home  |  about us  |  contact  
 
 CSM Home
LDRD Proposal
 

New Fourier Transforms Methods

New fast discrete Fourier Transforms and their adjoints to map a square in space to a disk in the Fourier domain with applications to scientific computations were developed by a team led by Gregory Beylkin at the University of Colorado and George Fann at Oak Ridge National Laboratory. These new methods permit high accuracy computations to and from polar grids. These methods are widely applicable to fast solvers for scientific computations, X-ray tomography, linear inverse scattering, synthetic aperture radar and signal processing. In all of these applications, band-limited functions play an important role.

xxx

A special grid on rotating circles in the Fourier domain. This grid is constructed by placing equally spaced nodes (37 in this example) on the circles rotated full 360 degrees around the origin in the same number of steps.

The team is investigating these algorithms for fast computation of scattering kernels in computational chemistry, materials and physics. The application of new grids in Magnetic Resonance Imaging, X-ray tomography and other non-destructive evaluations should result in reduced data collection time as well as improved performance in reconstruction.

For more information, please contact:

George Fann

spacer

 

 
   CSM Projects   
   Colossal Magneto Resistance   
   Compound Wavelet Matrix   
   Scalable First Principles Methods for Electronic Transport   
   Electronic Notebook   
   Earth System Grid   
   Functionally Graded Materials   
   New Fourier Transforms Methods   
   Statistical Physics of Fracture   
   Adaptive Mesh Refinement for Multiphysics Applications   
   High-Performance Circuit-Switched Networks   
   Packet-Switched and Circuit-Switched Networks   
   Infiniband Connections across the United States   
   Siemens Competition National Finals   
   Protein Dynamics   
     
  INCITE Funded Projects  
   An Integrated Approach to the Rational Design of Chemical Catalysts   
   Multidimensional Simulations of Core Collapse Supernovae   
   Predictive and accurate Monte Carlo based simulations for Mott insulators, cuprate superconductors, and nanoscale systems   
   Cellulosic Ethanol: Physical Basis of Recalcitrance to Hydrolysis of Lignocellulosic Biomass   
   Clean and Efficient Coal Gasifier Designs using Large-Scale Simulations   
   Climate-Science Computational End Station Development and Grand Challenge Team   
   Modeling Reactive Flows in Porous Media   
   Assessing Global Climate Response of the NCAR-CCSM3: CO2 Sensitivity and Abrupt Climate Change   
   Performance Evaluation and Analysis Consortium End Station   
   
  ORNL | Directorate | CSM | NCCS | ORNL Disclaimer | Search
Staff only: CSM computers | who, what, where? | news
 
URL: http://www.csm.ornl.gov/Highlights/Fourier.html
Updated: Thursday, 29-Nov-2007 09:46:26 EST

webmaster