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Abstract

In this paper two attacks on a multiple length hash
function whose construction is proposed by Knudsen
and Preneel. One can violates the security bound
claimed in the proposal paper [6] if t = 1 and d > 3.
Keywords. Hash function, Collision resistance,
Linear code, Differential cryptanalysis

1 Introduction

A cryptographic hash function is one of the impor-
tant cryptographic primitives. It compresses data of
arbitrary length into a bit string of fixed length. It
has a lot of applications such as a message authen-
tication and a digital signature.

In these applications, hash functions are required
to achieve some security criteria. The following
three properties are the criteria which should be sat-
isfied:

– one-wayness (OW): for all outputs, it is com-
putationally infeasible to find any input whose
hash value is equal to that output;

– second pre-image resistance (SPR): for all in-
puts, it is computationally infeasible to find a
second input whose hash value is equal to that
input;

– collision resistance (CR): it is computationally
infeasible to find two distinct inputs whose hash
values collide.

The detailed definition of the term “computation-
ally infeasible” is not given in this paper because it
is not essential for our discussion. Readers who in-
tend to know it can refer [1], wherein their modern
definitions are given.

These properties are mostly dependent on the
output length of hash functions (hash length). For
example, about 2m calculations of a hash function
are necessary to find a pre-image of an output if the
hash length is m bits because the possible number
of outputs is exactly 2m. Nearly equal complexity is
necessary to find a second pre-image. In the case of
collision resistance, there is a well known technique
to find a collision whose computational complexity
is significantly smaller than that of finding a second
pre-image. This technique is called birthday attack
and the complexity is about 2m/2, the square root
of the exhaustive trial (See [9] for the detail of a
birthday attack).

A common way to construct a hash function is
to apply a compression function iteratively, which
maps a bit string of a fixed length to another bit
string of a fixed (and shorter) length. Merkle [8] and
Damg̊ard [2] proposed a chaining construction (MD-
construction) defined as follows and proved that it
is secure if the underlying compression function is
secure:

M = M1||M2|| . . . ||Mn,

H0 = Const,

Hi = Compress(Hi−1,Mi) for 1 ≤ i ≤ n.

Most of real hash functions are based on this scheme,
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so that how to construct a secure compression func-
tion is a matter of concern in the study of hash func-
tions.

There are many attempts to construct a com-
pression function from a block cipher like as Data
Encryption Standard (DES) [3] and Advanced En-
cryption Standard (AES) [5]. Matyas-Meyer-Oseas
[7] and Davies-Meyer constructions are the exam-
ples that are secure if the underlying block cipher
is secure as a block cipher. Preneel et al. compre-
hensively studied these constructions which call the
underlying block cipher only once for each call of
the compression function. They considered possible
64 constructions and resulted that 12 of them are
secure as a compression function [10]. Black et al.
added security proofs to these constructions by a
current theoretical fashion [1].

These constructions are easy to implement if a
block cipher is already used in the target system. On
the other hand, the obvious weakness that the hash
length is too short especially if DES is used as the
underlying cipher. In addition, these constructions
is much slower than dedicated hash functions.

The next objective is how to construct a compres-
sion function which achieves a better security than
that of underlying compression functions, especially
in the context of second pre-image resistance and
collision resistance with a small supplement of op-
erations. MDC-2 and MDC-4 are the double length
hash functions, and MDC-4 achieves a better se-
curity. Knudsen and Preneel proposed a general
method to construct a compression function whose
security is better than that of underlying function
under some acceptable assumptions. They proved
that finding a collision of the proposed construction
requires 2(d−1)m/2 calls of compression function [6].

In this paper we proposed an differential attack
on Knudsen-Preneel construction of a secure hash
function. This attack enable to find a collision less
complexity than that claimed in [6].

The organization of the rest of this paper is as
follows: Firstly necessary terms and the main con-
tents of [6] including Knudsen-Preneel construction
is given in Sect. 2 and the best known attack is in-
troduced in Sect. 3. The detailed description of our
new differential attack is given in Sect. 4. Sect. 5

presents yet another differential attack on Knudsen-
Preneel construction. This attack does not violate
the claimed security of Knudsen-Preneel construc-
tion, though it will help readers to understand the
integral of the attack which should be considered.
Finally the conclusion of this paper is presented in
Sect. 6.

2 Knudsen-Preneel construc-
tion of a hash function

Knudsen and Preneel proposed how to construct
a hash function from ideal compression functions
(CFs), whose security (second pre-image resistance
(SPR) and collision resistance (CR)) is really better
than that of underlying CFs [6]. In this section, we
introduce their construction.

2.1 Preliminaries

Before starting discussion we define terms and no-
tations used in this paper.

Let m be the output length (hash length) of the
underlying hash function h. Subscript j is accom-
panied and denoted by hj if it is necessary to dis-
tinguish plural distinct CFs. For simplify the dis-
cussion let the input length of the CF h be multiple
of hash length and let the multiple be t + 1.

h : {0, 1}tm × {0, 1}m → {0, 1}m.

The first input of tm bits is the message input and
the second input of m bits is the hash input. Es-
sentially it is not necessary to divide the input of
a CF into two distinct inputs: the hash input and
the message input. But for convenience the notation
above is used throughout this paper. The message
input and the hash input are denoted by Mi and Hi

respectively.

Definition 1 (Multiple Construction) Let
hi(·, ·) be ideal CFs and they are independent each
other. Our target is multiple construction of CF
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defined by:

H1
i = h1(X1

i , Y 1
i ),

H2
i = h2(X2

i , Y 2
i ),

· · ·
Hn

i = hn(Xn
i , Y n

i ),

where Xj
i , Y j

i are linear combinations of Hj
i−1 and

M j′
i .

We call hj subfunctions (SCFs) of the multiple
construction.

2.2 Security assumptions

Let H1
i−1, . . . , H

n
i−1, M1

i , . . . , Mr
i and H ′1

i−1, . . .,
H ′n

i−1, M ′1
i , . . . , M

′r
i be the two distinct input to

a multiple construction of CFs. Active inputs are
defined as a set of pairs Hj

i−1 and H ′j
i−1 (or M j

i

and M ′j
i ) such that Hj

i−1 6= H ′j
i−1 (M j

i 6= M ′j
i ). A

CF hj is called active if at least one of the input is
active.

A set of CFs hi1(Xi1 , Yi1), . . . , his
(Xis

, Yis
) can

be attacked independently if for all j ∈ {1, . . . , s} it
holds that: for all values of the input blocks affecting
(Xij

, Yij
) to hij

the arguments (Xik
, Yik

) are fixed
for k ∈ {1, . . . , j − 1, j + 1, . . . , s}.

Under the notations defined above we give the fol-
lowing assumption (this assumption is the quotation
from [6] for the preciseness).

Assumption 1
1. The underlying CFs hi are ideal functions.

2. What a collision for the CF of a multiple scheme
has been found means it is found simultane-
ously for underlying SCFs h1, . . . , hn.

2.3 Theorems of [6]

Theorem 1 ([6] Theorem 3) If there exists an
[n, k, d] linear code over GF(22) of length n, di-
mension k, and minimum distance d, with 2k > n,
for m À log2 n, then there exists a parallel hash
function based on an ideal compression function

h : {0, 1}m × {0, 1}m → {0, 1}m, for which find-
ing a collision for the compression function requires
at least 2(d−1)m/2 operations.

We follow a part of the proof because it includes
the construction.

The CF consists of n different SCFs hi with
1 ≤ i ≤ n. The input to the CF consists of 2k m-bit
blocks: the n hash blocks H1

i−1, . . . , H
n
i−1 (the out-

put of the n subfunctions of the previous iteration)
and the r message blocks M1

i , . . . , Mr
i . Note that

r = 2k−n > 0 is the necessary condition for the CF
to be a compression function, i.e., the input length
is larger than the output length.

In Knudsen-Preneel construction firstly 2k m-bit
is transformed into the concatenation of km ele-
ments of GF(22). For example j-th bits of H1

i−1

and H2
i−1 is treated as an element of GF(22). These

km elements of GF(22) is mapped to nm elements
of GF(22) by [n, k, d] code over GF(22). These two
pairs of two bits are separated into two distinct in-
puts of hj . The hash value of the scheme is defined
by the concatenation of the output Hj

i of all SCFs
hj , i.e., H1

i ||H2
i || · · · ||Hn

i .
This construction bases its security on the basic

property of [n, k, d] linear code. An arbitrary input
differential has an influence on at least d − 1 SCFs
because the minimum distance of the code is d. In
other word at least d − 1 SCFs are active so that
Assumption 1 guarantees that more than 2(d−1)m/2

calculations are needed to find a collision.
A theorem of the same kind is approved for arbi-

trary SCFs.

Theorem 2 ([6] Theorem 4) Let b be a divisor
of m. If there exists an [n, k, d] linear code over
GF(2(t+1)b) of length n, dimension k, and minimum
distance d, with (t + 1)k > n, for m À log2 n, then
there exists a parallel hash function based on an
ideal compression function h : {0, 1}tm × {0, 1}m →
{0, 1}m, for which finding a collision for the com-
pression function requires at least 2(d−1)m/2 opera-
tions.

The construction and the proof of the CF in The-
orem 2 is given in almost the same manner as in
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Theorem 1. Please refer [6] if the original descrip-
tions and more detailed proofs of the theorems are
needed.

We now call the hash functions of Theorem 1
and 2 as Knudsen-Preneel compression functions
(KPCFs).

3 Generic attack (Inverse and
collide)

[6] shows not only the construction and the secu-
rity proof but also the claimed security is tight both
for one-wayness and collision resistance. In this sec-
tion the generic collision attack against KPCFs pre-
sented in [6] is introduced.

3.1 The attack

Definition 2 multi-collision is a input set which
leads same a hash value:

Sy ⊂ {x ∈ D|H(x) = y}.

In other words Sy is a subset of the inverse image of
y.

Proposition 1 ([6] Proposition 4) Let H be a
KPCF with [n, k, d] linear code L over GF(2(t+1)b)
where (t + 1)k > n. Then collisions for H can be
found in

max
(
2m(n−k/2), k · 2 (n+km)

2k

)

operations. The attack requires the storage of about
(t + 1)k2(n−k)m/2k m-bit values.

For the simplicity we assume that the code L is of
the normal form. I.e., the hash value of the KPCF
H is calculated as follows:

Hj
i = hj(M

t(j−1)+1
i , . . . , M tj

i ,Hj
i−1) 1 ≤ j ≤ k,

Hj
i = hj(Lj(Mi,Hi−1)) k + 1 ≤ j ≤ n.

It is clear that h1, . . . , hk can be attacked indepen-
dently.

Algorithm 1 Generic attack on a KPCF [6]
Step 1. Calculate multi-collisions S1, . . . , Sk for

each SCFs h1, . . . , hk.
Step 2. Search for a collision pair of n − k SCFs

hk+1, . . . , hn simultaneously by birthday attack
with the input taken from S = S1 × · · · × Sk.

Algorithm 1 shows the outline of generic attack
on KPCFs. In the generic attack firstly the attacker
generates a set of multi-collision Sj for each SCFs
hj with 1 ≤ j ≤ k. Secondly he searches for a colli-
sion for hk+1, . . . , hn simultaneously with elements
of S = S1 × · · · × Sk. Any two elements of S lead
same output for h1, . . . , hk so that a collision pair
for SCFs hk+1, . . . , hn collides on all SCFs.

3.2 Complexity of the attack

By Assumption 1 it is necessary to search for a
collision for SCFs hk+1, . . . , hn simultaneously in
Step 2 so that the input set S must include more
than 2(n−k)m/2 elements. The sufficient condition
for the number of the element of Sj is (#S)1/k =
2(n−k)m/2k for each Sj which is the multi-collision
for SCF hj .

As a result, the calculation complexity of
Step 1 for collecting multi-collision for h1, . . . , hk

is 2(n−k)m/2k · 2m = 2(n+k)m/2k hash calculations.
In the Step 2 2(n−k)m/2 hash calculations is neces-
sary to find a collision for n− k SCFs hk+1, . . . , hn

simultaneously.

4 Differential attack

In this section, we show an attack on KPCF which
is a counter example for Theorem 1. It is just a
differential attack. For a simple discussion, we as-
sume k > n − k. Note that this assumption holds
for all linear codes applied in Theorem 1 because
2k − n > 0 is satisfied.

Let h : {0, 1}tm×{0, 1}m → {0, 1}m be a SCF and
L be an [n, k, d] linear code over GF(2t+1). An input
to L is denoted by X = (X1, . . . , Xk) and the cor-
responding output is denoted by Y = (Y1, . . . , Yn)
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Algorithm 2 Differential attack on a KPCF
Step 1. Consider a system of linear equations

Li(X1, . . . , Xk) = 0, k + 1 ≤ i ≤ n. (3)

Because of the assumption k > n−k, this system
has a non-trivial solution ∆ = (∆1, . . . ,∆k). Fix
the solution ∆, then the encoded differential is
L(∆) = (∆1, . . . ,∆k, 0, . . . , 0).

Step 2. For each SCF hi (1 ≤ i ≤ k), apply dif-
ferential attack using differential ∆i. In other
words, calculate hash values of X and X ⊕ ∆i

with the fixed ∆i and variable Xs until hi(X)
and hi(X ⊕∆i) collide. Denote the collision pair
of hi by (Ai, Ai ⊕∆i).

Step 3. Let A is the concatenated vector consisting
of Ai, i.e., A = (A1, . . . , Ak). Then A and A⊕∆)
are colliding pair.

where Xi and Yi are elements of GF(2t+1)m. Then
the encoding of L is described as follows:

Yi = Li(X1, . . . , Xk), 1 ≤ i ≤ n. (1)

We can assume that

Li(X1, . . . , Xk) = Xi, 1 ≤ i ≤ k. (2)

4.1 The attack

Algorithm 2 shows the process of differential at-
tack on KPCFs for t = 1. The step 3 holds basing
on the properties of A and ∆ as follows:

KPCF (A⊕∆)
= (h1 ◦ L1(A⊕∆), . . . , hk ◦ Lk(A⊕∆),

hk+1 ◦ Lk+1(A⊕∆), . . . , hn ◦ Ln(A⊕∆))
= (h1(A1 ⊕∆1), . . . , hk(Ak ⊕∆k),

hk+1(Lk+1(A)⊕ Lk+1(∆)),
. . . , hn(Ln(A)⊕ Ln(∆)))

= (h1(A1), . . . , hk(Ak),
hk+1 ◦ Lk+1(A), . . . , hn ◦ Ln(A))

= KPCF (A). (4)

Note that k > n−k is not always satisfied if t > 1,
so that it is possible that this attack cannot be ap-
plied to KPCFs with t > 1. Let ∆ = (∆1, . . . ,∆k)
be a solution of Eq. 3. If k > n − k is not satis-
fied the input of hk+1, . . . , hn−k cannot be handled
independently so that the attack is not applicable.
It may be fortunate for KPCFs that the standard
block ciphers DES and AES support double length
key size.

Contrarily the attack is applicable if k > n− k is
satisfied and is independent from t. Therefore it is
desirable carefully to choose the parameter k, n and
t (and the code) such that t > 1, 2k ≤ n < (t + 1)k.

4.2 Complexity of the attack

Now we estimate the computational complexity of
this attack.

The complexity of the first step is negligible. We
have to calculate about 2m input pairs to find a col-
lision for each SCF hi for 1 ≤ i ≤ k in the second
step. Note that we can attack distinct SCFs inde-
pendently because we can assume that only Xi is
the input of hi for 1 ≤ i ≤ k. Hence k · 2m opera-
tions of SCFs is required for the second step. The
third step is costless.

Therefore the total complexity of this attack is
nearly equal to that of the second step, about k ·2m.
This violates the security bound of Theorem 1 and
2 when d > 3.

5 Yet another differential at-
tack

In this section we present another differential attack,
which is combined with a birthday attack. It is not
so effective as other proposed attacks, however it
appeals that a combination of differential attacks
and birthday attacks is somehow possible.

5.1 Differential birthday attack

The first idea is how to choose a set whose any two
elements have a desirable differential property. Let
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x be an element of GF(2t+1)k such that the Ham-
ming weight of L(x) is equal to d. Then

∆(x) := {ax|a ∈ GF(2(t+1))}

is a set satisfying the desirable property: for all
x, y ∈ ∆(x) x⊕ y is a element of ∆(x).

If t + 1 > d/2, we can apply birthday attacks to
d SCFs. Note that attacks must be done simultane-
ously because all elements of ∆(x) is a multiple of
x. The total complexity of this attack is 2dm/2.

If t is not sufficiently large to satisfy above condi-
tion, we can extend the differential vector space ∆
by relaxing the condition. In fact, ∆(x) can be rep-
resented by solutions of a system of linear equations.
Deleting some equations from the system relaxes the
condition, so that the resultant vector space ∆ con-
sisting of solutions of remaining equations becomes
larger. On the other hand, the maximum Hamming
weight of the differences (elements of ∆) becomes
larger too, as some linear equations are not satisfied
any more.

5.2 Calculation complexity of DBA

If we delete c linear equations over GF(2t+1),
max{ham(δ)|δ ∈ ∆} = d+c. Besides, the dimension
of the vector space ∆ over GF(2) is (t + 1)(c + 1).
Hence, if we choose sufficiently large c such that
(t+1)(c+1) ≥ (d+ c)/2, a birthday attack on d+ c
active SCFs is applicable. In this case, the complex-
ity of the attack is 2(d+c)m/2.

6 Conclusion

In this paper two attacks on a Knudsen-Preneel con-
struction of a hash function are proposed. One can
violates the security bound claimed in the proposal
paper [6] if t = 1 and d > 3. For the case t > 1,
the condition for the security of Knudsen-Preneel
construction to be decreased is not clear as the case
t = 1.
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