How to Construct Double-Block-Length Hash Functions

Shoichi Hirose University of Fukui, Japan

24th Aug. 2006

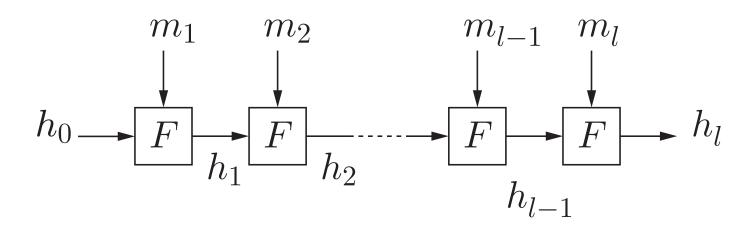
Iterated Hash Function

Compression function

$$F: \{0,1\}^{\ell} \times \{0,1\}^{\ell'} \to \{0,1\}^{\ell}$$

• Initial value $h_0 \in \{0,1\}^{\ell}$

Input $m = (m_1, m_2, \dots, m_l)$, $m_i \in \{0, 1\}^{\ell'}$ for $1 \le i \le l$



$$H(m) = h_l$$

Motivation

How to construct a compression function using a smaller component?

E.g.) Double-block-length (DBL) hash function

- The component is a block cipher.
- output-length = $2 \times \text{block-length}$
- abreast/tandem Davies-Meyer, MDC-2, MDC-4, . . .
- Cf.) Any single-block-length HF with AES is not secure.
 - Output length is 128 bit.
 - Complexity of birthday attack is $O(2^{64})$.

Result

- Some plausible DBL HFs
 - Composed of a smaller compression function
 - * F(x) = (f(x), f(p(x)))
 - p is a permutation satisfying some properties
 - * Optimally collision-resistant (CR) in the random oracle model
 - Composed of a block cipher with key-length > block-length
 - * AES with 192/256-bit key-length
 - * Optimally CR in the ideal cipher model
- A new security notion: Indistinguishability in the iteration

Def. (optimal collision resistance)

Any collision attack is at most as efficient as a birthday attack.

Related Work on Double-Block-Length Hash Function

• Lucks 05

- F(g, h, m) = (f(g, h, m), f(h, g, m))
- Optimally CR if f is a random oracle
- Nandi 05
 - -F(x)=(f(x),f(p(x))), where p is a permutation
 - Optimally CR schemes if f is a random oracle

Other Related Work

Single block-length

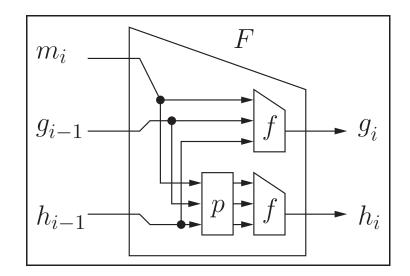
- Preneel, Govaerts and Vandewalle 93
 PGV schemes and their informal security analysis
- Black, Rogaway and Shrimpton 02
 Provable security of PGV schemes in the ideal cipher model

Double block-length

- Satoh, Haga and Kurosawa 99 Attacks against rate-1 HFs with a (n,2n) block cipher
- Hattori, Hirose and Yoshida 03 No optimally CR rate-1 parallel-type CFs with a (n,2n) block cipher

DBL Hash Function Composed of a Smaller Compression Function

- f is a random oracle
- \bullet p is a permutation
 - Both p and p^{-1} are easy
 - $-p \circ p$ is an identity permutation



$$F(x) = (f(x), f(p(x)))$$
$$F(p(x)) = (f(p(x)), f(x))$$

f(x) and f(p(x)) is only used for F(x) and F(p(x)).

We can assume that an adversary asks x and p(x) to f simultaneously.

Collision Resistance

Th. 1 Let $F: \{0,1\}^{2n+b} \to \{0,1\}^{2n}$ and F(x) = (f(x), f(p(x))).

Let H be a hash function composed of F.

Suppose that

- $p(p(\cdot))$ is an identity permutation
- p has no fixed points: $p(x) \neq x$ for $\forall x$

 $\mathbf{Adv}_H^{\mathrm{coll}}(q) \stackrel{\mathrm{def}}{=}$ success prob. of the optimal collision finder for H which asks q pairs of queries to f.

Then, in the random oracle model, $\mathbf{Adv}_H^{\mathrm{coll}}(q) \leq \frac{q}{2^n} + \left(\frac{q}{2^n}\right)^2$.

Note) MD-strengthening is assumed in the analysis.

Proof Sketch

F is $CR \Rightarrow H$ is CR

Two kinds of collisions:

$$\Pr[F(x) = F(x') | x' \neq p(x)]$$

$$= \Pr[f(x) = f(x') \land f(p(x)) = f(p(x'))] = \left(\frac{1}{2^n}\right)^2$$

$$\Pr[F(x) = F(x') | x' = p(x)] = \Pr[f(x) = f(p(x))] = \frac{1}{2^n}$$

The collision finder asks q pairs of queries to f: x_j and $p(x_j)$ for $1 \le j \le q$.

$$\mathbf{Adv}_{H}^{\text{coll}}(q) \le \frac{q}{2^n} + \left(\frac{q}{2^n}\right)^2$$

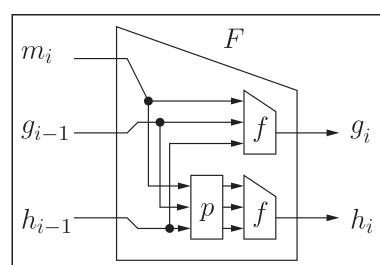
Collision Resistance: A Better Bound

Th. 2 Let H be a hash function composed of $F: \{0,1\}^{2n+b} \to \{0,1\}^{2n}$. Suppose that

- $p(p(\cdot))$ is an identity permutation
- $p(g, h, m) = (p_{cv}(g, h), p_{m}(m))$
 - $p_{\rm cv}$ has no fixed points
 - $-p_{\mathrm{cv}}(g,h) \neq (h,g)$ for $\forall (g,h)$

Then, in the random oracle model,

$$\mathbf{Adv}_{H}^{\text{coll}}(q) \le 3\left(\frac{q}{2^n}\right)^2$$



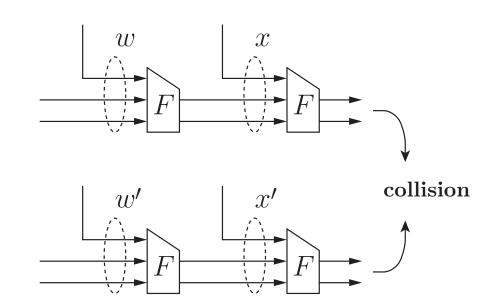
Proof Sketch

Two kinds of collisions:

$$\Pr[F(x) = F(x') | x' \neq p(x)] = \left(\frac{1}{2^n}\right)^2$$

$$\Pr[F(x) = F(x') \mid x' = p(x)] = \frac{1}{2^n}$$

However,



$$F(x) = F(x') \land x' = p(x) \Rightarrow F(w') = p_{cv}(F(w)) \land w' \neq p(w)$$

$$\Pr[F(w') = p_{cv}(F(w)) \mid w' \neq p(w)] = \left(\frac{1}{2^n}\right)^2$$

$$\mathbf{Adv}_{H}^{\text{coll}}(q) \le 3\left(\frac{q}{2^{n}}\right)^{2} = \left(\frac{q}{2^{n}}\right)^{2} + 2\left(\frac{q}{2^{n}}\right)^{2}$$

Th. 1 vs. Th. 2

The difference between the upper bounds is significant.

E.g.)
$$n = 128$$
, $q = 2^{80}$

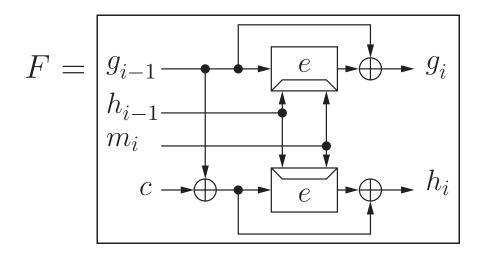
Th. 1
$$\mathbf{Adv}_{H}^{\text{coll}}(q) \leq \frac{q}{2^{n}} + \left(\frac{q}{2^{n}}\right)^{2} \approx 2^{-48}$$

Th. 2
$$\mathbf{Adv}_H^{\text{coll}}(q) \leq 3\left(\frac{q}{2^n}\right)^2 \approx 2^{-94}$$

E.g.) A permutation p satisfying the properties in $\mathbf{Th.}\ \mathbf{2}$

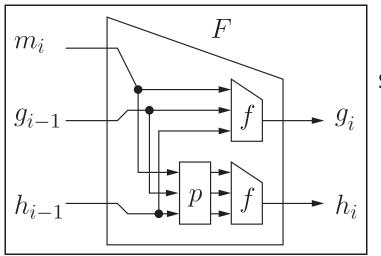
$$p(g,h,m)=(g\oplus c_1,h\oplus c_2,m), \text{ where } c_1\neq c_2$$

DBL Hash Function Composed of a Block Cipher



c is a non-zero constant.

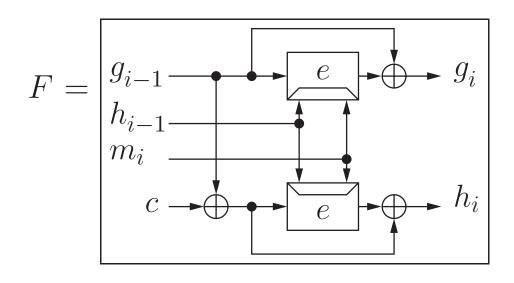
Cf.)



such that
$$f = \begin{bmatrix} h_{i-1} & m_i \\ g_{i-1} & e \end{bmatrix}$$

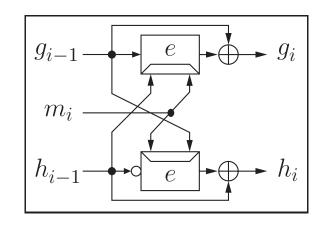
$$p(g, h, m) = (g \oplus c, h, m)$$

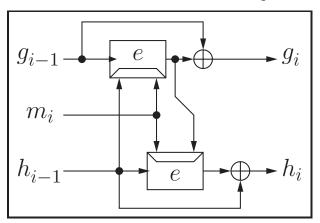
DBL Hash Function Composed of a Block Cipher



- can be constructed using AES with 192/256-bit key
- requires only one key scheduling

F is simpler than abreast Davies-Meyer and tandem Davies-Meyer





Collision Resistance

Th. 3 Let H be a HF composed of $F: \{0,1\}^{2n+b} \to \{0,1\}^{2n}$ such that

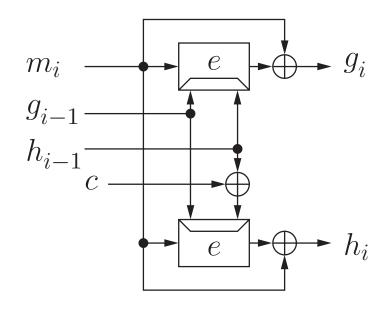
$$F = \begin{bmatrix} g_{i-1} & & e & & g_i \\ h_{i-1} & & & & \\ c & & & e & & h_i \end{bmatrix}$$

 $\mathbf{Adv}_H^{\mathrm{coll}}(q) \stackrel{\mathrm{def}}{=}$ success prob. of the optimal collision finder for H which asks q pairs of queries to (e, e^{-1}) .

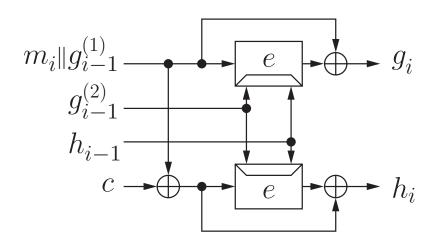
Then, in the ideal cipher model, for $1 \le q \le 2^{n-2}$,

$$\mathbf{Adv}_{H}^{\text{coll}}(q) \le 3 \left(\frac{q}{2^{n-1}}\right)^{2}$$

A Few More Examples of Compression Functions



for AES with 256-bit key

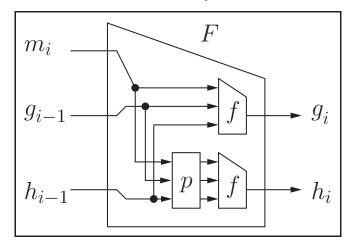


for AES with 192-bit key

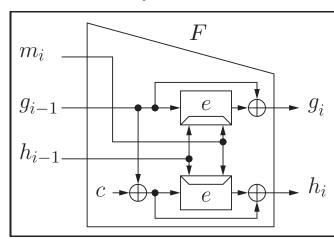
Conclusion

- Some plausible DBL HFs
 - composed of

a smaller compression function or a block cipher



 $p \circ p$ is an identity permutation



key-length > block-length

- optimally collision-resistant
- A new security notion: Indistinguishability in the iteration