
Multi-Property-Preserving Hash
Domain Extension:
The EMD Transform

Mihir Bellare and Thomas Ristenpart
UCSD Security and Cryptography Lab

NIST Second Cryptographic Hash Workshop
August, 2006

To appear in Asiacrypt 2006

and hash functions were keyed to build
message authentication codes... [BCK96,Be06]

then used heuristically to
instantiate random oracles... [BeR93]

Expanding utility of hash functions

and now-a-days get used for
numerous disparate applications.

In the beginning, hash functions were
designed for use in

digital signature schemes...
[Riv90]

Hash functions are used like
“Swiss Army Knives”

Whether hash function designers like it or not, hash
functions are (and will continue to be) used in

numerous different ways.

So what should hash function designers do?

Design hash functions to be
like

“Swiss Army Knives”

The goal:

Build hash functions to be secure for
as many applications as

possible

Current design paradigm insufficient

1) Compression function f

2) Compression function is
iterated using MD w/
strengthening

M0 M1 |M|

IV f f f Hf(M)

All in-use hash functions use MD w/str.
because:

f is CR⇒ Hf is CR

But CR does not support usage for many settings!

Building stronger hash functions

• Point out limitations of a natural approach for
designing strong hash functions, due to [CDMP05]

• Introduce a new design approach which utilizes
multi-property-preserving (MPP) transforms

• Describe a provably-secure MPP transform, EMD,
which can be used to build “Swiss Army Knives”

Before After

A newer approach

[CDMP05] introduced new design paradigm for hash
functions:

2) Build domain extension transform H such
that:

f ≈ RO ⇒ Hf≈ RO
“PRO” “PRO-Pr”

f

Great benefit: directly supports usage of hash functions for
instantiating random oracles by fixing a previously-existing gap

4 transforms: [CDMP05] give transforms to enable this
approach

1) Assume compression function
is a random oracle (RO)

A newer approach

[CDMP05] introduced new design paradigm for hash
functions:

1) Assume compression function
is a random oracle (RO)

2) Build domain extension transform H such
that:

f ≈ RO ⇒ Hf≈ RO
“PRO” “PRO-Pr”

f

Behaving like a RO seems very strong...
is this all we need to build “Swiss Army Knives”?

No, security guarantees worse for most applications!

f ≈ RO ⇒ Hf≈ RO

Limitations of PRO-Pr approach

Hf

PRO-Pr
approach

PRO-Pr approach great for building
hash functions to use for instantiating RO’s

What about other settings?

?
Resulting hash function is
trivially CR, easily keyed to
become PRF, etc....

But: only under assumption
that f is a PRO, which it is
provably not! [CGH04]

f ≈ RO ⇒ Hf≈ RO

Resulting hash function is
trivially CR, easily keyed to
become PRF, etc....

Limitations of PRO-Pr approach

Hf

PRO-Pr
approach

PRO-Pr, by itself, gives worse guarantee
for standard model properties!

?

But: only under assumption
that f is a PRO, which it is
provably not! [CGH04]

f ≈ RO ⇒ Hf≈ RO

Resulting hash function is
trivially CR, easily keyed to
become PRF, etc....

Limitations of PRO-Pr approach

Hf

PRO-Pr
approach ?

f is CR⇒ Hf is CRMD w/str
approach

compared to...

Hash functions built using H that is only PRO-Pr give
worse security guarantee than MD w/str

Limitations of PRO-Pr approach (cont.)

Hf

(Free) Translation: the [CDMP05] design approach
results in hash functions which have worse security
guarantees for applications beyond instantiating a RO

In fact: the 4 proposed transforms in [CDMP05] do
not give guarantees for CR and (3 of the them) do
not give guarantees for being a PRF (under standard
assumptions)

The problem is focusing only on PRO-Pr, and not
explicitly including more standard preservation goals

Our approach: use MPP transforms
1) Construct compression function
that is CR, “behaves like a RO”, and
is a good PRF (when keyed)

2) Build domain extension transform H such
that:

f is CR⇒ Hf is CR

f

f is a PRF⇒ Hf is a PRF
f ≈ RO ⇒ Hf≈ RO

Note that we include PRO-Pr, because
it’s important for instantiating ROs.

We call H a multi-property-preserving (MPP)

(CR-Pr)
(PRO-Pr)
(PRF-Pr)

Usage Assumption on f Hash function

digital signatures collision-resistance Hf

instantiating RO’s “behaves like a RO” Hf

message
authentication,
key derivation

PRF Hf

MPP approach results in
“Swiss Army Knife”

Build a single hash function Hf via the MPP approach and...

Minimal set of properties ... perhaps more?

Building an MPP transform
Unfortunately, the [CDMP05] transforms, as specified,
are not MPP:

Prefix-free MD: specific prefix-free encodings give
CR-Pr, and all prefix-free encodings give PRF-Pr
[BCK96], but has other drawbacks (as described in
[CDMP05])

Other 3 transforms: omit strengthening, not CR-Pr,
and unclear whether PRF-Pr

Instead of these...build a new transform that combines
techniques for preserving CR, PRO, and PRF

The EMD transform

IV1

IV2

PRF-Pr

K1

K2

ff f

M1 M2 M3

f
||

M4 || |M|

Similar to NMAC in design
Provably...

MD
strengthening

CR-Pr

enveloping

domain separation
(IV1 IV2)!=

PRO-Pr
Slightly more efficient than [CDMP05] transforms

Transform CR-Pr PRO-Pr PRF-Pr Source

Plain MD [M89,D89]

Strengthened MD [M89,D89]

Prefix-free [CDMP05]

Chop solution [CDMP05]

HMAC
construction

[CDMP05]

NMAC
construction

[CDMP05]

EMD [BeRi06]

?

?

?

Summary

Before After

• Motivated developing stronger hash functions,
with broader security goals

• Pointed out insufficiency of [CDMP05] approach
for building stronger hash functions

• Proposed the multi-property-preserving
approach

• Introduced a proven MPP transform, EMD

Thank you!

tristenp@cs.ucsd.edu

Before After

