
22 March 2004 www.JavaDevelopersJournal.com

he need for a chemical/biological early warning system
within mass transportation sites is real and was being
researched before the September 11 terrorist attacks.
Since then, this research has become an operational

necessity.
Led by Argonne National Laboratory, along with teams from

Sandia National Laboratories (SNL) and Lawrence Livermore
National Laboratory (LLNL), researchers created an early warn-
ing system for subways within a major metropolitan area. The
entire system entailed the processing of sensor data, live mete-
orological data, video feeds, and real-time track/train data; exe-
cution of below- and aboveground dispersion models; and the
timely display of results to subway and emergency personnel.
The system is based extensively on Java technologies, and this
article examines the merits of each J2EE package used.

The Chem-Bio Emergency Management Information
System (CB-EMIS) is an enterprise-level distributed system.
The decision to write it in Java was made early because of
Java’s maturity, scalability, and maintainability, as well as the
availability of the industry-supported J2EE technologies. This
article discusses the software aspects of the CB-EMIS and
presents the architecture in detail.

Industry Standard Technologies
The CB-EMIS runs on four dual-processor Dell PCs run-

ning the Red Hat 8 Linux Operating System (the servers).
Because the system must always be up and able to recover
from communication failures, etc., three J2EE technologies
were used to gain this reliability: Java Messaging Service
(JMS), Remote Method Invocation Object Activation Daemon
(RMID), and persistence through Java Database Connectivity
(JDBC). A relational database was used to persist data for
forensic playback and simulation modes (MySQL for develop-
ment and training, and Oracle 9i for operational use).

The Sun ONE (previously iPlanet) Message Broker was used
for the JMS system, and Novell’s Lightweight Directory Access
Protocol (LDAP) implementation (eDirectory) was set up for use
as the directory service and for the authentication of users. It’s
important that the server processes across all CPUs remain syn-
chronized in time; a Network Time Protocol (NTP) server was
used to keep the system times in sync. Since the system relied
on JMS messages, it was important to have the times match for
message time-out purposes. Also, the Time Server process reads
the system time to keep a consistent time stamp for all data and
messages passing through the other server processes.

CB-EMIS System-Level Services
This section describes the design of the foundational ser-

vices layer with which all server processes extend, implement,
or interface. Figure 1 shows the services layer that supports
the CB-EMIS.

Directory Service
The LDAP server was used for authentication of user

accounts as well as a directory service for object binding. The
schema was also extended to allow the storage of attributes
unique to the system on a per-user basis, allowing control over
what each user could see or do in the client graphical user
interface (GUI). The Java Naming and Directory Interface
(JNDI) package was used throughout the CB-EMIS to bind and
look up object references stored in the LDAP server. Figure 2
shows the various objects bound into the directory. Not only
were the JMS Topics and Topic Connection Factory references
bound in the server, but the various JDBC data sources were as
well. In this way, any of the CB-EMIS processes can look up
the references to all the connection factories, topics, and JDBC
data sources without having provider-specific references with-
in the code. Saving these objects within an LDAP server gains
persistence and security, and avoids the need for a shared file
system. The team also decided to bind the CB-EMIS server
process Remote Method Invocation (RMI) stub references
within the LDAP server. Because there’s not a JNDI class for
binding stub references within a directory server, it was neces-
sary to write our own javax.naming.spi.ObjectFactory and jav-
ax.naming.Referenceable classes to serialize/deserialize the
java.rmi.server.RemoteStubs.

The Archive
A relational database management system (RDBMS) is

used as the persistent store (referred to as the Archive) for
the static and dynamic data during either a simulation or
normal operation. The purpose of persistence is for error
recovery and playback mode. Static system description data
is imported into the database for use during normal opera-
tion or simulations. During playback mode of either a train-
ing simulation or a normal operational session, the data
archived in the database is retrieved and executed for the
user. Archived live data can be played back for forensic study
of an incident.

Each server process looks up the data source via JNDI and
connects to the appropriate database through the JDBC. All
events and data are saved in the database for playback or for
error recovery. Rather than having SQL statements scattered
throughout the code, a Persistent Object class was created that
other classes extend. By defining the table name and the col-
umn names, each class inherits the ability to insert, retrieve,
update, and delete itself from the database. JDBC Prepared
Statements were used to speed up transactions to the database.

A Persistence Broker class does the JNDI look-up, main-
tains the reference to the data source, and automatically
reconnects to the database if the connection is lost. Most of
the data records are time-stamped, which is usually part of
the primary key.

Chemical Early
Warning System in Java
Developing emergency response systems

C
O

R
E

H
O

M
E

E
N

T
E

R
PR

IS
E

D
E

SK
TO

P

SECURITY

by Kathy Lee Simunich,
Gordon Lurie, Michelle Kehrer,

and Tom Taxon

T

23March 2004www.JavaDevelopersJournal.com

Activatable Server Processes
Each of the server processes is restartable via RMI activa-

tion. Activation allows programs to register information about
remote objects so they can be started up when they are first
accessed or when the RMI Daemon (rmid) starts up. This pro-
vides the ability to start the entire server, which consists of
processes across multiple machines by registering one
process to be started when rmid starts up, as well as the abili-
ty to recover from a Java Virtual Machine (JVM) failure by
restarting a failed process. If the JVM of an activatable object
does not exist, the RMI Daemon creates a new JVM for that
object.

All of the CB-EMIS server processes are restartable by
extending the java.rmi.activation.Activatable class. The
process stubs are registered with the rmid process (which is
already running) and also binds its stub reference into the
LDAP server. The RMI Daemon provides a Java Virtual
Machine from which other JVM instances may be spawned.
This process actually starts up the other server processes “on-

demand” as they are requested. Therefore, if a process goes
down it will be reactivated upon the next reference to it via
rmid (barring an actual hardware failure).

A stub reference is looked up by a CB-EMIS process via JNDI
and passes that reference to the RMI Daemon, which in turn
activates the process.

JMS Messaging
All the server processes communicate via a publish/subscribe

methodology with JMS Topics. This communication mechanism
was chosen because JMS has several advantages over Remote
Method Invocation for this type of application, most notably:
• It is asynchronous in nature, so if one component goes

down, the process that’s sending the data is not tied up
waiting for the other process to restart.

• Messages can be guaranteed to be delivered even if the
process that needs it is not running. It will get all waiting
messages when it starts back up.

• It’s fairly simple to have another process register to receive
data from the same source as others without having to con-
tact the source of the data.

The server processes look up references to the JMS Topics
that they’re interested in and “sign up” as a publisher and/or a
subscriber to various topics. Like the database connections, the
JMS Utility class tries to reconnect if a connection is lost or
dropped. Most classes in the CB-EMIS that are persistent usual-
ly also implement the Publishable interface. Instead of making
RMI calls to pass data or having the processes make JDBC calls
to pass data via a database, the data is wrapped up in a JMS
message and published to a topic.

CB-EMIS Server Processes
Figure 1 shows the CB-EMIS Server Processes interacting with

the services layer. The CB-EMIS “server” has been broken down
into the various components (or processes) described in this arti-
cle based on the various tasks the server needs to do.

The processes fall into the following categories: data collec-
tion, monitoring, and utilities. The data collection processes
are the Meteorological Data Collector, Live Met Data Feed,
Track Data Collector, Sensor Data Collector, and the Critical
Actions Collector. The monitoring processes are the Alarm
Generator, System State Updater, and System Monitor. The
utility processes are the Time Server and the Model Executor.

Thus, the server consists of 10 separate processes running
within their own JVM across the four dual-processor PCs. They
all are activatable via the RMI Daemon. When they start up, they
make a JNDI look-up to get references to the JDBC data source
and make a connection to the database as well as to the JMS
Broker to sign up for publishing and/or subscribing to the avail-
able topics. All of the processes employ multithreading to pro-
vide the fastest possible processing of information through the
system, while monitoring all the data topics and archiving to the
database.

This section describes each server process, its basic purpose,
and the relevant Java technology it employs to do its work. As
stated earlier, the processes communicate via JMS Topics. These
include:
• System Control: The System Monitor publishes to this topic

whenever the administrator changes the mode of the server
(normal, playback, or training). All processes subscribe to it
and change their processing according to the current mode
of operation.

• Process Status: The System Monitor also publishes to this
topic approximately every two seconds so that the adminis-
trator GUI can show the current state of the server processes.

Figure 1 CB-EMIS Software Elements

Figure 2 Objects bound into LDAP server

Figure 3 CB-EMIS interactions with other hardware/software elements

Kathy Lee Simunich has been
an object-oriented software
engineer for over 15 years,
progressing from C++ to
Smalltalk and now writing
almost exclusively in Java since
1998. Her concentration has
been in cross-platform model
integration and simulation
systems. She has a BS in
meteorology and an MS in
computer science.

Gordon Lurie has been an
object- oriented architect and
software engineer for over 15
years. He was the software
architect lead developer for the
CB-EMIS system. His work has
focused on object-oriented
geographic information
systems. He has a BS in
computer engineering.

Michelle Kehrer has been a
software engineer for over
10 years developing standalone
client, Web, and enterprise
applications. She has a BS in
computer science.

Tom Taxon has been an
object-oriented software
engineer for over 13 years.
He worked with Smalltalk
and C++ and has been
working in Java since 1996.
His background is in GIS
and model integration and
simulation systems. He has
a BS in computer science
and engineering.

partners@anl.gov

24 March 2004 www.JavaDevelopersJournal.com

SECURITY
C

O
R

E
H

O
M

E
E

N
T

E
R

PR
IS

E
D

E
SK

TO
P

• New Data: All server processes archive data and events to
the database and then publish the data on the New Data
topic for the other processes to ingest (if interested in the
particular data item).

• Critical Actions: The CB-EMIS client process publishes to
this topic whenever the emergency response users declare
a critical action (e.g., trains have stopped, alarms trig-
gered). The purpose of this topic is to provide a non-RMI
method of having the client processes communicate criti-
cal information back to the server processes.

• System State: The System State Updater publishes eight dif-
ferent data types to this topic. Each data type runs in its
own thread, publishing frequently enough to update GUI
elements within the client process. By publishing the state
of the system onto this topic, any number of client process-
es can log in and display the current state by subscribing to
the topic. As a consequence, clients can also recover from
communications interruptions without missing data.

The Time Server
The Time Server is responsible for holding and maintaining

the system time. It’s the central point for all the server processes
to obtain the synchronized system time, since it is the process
that is synchronized with the NTP server. The other server
processes access the time from the Time Server process via an
RMI call. Having a single process keep track of the system time
allows all processes to use the same methodology for getting
current time regardless of the current mode (normal, training,
or playback).

The System Monitor
The System Monitor is responsible for monitoring the state

of the software system. It restarts the components if there is a

problem and notifies the user if it cannot restart a process.
The status of the system processes (components) is displayed
via a GUI for the system administrator.

The System Monitor is responsible for verifying that all
required processes are running and maintaining the current
run state (mode, simulation run status, simulation speed,
etc.). It pings a process via RMI every two seconds. When a
process is pinged, the activation system (RMI Daemon)
starts up the process if it is not already running. The individ-
ual processes must also ping the system monitor back with-
in five seconds. This allows the administrator to be notified
if a process starts up and then crashes immediately. In addi-
tion, if a process detects or recovers from a nonfatal error, it
can notify the System Monitor of this state change via an
RMI call. If the status of a process changes, the current sta-
tus is published on the Process Status Topic.

The current run state is maintained via RMI calls from the
System Monitor GUI. When changes are made to the state,
they are published to the System Control Topic so that all
other interested processes can handle the change.

System State Updater
The System State Updater is responsible for maintaining

the system state (train location, track status, meteorologi-
cal conditions, sensors, plumes, alarms, etc.) and publish-
ing it periodically to the System State Topic. There is cur-
rently one updater for high-bandwidth connections to the
server, as there is a full, detailed system state sent every
second. It listens to the New Data topic for when any
process saves data to the database and then publishes the
new data on the appropriate System State Topic for con-
sumption by client processes that are currently connected.
The design allows for other levels of detail of the System

Figure 4 CB-EMIS Client GUI main window showing plume dispersion map with contamination, critical actions table, and various video feeds

25March 2004www.JavaDevelopersJournal.com

State to be published. One such use of this would be a hand-
held computer used by an emergency responder; it might get
only system state data relative to the responder’s location. Thus,
a low-bandwidth updater can be created that publishes updates
less frequently for clients connecting over a dialup or wireless
connection.

Alarm Generator
The Alarm Generator is responsible for monitoring the New Data

Topic for sensor events, determining if an alarm condition has been
reached, and storing the data in the Archive/DB. It also publishes any
alarms to the New Data Topic.

Model Executor
This process is responsible for responding to sensor alarms

in the New Data Topic. It generates input files based on data received
from the New Data Topic and starts to execute the appropriate
below- and aboveground dispersion model. When the model(s) are
finished, this process publishes the contamination results to the New
Data Topic and archives the data in the database.

Critical Actions Collector
The main purpose of this process is to provide a non-RMI

method of having the client process(es) communicate with the
server. This is essentially a pass-through for Critical Action Data
messages. It tracks who created a critical action and when it was
generated.

Sensor Data Collector
This process is responsible for monitoring all the chemical/biologi-

cal agent sensor readings. It stores the readings in the Archive and pub-
lishes the data on the New Data Topic. This process registers with the
SNL Sensor Server via RMI.

Live Met Data Feed
This process polls the LLNL Met Server, which monitors real-time

weather observations, and stores the data in a local database for
access by the Meteorological Data Collector.

Meteorological Data Collector
The Met Data Collector is responsible for retrieving meteorological

data from a server (or from a file if in training mode), storing the data in
the Archive/DB, and publishing to the New Data Topic. This data is need-
ed for the dispersion models to correctly predict plume concentrations.

Track Data Collector
The Track Data Collector is responsible for receiving real-time track

status data and train location data, archiving it in the database, and pub-
lishing the data on the New Data Topic. It subscribes to the Critical
Actions Topic for notification if the trains stop running.

CB-EMIS Interactions with Other Hardware/Software
Figure 3 shows the CB-EMIS interactions with various servers that have

the physical connections to the sensors as well as other parties’ monitor-
ing software with which the CB-EMIS must communicate. Four types of
sensor hardware are needed for the system:
1. Chemical/biological agent detectors
2. Meteorological sensors
3. Real-time train location and track status sensors
4. Real-time video camera feeds

Each of these systems has associated servers that were installed by
parties other than Argonne. The video cameras were part of a legacy
system installed for security purposes that CB-EMIS tapped into for an
integrated display within the client GUI. The train location and track
status data feed were also part of a legacy system used by other moni-
toring software within the subway’s control room. This data, along with

AAdd

26 March 2004 www.JavaDevelopersJournal.com

SECURITY
C

O
R

E
H

O
M

E
E

N
T

E
R

PR
IS

E
D

E
SK

TO
P

current meteorological conditions and sensor readings, con-
tains the critical information needed for accurate predictions of
agent plume dispersion and concentrations.

Argonne has written a belowground dispersion model
specifically for the subway where the CB-EMIS has been
installed. The system also employed an existing EPA above-
ground model (INPUFF) for the prediction of plumes if the
agent escapes from underground. These models are written in
Fortran and therefore use flat files for input and output. The
CB-EMIS Model Executor reads/writes the output/input and
makes a system call to actually start the models running on a
separate CPU.

The CB-EMIS also uses the LLNL real-time meteorological
observation server. Data is updated every 15 minutes, and the
Live Met Data Feed process polls the server for current obser-
vations. The Model Executor can also access and run LLNL’s
high-resolution aboveground dispersion model (Narac) at a
preset time after an alarm to obtain more accurate results. The
default INPUFF model is useful for quick assessments, but
more detailed predictions can be calculated with the Narac
model (although it takes longer to run and get the results).

Sandia was responsible for installing the sensor detection soft-
ware interface to log the actual readings of the chemical/ biologi-
cal agent detectors. They implemented their sensor collection
software as a Java servlet and, therefore, the servlet must run with-
in a servlet container. The Apache Tomcat Server is used as the
servlet container and Web server and runs on one of the nodes in
the Linux cluster. The servlet continuously monitors the sensors.

CB-EMIS Client
Figure 4 shows one view of the Swing-based GUI for the

emergency response coordinators. Each panel on the display
can be either minimized and shown in icon form or maxi-
mized to show more detail. Panels include:
• GIS-like overhead map view with zoom and pan capability
• Overview map of subway system and train status
• Plume concentration overlay
• Sensor concentration-level graphs
• Critical actions and alarms
• Video camera views

Any number of remote client processes can be communicat-
ing with the CB-EMIS server located in the control center of the
subway system. This communication link is done through
Secure Socket Layers (SSL) and uses the Java Secure Socket
Extension (JSSE) package to make the connection through the
Java client process to the proxy server. As mentioned in the JMS
Topic section, JMS messaging is used to pass data between the
client process and the CB-EMIS server over the SSL channel.
Critical actions are posted to the server via the Critical Action
Topic, and each client subscribes to the System State Topic for
updates. These updates are viewable in near real time on a
high-bandwidth connection.

Conclusion
Emergency response systems, such as the Chem/Bio

Emergency Management Information System, should be
deployed throughout many critical infrastructures such
as subway systems, airports, or other mass-transportation hubs.
This article presented the distributed processes, the need for
asynchronous communication through messaging, and secure
communication and user access mechanisms provided by the
CB-EMIS employing various Java technologies.

Reliability was achieved by using the RMI Activation
Daemon to reactivate any processes that may have failed, and

persistence of JDBC Data Sources and JMS Topic Factories
within an LDAP server allowed restarted processes to easily
look up the references via JNDI and reconnect to the database
and message broker automatically.

Security was maintained through user authentication within
the LDAP server on both the CB-EMIS server side as well as
access to the client processes. RMI security policy files were
used to restrict access rights for any RMI calls throughout the
server processes. Further security was achieved by using an SSL
connection via JSSE from client processes to a proxy server and
then to the server processes behind a firewall.

This project has proven that Java technologies not only
addressed the various needs of the system, but helped all the
components of the system integrate seamlessly and efficient-
ly. With all the monitoring processes, the continuous real-time
updates (not only of the system status, but of the train and
track data and sensor readings), the database archiving of all
data, and message publishing and subscribing, the perform-
ance of the multithreaded processes running in multiple Java
Virtual Machines was never a problem.

Joe Ottinger, JDJ’s editor-in-chief, had the opportunity to have
a discussion about the Chem-Bio Emergency Management Infor-
mation System with the team at Argonne National Laboratory.

JDJ: What other technologies were considered? What were the meas-
urements for validity for the technologies being considered?
ANL: We wanted to use the established Java technologies. The
first principle of the entire system was reliability.

The early prototype system was a Smalltalk/Java program using
RMI and some custom socket-based communication between
Smalltalk and Java. The Smalltalk version of GeoViewer was exist-
ing code that is now converted to Java for the final product.

Once we converted to production development, we needed
to manage the synchronization of the communications between
all the server processes and clients, and each process had to be
restartable. We chose RMID activation for its restarting ability
and JMS for its asynchronous communications and guaranteed
delivery of the messages.

These technologies greatly reduced our development time.

JDJ: I notice you’re duplicating a lot of the functionality of JMX – how
has the JCP worked to affect your development process and architec-
ture (why wasn’t it used, in other words)?
ANL: We felt JMX was not a mature enough technology when
we started on the final system. We started the final develop-
ment stage in December 2001 and it had to be delivered/
installed by January 2003 and operational by June 2003.

JDJ: What licenses did you use for your custom code, specifically for
the RMI stubs in your LDAP server?
ANL: We used LDAP for authentication and the JNDI lookup
of the data sources as well as the RMI stub references. The use
of eDirectory was dictated by the sponsor.

JDJ: What kind of persistence layers did you consider, if any? Are they
in-house, commercial, or open source?
ANL: We had already written an in-house persistence layer for
other projects, so we adapted it for use in our final prototype.
The database was used more as a logger than needing the full
features of an RDBMS. We used generic SQL to switch between
using MySQL for development and Oracle for deployment.

Q&A

27March 2004www.JavaDevelopersJournal.com

AAdd

JDJ: You mention you’re using iPlanet for some services – why, then, did you choose
Tomcat for a servlet container, when iPlanet also has a servlet container available
for it?
ANL: We bought just the Sun ONE Java Message Queue since that’s all
we needed it for. We chose it after testing a couple of other vendors’
products. The servlet used to monitor the sensors was a prototype
developed by another party that has since been replaced by a more
robust system, which is not based on servlet technology. It’s much
more tightly integrated with the rest of the system.

JDJ: In the “System State Updater” section, what is a “plume”? I have some
idea because of context, but clarification would be nice.
ANL: The “plume” is a contour plot of the predicted concentration levels
of the released agent that could pose health risks.

The plumes are updated every minute and are plotted as an overlay
over the map on the client machines.

JDJ: What client platforms are supported?
ANL: Windows 2000 and XP have been extensively tested for the client
software. However, plans are in the works for supporting Red Hat Linux
(which is what we run on the server side). All the code runs on the major
OSes, including Solaris, Red Hat Linux, and Mac OS X. Basically, any plat-
form that supports J2SE can support our system. There is a small amount
of JNI code included in our system, so the biggest hurdle is just compil-
ing that code for a new platform. Plus, tweaking for optimal bandwidth
usage for the video streaming needs to be done on any new platform.

References
• www.anl.gov
• http://java.sun.com
• www.dell.com
• www.redhat.com

• www.mysql.com
• www.oracle.com
• wwws.sun.com/software/products/message_queue/ home_ mes-

sage_queue. html
• www.novell.com/products/edirectory/
• www.eecis.udel.edu/~ntp/
• http://java.sun.com/products/jndi/
• http://java.sun.com/products/jdk/rmi/
• http://java.sun.com/products/jdbc/
• http://java.sun.com/j2se/1.4/docs/guide/rmi/activation.html
• Coke, L. R., Sanchez, J.G., and Policastro, A.J. “A Model for Dispersion

in the Subway Environment.” 10th International Symposium on
Aerodynamics and Ventilation of Vehicle Tunnels, Principles, Analysis,
and Design. Boston, Massachusetts, 1-3 November, 2000

• Petersen, W.B., and Lavdas, L.G. “INPUFF 2.0 A Multiple Source Gaussian
Puff Dispersion Algorithm User’s Guide.” EPA/600/8-86/024, U.S.
Environmental Protection Agency, August 1986.

• http://narac.llnl.gov
• http://java.sun.com/products/servlet/
• http://jakarta.apache.org
• Lurie, G.R., Sydelko, P.J., and Taxon, T.N. “An Object-Oriented

Geographic Information System Toolkit for Web-Based and Dynamic
Decision Analysis Applications.” Journal of Geographic Information
and Decision Analysis. 2002, Vol. 6, No. 2, p.108–116

• Korp, P.A., Lurie, G.R., and Christiansen, J.H. “A Smalltalk Based
Extension to Traditional Geographic Information Systems.”
Proceedings of the ParcPlace/Digitalk International Users Conference,
San Jose, CA, ANL/DIS (July 31–Aug. 12, 1995).

THE SUBMITTED MANUSCRIPT HAS BEEN CREATED BY THE UNIVERSITY OF CHICAGO AS OPERATOR OF ARGONNE NATIONAL LABORATORY (“ARGONNE”)

UNDER CONTRACT NO. W-31-109-ENG-38 WITH THE U.S. DEPARTMENT OF ENERGY. THE U.S. GOVERNMENT RETAINS FOR ITSELF, AND OTHERS ACTING ON

ITS BEHALF, A PAID-UP, NONEXCLUSIVE, IRREVOCABLE WORLDWIDE LICENSE IN SAID ARTICLE TO REPRODUCE, PREPARE DERIVATIVE WORKS, DISTRIBUTE

COPIES TO THE PUBLIC, AND PERFORM PUBLICLY AND DISPLAY PUBLICLY, BY OR ON BEHALF OF THE GOVERNMENT.

