The Human Genome Project, 1990-2003

Genomics and Its Impact on Science and Society: The Human Genome Project and Beyond

A Brief Overview
Though surprising to many, the Human Genome Project (HGP) traces its roots to an initiative in the U.S. Department of Energy (DOE). Since 1947, DOE and its predecessor agencies have been charged by Congress with developing new energy resources and technologies and pursuing a deeper understanding of potential health and environmental risks posed by their production and use. Such studies, for example, have provided the scientific basis for individual risk assessments of nuclear medicine technologies.

In 1986, DOE took a bold step in announcing the Human Genome Initiative, convinced that its missions would be well served by a reference human genome sequence. Shortly thereafter, DOE joined with the National Institutes of Health (NIH) to develop a plan for a joint HGP that officially began in 1990. During the early years of the HGP, the Wellcome Trust, a private charitable institution in the United Kingdom, joined the effort as a major partner. Important contributions also came from other collaborators around the world, including Japan, France, Germany, and China.

Ambitious Goals
The HGP’s ultimate goal was to generate a high-quality reference DNA sequence for the human genome‘s 3 billion base pairs and to identify all human genes. Other important goals included sequencing the genomes of model organisms to interpret human DNA, enhancing computational resources to support future research and commercial applications, exploring gene function through mouse-human comparisons, studying human variation, and training future scientists in genomics.

The powerful analytic technology and data arising from the HGP present complex ethical and policy issues for individuals and society. These challenges include privacy, fairness in use and access of genomic information, reproductive and clinical issues, and commercialization (see p. 8). Programs that identify and address these implications have been an integral part of the HGP and have become a model for bioethics programs worldwide.

A Lasting Legacy

In June 2000, to much excitement and fanfare, scientists announced the completion of the first working draft of the entire human genome. First analyses of the details appeared in the February 2001 issues of the journals Nature and Science. The high-quality reference sequence was completed in April 2003, marking the end of the Human Genome Project—2 years ahead of the original schedule. Coincidentally, this was also the 50th anniversary of Watson and Crick’s publication of DNA structure that launched the era of molecular biology.

Available to researchers worldwide, the human genome reference sequence provides a magnificent and unprecedented biological resource that will serve throughout the century as a basis for research and discovery and, ultimately, myriad practical applications. The sequence already is having an impact on finding genes associated with human disease (see p. 3). Hundreds of other genome sequence projects—on microbes, plants, and animals—have been completed since the inception of the HGP, and these data now enable detailed comparisons among organisms, including humans.

Many more sequencing projects are under way or planned because of the research value of DNA sequence, the tremendous sequencing capacity now available, and continued improvements in technologies. Sequencing projects on the genomes of many microbes, as well as the chimpanzee, pig, sheep, and domestic cat, are in progress.

Beyond sequencing, growing areas of research focus on identifying important elements in the DNA sequence responsible for regulating cellular functions and providing the basis of human variation. Perhaps the most daunting challenge is to begin to understand how all the “parts” of cells—genes, proteins, and many other molecules—work together to create complex living organisms. Future analyses on this treasury of data will provide a deeper and more comprehensive understanding of the molecular processes underlying life and will have an enduring and profound impact on how we view our own place in it.

The online presentation of this publication is a special feature of the Human Genome Project Information Web site.