
Multicollision Attacks on Some Generalized Sequential Hash

Functions

M. Nandi and D. R. Stinson
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario N2L 3G1, Canada

{m2nandi, dstinson}@cs.uwaterloo.ca
May 12, 2006

Abstract

A multicollision for a function is a set of inputs whose outputs are all identical. A. Joux
showed multicollision attacks on the classical iterated hash function. He also showed how these
multicollision attacks can be used to get a collision attack on a concatenated hash function.
In this paper, we study multicollision attacks in a more general class of hash functions which
we term “generalized sequential hash functions”. We show that multicollision attacks exist for
this class of hash functions provided that every message block is used at most twice in the
computation of the message digest.

1 Introduction

In this paper, we discuss multicollision attacks on generalized sequential hash functions (a precise
definition of this class of hash functions will be given in Section 3). A multicollision is a generalized
notion of collision on a function. A collision on a function g : X → Y is a doubleton subset
{x, y} ⊆ X such that g(x) = g(y). For an integer r ≥ 2, an r-way collision (or r-multicollision) on
a function, g(·), is an r-subset {x1, . . . , xr} ⊆ X such that g(x1) = g(x2) = . . . = g(xr) = z (say).
The common output value, z, is known as the collision value for this r-way collision set. An r-way
collision or r-multicollision attack is an algorithm which finds an r-multicollision set with some
non-negligible probability.

The birthday attack for r-way collisions has time complexity Θ(|Y |(r−1)/r). When r = 2, the
time complexity for finding a collision is Θ(|Y |1/2). The time complexity of an attack algorithm is
usually proportional to the number of computations of the underlying function, g, required to get
a multicollision set. From now on, we will use the word “complexity” to mean time complexity, as
measured by the number of computations of the underlying function.

A classical iterated hash function [4] [18], H : {0, 1}∗ → {0, 1}n, is based on a compression
function, f : {0, 1}n × {0, 1}n′ → {0, 1}n. Here, we compute the value of H in the following way;

1. Given a message, we first apply some good padding rule, which includes some representation
of the length of the message, so that the length of the padded input becomes a multiple of
n′ (see [4], [17] and [18] for more details). To analyze the hash function in a simpler way,

1

we will usually ignore the padding rule. For example, a padding rule is irrelevant if we are
concerned with messages of some fixed length.

2. Let M = m1 ‖ · · · ‖ m` be a padded message1 with |mi| = n′ for 1 ≤ i ≤ `, and let h0 be
some fixed n-bit initial value. Then the classical iterated hash function, H, based on the
compression function f and the initial value h0, is defined as follows: H(M) = hl, where
hi = f(hi−1,mi), 1 ≤ i ≤ `. For each 1 ≤ i < `, hi is known as an intermediate hash value,
and H(M) is the output hash value (also known as a message digest).

The above-described method is the most frequently used technique for the design of practical
hash functions.

Recently, A. Joux [12] found an algorithm to construct a 2r-multicollision set on a classical
iterated hash function, having time complexity O(r 2n/2), which is a considerable improvement
over the birthday attack (see Theorem 2.2). This multicollision attack can be considered as a
weakness of the iterated hash function design because of the following reasons:

1. Joux also showed how the multicollision attack can be used to construct a collision attack,
which is better than the birthday attack, on the concatenated hash function H ‖ G where H
is the classical hash function and G is any hash function.

2. There are some other practical applications where multicollision secure hash functions are
required. These include the micropayment scheme Micromint [22], the identification scheme
of Girault and Stern [8], the signature scheme of Brickell et al [2], etc.

3. Multicollision secure hash function design is an interesting fundamental question, because a
function having an efficient multicollision attack gives evidence of the non-randomness of the
function.

1.1 Our Contribution and Related Work

In light of the above discussion, it is an interesting question to find a good design technique for hash
functions that are secure against multicollision attacks. In this paper, we provide some negative
answers to this question. We study a certain generalization of the classical iterated hash function
in which every message block is used up to two times in the computation of a message digest.
This generalization is a natural way to attempt to prevent Joux’s attack from succeeding, and it is
therefore worthwhile to study this approach in detail. Unfortunately, we show that these generalized
sequential hash functions also have efficient multicollision attacks. We find 2r-multicollision attacks
with expected complexity O(r2 ln r(n+ ln ln r)2n/2). Thus, we rule out a natural and large class of
hash functions as candidates for multicollision secure hash functions.

The attacks presented in this paper were first described in a more informal way in the PhD
thesis of the first author [19] and in the unpublished manuscript [20]. In the current paper, we are
presenting complete descriptions of the attacks as well as precise complexity analyses.

In [19] and [20], similar attacks on so-called “tree-based hash functions” were also pointed out.
The attacks assumed that every message block is used at most twice (similar to the assumption we
make regarding generalized sequential hash functions). Recently, our attacks were extended and
generalized by Hoch and Shamir [11]. Their paper considers generalized sequential or tree-based

1Sometimes we may write M as an `-tuple, i.e., M = (m1, . . . , m`).

hash functions that have a fixed expansion rate, which indicates the maximum number of times a
message block is processed in the evaluation of a message digest (our attacks concern hash functions
with expansion rate 2).

1.2 Organization of Our Paper

In Section 2 introduction birthday attacks, Joux’s attack and its applications. In Section 3, we
provide a definition of a general class of iterated hash functions. The “generalized sequential hash
functions” we study in this paper are a special case of this definition. Section 4 defines some useful
terminology and results on sequences and partial orders. Then, in Section 5, we describe our attacks
and provide a detailed complexity analysis. Finally, Section 6 is a brief conclusion.

2 Preliminaries

In this section, we give a brief introduction to the birthday attack, which is the basis for the attacks
to be used throughout this paper. We also state some recent results on multicollision attacks which
motivate the rest of the paper. Namely, we discuss Joux’s multicollision attack on classical iterated
hash functions. Finally we give some simple but important applications of multicollision attacks.

2.1 The Birthday Attack

A hash function usually has two main components: a compression function, f : {0, 1}n×{0, 1}n′ →
{0, 1}n, and a method to extend the domain of the compression function into {0, 1}∗. The second
component is also known as the “design of iteration” as we generally iterate the compression
function several times. Throughout this paper, we consider only attacks which treat the underlying
compression function, f , as a black-box. Thus, the attacker is not exploring any internal structure
of f . The attacker can only make some queries to the function f , and, based on the responses of
the queries, he finally outputs some value or values. Here a query denotes an input to f , say x, and
the response denotes the output, y = f(x). This type of attack can be applied to any compression
function, and hence it mainly points out the security of the design of iteration.

We recall that the complexity of a r-multicollision attack algorithm is the number of queries of
f required to get a r-multicollision. A natural (and the most popular) attack is the birthday attack.
It is well-known that the standard birthday attack (which finds a 2-way collision) has complexity
Θ(2n/2) when message digests are n bits in length. In a birthday attack on a function g : X → Y ,
we assume that the function g is a random oracle; i.e., every output value g(x) is chosen uniformly
at random from Y . Random oracles are the usual model for hash functions which can be accessed
a black-box manner.

For the standard birthday attack, we will make use of the following bound (see [1, 17, 25, 26]
for a more detailed discussion).

Theorem 2.1. (Complexity of the Standard Birthday Attack) For a random oracle g :
X → {0, 1}n, the birthday attack with complexity q finds a 2-way collision with probability roughly
equal to 1− e−q2/2n+1

.

The following algorithm describes the generalized birthday attack of complexity q for (possibly)
finding an r-multicollision of the function g, based on making q queries to the function g.

Generalized Birthday Attack
Input: A random oracle g : X → {0, 1}n; complexity q; and desired

multicollision size r.
1. Choose x1, . . . , xq uniformly at random from the domain X

and compute yi = g(xi) for 1 ≤ i ≤ q.
2. If there is a subset C ⊆ {x1, . . . , xq} of size r such that C is

an r-way multicollision subset for the function g, then return
C. Otherwise return the output “failure”.

We note that the standard birthday attack is just the special case r = 2 of the generalized birthday
attack. The next theorem gives an estimate of the complexity of the generalized birthday attack
in finding an r-multicollision with some specified probability p.

Theorem 2.2. (Complexity of the Generalized Birthday Attack)
For a random oracle g : X → {0, 1}n, the birthday attack with complexity q finds an r-way

collision with probability p provided that q ≈ (r!)1/r 2n(r−1)/r (ln(1/(1 − p)))1/r. For fixed p, the
complexity is Θ(r 2n(r−1)/r). For fixed p and r, the complexity is Θ(2n(r−1)/r).

Proof. We use an estimate given by Diaconis and Mosteller [6]. They state that the generalized
birthday attack having complexity q finds an r-way collision with probability p, where

q e−q/(r2n)

(
1− q

(r + 1)2n

)−1/r

≈
(

2n(r−1)r! ln
(

1
1− p

))1/r

. (1)

For values of n and r of cryptographic interest, the left side of (1) is essentially equal to q. Using
the facts that (r!)1/r is θ(r) and limr→∞(ln(1/(1− p)))1/r = 1, the stated results follow.

2.2 Joux’s Multicollision Attack

In a recent paper by Joux [12], it was shown that there is a 2r-way collision attack for the classical
iterated hash function based on a compression function, f : {0, 1}n+n′ → {0, 1}n, where the attack
has complexity O(r 2n/2). This complexity is much less than the complexity for the generalized
birthday attack (see Theorem 2.2).

Here is the basic idea of Joux’s attack. Consider the set of n-tuples {0, 1}n. We use the notation
h

m−→ h′ (a labeled arc) to mean f(h,m) = h′, where |h| = |h′| = n and |m| = n′. The strategy of
Joux’s attack is to first find r successive collisions by performing r successive birthday attacks, as
follows:

h0
m1

1−−→ h1 and h0
m2

1−−→ h1 for some h1, where m1
1 6= m2

1

h1
m1

2−−→ h2 and h1
m2

2−−→ h2 for some h2, where m1
2 6= m2

2
...

hr−1
m1

r−−→ hr and hr−1
m2

r−−→ hr for some hr, where m1
r 6= m2

r.

In other words, for 1 ≤ i ≤ r, we apply a birthday attack to find m1
i 6= m2

i such that

f(hi−1,m
1
i) = f(hi−1, m

2
i) = hi,

for some hi. Then the set

{m1
1,m

2
1} × {m1

2,m
2
2} × · · · × {m1

r, m
2
r}

is a 2r-way collision set.
Of course, the birthday attack is itself a probabilistic attack. From Theorem 2.1, we see that each

birthday attack succeeds with probability approximately equal to 0.4 and therefore the expected
number of applications of each birthday attack is about 2.5. We do not carry out the ith birthday
attack until the (i − 1)st attack has succeeded. Therefore the total expected number of birthday
attacks required in Joux’s attack is about 2.5r, which is just O(r). The complexity of each birthday
attack is 2n/2, so the overall expected complexity of Joux’s attack is 2.5r 2n/2, which is O(r 2n/2).

2.3 Applications of Multicollision Attacks

The birthday attack is feasible for small sized output hash values. To make the birthday attack
infeasible, one simply specifies a large output hash value. There are many approaches of designing
hash functions having large output hash values based on secure block ciphers; see [9], [10], [15], [14],
[21], [24]. However, most of these designs were proven to be insecure; see [9], [15] [14], [21], [24].
Recently, Hirose [10] designed secure double length hash functions based on secure block ciphers.
But the efficiency of the design is fairly low.

A natural and efficient approach to produce large output hash values is the concatenation of
several smaller output hash values. For example, given two classical iterated hash functions, H and
G, one can define a hash function H(M) ‖ G(M). This idea has been frequently used because it is
efficient and simple to implement. However, due to the attacks of Joux [12], there exists a collision
attack that is more efficient than than the birthday attack. The complexity of the attack is roughly
the maximum of the complexity of the multicollision birthday attack on H and the complexity of
the standard birthday attack on G.

We briefly describe the attack (see [12] for more details). Let H and G have output hash values
of nH and nG bits in length, respectively.

1. By using Joux’s multicollision attack, find 2nG/2 messages which have common output hash
value (say h∗) on H.

2. Find two messages, say M and N where M 6= N , which are members of the set of 2nG/2

messages found in step 1, such that they have same output hash value (say g∗) on G. Note
that we expect to be able to find a collision on an nG-bit function from a set of 2nG/2 messages
using the standard birthday attack.

Thus, we have H(M) ‖ G(M) = H(N) ‖ G(N) = h∗ ‖ g∗. The overall complexity of this attack
is O(nG 2nH/2 + 2nG/2). Note that we only assume that H is a classical iterated hash function; G
can be any hash function at all.

Remark 2.1. As mentioned previously, we ignore the padding that includes the binary represen-
tation of the length of the inputs. Note that, even if we included the padding, it does not affect
the above attack, as the multicollision sets consist of messages of equal length.

3 A General Class of Hash Functions

We have seen in Section 2.2 that the classical iterated hash function is vulnerable to a multicollision
attack. Thus one cannot use the classical iterated hash function if multicollision secure hash
functions are needed. There are some other disadvantages of using classical iterated hash functions.
For example, Kelsey and Schneier [13] have found a generic second preimage attack that is better
than the birthday attack.

To fix all these problems, one can try to use some suitable variant of the classical iterated
hash function. We note that, recently, Lucks [16] designed a hash function that is secure against
multicollision attack. In his construction a “wide” compression function is used. The hash function
is proven to be secure if the compression function and the output transformation are both random
oracles.

Alternatively, one might consider a modification of the classical iterated hash function where
message blocks are used more than once. Another approach is to use a parallel design, which is
characterized by a directed tree; see [23]. One can also combine these two approaches.

These types of generalized hash functions could be considered as an alternative to the classical
iterated hash function since Joux’s attack cannot be applied. For example, the hash function
H ′(M) = H(H(IV, M),M) uses each message block twice. Here H denotes the classical iterated
hash function. We call this hash function a doubly iterated hash function as it uses the classical
iteration technique twice. Obviously, Joux’s attack can not be applied directly to this hash function.
Thus it is worthwhile to study this class in more detail.

Remark 3.1. The idea of “cycling through the message blocks twice” is apparently due to Davies
and Price [5]. Their construction uses an encryption function instead of a compression function, and
it is susceptible to meet-in-the-middle attacks (see [3, 7]). The meet-in-the-middle attacks exploit
the invertibility of an encryption function and cannot be applied in the context we are considering.

We define a very general class of hash functions. Let f : {0, 1}N → {0, 1}n be a compression
function. A hash function H from the class behaves in the following manner:

1. It invokes f a finite number of times.

2. The entire output of any intermediate invocation (not the final invocation) is fed into the
input of other invocations of f .

3. Each bit of the message, M , is fed into at least one invocation of f .

4. The output of the final invocation is the output of the hash function, H.

We define a general class D of hash functions satisfying the above conditions. We will assume
that our message has the form M = m1 ‖ · · · ‖ m`, where each mi is a message block that is an
n′-bit string. We also assume that we have a fixed set of initial values, denoted v1, v2, · · · , each of
which is an n-bit string. Every input to f is of the form h ‖ x. Each h is the concatenation of d′

n-bit strings, each of which is a previously computed output of f or an initial value; and each x is
the concatenation of d message blocks. We will require that d′ ≥ 0, d ≥ 0 and n′d + nd′ = N .

Then we can specify the computation of the hash function by a list of triples

L = {(hi, xi, yi) : 1 ≤ i ≤ s},
where the following conditions hold for all i:

1. f(hi ‖ xi) = yi,

2. hi = h1
i ‖ · · · ‖ hd′

i ,

3. hj
i ∈ {v1, v2, . . . } ∪ {y1, . . . , yi−1},

4. xi = x1
i ‖ · · · ‖ xd

i , and

5. xj
i ∈ {m1, . . . , m`}.

Each yi is an intermediate hash value and ys is the output hash value. Note that the values of
d and d′ do not have to be constant; they may depend on i. However, nd + n′d′ = N must always
hold.

3.1 Generalized Sequential Hash Functions

In this paper, we consider a special (but still quite general) subclass of D, which are termed
generalized sequential hash functions and denoted by S. In the class S of generalized sequential
hash functions, we have d = d′ = 1 for all i and N = n′ + n. Define a sequence α = 〈α1, · · · , αs〉
where αi ∈ {1, 2, . . . , `}. Let h1 = v1 (an initial value), hi = yi−1 for all i ≥ 2, and let xi = mαi for
all i ≥ 1. Hence, we can express the computation in the form

hi = f(hi−1,mαi−1), 2 ≤ i ≤ s + 1,

where h1 is an initial value and hs+1 is the final hash value.
We can present this hash function diagrammatically, as follows:

h1
mα1−−−→ h2

mα2−−−→ h3
mα3−−−→ · · · mαs−1−−−−→ hs

mαs−−−→ hs+1.

Note that each message block must be used at least once in the above computation. In the case
of the classical iterated hash function, however, we have αi = i for all i, and s = `. Also, in the
classical iterated hash function, each message block is used exactly once.

To define a hash function with arbitrary domain ({0, 1}N)∗, say H : ({0, 1}N)∗ → {0, 1}n, we
have a sequence of sequences 〈α1, α2, · · · 〉 such that H(M) is defined based on the sequence α`,
where α` contains elements from {1, . . . , `}, whenever M is an `-block message. Also, each sequence
α` should use every element in {1, . . . , `}.

4 Some Terminologies on Sequences and Partial Orders

Consider a fixed, finite sequence α = 〈α1, α2, · · · , αs〉 of symbols, where each symbol is an element
of the symbol set S = {1, . . . , `} and every symbol occurs at least once in the sequence. The length
of the sequence α is s and it is denoted by |α|. The index set of the sequence α is {1, . . . , s}.

For a sequence of distinct indices, i.e., I = 〈i1, . . . , ik〉, α(I) denotes the sequence 〈αi1 , αi2 , . . . , αik〉.
We also write this sequence as α〈i1, . . . , ik〉. The interval [i, j] is defined to be the sequence
〈i, i + 1, . . . , j〉. An initial interval is an interval of the form [1, j]. For 1 ≤ i < j ≤ |α|, we define
α[i, j] = 〈αi, αi+1, . . . , αj〉.

We next define a relation on the symbol set S. For x, y ∈ S, x 6= y, define x ≺ y if every
occurrence of x in α precedes every occurrence of y in α. It is easy to see that the relation “≺” is
antisymmetric and transitive; hence “≺” is a partial order.

Two symbols x 6= y are incomparable with respect to a partial order “≺” on a finite set X if it
is not the case that x ≺ y or y ≺ x. A list of symbols x1, . . . , xd is a chain if x1 ≺ x2 ≺ · · · ≺ xd.
A set of chains is a chain decomposition if the chains are disjoint and their union is X.

Later, we will use the classical result known as Dilworth’s Theorem, which applies to any partial
order.

Theorem 4.1. (Dilworth’s Theorem) Suppose that “≺” is a partial order on a finite set X.
Then the maximum number of mutually incomparable elements in X is equal to the minimum
number of chains in any chain decomposition of (X,≺).

We denote the maximum number of elements in a chain by maxchain(X). For our partial order
defined with respect to a sequence α, this quantity is denoted by maxchain(α). Obviously, if there
are k elements which appear exactly once in the sequence α, then maxchain(α) ≥ k.

We now consider some examples illustrating the above definition and terminologies. Later,
we also show multicollision attacks on the generalized sequential hash functions based on these
sequences.

Example 4.1. Let Ψ(1,`) = 〈1, 2, . . . , `〉 (the sequence for the classical iterated hash function). It
is easy to see that 1 ≺ 2 ≺ · · · ≺ ` and hence maxchain(Ψ(1,`)) = `.

Example 4.2. Let Ψ(2,`) = 〈1, 2, . . . , `, 1, 2, . . . , `〉. The doubly iterated hash function is based on
the sequence Ψ(2,`). It is easy to observe that there is no chain of length two in the sequence Ψ(2,`)

and hence maxchain(Ψ(2,`)) = 1.

Example 4.3. Let Θ` = 〈1, 2, 1, 3, 2, 4, 3, · · · , `− 1, `− 2, `, `− 1, `〉. Thus, for example, we have

Θ3 = 〈1, 2, 1, 3, 2, 3〉,
Θ4 = 〈1, 2, 1, 3, 2, 4, 3, 4〉, and
Θ5 = 〈1, 2, 1, 3, 2, 4, 3, 5, 4, 5〉.

Here, it is easy to see that

maxchain(Θ`) ≥
⌊

` + 1
2

⌋
,

because
1 ≺ 3 ≺ · · · ≺ `

(if ` is odd) or
1 ≺ 3 ≺ · · · ≺ `− 1

(if ` is even) are chains. To prove that these are chains, consider the partition of the index set into
intervals

[1, 3], [4, 7], [8, 11], . . . [2`− 2, 2`].

Assume that ` is odd (the result for even ` can be proved similarly). Now one can see that
1 ∈ Θ`[1, 3], 3 ∈ Θ`[4, 7] , . . . , ` ∈ Θ`[2`− 2, 2`]. These elements do not appear in other intervals.
Thus 1 ≺ 3 ≺ · · · ≺ ` is a chain for the sequence Θ`.

In fact, we have maxchain(Θ`) = b `+1
2 c. This can be proven as follows: For any b `+1

2 c + 1
elements from {1, . . . , `} there are two consecutive symbols (by applying the pigeonhole principle),
say i and i + 1, and hence there is a subsequence 〈i, i + 1, i〉 of Θ`. Thus no b `+1

2 c+ 1 elements can
form a chain.

For a sequence α on symbols {1, . . . , `} and a symbol x ∈ {1, . . . , `} we define

freq(x, α) = |{i : α(i) = x}|.

Sometimes we write this as freq(x) and we call it the frequency of x. This value denotes the number
of times x appears in the sequence α. We also write freq(α) (frequency of the sequence) for the
maximum frequency of any element from the sequence. More precisely,

freq(α) = max{freq(x) : x ∈ {1, . . . , `}}.

Note that, for all 1 ≤ i ≤ `, freq(i, Ψ(2,`)) = 2 and hence freq(i, Θ`) = 2. Thus freq(Ψ(2,`)) = 2
and freq(Θ`) = 2. We will show some multicollision attacks on sequential hash functions based on
sequences whose frequencies are at most two.

5 Multicollision Attacks on Generalized Sequential Hash Func-
tions

For the sake of convenience, we slightly modify the notation used in the definition of the generalized
sequential hash functions. Given a compression function f : {0, 1}n+n′ → {0, 1}n, a fixed initial
value h0, and a sequence α = 〈α1, · · · , αs〉 on symbols {1, . . . , `}, the generalized sequential hash
function based on α is defined to be H(m1 ‖ · · · ‖ m`) = hs, where hi = f(hi−1,mαi) for all i ≥ 1.

We present a 2r-way multicollision attack on the hash function based on a sequence α where
maxchain(α) = r. The complexity of the attack is O(s 2n/2) where s = |α|. In case of the classical
iterated hash function, the corresponding sequence is Ψ(1,`) (see Example 4.1). Here we have
maxchain(Ψ(1,`)) = ` and thus we have a 2`-way multicollision attack with complexity O(` 2n/2).
This is the same as the complexity of Joux’s attack. In fact, we will see that our attack is same as
Joux’s attack in the case of the classical iterated hash function.

The idea of the attack is to first identify message blocks that comprise a chain, and then to find
a sequence of intermediate collisions by varying only those message blocks.

Example 5.1. We present an attack on the hash function based on the sequence

Θ5 = 〈1, 2, 1, 3, 2, 4, 3, 5, 4, 5〉

(see Example 4.3). Here 1 ≺ 3 ≺ 5 is a chain in Θ5. The attack proceeds as follows:

step 1 We first fix the message blocks m2 and m4 by defining their values to be equal to some
arbitrary string IV .

step 2 We use a birthday attack to find m1
1 6= m2

1 such that

f(f(f(h0,m
1
1), IV),m1

1) = f(f(f(h0,m
2
1), IV),m2

1) = h3 for some h3.

step 3 We use a second birthday attack to find m1
3 6= m2

3 such that

f(f(f(f(h3,m
1
3), IV), IV),m1

3) = f(f(f(f(h3, m
2
3), IV), IV),m2

3) = h7 for some h7.

step 4 Finally, we use a third birthday attack to find m1
5 6= m2

5 such that

f(f(f(h7,m
1
5), IV),m1

5) = f(f(f(h7,m
2
5), IV),m2

5) = h10 for some h10.

step 5 Define

Mi =

{
{m1

i , m
2
i } if i ∈ {1, 3, 5}

{IV } if i ∈ {2, 4}.
Then it is easy to see that

C = M1 ×M2 ×M3 ×M4 ×M5 (2)

is a 23-way multicollision set with collision value h10. The complexity of the attack is 10×2n/2,
because |Θ5| = 10.

Recall that the notation h
m−→ h′ means f(h, m) = h′. More generally, given a sequence

m1,m2, . . . , mj we use the notation
h

m1,m2,...,mj−−−−−−−−→ h′

to mean
f · · · (f(f(h,m1),m2), . . .),mj) = h′.

Then steps 2–4 of the attack can be rewritten using this notation, as follows:

h0
m1

1,IV,m1
1−−−−−−→ h3 and h0

m2
1,IV,m2

1−−−−−−→ h3 for some h3, where m1
1 6= m2

1

h3
m1

3,IV,IV,m1
3−−−−−−−−→ h7 and h3

m2
3,IV,IV,m2

3−−−−−−−−→ h7 for some h7, where m1
3 6= m2

3

h7
m1

5,IV,m1
5−−−−−−→ h10 and h7

m2
5,IV,m2

5−−−−−−→ h10 for some h10, where m1
5 6= m2

5.

In general, we have the following multicollision attack on a generalized sequential hash function.
As the proof idea is same as the example given above, we skip the proof. One can see the proof
in [20].

Theorem 5.1. Let H be a hash function based on a sequence α, where maxchain(α) = r. Then
there exists a 2r-way multicollision attack on H with complexity O(s 2n/2), where s = |α|.
Remark 5.1. Note that the above attack reduces to Joux’s attack in the case of the classical
iterated hash function. In this case, 1 ≺ 2 ≺ · · · ≺ ` is a chain and thus we find a collision for each
intermediate hash value by varying each message block. This is what Joux’s attack does.

Remark 5.2. The attack illustrated in Example 5.1 is an application of Theorem 5.1. In this
attack, we have r = 3 and the index set {1, . . . , 10} is partitioned into the three intervals [1, 3],
[4, 7], and [8, 10].

To get a 2r-way collision on the hash function based on the sequence Θ` (see Example 4.3), we
can take ` = 2r − 1; then maxchain(Θ`) = r. By Theorem 5.1, we have a 2r-way collision attack
with complexity O(r 2n/2). However, we cannot apply the same idea to the hash function based
on the sequence Ψ(2,`) because maxchain(Ψ(2,`)) = 1 (see Example 4.2). Here, we have to use a
different multicollision attack.

Example 5.2. We present an attack on the hash function based on the sequence Ψ(2,`). Here are
the steps in the attack:

step 1 Define

t =
n + 1

2
+

ln ln 2r

2 ln 2
.

and let ` = tr. We use Joux’s multicollision attack on the hash function based on the sequence
Ψ(1,`) to find ` pairs,

(m1
1,m

2
1), (m

1
2,m

2
2), · · · , (m1

` ,m
2
`),

such that
f(hi−1, m

1
i) = f(hi−1,m

2
i) = hi,

1 ≤ i ≤ `. Thus we have a 2`-way collision set

C = {m1
1,m

2
1} × {m1

2,m
2
2} × · · · × {m1

` ,m
2
`}

for the hash function based on the sequence Ψ(1,`).

step 2 Next, to get a 2r-way multicollision for the hash function based on the sequence Ψ(2,`), we
search for “intermediate” collisions within the set C using a standard birthday attack. Divide
the index interval [` + 1, 2`] into r consecutive intervals, each consisting of t elements, i.e.,

I1 = [` + 1, ` + t],
I2 = [` + 1 + t, ` + 2t],
...

...
...

Ir = [` + 1 + (r − 1)t, ` + rt].

Write h′0 = h`. Then, for each 1 ≤ i ≤ r, try to find two t-tuples, say M1
i 6= M2

i , from the set

Ci = {m1
(i−1)t+1,m

2
(i−1)t+1} × {m1

(i−1)t+2,m
2
(i−1)t+2} × · · · × {m1

it,m
2
it}

such that

h′i−1

M1
i−−→ h′i and h′i−1

M2
i−−→ h′i for some h′i,

say. If this step fails for any i, we have to return to step 1 and find a new 2`-way collision set
C.

step 3 Provided that the r birthday attacks in step 2 all succeed, it is easy to observe that

C∗ = {M1
1 ,M2

1 } × {M1
2 ,M2

2 } × · · · × {M1
r ,M2

r }
is a multicollision set (of size 2r) for our hash function2.

2This is a slight abuse of notation. Each element in this cartesian product is an r-tuple of t-tuples, whereas what
we really want is the corresponding rt-tuple.

We need to compute the success probability of this attack. Applying Theorem 2.1, each birthday
attack in step 2 succeeds with probability

1− e−(2t)2/2n+1
= 1− e−22t−(n+1)

= 1− e−2
ln ln 2r

ln 2 = 1− 1
2r

.

The probability that all r birthday attacks in step 2 succeed is
(

1− 1
2r

)r

>
1
2
.

Now we can estimate the complexity of the entire attack. The expected complexity of step 1
is 2.5tr 2n/2. The complexity of any given birthday attack in step 2 is analyzed as follows: We
need two queries to f for the two values of the first message block in an interval. Then we need
four queries for the two values of the next message block. Continuing for t message blocks, the
complexity is computed to be at most3

2 + 4 + 8 + · · ·+ 2t = 2(2t − 1).

Then, the complexity of the r birthday attacks in step 2 (assuming they all succeed) is at
most 2r(2t − 1). Since step 2 succeeds with probability 1/2, the overall expected complexity is
upper-bounded by

2× (2.5tr 2n/2 + 2r(2t − 1)).

Using the fact that t is Θ(n + ln ln r) and 2t is Θ(2n/2 ln r), the overall expected complexity is
O(r(n + ln ln r)2n/2 + r ln r 2n/2), which is O(r(n + ln r)2n/2).

Now, we state a theorem which is a generalization of the attack given in Example 5.2. Once
again we skip the proof and one can find the proof in![20].

Theorem 5.2. Suppose that α is a sequence of length s on symbols {1, . . . , `} such that

1. freq(α) ≤ 2, and

2. there exists an initial interval [1, w] of the index set for which α[1, w] contains tr symbols
having frequency 1, where t = (n + 1)/2 + (ln ln 2r)/(2 ln 2).

Then there is a 2r-way collision attack on the hash function based on the sequence α having com-
plexity O(s ln r 2n/2).

So far, we have provided a multicollision attack if the underlying sequence α satisfies certain
conditions. Now we show that appropriate conditions hold for any sequence α (having a sufficient
number of elements) provided that freq(α) ≤ 2.

Theorem 5.3. Let α be a sequence of elements from symbol set S = {1, . . . , `} such that 1 ≤
freq(x, α) ≤ 2 for all x ∈ S. Suppose that ` ≥ uv. Then one of the following holds:

1. maxchain(α) ≥ u, or
3This computation assumes that no collisions occur before the last message block in the given interval. If a collision

occurs earlier, then the complexity is reduced.

2. there exists an initial interval [1, w] of the index set such such that α[1, w] contains at least v
symbols each having frequency 1.

Proof. Let maxchain(α) = u0. If u0 ≥ u, then we’re done, so suppose that u0 < u. Let v0

denote the maximum number of mutually incomparable symbols in S. By Dilworth’s theorem,
there exists a decomposition of S into v0 chains. Every chain contains at most u0 symbols, so
|S| = ` ≤ u0v0 < uv0. Hence, v0 > `/u ≥ v.

Now, let xi1 , . . . , xiv be v mutually incomparable elements. Let the first occurrence of xij be at
position aj of α, for j = 1, . . . , v, where a1 < · · · < av. Recall that every symbol occurs at most
twice in α. It then follows that the second occurrence (if any) of any xij must be after position av

of α (if not, then xij ≺ xiv , a contradiction). Therefore xi1 , . . . , xiv all occur exactly once in the
subsequence α[1, av].

Now we state and prove our main theorem, which demonstrates a multicollision attack for any
generalized sequential hash function with frequency at most two.

Theorem 5.4. Let H be a generalized sequential hash function based on the sequences 〈α1, α2, · · · 〉,
where freq(α`) ≤ 2 for every ` ≥ 1. Then we have a 2r-way collision attack on H having complexity
O(r2 ln r (n + ln ln r)2n/2).

Proof. Let t = (n + 1)/2 + (ln ln 2r)/(2 ln 2) and define ` = r2t. Applying Theorem 5.3, we have
that one of the following holds:

1. maxchain(α`) ≥ r, or

2. there exists an initial interval [1, w] of the index set such such that α[1, w] contains at least
rt symbols each having frequency 1.

In the first case, Theorem 5.1 provides a 2r-way collision attack having complexity O(s 2n/2), where
s = |α`|. But s ≤ 2`, so s is O(r2(n+ln ln r)) and the attack has complexity O(r2 (n+ln ln r)2n/2).

In the second case, we apply Theorem 5.2. Here, the attack has complexity O(s ln r 2n/2),
which is O(r2 ln r (n + ln ln r)2n/2). This complexity exceeds the complexity of case 1, and the
result follows.

6 Conclusion

In this paper, we have defined a natural class of hash functions and we studied their security with
respect to multicollision attacks. We have found efficient multicollision attacks on the generalized
sequential hash functions when the message blocks are processed at most most twice. Hoch and
Shamir [11] recently have found attacks even if the message blocks are used more than twice. It
is an interesting open question to search for hash functions, within the general class we defined in
Section 3, which are secure against multicollision attacks.

Acknowledgements

Research of the second author is supported by NSERC grant RGPIN 203114-02.

References

[1] M. Bellare and T. Kohno. Hash function balance and its impact on birthday attacks. Lecture
Notes in Computer Science 3027 (2004), 401–418 (Eurocrypt 2004).

[2] E. Brickell, D. Pointcheval, S. Vaudenay and M. Yung. Design validations for discrete log-
arithm based signature schemes. Lecture Notes in Computer Science 1751 (2000), 276–292
(PKC 2000).

[3] D. Coppersmith. Another birthday attack. Lecture Notes in Computer Science 218 (1996),
14–17 (CRYPTO ’85).

[4] I. B. Damg̊ard. A design principle for hash functions. Lecture Notes in Computer Science 435
(1990), 416–427 (CRYPTO ’89).

[5] D. W. Davies and W. L. Price. The application of digital signatures based on public key cryp-
tosystems. In Proceedings of the Fifth International Computer Communications Conference,
1980, pp. 525–530.

[6] P. Diaconis and F. Mosteller. Methods for studying coincidences. Journal of the American
Statistical Association 84 (1989), 853–861.

[7] M. Girault, R. Cohen and M. Campana. A generalized birthday attack. Lecture Notes in
Computer Science 330 (1988), 129–157 (EUROCRYPT ’88).

[8] M. Girault and J. Stern. On the length of cryptographic hash-values used in identification
schemes. Lecture Notes in Computer Science 839 (1994), 202–215 (CRYPTO ’94).

[9] M. Hattori, S. Hirose and S. Yoshida. Analysis of double block length hash functions. Lecture
Notes in Computer Science 2898 (2003), 290–302 (Cryptography and Coding 2003).

[10] S. Hirose. Provably secure double-block-length hash functions in a black-box model. To appear
in Lecture Notes in Computer Science (ICISC 2004).

[11] J. J. Hoch and A. Shamir. Finding multicollisions in iterated concatenated and expanded
hash functions. Preprint.

[12] A. Joux. Multicollisions in iterated hash functions. Application to cascaded constructions.
Lecture Notes in Computer Science 3152 (2004), 306–316 (CRYPTO 2004).

[13] J. Kelsey and B. Schneier. Second preimages on n-bit hash functions for
much less than 2n work. IACR Cryptology ePrint Archive, Report 2004/304,
http://eprint.iacr.org/2004/304.

[14] L. Knudsen, X. Lai and B. Preneel. Attacks on fast double block length hash functions.
Journal of Cryptology 11 (1998), 59–72.

[15] L. Knudsen and B. Preneel. Construction of secure and fast hash functions using nonbinary
error-correcting codes. IEEE Transactions on Information Theory 48 (2002), 2524–2539.

[16] S. Lucks. Design principles for iterated hash functions. IACR Cryptology ePrint Archive,
Report 2004/253, http://eprint.iacr.org/2004/253.

[17] A. J. Menezes, P. van Oorschot and S. A. Vanstone. Handbook of Applied Cryptography, CRC
Press, 1996.

[18] R. Merkle. One way hash functions and DES. Lecture Notes in Computer Science 435 (1990),
428–446 (CRYPTO ’89) .

[19] M. Nandi. Design of Iteration on Hash Functions and its Cryptanalysis. PhD thesis, Indian
Statistical Institute, 2005.

[20] M. Nandi and D. R. Stinson. Multicollision attacks on generalized hash functions. IACR
Cryptology ePrint Archive, report 2004/330, http://eprint.iacr.org/2004/330.

[21] B. Preneel. Analysis and Design of Cryptographic Hash Functions. Doctoral Dissertation,
Katholieke Universiteit Leuven, 1993.

[22] R. Rivest and A. Shamir. PayWord and MicroMint. CryptoBytes 2(1) (1996), 7–11.

[23] P. Sarkar. Domain extender for collision resistant hash functions: improving
upon Merkle-Damg̊ard iteration. IACR Cryptology ePrint Archive, Report 2003/173,
http://eprint.iacr.org/2003/173.

[24] T. Satoh, M. Haga and K. Kurosawa. Towards secure and fast hash functions. IEICE Trans.
Fundamentals, E82-A, no. 1, January, 1999.

[25] D. R. Stinson. Cryptography: Theory and Practice, Second Edition, CRC Press, 2002.

[26] D. R. Stinson. Some observations on the theory of cryptographic hash functions. To appear
in Designs, Codes and Cryptography.

