve	i,j
Pitch-angle scattering	j,k
Energy diffusion	e
Nonlinear	i, n

Base Distribution: Velocity-Space over Columns and Toroidal Modes over Rows.

9 GYRO Performance

We can define a generalized 3-index transpose operator, R, which acts individually on processor rows

$$R: \{e, k\}, i \longrightarrow \{i, e\}, k$$

The omitted index, j, is left on-processor. Because there are three indices, three applications of the operator R yields the identity:

$$R^{3}: \{e, k\}, i = R^{2}: \{i, e\}, k$$
$$= R: \{k, i\}, e$$
$$= \{e, k\}, i$$

3-index Row Transpose: Schematic Description

11 GYRO Performance

2-index Column Transpose: Schematic Description

12 GYRO Performance

Distributions of Indices in Each Stage

Stage	Distribution
Linear terms with field solve	$f\left([n], \{e, k\}, i, j\right)$
Pitch-angle scattering	$f\left([n],\{i,e\},k,j\right)$
Energy diffusion	$f\left([n],\{k,i\},e,j\right)$
Nonlinear	$f\left([j], \{e, k\}, i, n\right)$

Typical sizes:

$$N_n = 16$$
 $N_e = 8$ $N_k = 8$ $N_i = 128$ $N_j = 28$

GYRO: Overall Performance Comparison on 5 MPP Systems using the Waltz Standard Case Parameters (B1-std)

Summary of Overall GYRO Performance

- All systems scale well up to and past 128 processors.
- The Cray X1 is the hands-down winner in per-processor performance:
 - $8 \times$ the Power3
 - $4 \times$ the Power4
 - $2 \times$ the Opteron-IB
- The IBM Power 4 is twice as fast as the IBM Power 3
- The **Opteron** cluster is four times as fast as the IBM Power 3

Absolute Communication Time For Forward+Reverse Column Transpose (fixed problem size)

Ratio of Communication Time to Computation Time for Evaluation of Nonlinear Terms (fixed problem size)

Summary of Essential Results for Column Transpose Timing

- Communication scales perfectly on the Cray and Opteron systems
- Communication scales reasonably well on the IBM Power3
- The communication-to-computation ratio is near unity on the Opteron and Power3 systems, and about 0.25 on the Cray
- The Cray X1 is the only system for which GYRO is not significantly communication-bound.

Preliminary Consideration for the FFT Algorithm: Libraries and Transform Length

- The fields to be transformed are **complex**
- The real-space products need to be dealiased for conservation of density, as well as (generalized) energy and enstrophy (fluid vorticity in NS turbulence).
- We compute $6N_i$ FFTs of length $3N_n$ during each call
- The FFT libraries are different on each machine:
 - FFTW 2.1.5 on the AMD
 - ESSL on the IBM
 - LibSci on the Cray

Preliminary Consideration for the FFT Algorithm: Algebraic Structure

 The discretization uses the Arakawa symmetrization to enforce conservation laws

$$\begin{aligned} \{F,G\} &= \frac{\partial F}{\partial \alpha} \frac{\partial G}{\partial r} - \frac{\partial G}{\partial \alpha} \frac{\partial F}{\partial r} \\ &= \frac{1}{3} \frac{\partial}{\partial \alpha} \left(F \frac{\partial G}{\partial r} - G \frac{\partial F}{\partial r} \right) \\ &+ \frac{1}{3} \frac{\partial}{\partial r} \left(G \frac{\partial F}{\partial \alpha} - F \frac{\partial G}{\partial \alpha} \right) \\ &+ \frac{1}{3} \left(\frac{\partial F}{\partial \alpha} \frac{\partial G}{\partial r} - \frac{\partial G}{\partial \alpha} \frac{\partial F}{\partial r} \right) \end{aligned}$$

Comparison of Direct vs. FFT Method for Poisson Bracket Evaluation: Dotted Line is FFT

Conclusions Regarding Use of FFT Method (in place of direct method) for GYRO Simulations

- The FFT method (dotted curve) is preferred over the direct method (solid curve) for:
 - $N_n \ge 16$ modes on the IBM Power3
 - $N_n \ge 32$ modes on the AMD Opteron cluster
 - $N_n \ge 48$ modes on the Cray X1

Comparison of Direct vs. FFT Method Using Large Poloidal Grid: Dotted Line is FFT

Conclusions Regarding Use of FFT Method for (perfectly load balanced) GYRO Simulations

The FFT behaviours on the IBM and Cray differ.

- The IBM FFT cost is, surprisingly, linear in N_n over the range $16 \le N_n \le 64$.
- The Cray FFT cost is comparable to the direct cost over the range $N_n \le 16 \le 64$
- We are never in a truly asymptotic $\mathcal{O}(N_n \log N_n)$ regime for which the FFT is "spectacular"

