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Abstract

In this article, it is discussed how to construct a com-
pression function with 2n-bit output using a com-
ponent function with n-bit output. The compo-
nent function is either a smaller compression func-
tion or a block cipher. Some constructions are pre-
sented which compose collision-resistant hash func-
tions: Any collision-finding attack on them is at most
as efficient as the birthday attack in the random or-
acle model or in the ideal cipher model. A new se-
curity notion is also introduced, which we call indis-
tinguishability in the iteration, with a construction
satisfying the notion.

1 Introduction

A cryptographic hash function is a function which
maps an input of arbitrary length to an output of
fixed length. It satisfies preimage resistance, second-
preimage resistance and collision resistance. It is
one of the most important primitives in cryptogra-
phy [20]. For simplicity, a cryptographic hash func-
tion is called a hash function in this article.

A hash function usually consists of iteration of a
compression function with fixed input/output length.
This type of hash function is called an iterated hash
function. There has been an interest in constructing a
compression function from component functions with
smaller output length. Many schemes have been pre-
sented following the approach [4, 10, 12, 14, 15, 16,
18, 21]. It is typical for constructions using block ci-
phers. For example, suppose that AES is used for
construction. The block length of AES is 128 bits,
and a hash function with 128-bit output is no longer
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secure against the birthday attack. Thus, it is de-
sired to construct a compression function with larger
output length.

In this article, we study how to construct a com-
pression function with 2n-bit output using a compo-
nent function with n-bit output. A hash function
with such a compression function is called a double-
block-length (DBL) hash function (as opposed to a
single-block-length (SBL) hash function, where the
compression function has n-bit output). The com-
ponent function may be either a block cipher or a
smaller compression function.

We first discuss constructions using a smaller com-
pression function. We focus on the constructions
formalized by Nandi [23]. In his formalization,
the compression function is of the form F (x) =
(f(x), f(p(x))), where f is a component compression
function and p is a permutation such that both p
and p−1 are easy to compute. We show that any
collision-finding attack on a hash function with the
compression function F is at most as efficient as the
birthday attack if f is a random oracle and p satisfies
some properties. Our properties for p are easy to be
satisfied; for example, they are satisfied by the per-
mutation p(x) = x ⊕ c, where ⊕ is bit-wise addition
and c is a non-zero constant.

Similar results are in fact already obtained by
Nandi [22], whose analysis actually applies to a
broader range of hash functions than our analysis.
However, our results are sharper. We give a signifi-
cantly better upper bound on the probability of find-
ing a collision as a function of the number of queries
made by the adversary.

A new security notion for a compression function
is also introduced, which we call indistinguishabil-
ity in the iteration. It is really weaker than the no-
tion proposed in [5]. However, it may be valuable in
practice. Loosely speaking, a compression function



F (x) = (f(x), f(p(x))) where f is a random oracle is
called indistinguishable in the iteration if F cannot
be distinguished from a random oracle in the iterated
hash function. We give sufficient conditions on p for
F to be indistinguishable in the iteration.

Second, we discuss constructions using a block ci-
pher. A compression function composed of a block
cipher is presented and its collision resistance is ana-
lyzed. We show that any collision-finding attack on a
hash function composed of the compression function
is at most as efficient as the birthday attack if the
block cipher used is ideal. A block cipher is ideal if it
is assumed to be a keyed invertible random permu-
tation. The compression function presented in this
article is quite simple but has not been explicitly dis-
cussed previously. We also present some other similar
constructions.

In [10], it is shown that a collision-resistant hash
function can be easily composed of a compression
function using two distinct block ciphers. It is well-
known that two distinct block ciphers can be ob-
tained from a block cipher by fixing, for example,
one key bit by 0 and 1. However, it is preferable in
practice that fixing key bits is avoided. Moreover, fix-
ing one bit may not be sufficient and more bits may
be required to be fixed. Our new construction does
not involve any fixing of key bits by constants.

The technique in [3] is used in the security proofs
in this article. However, the analysis is more
complicated than the one in [3] since the relation
of two component-compression-function/block-cipher
calls in a compression function need to be taken into
account.

The rest of this article is organized as follows. Sec-
tion 2 includes notations, definitions and a brief re-
view of the related works. Section 3 discusses com-
pression functions composed of a smaller compression
function, including the results on collision resistance
and our new notion of indistinguishability in the it-
eration. Section 4 exhibits block-cipher-based com-
pression functions whose associated hash functions
have optimal collision resistance. Section 5 gives a
concluding remark which mentions a recent collision
attack on the scheme in Sect. 4.

2 Preliminaries

2.1 Iterated Hash Function

A hash function H : {0, 1}∗ → {0, 1}� usually consists
of a compression function F : {0, 1}� × {0, 1}�′ →
{0, 1}� and a fixed initial value h0 ∈ {0, 1}�. An input
m is divided into the �′-bit blocks m1, m2, . . . , ml.
Then, hi = F (hi−1, mi) is computed successively for
1 ≤ i ≤ l and hl = H(m). H is called an iterated
hash function.

Before being divided into the blocks, unambiguous
padding is applied to the input. The length of the
padded input is a multiple of �′. In this article, we
do not assume Merkle-Damg̊ard strengthening [6, 21]
for padding in the security analysis.

2.2 Random Oracle Model and Ideal
Cipher Model

2.2.1 Random Oracle Model

Let F n′,n = {f | f : {0, 1}n′ → {0, 1}n}. In the ran-
dom oracle model, the function f is assumed to be
randomly selected from F n′,n. The computation of
f is simulated by the following oracle.

The oracle f first receives an input xi as a query.
Then, it returns a randomly selected output yi if the
query has never been asked before. It keeps a table of
pairs of queries and replies, and it returns the same
reply to the same query.

2.2.2 Ideal Cipher Model

A block cipher with the block length n and the key
length κ is called an (n, κ) block cipher. Let e :
{0, 1}κ ×{0, 1}n → {0, 1}n be an (n, κ) block cipher.
Then, e(k, ·) is a permutation for every k ∈ {0, 1}κ,
and it is easy to compute both e(k, ·) and e(k, ·)−1.

Let Bn,κ be the set of all (n, κ) block ciphers. In
the ideal cipher model, e is assumed to be randomly
selected from Bn,κ. The encryption e and the decryp-
tion e−1 are simulated by the following two oracles.

The encryption oracle e first receives a pair of a
key and a plaintext as a query. Then, it returns a
randomly selected ciphertext. On the other hand,
the decryption oracle e−1 first receives a pair of a
key and a ciphertext as a query. Then, it returns a
randomly selected plaintext. The oracles e and e−1



share a table of triplets of keys, plaintexts and ci-
phertexts, which are produced by the queries and the
corresponding replies. Referring to the table, they se-
lect a reply to a new query under the restriction that
e(k, ·) is a permutation for every k. They also add
the triplet produced by the query and the reply to
the table.

2.3 DBL Hash Function

An iterated hash function whose compression func-
tion is composed of a block cipher is called a single-
block-length (SBL) hash function if its output length
is equal to the block length of the block cipher. It is
called a double-block-length (DBL) hash function if
its output length is twice larger than the block length.

Let F be a compression function composed of a
block cipher. For an iterated hash function composed
of F , the rate r defined below is often used as a mea-
sure of efficiency:

r =
|mi|

(the number of block-cipher calls in F ) × n
.

In this article, we also call an iterated hash function
a DBL hash function if its compression function F is
composed of a smaller compression function f and its
output length is twice larger than the output length
of f .

2.4 Related Work

Knudsen and Preneel studied the schemes to con-
struct secure compression functions with longer out-
puts from secure ones based on error-correcting codes
[14, 15, 16]. It is an open question whether op-
timally collision-resistant compression functions are
constructed by their schemes. A hash/compression
function is optimally collision-resistant if any attack
to find its collision is at most as efficient as the birth-
day attack.

Our work is largely motivated by the recent works
by Lucks [19] and Nandi [23]. Nandi generalized the
results by Lucks and by Hirose [10]. He discussed how
to construct DBL hash functions and presented opti-
mally collision-resistant ones. However, their security
analysis is not so sharp as ours, which is mentioned
in Sect. 1.

Coron, Dodis, Malinaud and Puniya [5] discussed
how to construct a random oracle with arbitrary in-

put length given a random oracle with fixed input
length.

As is reviewed in the following, there are many
papers on hash functions composed of block ciphers.

Preneel, Govaerts and Vandewalle [26] discussed
the security of SBL hash functions against several
generic attacks. They considered SBL hash func-
tions with compression functions represented by hi =
e(k, x)⊕ z, where e is an (n, n) block cipher, k, x, z ∈
{hi−1, mi, hi−1 ⊕ mi, c} and c is a constant. They
concluded that 12 out of 64(= 43) hash functions are
secure against the attacks. However, they did not
provide any formal proofs.

Black, Rogaway and Shrimpton [3] presented a de-
tailed investigation of provable security of SBL hash
functions given in [26] in the ideal cipher model. The
most important result in their paper is that 20 hash
functions including the 12 mentioned above is opti-
mally collision-resistant.

Knudsen, Lai and Preneel [17] discussed the insecu-
rity of DBL hash functions with the rate 1 composed
of (n, n) block ciphers. Hohl, Lai, Meier and Wald-
vogel [12] discussed the security of compression func-
tions of DBL hash functions with the rate 1/2. On
the other hand, the security of DBL hash functions
with the rate 1 composed of (n, 2n) block ciphers was
discussed by Satoh, Haga and Kurosawa [27] and by
Hattori, Hirose and Yoshida [8]. These works pre-
sented no construction for DBL hash functions with
optimal collision resistance.

Many schemes with the rates less than 1 were also
presented. Merkle [21] presented three DBL hash
functions composed of DES with the rates at most
0.276. They are optimally collision-resistant in the
ideal cipher model. MDC-2 and MDC-4 [4] are also
DBL hash functions composed of DES with the rates
1/2 and 1/4, respectively. Lai and Massey proposed
the tandem/abreast Davies-Meyer [18]. They consist
of an (n, 2n) block cipher and their rates are 1/2.
It is an open question whether the four schemes are
optimally collision-resistant or not.

Hirose [10] presented a large class of DBL hash
functions with the rate 1/2, which are composed of
(n, 2n) block ciphers. They were shown to be op-
timally collision-resistant in the ideal cipher model.
However, his construction requires two independent
block ciphers, which makes the results less attractive.

Nandi, Lee, Sakurai and Lee [24] also proposed an
interesting construction with the rate 2/3. However,



they are not optimally collision-resistant. Knudsen
and Muller [13] presented some attacks against it and
illustrated its weaknesses, none of which contradicts
the security proof in [24].

Black, Cochran and Shrimpton [2] showed that it
is impossible to construct a highly efficient block-
cipher-based hash function provably secure in the
ideal cipher model. A block-cipher-based hash func-
tion is highly efficient if it makes exactly one block-
cipher call for each message block and all block-cipher
calls use a single key.

Gauravaram, Millan and May proposed a new ap-
proach based on iterated halving technique to design
rate-1 hash functions that can be instantiated with
any secure 128-bit block cipher reduced to half the
number of rounds [7].

3 DBL Hash Function in the

Random Oracle Model

3.1 Compression Function

In this section, we consider the DBL hash functions
with compression functions given in the following def-
inition.

Definition 1 Let F : {0, 1}2n × {0, 1}b → {0, 1}2n

be a compression function such that (gi, hi) =
F (gi−1, hi−1, mi), where gi, hi ∈ {0, 1}n and mi ∈
{0, 1}b. F consists of f : {0, 1}2n × {0, 1}b → {0, 1}n

and a permutation p : {0, 1}2n+b → {0, 1}2n+b as
follows:{

gi = FU(gi−1, hi−1, mi) = f(gi−1, hi−1, mi)
hi = FL(gi−1, hi−1, mi) = f(p(gi−1, hi−1, mi)) .

p satisfies the following properties:

• It is easy to compute both p and p−1,

• p(p(·)) is an identity permutation, and

• p has no fixed points, that is, p(gi−1, hi−1, mi) �=
(gi−1, hi−1, mi) for any (gi−1, hi−1, mi).

3.2 Collision Resistance

We will analyze the collision resistance of DBL hash
functions composed of F under the assumption that
f is a random oracle.

Two queries to the oracle f are required to com-
pute the output of F for an input. For this compres-
sion function, a query to f for FU or FL uniquely
determines the query to f for the other since p is
a permutation. Moreover, for every w ∈ {0, 1}2n+b,
f(w) and f(p(w)) are only used to compute F (w)
and F (p(w)), and w �= p(w) from the properties of p
in Definition 1. Thus, it is reasonable to assume that
a pair of queries w and p(w) to f are asked at a time.

Definition 2 A pair of distinct inputs w, w′ to F are
called a matching pair if w′ = p(w). Otherwise, they
are called a non-matching pair.

Notice that w′ = p(w) iff w = p(w′) since p(p(·)) is
an identity permutation.

3.2.1 Definition

Insecurity is quantified by success probability of an
optimal resource-bounded adversary. The resource is
the number of the queries to f in the random oracle
model.

For a set S, let z
r← S represent random sampling

from S under the uniform distribution. For a prob-
abilistic algorithm M, let z

r← M mean that z is
an output of M and its distribution is based on the
random choices of M.

Let H be a DBL hash function composed of a com-
pression function F in Definition 1. The following ex-
periment FindColHF(A, H) is introduced to quantify
the collision resistance of H . The adversary A with
the oracle f is a collision-finding algorithm of H .

FindColHF(A, H)
f

r← F 2n+b,n;

(m, m′) r← Af;
if m �= m′ ∧ H(m) = H(m′) return 1;
else return 0;

FindColHF(A, H) returns 1 iff A finds a col-
lision. Let Advcoll

H (A) be the probability that
FindColHF(A, H) returns 1. The probability is taken
over the uniform distribution on F 2n+b,n and random
choices of A.

Definition 3 For q ≥ 1, let

Advcoll
H (q) = max

A

{
Advcoll

H (A)
}

,

where A makes at most q pairs of queries to f in
total.



Without loss of generality, it is assumed that A
does not ask the same query twice. A can keep pairs
of queries and their corresponding answers by him-
self.

3.2.2 Analysis

In this section, we show the collision resistance of
hash functions composed of F in Definition 1. We
first present some lemmas which are used to prove
the collision resistance.

Lemma 1 Let H be a hash function composed of a
compression function F specified in Definition 1 and
an initial value (g0, h0). Let A be a collision-finding
algorithm for H with the oracle f . A asks q pairs of
queries to f in total. Then, there exists an algorithm
B with the oracle f which succeeds in finding

1. a colliding pair of non-matching inputs for F ,

2. a colliding pair of matching inputs for F , or

3. a preimage of (g0, h0) for F

with the probability Advcoll
H (A). B asks q pairs of

queries to f in total.

Proof. B first runs A. Suppose that A finds a collid-
ing pair m, m′ for H . Then, it is easy to see that B
finds a colliding pair of inputs for F or a preimage of
(g0, h0) for F by tracking the computation of H(m)
and H(m′) backwards. The colliding pair is either
matching or non-matching. During the process, B
needs no other queries than those made by A. �

The following three lemmas give upper bounds
of the success probabilities of the events listed in
Lemma 1.

Lemma 2 Let F be a compression function specified
in Definition 1. Let Bc be an optimal algorithm to
find a colliding pair of non-matching inputs for F .
Suppose that Bc asks q pairs of queries to f in total.
Then, the success probability of Bc is at most q(q −
1)/22n.

Proof. For 1 ≤ j ≤ q, let wj and p(wj) be the j-th
pair of queries made by Bc. For 2 ≤ j ≤ q, let Cj

be the event that Bc finds a colliding pair of non-
matching inputs for F with the j-th pair of queries.
Namely, it is the event that

(f(wj), f(p(wj)) =
(f(wj′ ), f(p(wj′ ))) or (f(p(wj′ )), f(wj′ ))

for some j′ < j. Since both f(wj) and f(p(wj)) are
randomly selected by the oracle,

Pr[Cj ] ≤ 2(j − 1)
22n

.

Let C be the event that Bc finds a colliding pair of
non-matching inputs. Then,

Pr[C] = Pr[C2∨C3∨· · ·∨Cq ] ≤
q∑

j=2

Pr[Cj ] ≤ q (q − 1)
22n

.

�

Lemma 3 Let F be a compression function specified
in Definition 1. Let B′

c be an optimal algorithm to
find a colliding pair of matching inputs for F . Sup-
pose that B′

c asks q pairs of queries to f in total.
Then, the success probability of B′

c is at most q/2n.

Proof. For 1 ≤ j ≤ q, let Cm
j be the event that B′

c

finds a colliding pair of matching inputs for F with
the j-th pair of queries, that is, f(wj) = f(p(wj)).
Thus,

Pr[Cm
j ] =

1
2n

.

Let Cm be the event that B′
c finds a colliding pair of

matching inputs for F . Then,

Pr[Cm] = Pr[Cm
1 ∨Cm

2 ∨· · ·∨Cm
q ] ≤

q∑
j=1

Pr[Cm
j ] =

q

2n
.

�

Lemma 4 Let F be a compression function specified
in Definition 1. Let Bp be an optimal algorithm to
find a preimage of a given output (g, h) for F , where
g, h ∈ {0, 1}n. Suppose that Bp asks q pairs of queries
to f in total. Then, the success probability of Bp is
at most 2q/22n.



Proof. For 1 ≤ j ≤ q, let Pj be the event that
Bp finds a preimage of (g, h) for F with the j-
th pair of queries. Namely, it is the event that
(f(wj), f(p(wj))) = (g, h) or (h, g). Thus,

Pr[Pj ] ≤ 2
22n

.

Let P be the event that Bp finds a preimage of (g, h)
for F . Then,

Pr[P] = Pr[P1∨P2∨· · ·∨Pq ] ≤
q∑

j=1

Pr[Pj ] ≤ 2 q

22n
.

�

The following theorem is obvious from the above
lemmas.

Theorem 1 Let H be a hash function composed of a
compression function F specified in Definition 1 and
an initial value (g0, h0). Then,

Advcoll
H (q) ≤ q (q + 1)

22n
+

q

2n
.

Proof. For Lemma 1, suppose that A is an optimal
collision-finding algorithm for H . Then, from Lem-
mas 2, 3, and 4,

Advcoll
H (A) = Advcoll

H (q)

≤ q (q − 1)
22n

+
q

2n
+

2 q

22n

≤ q (q + 1)
22n

+
q

2n
.

�

Theorem 1 is valid as long as its upper bound is
less than 1.

From Theorem 1, any constant probability of suc-
cess in finding a collision for H requires Ω(2n) queries.
The upper bound of Theorem 1 is optimal up to a
constant factor. However, we can go further. A bet-
ter bound can be obtained with more restricted per-
mutations given below.

Definition 4 Let F be a compression function spec-
ified in Definition 1. Moreover, the permutation p is
represented by p(g, h, m) = (pcv(g, h), pm(m)), where
pcv : {0, 1}2n → {0, 1}2n and pm : {0, 1}b → {0, 1}b.
pcv has no fixed points and pcv(g, h) �= (h, g) for any
(g, h).

Example 1 Here is an example of the permutation p
satisfying the conditions given in Definition 4:

p(g, h, m) = (g ⊕ c1, h ⊕ c2, m ⊕ c3) ,

where c1, c2 and c3 are constants in {0, 1}n, and c1 �=
c2.

We first present some lemmas similar to those given
above.

Lemma 5 Let H be a hash function composed of a
compression function F specified in Definition 4 and
an initial value (g0, h0). Let A be a collision-finding
algorithm for H with the oracle f . A asks q pairs of
queries to f in total. Then, there exists an algorithm
B with the oracle f which succeeds in finding

1. a colliding pair of non-matching inputs for F ,

2. a pair of non-matching inputs w and w′ for F
such that F (w) = pcv(F (w′)),

3. a preimage of (g0, h0) for F , or

4. a preimage of pcv(g0, h0) for F

with the probability Advcoll
H (A). B asks q pairs of

queries to f in total.

Proof. B first runs A. Suppose that A finds a collid-
ing pair m, m′ for H . Then, it is easy to see that B
finds a colliding pair of inputs for F or a preimage of
(g0, h0) for F by tracking the computation of H(m)
and H(m′) backwards. The colliding pair is either
matching or non-matching. During the process, B
needs no other queries than those made by A.

Suppose that a colliding pair of matching inputs
are obtained for F from the collision of H found by
A. Let (g, h, m) and (g′, h′, m′) be the colliding pair.
Then, (g, h) = pcv(g′, h′) (and (g′, h′) = pcv(g, h)).
(g, h) and (g′, h′) are both outputs of F , or at most
one of them is the initial value (g0, h0) of H since
(g, h) �= (g′, h′). Thus, a pair of inputs w and w′ are
also found for F from the collision of H such that
F (w) = pcv(F (w′)) or F (w) = pcv(g0, h0).

Suppose that (g, h) = F (w) and (g′, h′) = F (w′).
Then, a pair of w and w′ are non-matching since
(g, h) = pcv(g′, h′) �= (h′, g′). �

As in the proof of Theorem 1, the following lemmas
give upper bounds of the success probabilities of the
events listed in Lemma 5.



Lemma 6 Let F be a compression function specified
in Definition 4. Let Bc be an optimal algorithm to
find a colliding pair of non-matching inputs for F .
Suppose that Bc asks q pairs of queries to f in total.
Then, the success probability of Bc is at most q(q −
1)/22n.

Proof. Omitted. It is similar to that of Lemma 2. �

Lemma 7 Let F be a compression function specified
in Definition 4. Let B′

c be an optimal algorithm to
find a pair of non-matching inputs w and w′ for F
such that F (w) = pcv(F (w′)). Suppose that B′

c asks
q pairs of queries to f in total. Then, the success
probability of B′

c is at most 2q(q − 1)/22n.

Proof. For 2 ≤ j ≤ q, let C′
j be the event that B′

c

finds a pair of non-matching inputs w and w′ such
that F (w) = pcv(F (w′)) with the j-th pair of queries
wj and p(wj). Namely, it is the event that

F (wj) = pcv(F (wj′ )) or pcv(F (p(wj′ )))

or

F (p(wj)) = pcv(F (wj′ )) or pcv(F (p(wj′ )))

for some j′ < j. Thus,

Pr[C′
j ] ≤

4(j − 1)
22n

.

Let C′ be the event that B′
c finds a pair of non-

matching inputs w and w′ such that F (w) =
pcv(F (w′)). Then,

Pr[C′] ≤
q∑

j=2

Pr[C′
j ] ≤

q∑
j=2

4(j − 1)
22n

=
2q(q − 1)

22n
.

�

Lemma 8 Let F be a compression function specified
in Definition 4. Let Bp be an optimal algorithm to
find a preimage of a given output (g, h) for F , where
g, h ∈ {0, 1}n. Suppose that Bp asks q pairs of queries
to f in total. Then, the success probability of Bp is
at most 2q/22n.

Proof. Omitted. It is similar to that of Lemma 4. �

Theorem 2 Let H be a hash function composed of a
compression function F specified in Definition 4 and
an initial value (g0, h0). Then,

Advcoll
H (q) ≤ 3 q2 + q

22n
≤

( q

2n−1

)2

.

Proof. For Lemma 5, suppose that A is an optimal
collision-finding algorithm for H which asks q pairs
of queries to f in total. Then, from Lemmas 6, 7 and
8,

Advcoll
H (q) = Advcoll

H (A)

≤ q (q − 1)
22n

+
2 q (q − 1)

22n
+

2 q

22n
+

2 q

22n

≤ 3 q2 + q

22n
≤

( q

2n−1

)2

.

�

Theorem 2 is also valid as long as its upper bound
is less than 1.

Remark 1 For q < 2n−1, Theorem 2 gives a smaller
upper bound than Theorem 1. Their difference is
significant. The upper bound of Theorem 2 is at most
(q/2n−1)2. On the other hand, the upper bound of
Theorem 1 is about q/2n if q/2n � 1. For example,
let n = 128 and q = 280. Then, the upper bound of
Theorem 1 is about 2−48, while the upper bound of
Theorem 2 is less than 2−94.

Remark 2 Contrasting Lemma 1 and Lemma 5, it is
easy to see that the upper bound of Theorem 2 is
obtained based not solely on the security of the com-
pression function but on its iteration.

Remark 3 Suppose that we use the Merkle-Damg̊ard
strengthening for padding. Then, in the proofs of
Theorems 1 and 2, we need not consider the event
that a preimage of the initial value of the hash func-
tion is found for the compression function. However,
the probability of this event is negligible compared to
that of collision for the compression function.

3.3 Indistinguishability in the Itera-
tion

We introduce a new security notion which is called
indistinguishability in the iteration.



3.3.1 Definition

Let F be a compression function specified
in Definition 1. The following experiment
DistinguishCF(A, F ) is introduced to quantify
the indistinguishability in the iteration of F . The
adversary A is a distinguishing algorithm of F .
A has an oracle O. In this experiment, a ran-
domly chosen bit d ∈ {0, 1} is given to O first. If
d = 1, then O chooses f ∈ F 2n+b,n randomly in
advance. Then, O returns F (w) = (f(w), f(p(w)))
to each query w from A. If d = 0, then O chooses
R ∈ F 2n+b,2n randomly in advance. Then, O returns
R(w) to each query w from A. A makes a chosen
message attack and tries to tell whether O uses
F or R. However, A is only allowed to select his
j-th query wj = (w(1)

j , w
(2)
j , w

(3)
j ) from the set of

(w(1), w(2), w(3))’s such that

(w(1), w(2)) ∈
j−1⋃
�=0

(v(1)
� , v

(2)
� ) ∧ w(3) ∈ {0, 1}b ,

where (v(1)
� , v

(2)
� ) is O’s answer to the �-th query for

� ≥ 1 and (v(1)
0 , v

(2)
0 ) is some fixed initial value of a

hash function H . Thus, F is assumed to be used only
in the iteration of H .

DistinguishCF(A, F )
d

r← {0, 1};
d′ r← AO(d);
if d = d′ return 1; else return 0;

Let Succind-it
F (A) be the probability that

DistinguishCF(A, F ) returns 1. Without loss of gen-
erality, it can be assumed that Succind-it

F (A) ≥ 1/2
because the probability that d = d′ is 1/2 even if A
chooses d′ randomly. It can also be assumed that A
does not ask the same query twice. Let

Advind-it
F (A) def= Succind-it

F (A) − 1/2 .

Definition 5 For q ≥ 1, let

Advind-it
F (q) = max

A

{
Advind-it

F (A)
}

,

where A makes at most q queries to O.

As long as Advind-it
F (q) is small enough, the com-

pression function F behaves like a random function
in the iterated hash function. The following theo-
rem presents an upper bound on Advind-it

F (q) with
additional restriction on the permutation p.

Theorem 3 Let F be a compression function speci-
fied in Definition 1. Suppose that the permutation p is
represented by p(g, h, m) = (pcv(g, h), pm(m)), where
pcv : {0, 1}2n → {0, 1}2n and pm : {0, 1}b → {0, 1}b.
Suppose that pcv has no fixed points. Then,

Advind-it
F (q) ≤ 1

2

( q

2n

)2

.

Proof. Let A be an optimal distinguishing algorithm
for F which makes q queries to O. Let wj be the j-th
query by A and T = {wj | 1 ≤ j ≤ q} ∩ {p(wj) | 1 ≤
j ≤ q}.

Suppose that d = 1. Then, O returns F (wj) =
(f(wj), f(p(wj))) for wj . If T = φ, then F is com-
pletely indistinguishable from R. It is because each
one of f(wj) and f(p(wj)) for 1 ≤ j ≤ q appears only
once and it is chosen randomly by O.

Let Empty be the event that T = φ. Then,

Succind-it
F (A)

= Pr[d = d′]
= Pr[d = d′ ∧ Empty] + Pr[d = d′ ∧ ¬Empty]
= Pr[d = d′ |Empty] Pr[Empty] +

Pr[d = d′ | ¬Empty] Pr[¬Empty]

≤ 1
2

+ Pr[¬Empty] .

Let vj be the initial value if j = 0 and the answer
of O to the j-th query by A if j ≥ 1. For 1 ≤ j ≤ q,
let C′

j be the event that vj ∈ {pcv(v�) | 0 ≤ � ≤ j−1}.
Then,

Pr[C′
j ] ≤

j

22n
.

Thus,

Pr[¬Empty] ≤ Pr[C′
1 ∨ · · · ∨ C′

q−1]

≤
q−1∑
j=1

Pr[C′
j ] ≤

1
2

( q

2n

)2

which implies that Advind-it
F (q) ≤ (q/2n)2/2. �

Theorem 3 is valid as long as its upper bound is
less than 1.



4 DBL Hash Function in the
Ideal Cipher Model

4.1 Compression Function

In this section, the collision resistance of a DBL hash
function composed of a compression function using a
block cipher is analyzed. The compression function
specified in the following definition is considered.

Definition 6 Let F : {0, 1}2n × {0, 1}b → {0, 1}2n

be a compression function such that (gi, hi) =
F (gi−1, hi−1, mi), where gi, hi ∈ {0, 1}n and mi ∈
{0, 1}b. F consists of an (n, n + b) block cipher e as
follows:

gi = FU(gi−1, hi−1, mi)
= e(hi−1‖mi, gi−1) ⊕ gi−1

hi = FL(gi−1, hi−1, mi)
= e(hi−1‖mi, gi−1 ⊕ c) ⊕ gi−1 ⊕ c ,

where ‖ represents concatenation and c ∈ {0, 1}n −
{0n} is a constant.

The compression function in Definition 6 is also
shown in Fig. 1. It can be regarded as a variant
of the compression function specified in Definition 4,
where f and p are specified as follows:

f(gi−1, hi−1, mi) = e(hi−1‖mi, gi−1) ⊕ gi−1 ,

p(gi−1, hi−1, mi) = (gi−1 ⊕ c, hi−1, mi) .

e

e

mi

gi−1

hi−1

gi

hic

Figure 1: The compression function in Definition 6

F requires two invocations of e to produce an out-
put. However, these two invocations need only one
key scheduling of e. If F is implemented using the
AES with 192-bit key-length, then n = 128, b = 64

and the rate is 1/4. If implemented using the AES
with 256-bit key-length, then n = b = 128 and the
rate is 1/2.

4.2 Collision Resistance

Let F be a compression function specified in Defini-
tion 6. Two queries to the oracles e and e−1 in total
are required to compute the output of F for an input.
It is apparent from Fig. 1 that a query to e or e−1

and the corresponding reply for FU (FL) uniquely de-
termine the query to e for FL (FU). Moreover, these
two queries are only used to compute the outputs of
F for a matching pair of inputs. Thus, it is assumed
that a pair of queries to e, e−1 required to compute
an output of F are asked at a time.

4.2.1 Definition

The following experiment FindColHF(A, H) is similar
to the one in Sect. 3 except that the adversary A is
a collision-finding algorithm with the oracles e, e−1.

FindColHF(A, H)
e

r← Bn,n+b;

(m, m′) r← Ae,e−1
;

if m �= m′ ∧ H(m) = H(m′) return 1;
else return 0;

Let Advcoll
H (A) be the probability that

FindColHF(A, H) returns 1. The probability is
taken over the uniform distribution on Bn,n+b and
random choices of A.

Definition 7 For q ≥ 1, let

Advcoll
H (q) = max

A

{
Advcoll

H (A)
}

,

where A makes at most q pairs of queries to e, e−1 in
total.

Without loss of generality, it is assumed that A asks
at most only once on a triplet of a key, a plaintext
and a ciphertext obtained by a query and the corre-
sponding reply.

4.2.2 Analysis

The following theorem shows the collision resistance
of a hash function composed of F in Definition 6.



Theorem 4 Let H be a hash function composed of
the compression function F specified in Definition 6
and an initial value (g0, h0). Then, for every 1 ≤ q ≤
2n−2,

Advcoll
H (q) ≤ 3 q2 + q

22(n−1)
≤

( q

2n−2

)2

.

Proof. Let A be a collision-finding algorithm of H
which asks q pairs of queries to e, e−1 in total. Then,
there exists an algorithm B with the oracles e, e−1

which succeeds in finding

1. a colliding pair of non-matching inputs for F ,

2. a pair of non-matching inputs w and w′ for F
such that F (w) = (FU(w′) ⊕ c, FL(w′)),

3. a preimage of (g0, h0) for F , or

4. a preimage of (g0 ⊕ c, h0) for F

with the probability Advcoll
H (A). B asks q pairs of

queries to e, e−1 in total.
Since gi = e(hi−1‖mi, gi−1)⊕gi−1, gi depends both

on the plaintext and the ciphertext of e. Either the
plaintext or the ciphertext is fixed by a query and
the other is determined randomly by the answer from
the oracle. Thus, gi is randomly determined by the
answer. hi is also randomly determined by the other
answer.

Let (k1
j ‖k2

j , xj , yj) and (k1
j ‖k2

j , xj ⊕ c, zj) represent
the triplets of e obtained by the j-th pair of queries
and the corresponding answers.

For (1): Let Bc be an optimal algorithm to find a
colliding pair of non-matching inputs for F . Suppose
that Bc asks q pairs of queries to e, e−1 in total.

For every 2 ≤ j ≤ q, let Cj be the event that Bc

finds a colliding pair of non-matching inputs for F
with the j-th pair of queries. Namely, it is the event
that, for some j′ < j,

F (xj , k
1
j , k2

j ) =

F (xj′ , k
1
j′ , k

2
j′) or F (xj′ ⊕ c, k1

j′ , k
2
j′ )

or

F (xj ⊕ c, k1
j , k2

j ) =

F (xj′ , k
1
j′ , k

2
j′) or F (xj′ ⊕ c, k1

j′ , k
2
j′ ) ,

which is equivalent to

(yj ⊕ xj , zj ⊕ xj ⊕ c) =
(yj′ ⊕ xj′ , zj′ ⊕ xj′ ⊕ c) or
(zj′ ⊕ xj′ ⊕ c, yj′ ⊕ xj′ ) .

Thus,

Pr[Cj ] ≤ 2(j − 1)
(2n − (2j − 2))(2n − (2j − 1))

≤ 2(j − 1)
(2n − (2j − 1))2

.

Let C be the event that Bc finds a colliding pair of
non-matching inputs for F . Then, for 1 ≤ q ≤ 2n−2,

Pr[C] ≤
q∑

j=2

Pr[Cj ] ≤
q∑

j=2

2(j − 1)
(2n − (2j − 1))2

≤
q∑

j=2

2(j − 1)
22(n−1)

≤ q(q − 1)
22(n−1)

.

For (2): Let B′
c be an optimal algorithm to find a

pair of non-matching inputs w and w′ for F such
that F (w) = (FU(w′) ⊕ c, FL(w′)). Suppose that B′

c

asks q pairs of queries to e, e−1 in total.
Let C′

j be the event that B′
c finds a pair of non-

matching inputs for F such as given above with the
j-th pair of queries. Namely, it is the event that, for
some j′ < j,

F (xj , k
1
j , k2

j ) =

(FU(xj′ , k
1
j′ , k

2
j′ ) ⊕ c, FL(xj′ , k

1
j′ , k

2
j′)) or

(FU(xj′ ⊕ c, k1
j′ , k

2
j′) ⊕ c, FL(xj′ ⊕ c, k1

j′ , k
2
j′)) ,

or

F (xj ⊕ c, k1
j , k2

j ) =

(FU(xj′ , k
1
j′ , k

2
j′ ) ⊕ c, FL(xj′ , k

1
j′ , k

2
j′)) or

(FU(xj′ ⊕ c, k1
j′ , k

2
j′) ⊕ c, FL(xj′ ⊕ c, k1

j′ , k
2
j′)) .

It is equivalent to

(yj ⊕ xj , zj ⊕ xj ⊕ c) =
(yj′ ⊕ xj′ ⊕ c, zj′ ⊕ xj′ ⊕ c) ,

(zj′ ⊕ xj′ , yj′ ⊕ xj′ ) ,

(zj′ ⊕ xj′ ⊕ c, yj′ ⊕ xj′ ⊕ c) or
(yj′ ⊕ xj′ , zj′ ⊕ xj′ ) .



Thus,

Pr[C′
j ] ≤

4 (j − 1)
(2n − (2j − 1))2

.

Let C′ be the event that B′
c finds a pair of non-

matching inputs w and w′ for F such that F (w) =
(FU(w′) ⊕ c, FL(w′)). Then, for 1 ≤ q ≤ 2n−2,

Pr[C′] ≤
q∑

j=1

Pr[C′
j ] ≤

2 q (q − 1)
22(n−1)

.

For (3): Let Bp be an optimal algorithm to find a
preimage of (g0, h0) for F . Suppose that Bp asks q
pairs of queries to e, e−1 in total.

For 1 ≤ j ≤ q, let Pj be the event that Bp finds
a preimage of (g0, h0) for F with the j-th pair of
queries, that is, F (xj , k

1
j , k2

j ) = (g0, h0) or F (xj ⊕
c, k1

j , k2
j ) = (g0, h0). Thus,

Pr[Pj ] ≤ 2
(2n − (2j − 1))2

.

Let P be the event that Bp finds a preimage of (g0, h0)
for F . Then, for 1 ≤ q ≤ 2n−2,

Pr[P] ≤
q∑

j=1

Pr[Pj ] ≤ 2 q

22(n−1)
.

For (4): Let B′
p be an optimal algorithm to find a

preimage of (g0 ⊕ c, h0) for F . Suppose that B′
p asks

q pairs of queries to e, e−1 in total.
Let P′ be the event that B′

p finds a preimage of
(g0 ⊕ c, h0) for F . Then, for 1 ≤ q ≤ 2n−2,

Pr[P′] ≤ 2 q

22(n−1)
.

Finally, suppose that A is an optimal collision-
finder for H . Then, from the discussions so far,

Advcoll
H (q) = Advcoll

H (A)
≤ Pr[C] + Pr[C′] + Pr[P] + Pr[P′]

≤ 3 q2 + q

22(n−1)
≤

( q

2n−2

)2

for 1 ≤ q ≤ 2n−2. �

Remark 3 in Sect. 3 also holds for Theorem 4.

4.3 Other Schemes

In this section, we present some other schemes tak-
ing into consideration the construction with AES. For
simplicity, AES with 192/256-bit key-length is called
AES-192/256, respectively.

The compression function F given in Definition 6
can be composed of AES-192/256. It can be regarded
as a function based on the Davies-Meyer scheme.

The following compression function can be com-
posed of AES-256. It can be regarded as a function
based on the Matyas-Meyer-Oseas scheme.

Let F1 : {0, 1}2n × {0, 1}n → {0, 1}2n be a com-
pression function (gi, hi) = F1(gi−1, hi−1, mi) such
that

gi = e(gi−1‖hi−1, mi) ⊕ mi

hi = e(gi−1‖(hi−1 ⊕ c), mi) ⊕ mi ,

where gi, hi, mi ∈ {0, 1}n and c ∈ {0, 1}n − {0n} is a
constant. F1 is also given in Fig. 2.

The following compression function can be com-
posed of AES-192. It can also be regarded as a func-
tion based on the Matyas-Meyer-Oseas scheme.

Let F2 : {0, 1}2n × {0, 1}n/2 → {0, 1}2n be a com-
pression function (gi, hi) = F2(gi−1, hi−1, mi) such
that

gi = e(g(2)
i−1‖hi−1, mi‖g(1)

i−1) ⊕ (mi‖g(1)
i−1)

hi = e(g(2)
i−1‖hi−1, (mi‖g(1)

i−1) ⊕ c) ⊕ (mi‖g(1)
i−1) ⊕ c ,

where gi, hi ∈ {0, 1}n, g
(1)
i , g

(2)
i , mi ∈ {0, 1}n/2, gi =

g
(1)
i ‖g(2)

i , and c ∈ {0, 1}n − {0n} is a constant. F2 is
also given in Fig. 3.

Variants of F , F1, F2 are shown in Figures 4, 5,
6, respectively. They can be regarded as functions
based on the Miyaguchi-Preneel scheme.

It is easy to obtain theorems similar to Theorem 4
for collision resistance of hash functions composed of
compression functions presented here.

5 Concluding Remark

In this article, it has been discussed how to construct
DBL hash functions with a smaller compression func-
tion or a block cipher.

Recently, Pramstaller and Rijmen presented a col-
lision attack on the scheme in Sect. 4 with DESX as



an underlying block cipher [25]. Their result does not
contradict Theorem 4. It is a warning that we should
be careful when we choose an underlying block cipher.
It also shows a limitation of the random oracle/ideal
cipher model. Related topics are discussed in [1, 9].

e

e

mi

gi−1

hi−1

gi

hi

c

Figure 2: The compression function F1

e

e

hi−1

gi

hic

mi‖gi−1
(1)

gi−1
(2)

Figure 3: The compression function F2
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