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Abstract — We present a new multi-agent model of generation 

expansion in electricity markets. The model simulates generation 
investment decisions of decentralized generating companies 
(GenCos) interacting in a complex, multidimensional environ-
ment. A probabilistic dispatch algorithm calculates prices and 
profits for new candidate units in different future states of the 
system. Uncertainties in future load, hydropower conditions, and 
competitors’ actions are represented in a scenario tree, and deci-
sion analysis is used to identify the optimal expansion decision for 
each individual GenCo. We test the model using real data for the 
Korea power system under different assumptions about market 
design, market concentration, and GenCo’s assumed expecta-
tions about their competitors’ investment decisions. 
 

Index Terms—Electricity Markets, Generation Expansion, 
Agent-Based Modeling, Probabilistic Dispatch, Decision Analysis. 

I.  INTRODUCTION 
raditional generation expansion planning in electrical 
power systems is usually based on centralized least-cost 

planning, subject to reliability constraints. However, the cen-
tralized least-cost planning approach does not reflect how 
investment decisions are made in today’s electricity markets, 
where several generating companies (GenCos) are competing 
with each other, both in short-run operations and long-run 
investments. Some would argue that a well-functioning elec-
tricity market would converge toward the optimal expansion 
plan from a system’s perspective in the long run. A competi-
tive market should provide correct investment incentives 
through price signals in short- and long-term markets. Others, 
however, would contend that the independent and decentral-
ized decision-making process in restructured electricity mar-
kets leads to suboptimal expansion plans. Several important 
factors, such as market power, limited information about 
competitors current and future actions, low demand-side par-
ticipation, inadequate market design, and increased financial 
risk, cause the expansion decisions to deviate from the optimal 
plan.  
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It is still too early to judge all the long-term consequences 

of power industry restructuring from historical data, because 
of the large time horizon involved in capacity expansion. 
However, there is clearly a need to develop new modeling 
approaches to improve our understanding of the long-term 
price and investment dynamics in restructured electricity mar-
kets.  

From a modeling point of view, the centralized least-cost 
expansion planning perspective is convenient, since one ob-
jective function can be used to optimize the entire system. The 
generation planning problem can then be solved using stan-
dard optimization methods, such as dynamic programming. 
Several models have been developed for traditional least-cost 
generation planning, e.g. the WASP model [1]. Modeling of 
generation investments in restructured electricity markets is a 
fairly new area of research. It is a challenge to model the stra-
tegic business interactions between competing GenCos, and at 
the same time include sufficient detail in the technical repre-
sentation of the power system. In the literature we find some 
examples of generation planning models for restructured elec-
tricity markets based on game theory [2]. System dynamics 
[3], real options theory [4], and agent-based modeling [5] 
have also been applied to analyze GenCos’ investment deci-
sions.  

In this paper we, present a novel model for analyzing gen-
eration expansion decisions in electricity markets. We use 
agent-based modeling to simulate the decentralized decision-
making processes underlying GenCos’ investment decisions. 
In the model, GenCos are represented as independent and de-
centralized agents interacting with each other in a complex, 
multidimensional environment. A convolution algorithm is 
used to simulate the market operation of current and future 
generation system configurations, taking into account thermal 
generators’ forced outage rates and scheduled maintenance 
needs. A peak-shaving algorithm is used to represent hydro-
power dispatch. Uncertainties in future load growth, hydro-
power availability, and competitors’ expected future invest-
ment decisions are represented with scenario trees. Finally, 
decision analysis is used to model each individual GenCo’s 
investment decision. The model can simulate generation ex-
pansion decisions over a multiyear time period. 

The paper has the following structure. First, we describe 
the algorithm of the new multi-agent generation expansion 
model. We then present results from testing of the model us-
ing realistic data for the power system in South Korea, where 

T 



 2

generation expansion decisions are simulated under a number 
of different assumptions about market structure and design. 
Conclusions and directions for future work are provided in the 
end. 

II.  MODEL DESCRIPTION 
Argonne National Laboratory has spent several years de-

veloping an agent-based model for electricity markets. So far, 
the main focus of the Electricity Market Complex Adaptive 
Systems (EMCAS) model has been on short-term hourly 
simulations (see [6] and [7] for a description of EMCAS, with 
an example of an application in [8]). The development of the 
expansion model presented in this paper facilitates analysis of 
long-term investment aspects within the same multi-agent 
modeling framework.  

A.  Overview of the Expansion Model 
The overall structure of the simulated decision making 

process is illustrated in Fig. 1. The model runs for a number of 
decision years. Within each decision year, each GenCo makes 
a forecast of future market conditions, in which it assesses 
potential investments in new generation capacity, taking into 
account the impact on the profitability of its own existing 
portfolio of plants. The actual system developments may devi-
ate from the GenCos’ expectations. Hence, as in the real mar-
kets, optimality is not guaranteed, neither from a GenCo nor 
from a system perspective. Currently, the GenCos consider 
investments only in thermal generation during the simulation. 
However, investments in other technologies, such as hydro- 
and wind-power, may be specified as external inputs. Plant 
retirements, regardless of the technology type, can also be 
specified as external inputs. 

After GenCos have formulated expansion plans in a deci-
sion year, the plans are made publicly available. Based on an 
assumed technology-specific construction period, the new 
units come online in the system at a future date. For each deci-
sion year, the GenCos learn about the actions of their competi-
tors through their announcements of new investment projects. 
The latest information about the current system, capacity re-
tirements, and announced capacity additions are always taken 
into account by the GenCos in the assessment of new invest-
ment alternatives. However, information about expansion 
plans is not shared among the GenCos within the decision 
year. Hence, competitors’ expansion decisions may be very 
different from what the individual GenCos originally fore-
casted. 

A decision year simulation is performed to evaluate prices, 
GenCo profits, and generation system reliability within the 
decision year, based on the current system configuration. At 
the end of the decision year, expansion decisions of all Gen-
Cos are aggregated and the system is updated with the latest 
information about completed projects, retirements, and new 
announcements. Load growth rates are exogenous inputs to 
the model. There are two types of load growth rates: the first 
is the actual load growth rate, which is simulated for each de-
cision year. This rate is unknown to the GenCos, until the af-

ter a decision year has been simulated. The second rate is used 
by the GenCos in their forecasts and investment decision mak-
ing and can consist of several scenarios, as explained below. It 
may deviate from the actual simulated load growth. 
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Fig. 1. Overview of simulated decision-making process in multi-agent expan-
sion model. 

 
Each GenCo uses the same general decision model. How-

ever, several of the parameters that go into the model, such as 
a GenCo’s decision preferences, the probabilities of load and 
hydropower scenarios, and available investment alternatives 
may vary among the companies. At the same time, the Gen-
Cos will learn about the decisions of their competitors during 
the simulation. This will also contribute to differentiate the 
investment strategies applied by the various companies in the 
system. Another key component to investment decisions is 
that GenCos may have distinctly different portfolios of exist-
ing supply assets. One GenCo may estimate that it is profit-
able to build a certain new technology because it will have 
little or no impact on the profitability of its existing supply 
portfolio, while another GenCo may estimate that the same 
technology would not be profitable because it would have a 
large detrimental impact on its existing assets. 

B.  Uncertainty in Load Growth and Hydropower Generation 
Load growth is an important driver for future prices and the 

need for capacity expansion in the system. There is usually 
considerable uncertainty regarding future load levels in the 
system. This uncertainty is represented in the model through 
scenarios describing the annual percentage change in the sys-
tem load for each year in the forecast period. The hourly loads 
specified for the initial year are scaled for each forecast year 
depending on the load growth scenario. 

In a system with considerable hydropower, the uncertain 
inflow of water into the system is also an important factor that 
must be considered. This uncertainty can be modeled by 
specifying a number of hydropower availability scenarios for 
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all hydropower plants in the system. In the dispatch algorithm, 
the hydro generation is modeled with a peak-shaving logic, 
where the amount of peak-shaving within each week depends 
on the hydropower scenario. Other renewable and non-
dispatchable resources (e.g. wind, biomass, waste) are repre-
sented with an hourly time series for generation that is sub-
tracted from the forecasted loads. 

C.  Competitor Expectations 
In a decision year, the GenCos know all the existing capac-

ity in the system and what has been announced by their com-
petitors in previous years. However, when forecasting prices 
and profits over the lifetime of a new unit, the GenCos also 
need to anticipate what investments their competitors are 
likely to make further into the future, i.e. beyond what has 
already been announced. To model future investments from 
other GenCos, we assume that each GenCo has an aggregate 
view of how much new capacity the rest of the market will 
add to the system over time. The representation of others’ 
anticipated investments consists of the total installed capacity 
and the technology mix of the new competitor plants. Both of 
these characteristics are, of course, highly uncertain at the 
time a GenCo makes its investment decision. We, therefore, 
model the anticipated installed capacity and technology mix 
from others as scenarios. The first competition layer repre-
sents the anticipated total amount of new installed capacity 
that competitors will build over time. The second competition 
layer represents the technological composition of this new 
competitor capacity. The result is a scenario-tree structure 
used to represent uncertainties in load growth, hydropower 
conditions, and competitors’ expansions (Fig. 2). 

The new capacity built by others is linked to a GenCo-
specific system reserve margin target that represents a 
GenCo’s expectation about future system reserve margins. A 
GenCo assumes that the total investments from the competi-
tors will cover a certain percentage of the required capacity 
needed to maintain the system reserve target. The competitor 
capacity type can be one of several specified candidate tech-
nologies. Hence, each GenCo can derive a complete competi-
tor expansion plan based on the parameters described above 
for all scenarios in Fig. 2.  
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Fig. 2. Scenario tree for uncertainties in load growth, hydro conditions, and 
competitors’ expectations. 

 
To save computation time in the dispatch simulation we as-

sume that all GenCos use the same scenario definitions for 
load growth and hydropower conditions. In the GenCos’ rep-
resentation of competitors’ decisions, the capacity levels are 
defined individually for each GenCo, as explained above, 
whereas the definition of capacity types is the same for all 
GenCos. However, the probabilities are specified individually 
for each GenCo over all four layers in the scenario tree. The 
scenario probabilities are currently exogenous inputs to the 
model and kept constant during the simulation. However, in 
future versions the idea is that the GenCos can learn and up-
date these probabilities during the simulation. 

Prices and profits must be calculated for all GenCos’ units 
over all leaves in the scenario tree. Computational efficiency 
is, therefore, of major importance in the dispatch algorithm, 
which is outlined below. 

D.  Probabilistic Dispatch: Prices, Profits, Reliability 
A probabilistic dispatch algorithm based on the traditional 

Baleriaux-Booth method [9] is used to model forced outages 
in thermal units and their impact on prices and reliability for a 
given system configuration. An equivalent load, Le, represents 
the load that a unit will serve accounting for outages of units 
that are lower in the merit order dispatch. Le can be defined as: 

 
 Le = Ls + Lr (1) 

 

where     
Ls original system load [MW]
Lr forced (random) component of unit outages [MW]

 
The cumulative probability distribution of the equivalent 

load is found by convoluting each thermal unit’s forced out-
ages into the original system load. This is done in merit order, 
based on the units’ marginal production cost. A single load 
level is evaluated at a time. Hence, the cumulative distribution 
for the initial load is a vertical line (Fig. 3). As units are con-
voluted into this curve, the resulting equivalent load curve is 
transformed into one that has an upper elongated tail. The 
resulting cumulative probability distribution function for Le is 
calculated recursively, based on (2). The probability of a ther-
mal unit being the marginal producer in the system is also 
determined. We assume that all thermal units bid their mar-
ginal production cost. Therefore, the price probability is given 
by (3). The probability of having energy not served (ENS) 
and, therefore, price being equal to a regulatory price cap, 
PCAP, is given by (4). An illustration of the convolution proc-
ess and the price distribution calculation for a given load 
level, Ls, in a simple system with two units of equal size is 
shown in Fig. 3. 
 

 Fn(Le) = pn Fn-1(Le) + qn Fn-1(Le – Cn) (2) 
 f(MCn) = Fn-1(TCn-1) – Fn(TCn) (3) 
 f(PCAP) = FN(TCN) (4) 

 

where  
Fn(Le) cumulative probability distribution for Le, 

F0(Le≤Ls) = 1, F0(Le>Ls) = 0 
f(MCn) probability price equals marg. cost unit n, MCn 



 4

f(PCAP) probability price equals price cap, PCAP 
Cn capacity of generating unit n, n = 1..N [MW]
TCn sum capacity of generating units 1.. n [MW]
pn probability unit n in operation 
qn probability unit n on forced outage (pn+qn=1) 

Unit 1 Unit 2 

Le Ls 
0 

1 
F(Le) 

MC2 

MC1 

F(Le) 
1

PCAP 

LeUnit 1 Unit 2 ENS  
Fig. 3. Calculation of cumulative distribution for equivalent load (left), and 
price distribution (right) for a given load level, Ls. ENS = Energy Not Served. 
 

Probabilistic convolution is done for each month. Planned 
maintenance of the thermal units is taken into account. A 
monthly maintenance scheduling routine is used, which mini-
mizes the maximum monthly loss of load probability in each 
year. Hydropower and non-dispatchable generation is sub-
tracted from the original hourly loads within the month, using 
a peak-shaving algorithm for hydro power. Price distributions 
are calculated for a sample of the resulting thermal loads, and 
the results are aggregated into a monthly price distribution. 
Note that it is necessary to perform the recursive convolution 
only for the maximum thermal load in the month over all 
load/hydro scenarios. The resulting convolution curves are 
stored in tables with small discrete load steps. The price dis-
tribution for lower load levels can easily be derived from the 
probabilities stored in the convolution table for the maximum 
thermal load. Monthly price distributions are calculated for 
each load/hydropower scenario throughout the planning pe-
riod, taking into account the monthly maintenance plan. How-
ever, the underlying convolution tables need to be updated 
only for each new forecast period (i.e. when the portfolio of 
thermal plants in the system changes, due to either retirements 
or new announced capacity). Furthermore, all GenCos use the 
same convolution tables when evaluating profitability of new 
units. This greatly improves the computational efficiency of 
the model. 

The aggregated monthly price distributions are used to cal-
culate the profitability of new candidate units. In addition, the 
impact of a new unit on the profitability of a GenCo’s existing 
thermal and hydropower units due to potential reduction in 
prices is also estimated. The resulting cost and revenues for a 
new candidate plant, discounted over all months in the pay-
back period and calculated for all scenarios in the scenario 
tree (Fig. 2), are used as input to the GenCo’s investment de-
cision. 

The unannounced capacity in the GenCos’ expectations 
about competitors’ future investments is not included in the 
convolution procedure described above, as this information is 
GenCo specific. However, an approximation is made to take 
into account how this capacity influences prices and candidate 
unit profit in the different competitor expectation scenarios for 
each GenCo. A GenCo’s own unannounced new capacity is 
handled in a similar manner within each decision year.  

E.  Decision Analysis 
Decision analysis is used to identify the preferred invest-

ment decision for each individual GenCo. Multi-attribute util-
ity theory (MAUT) is used to calculate the expected utility 
from all possible investment decisions, including not investing 
at all. The optimal decision according to MAUT is to choose 
the alternative with the highest expected utility. The underly-
ing assumption is that a decision maker’s preferences can be 
quantified in terms of a multi-attribute utility function. The 
utility function takes into account the decision maker’s risk 
preferences and the trade-offs between different objectives. 
The theoretical background for MAUT is thoroughly de-
scribed by Keeney and Raiffa in [10]. 

We use the additive form of the multi-attribute utility func-
tion, i.e., the total utility for an alternative equals the weighted 
sum of the single attribute utilities, as shown in (5). An expo-
nential form is used for the single-attribute utility functions, as 
shown in (6). The corresponding risk parameters indicate risk 
preferences for the individual attributes. If β is zero, the deci-
sion maker is risk-neutral. A negative β means risk aversion, 
whereas a positive β means a risk-seeking attitude. The upper 
and lower limits of each attribute refer to the maximum and 
minimum values considering all candidate technologies. 

The trade-off weights and the risk parameters are specified 
as input for each GenCo and can be used to represent different 
preferences among the market participants. 

 

 
1

( x ) ( )
m

i i i
i

u k u
=

= ⋅∑ x  (5) 
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ii eexu −−−⋅−= ββ  (6) 

 

where  
u(x) total utility for attribute set x = x1, x2, ..., xm 
ui(xi)  utility for single attribute, i = 1,2, ..., m 
ki trade-off weight, attribute i 
βi risk parameter, attribute i 

ix  upper limit, attribute i 

ix  lower limit, attribute i 
 
Currently, three attributes can be taken into account in the 

model: 1) Profit over unit payback period, i.e. (discounted 
revenue) – (discounted cost); 2) Profit ratio over unit payback 
period, i.e. (discounted profit)/(discounted cost); and 3) Mar-
ket share, measured in terms of capacity at a certain time in 
the future. These attributes are calculated for all the leaves in 
the scenario tree (Fig. 2). The expected utility for an alterna-
tive is then calculated over all leaf scenarios based on the 
probabilities in the tree. 

In each decision year, a GenCo must decide how many 
units to build of each candidate unit technology type. The 
number of possible alternatives can therefore become very 
high. To reduce the discrete search space, we limit the GenCo 
to choose only one plant at a time. In the algorithm, the 
GenCo therefore calculates the expected utility for one unit of 
all its candidate technologies. The unit with the highest ex-
pected utility is chosen. The process is repeated with plants 
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already selected added to the GenCo’s fleet of existing units. 
The iterative selection process continues within the same deci-
sion year until the GenCo’s choice is to not build more plants, 
or until an imposed constraint on the GenCo’s annual capacity 
expansion is reached. 

F.  Flowchart of Expansion Code 
A flowchart describing the main parts of the multi-agent 

expansion code is given in Fig. 4. Note that in the decision 
year loop, steps 3–6 are done only once in each decision year, 
and the results are used by all GenCos. In contrast, the calcu-
lation of competitor expectations (step 2) and candidate unit 
evaluation and decision analysis (step 7) are done individually 
for each GenCo. 
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Fig. 4. Flowchart of multi-agent expansion algorithm. 

III.  CASE STUDY: KOREA POWER SYSTEM 
We have tested the new expansion model in collaboration 

with Korea Power Exchange (KPX), using real data for the 
Korea power system. A selection of results is presented be-
low. Note that the only purpose of the case study was to test 
the new EMCAS expansion model. None of the results are 

used for actual planning purposes by KPX. 

 projections, are set to 2.5% 
un  2014 and 2.0% afterw

 

LONG M LOAD FORECAST FOR KOREA POWE YSTEM 
Growth te 

A.  Assumptions for Korea Power System 
The technical specifications for the power system and the 

load forecast assumptions are based on the 3rd Basic Plan for 
Korea Long-Term Power Supply and Demand [11]. A 15 year 
simulation period is used, starting from 2006. Table 1 shows 
the expected long-term load growth for the Korea power sys-
tem within this period. The peak load is expected to be gradu-
ally saturated in the far future. In the expansion model, we use 
the growth rates in Table 1 in the decision year simulations, 
whereas the GenCos’ forecasted growth rates, which are used 
as nput to their price and profiti

til ards. 

TABLE 1 
-TER R S

Year Peak(MW) Ra
’05 
’06 
’08 
’10 
’12 
’14 
’16 
’18 71,025 0.7% 
’20 71,809 0.6% 

54,631 
56,681 
61,132 
64,605 
67,120 
68,832 
70,049 

- 
3.8% 
3.5% 
2.6% 
1.8% 
1.1% 
0.8% 

 
The installed capacity in the Korea power system in 2005 

was about 62.7GW. An additional 20.8GW is under planning 
and construction and will be built by 2020 (Table 2). Nuclear 
and coal capacity each account for about 30% of total capac-
ity. About 20 % of capacity consists of Natural Gas Combined 
Cycle (NGCC) plants. There is also a small amount of hydro-
power generation and other renewable generation in the sys-
tem. The capacity in Table 2 comprises a total of 127 units, 
wh h are all represented in y in the input data. 

 
T

EXISTING CA NITS UN ONSTRUCT W, %
Technology Existing Cap. 

(as of 2005) 
U

(until 2020) 

Retiring 
Cap. 

Share 

ic dividuall

ABLE 2 
DER CPACITY AND U ION   [M ] 

nder Construc-
tion (%) 

Nuclear 
Coal 

NGCC 
Oil 

Hydro 
COGEN 

Renewable 
1,  1,  

1, 7 
2, 3 

2.1 
Other. 

17,716 
17,965 
16,449 
4,662 
3,829 

382
210 
52 

6,800 
6,540 
1,500 
200 

2,400 
983

1,433 
9 

- 
1,525 

53
64
- 
- 
- 
- 

31.7 
29.7 
21.2 
2.9 
8.0 
4.3 

0.1 
Sum 62,265 5,705 20,865 

TOTAL SUM 
100 

77,425 

 
There are many existing GenCos in the Korea power mar-

ket. As shown in Table 3, the share of the nuclear company, 
KHNP, is about 32%, and the share of the five major coal 
companies is about 53% of the installed capacity. The capac-
ity shares of the other existing companies are small. For sim-
plicity, we use an aggregate representation for the small com-
panies. In addition to the existing companies, we also include 
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two new GenCos (new entrants) in the expansion simulations.  
We used five candidate units (Table 4), whose bid prices 

are based on the production cost. It is assumed that the nuclear 
company can build only Nuclear 1400. The five coal compa-
nies can build both Coal (870, 1000) and NGCC (500, 700). 
The NGCC companies and the new entrants can build NGCC 
(500, 700) only. The technical data of candidate units is 
shown in Table 4. Nuclear units have the highest capital and 
lowest operating cost, and vice versa for the NGCC unit. The 
expected forced outage rates (EFOR) are around 5% for all 
candidate units. A 7.5 % di te was used for all candi-
dat
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1 
1 
1 
1 
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12.4 
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10.0 
10.7 
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We used a simplified scenario tree structure in the simula-

tions presented here, with only one load growth scenario and 
one hydropower scenario (based on actual hydropower data 
for 2005). For the competitor expectations, we used one build 
level scenario, and three build type scenarios (NGCC 500, 
NGCC 700, and Coal 1000 with equal probability for each 
type). Other simulation parameters are summarized in Table 5 
(base case). The GenCo’s Own Build Limit is a constraint on 
how much each GenCo can build within each decision year, as 
a p rcentage of the total required in the system to 
meet the expected re
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B.  Case Study Simulations and Results 
We first simulated a base scenario, where the input parame-

ters, as shown in Table 5, were calibrated to obtain results 
similar to a reference expansion plan for Korea from the 
WASP model [11]. A number of additional scenarios were 
simulated, where results were compared to the base case. Be-
low we present results from sensitivity analyses of the energy 
market price cap, the GenCo’s expectation about competitors’ 
fut re expansion decisions, and the u effect having no any new 

 in new capacity.  

serve margin grows towards a 
level of approximately 20%. 

entrants investing
 

    1)  Base Case 
The simulated generation capacity expansion in the base 

case is shown in Fig. 5. We can see that the GenCos invest in 
the NGCC 700, Coal 1000, and Nuclear 1400 technologies. 
The two new entrants (SKES, DARM) build most of the new 
NGCC capacity. JUBU is the GenCo with most coal expan-
sion, whereas KHNP builds two nuclear plants, which come 
online toward the end of the simulation period. From the 
simulated prices and reserve margin (Fig. 6), we see that the 
price gradually decreases and stabilizes around 60 
kWon/MWh, whereas the re
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Fig. 5. Base case expansion by technology, GenCo and online year. 
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margin. Base case. Fig. 6. Average monthly market price and annual reserve 
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    2)  Sensitivity to Lower Energy Price Cap 
The level of the energy price cap is very important for the 

incentive to invest in new generation capacity, since it deter-
mines the price and GenCos’ income during periods with 
shortage of supply. Ideally, the price cap should be set to a 
high value equal to the value of lost load. However, regulators 
tend to set a lower price cap in electricity markets to avoid 
very high prices. In the base case we used a price cap of 999 
kWon/MWh. We repeated the simulations with lower price 
caps to analyze the effect on expansion decisions, prices, and 
system reliability. Table 6 shows that a lower price cap re-
duces the investments in new generation capacity. This is be-
cause GenCos are less willing to invest in new generation 
capacity due to lower expected profitability. Investments in 
new NGCC plants seem to be most sensitive to the price cap,  
probably because this technology is dispatched less than coal 
and nuclear plants and is, therefore, more dependent on the 
profit during hours of scarcity. Furthermore, the investment 
decisions of new entrants are apparently more sensitive to the 
price cap than are those of the existing GenCos. 

 

EX E R

NG7/ CO10/ NU14 NG7/ CO10/ NU14 NG7/ CO10/ NU14 NG7/ CO10/ NU14 

TABLE 6 
DPANSION BY G

Base case 
NCO FOR IFFE

Price cap = 
ENT RICE CAPS
Price cap = 

P  
Price cap = 

Genco  750 500 300 

New 
Entrants 6 / 0 / 0 4 / 0 / 0 4 / 0 / 0 0 / 0 / 0 

Existing 
NGCC 2 / 0 / 0 2 / 0 / 0 1 / 0 / 0 0 / 0 / 0 

Existing 
Coal 0 / 6 / 0 0 / 6 / 0 0 / 4 / 0 0 / 1 / 0 

Existing 
Nuclear 0 / 0 / 2 0 / 0 / 2 0 / 0 / 2 0 / 0 / 1 

Sum(MW) 14,400 13,000 10,300 2,400 

 
Fig. 7 shows that simulated prices go up as a function of 

lower price cap, particularly with a price cap as low as 300 
kWon/MWh. Hence, the simulations show that a regulatory 
policy of setting a low price cap, which aims to protect the 
end-users from high prices in the short-run may, in fact, lead 
to increasing prices in the long run because of a lower rate of 
investments. The simulated reserve margin also goes down, 
and in the 300 kWon/MWh scenario it actually drops to a 
level close to zero. The results illustrate the importance of 
designing a market with adequate incentives for investments 
in new generation capacity. An interesting extension of the 
an ysis would be to consider the effect on investments from 
different capacity adequacy policies, such as capacity markets. 
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Fig. 7. Average monthly market price for different energy price caps. 
    3)  Sensitivity to Competitor Expansion Expectations 

The GenCos’ expectations about competitors’ expansion 
plans are important for their investment decisions, as outlined 
in Section II.C. To study the representation of competitor ex-
pectations in more detail, we changed the competitor unan-
nounced expansion level parameters for the six coal GenCos. 
It was set to 95% for these GenCos in the base case, i.e. each 
GenCo expects that future unannounced expansion from all 
competitors will add up to 95% of what is required to meet the 
expected system reserve margin of 30% (Table 5).  

When the competitor expansion parameter for coal GenCos 
is reduced to 90%, the level of investment for these companies 
increases compared to the base case (Fig. 8). This is because 
the coal GenCos now forecast lower rates of investment from 
their competitors, which in turn means that their projections of 
future prices and profits from ther own units increase. In con-
trast, when the competitor expansion expectation is increased 
to 100%, the coal GenCos build less capacity (Fig. 9). In fact, 
GenCo NADO and DOSE, whose existing capacities are 
higher than those of other coal GenCos, will build no new 
units. At the same time, other GenCos invest in more NGCC 
capacity than in the base case, which makes up for parts of the 
reduction in the new coal capacity.  

The simulated prices and reserve margins are also affected 
by the changes in the competitor expectation parameter. Prices 
go down and the reserve margin goes up compared to the base 
case in the 90 % competitor expectation scenario, and vice 
versa for the 100% scenario. 
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Fig. 8. Expansion by technology and GenCo with coal GencCs’ competitor 
expansion parameter reduced to 90%. 
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Fig. 9. Expansion by technology and GenCo with coal GenCos’ competitor 
expansion parameter increased to 100%. 
    4)  No New Entrants 

Finally, we looked at the effect of removing the two new 
entrants (DARM and SKES) from the expansion simulation. It 
turned out that this had a profound effect on the results; the 
total level of new investments decreased dramatically. No new 
NGCC plants were built (i.e., a reduction from eight to zero 
NGCC 700 plants compared to the base case). At the same 
time, the number of new Coal 1000 plants dropped from six to 
four. KHNP still builds the two new nuclear plants, although 
they come online one and two years later than in the base case.  

The reduction in new capacity leads to a major increase in 
prices, as shown in Fig. 10. The results from this scenario 
serve to illustrate the important role of new entrants in elec-
tricity markets. The new entrants can clearly lower the thresh-
olds for investment and thereby contribute to keep prices at a 
competitive level. 
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Fig. 10. Simulated average market price in scenario without new entrants. 

IV.  CONCLUSION 
The multi-agent expansion model presented in this paper 

simulates the complex interaction between decentralized and 
profit-maximizing GenCos in restructured electricity markets. 
The presented results from test simulations of the Korea 
power system shows that the model can provide important 
insights into the long-term development of generation invest-
ments, prices, and reliability in real-world systems. Important 
issues regarding market design, GenCo decision preferences, 
and market concentration, can be analyzed. Such results can 

not be obtained with traditional generation expansion models.  
We see a number of interesting extensions to the model, in-

cluding: 1) Revision of the probabilistic dispatch logic to ac-
count for strategic bidding; 2) Simulate the effect of different 
capacity adequacy policies, such as installed capacity markets; 
3) Model transmission constraints and location of new gener-
ating plants; and 4) Introduce more advanced learning and 
adaptation, so that GenCos adjust their forecast of the future 
depending on what they learn during the simulation. 
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