
A Framework for Iterative Hash Functions — HAIFA∗

Eli Biham† Orr Dunkelman†

Computer Science Department, Technion.
Haifa 32000, Israel.

{biham,orrd}@cs.technion.ac.il

Abstract

For years hash functions were built from compression functions using the Merkle-Damg̊ard construction.
Recently, several flaws in this construction were identified, allowing for pre-image attacks and second pre-
image attacks on such hash functions even when the underlying compression functions are secure.

In this paper we propose the HAsh Iterative FrAmework (HAIFA). Our framework can fix many of the
found flaws while supporting several additional properties such as randomized hashing and variable hash
size. HAIFA allows for an online computation of the hash function in one pass with a fixed amount of
memory independent of the number of blocks in the message.

1 Introduction

Recall the three requirements from a cryptographic
compression function or a hash function f(·):

1. Pre-image resistance: Given y = f(x) it is hard
to find x′ s.t. f(x′) = y.

2. Second pre-image resistance: Given x it is hard
to find x′ s.t. f(x) = f(x′).

3. Collision resistance: It is hard to find x, x′ s.t.
f(x) = f ′(x).

The Merkle-Damg̊ard construction is the most
widely used transformation of cryptographic secure
compression functions into cryptographic hash func-
tions [4, 13]. The Merkle-Damg̊ard construction sug-
gests a simple transformation that maintains the col-
lision resistance property of the underlying compres-
sion function. For years it was widely believed that

∗An initial version of this work was presented in the hash
function workshop in Krakow, June 2005.

†This work was supported in part by the Israel MOD Re-
search and Technology Unit.

the transformation maintains the pre-image resis-
tance of the underlying compression function as well
as the second pre-image resistance.

However, in recent years several counter exam-
ples for these beliefs were suggested. The first ev-
idence for this was the works of Dean [5]. Dean
showed that if fix-points of the compression function
are easily found, then second pre-image attacks on
Merkle-Damg̊ard hash functions can be mounted us-
ing O(m · 2m/2) time and O(m · 2m/2) memory. This
attack is achieved using expandable messages, i.e.,
messages that can be expanded without changing the
chaining value. Later, Kelsey and Schneier have pro-
posed the same ideas, while removing the assump-
tion that fix-points can be easily found [10]. This
improvement was achieved using Joux’s ideas for ef-
ficiently finding multi-collisions in an iterative hash
functions [8]. It is worth mentioning that the multi-
collision attack shows that the strength of h(x) =
h1(x)||h2(x) for two independent iterative hash func-
tions h1(·) and h2(·) is only as secure as the more
secure of the two functions (up to some small factor).

The main pitfall of these attacks is the fact that
the messages that collide are relatively long. In [9],
Kelsey and Kohno showed that using a simple pre-
computation, it is possible to reduce the time require-
ments of pre-image attacks (in some sense) of rela-
tively short messages, while keeping the time com-
plexity of the attack to be much below O(2m).

In this work we suggest the HAsh Iterative FrAme-
work (HAIFA) to replace the Merkle-Damg̊ard con-
struction. HAIFA maintains the good properties of
the Merkle-Damg̊ard construction while adding to
the security of the transformation, as well as to the
scalability of the transformation.

HAIFA has several attractive properties: simplic-
ity, maintaining the collision resistance of the com-
pressions function, increasing the security of iterative
hash functions against (second) pre-image attacks,
and the prevention of easy-to-use fix-points of the
compression function. HAIFA also supports variable
hash size and randomized hashing [6] as part of the
framework. HAIFA also posses the online hashing
property of the Merkle-Damg̊ard construction. The
computation of an HAIFA hash function requires one
pass on the message, without keeping the entire mes-
sage in memory, and while using a fixed amount of
memory for the hashing of each block.

This paper is organized as follows: In Section 2 we
describe the Merkle-Damg̊ard construction and var-
ious results against the construction. In Section 3
we propose HAIFA. We discuss the security aspects
of HAIFA in Section 4. In Section 5 we briefly dis-
cuss the suggestion to iterate and expand the mes-
sage before applying the hash function as a remedy
to the Merkle-Damg̊ard construction. Finally, Sec-
tion 6 summarizes the paper.

2 The Merkle-Damg̊ard Con-
structions and its Pitfalls

The Merkle-Damg̊ard construction is a simple and
elegant way to transform a compression function
CMD : {0, 1}mc × {0, 1}n → {0, 1}mc into a hash
function [4, 13]. Throughout this paper mc denotes
the size of the chaining value, and n denotes the block

size for the compression function. We also denote by
m the hash output length (in many cases m = mc).

The message M is padded with its length (after
additional padding to make the message a multi-
ple of the block size n after the final padding), and
the message is divided into blocks of n bits each,
M = M1M2M3 . . .Mk. An initial chaining value
h0 = IV ∈ {0, 1}mc is set for the hash function (also
called initialization vector) and the following process
is repeated k times:

hi = CMD(hi−1,Mi)

The final hk is outputed as the hash value.
It is easy to prove that once a collision of h is found,

then a collision of the compression function CMD is
found as well [4, 13]. Thus, the Merkle-Damg̊ard con-
struction retains the collision resistance of the com-
pression function.

When from hi = CMD(hi−1,Mi) and Mi the value
of hi−1 can be easily computed, a pre-image attack on
h can be mounted using a birthday attack [22]. How-
ever, the opposite statement is not true. Even if an
inversion attack on CMD requires O(2m) operations,
the security claims for h cannot offer security bet-
ter than O(2m/2). This surprising property was first
noted by Dean [5], which went unnoticed until redis-
covered (and expanded) by Kelsey and Schneier [10].

2.1 Fixed Points, Expandable Mes-
sages, and Finding Second Pre-
Images

It was widely believed by the cryptographic commu-
nity that the security proof of the Merkle-Damg̊ard
construction applies also to second pre-image attacks.
However, Dean [5] noticed that this is not true for
long messages if the compression function has an easy
to find fix-points. His observations were later gener-
alized by Kelsey and Schneier that used the multi-
collision technique to replace the need of easily found
fix-points [10].

Let us consider a long message M = M1M2 . . .Ml

that is processed using h, a Merkle-Damg̊ard hash
function, when the message length is not padded
(the Merkle-Damg̊ard strengthening). An attacker

that wishes to construct a message M∗ such that
h(M) = h(M∗) can randomly select messages M ′

until h(M ′) equals to any of the l chaining values
found during the computation of h(M). Once such
an instance is found, the attacker can concatenate to
M ′ the message blocks of M that are hashed start-
ing from the given chaining value, resulting in M∗

s.t. h(M) = h(M∗). This attack is foiled by the
Merkle-Damg̊ard strengthing, as the message length
is padded, changing the last block that enters the
compression function.

Assume that the compression function CMD is such
that finding fix-points is easy, i.e., it is easy to find
h, M s.t. h = CMD(h, M). This is the case for the
Davies-Meyer construction that takes a block cipher
E that accept mc-bit plaintexts and n-bit keys and
sets

hi = CMD(hi−1,M) = EM (hi−1)⊕ hi−1.

For such a compression function it is easy to find
fix-points by computing h = E−1

M (0) for randomly
selected messages M .

Dean uses these fix-points to bypass the Merkle-
Damg̊ard strengthing. His attack has three main
steps:

1. Finding O(2mc/2) fix-points denoted by A =
(h, m).

2. Selecting O(2mc/2) one message block, and com-
puting their chaining value denoted by B =
CMD(IV, m̃).

3. Once a collision between a chaining value and
a fixed point, i.e., between chaining values in A
and in B, is found, the previous attack is re-
peated (i.e., trying to add blocks that cause the
same chaining values as the original message).

Once such a message is found, it is easy to expand
the number of blocks in the message to the appropri-
ate length by repeating the fix-points any times as
needed.

Kelsey and Schneier transformed the attack to the
case were fix-points are not easily found. While
Dean’s expandable message could be extended by a
concatenation of one message block, in their attack

they use the multi-collision technique to produce an
expandable message. They replace the first two steps
in Dean’s attack in the following procedure. In each
iteration 1 ≤ i ≤ t of the procedure a collision be-
tween a one block message and a 2i−1 +1 block mes-
sage is found. This procedure finds a chaining value
that can be reached by messages of lengths between
t and 2t+1 + t − 1 blocks. Then, from this chaining
value the third step of Dean’s attack is executed, and
the length of the found message is controlled by the
expandable prefix.

2.2 Multi-Collisions in Iterative Hash
Functions

Joux identified the fact that when iterative hash func-
tions are used, finding multi-collisions, i.e., a set of
messages with the same hash value, is almost as easy
as finding a single collision [8]. His main observation
is the fact that in iterative hashing schemes, such as
the Merkle-Damg̊ard, it is possible to find a collision
for each block, e.g., for any hi−1 finding Mi and M∗

i

such that CMD(hi−1,Mi) = CMD(hi−1,M
∗
i). Find-

ing t such one block collision (each starting from the
chaining value produced by the previous block col-
lision) it is possible to construct 2t messages with
the same hash value by selecting for ith block of the
message either Mi or M∗

i .

Joux’s observation leads to the conclusion that
concatenation of two hash functions, i.e., h(x) =
h1(x)||h2(x), is secure against collision attacks just
like the stronger of the two underlying hash func-
tions. Moreover, concatenation of several iterative
hash functions is as secure as the stronger of the hash
functions (up to some a factor of mk−1, where k is
the number of hash functions).

It is worth mentioning that using fix-points of sev-
eral blocks, Joux proved that the concatenation of
hash functions is as secure against pre-image attacks
as the strongest of all the hash functions. These re-
sults have disproved several widely believed assump-
tions on the behavior of hash functions.

2.3 Herding Iterative Hash Functions

Kelsey and Kohno have observed that it is possible to
perform a time-memory tradeoff for several instances
of pre-image attacks [9]. In their attack, an attacker
commits to a public digest value that corresponds to
some meaningful message, e.g., prediction of the re-
sults of the best paper of the EUROCRYPT 2006
conference. After the announcement of the result,
the attacker publishes a message that has the pre-
published digest value and contains the correct infor-
mation along with some suffix.

The attack is based on selecting the digest value
carefully, helping the attacker to perform a pre-image
attack on this value. The main idea behind this
attack is to start with 2t possible chaining values
hi. From each such chaining value, O(2mc/2) one
block message are hashed, resulting in collisions be-
tween pairs of chaining values and messages (hi,mj).
The attacker continues iteratively to find collisions
between the new chaining values, until the attacker
finds the final collision. The attacker then publishes
the last chaining value as a target. When trying to
find a pre-image to this target, the attacker needs
to perform only O(2mc−t) operations until finding a
message that has a chaining value among the 2t orig-
inal values.

We note that unlike the previous attacks that re-
quire long messages, this attack appends relatively
short suffix (about t blocks) to the “real” message.
We also note, that the total time complexity of the
attack is about O(2mc/2+t) offline operations for the
first step of the attack and O(2mc−t) online opera-
tions for the second step. For t = mc/4 the overall
time complexity of this attack is O(23mc/4) for find-
ing a pre-image.

3 The HAsh Iterative FrAme-
work

We propose the HAsh Iterative FrAmework to solve
many of the pitfalls of the Merkle-Damg̊ard construc-
tion. The main ideas behind HAIFA are the intro-
duction of number of bits that were hashed so far
and a salt value into the compression functions. For-

mally, instead of using a compression function CMD :
{0, 1}mc × {0, 1}n → {0, 1}mc , we propose to use
C : {0, 1}mc × {0, 1}n × {0, 1}b × {0, 1}s → {0, 1}mc ,
i.e., in HAIFA the chaining value hi is computed as

hi = C(hi−1,Mi,#bits, salt),

where #bits is the number of bits hashed so far and
salt is a salt value.

3.1 Number of Bits Hashed so Far

The inclusion of the number of bits hashed so far
was suggested (with small variants) in order to pre-
vent the easy exploitation of fix-points. The attacker
is forced to work harder in order to find fix-points.
While for CMD, once a fix-point is found, i.e., (h, M)
such that h = CMD(h, M), it can be used as many
times as the attacker sees fit [5, 10]. Even if the com-
pression function does not mix the #bits parameter
well, once an attacker finds a fix-point of the form
(h, M, bits, salt) such that h = C(h, M, bits, salt),
she cannot concatenate it to itself as many times as
she wishes because the number of bits hashed so far
has changed.

We note that it is possible to add the number of
blocks that were treated so far. However, current
schemes keep track of the number of bits hashed so
far (for the padding), and not the number of blocks.
Thus, it is easier for implementations to consider only
one parameter (number of bits) rather two (some-
what related) parameters (number of bits and num-
ber of blocks).

It is interesting to consider message authentication
codes based on the following HAIFA hash function
h(·): MACk(M) = h(k,M). While for a Merkle-
Damg̊ard construction or suggestions that use the
number of blocks hashed so far, this suggestion is
clearly not secure against message expansion tech-
niques, for HAIFA this construction is secure. The
reason for that, is that the last block is compressed
with the number of bits that were processed so far. If
this value is not a multiple of a block, then the result-
ing digest does not equal the chaining value that is
needed to the expansion of the message. If the mes-
sage is a multiple of a block, then an additional block

is hashed (with the padding) with the same number
of bits that were hashed so far. Thus, the chaining
value required for the extension remains obscure to
the attacker.

3.2 Salt

The salt parameter can be considered as defining
a family of hash functions as needed by the formal
definitions of [16] in order to ensure the security of
the family of hash functions. This parameter can be
viewed as an instance of the randomized hashing con-
cept, thus, inheriting all the “goodies” such concept
provides:

• Ability to define the security of the hash func-
tion.

• Transformation of all attacks on the hash func-
tion that can use precomputation from an off-
line part and an on-line part to only on-line parts
(as the exact salt is not known in advance).

• Increasing the security of digital signatures, as
the signer chooses the salt value, and thus, any
attack aiming at finding two messages with the
same hash value has to take the salt into consid-
eration.

3.3 Variable Hash Size

Different digest sizes are needed for different applica-
tions. This fact has motivated NIST to publish SHA-
224 and SHA-384 as truncated variants of the SHA-
256 and SHA-512, respectively. We note that these
truncated hash functions use the same construction,
but with different initial values.

Our framework supports truncation that allows ar-
bitrary digest sizes (up to the output size of the com-
pression function), while securing the construction
against attacks that try to find two messages that
have similar digest values. This problem eliminates
the easy solution of just taking the number of output
bits from the output of the compression function.

Let IV be an initial value chosen by the designer of
the compression function, and let m be the required

length of the output. For producing hash values of
m bits the following initial value is computed

IVm = C(m, IV, 0, 0).

Then, the hash value is computed starting from the
initial value IVm. After the final block is processed,
m bits are taken from the output of the compression
function as the hash value. This approach is some-
what equivalent to adding the length m of the digest
length at the beginning of the message and then trun-
cating the output to the required size.

The padding scheme used in HAIFA is very similar
to the one used in the Merkle-Damg̊ard construction,
i.e., the message is padded with 1, as many needed
0’s, the length of the message encoded in a fixed num-
ber of bits, and the digest size.

This suggestion allows for an easy support in vari-
ous digest lengths. An implementation of an HAIFA-
based hash function requires only the value of IV
for the ability to produce any hash length, while in
implementations where only one output length l is
needed, IVl can be precomputed and hardcoded into
the implementation.

This second padding ensures that even if two mes-
sages M1 and M2 are found, such that under IVl1 and
IVl2 (M1 hashed to obtain l1 bits and M2 hashed to
a digest of l2 bits) their chaining values collide, then
the last block changes this behavior. This approach
is similar to the one used in the original strengthing,
even though it deals with a scenario of two different
output sizes.

4 The Security of HAIFA Hash
Functions

We first note that proving the HAIFA hash function is
collision resistant if the underlying compression func-
tion is collision resistant is quite easy. The same
arguments that are used to prove that the Merkle-
Damg̊ard construction retains the collision resistance
of the underlying compression function, can be used
to prove that HAIFA does so as well.

We note that any iterative construction can be at-
tacked by some of the attacks described in Section 2.

However, as noted before, using our ideas, it is pos-
sible to reduce the applicability of these attacks, by
preventing an efficient pre-computation that reduces
the online computational phase of these attacks.

Let us consider the multi-collision attack. This at-
tack works against all iterative hashing schemes, in-
dependent of their structure. While the time com-
plexity for finding collisions for each block is not dif-
ferent in our framework than in the Merkle-Damg̊ard
construction, an attacker cannot pre-compute these
multi-collisions before the choosing of the salt value.

As noted before, our framework prevents Dean’s
attack, as it is highly unlikely that some fix-point of
the compression function can be found. When con-
sidering the constructions proposed in [6] it is evi-
dent that this attack still applies to them. Dean’s
attack can be easily applied to the randomized
Merkle-Damg̊ard constructions Hr(M) = H(M ⊕
(r|r|r . . . |r)) and H̃r(M) = Hr(0|M), as once a fix-
point is found, it remains a fix-point for these con-
structions. We note that the first two steps of Dean’s
attack can be mounted off-line just as in Dean’s at-
tack on regular Merkle-Damg̊ard hash functions for
these two constructions.

As for Kelsey and Schneier’s attack, our framework
again prevents the pre-computation involved in the
attack, and transforms the entire attack into an on-
line attack. This follows from the fact, that any iter-
ative construction is susceptible to the multi-collision
attack.

Let us consider the herding attack. It can be eas-
ily shown that Hr and H̃r of [6] are susceptible to
these attacks, as the mixing of the random strings
into the messages is relatively weak. Thus, an at-
tacker can choose the chaining values at random and
find collisions in the underlying compression function.
Then, when r is given to the attacker, she can eas-
ily compute the messages that produce the desired
hash value. Our observations explain why the us-
age of the Merkle-Damg̊ard construction with ran-
domization cannot solve the problems of the Merkle-
Damg̊ard construction.

Under HAIFA such a precomputation is infeasible,
as the salt is mixed into the chaining value in a much
stronger way. This prevents the herding attack, as
the attacker cannot find the exact digest value (un-

less the salt is known in advance). We note that if
a security of O(2m) against pre-image attacks such
as the herding attack is requested, then the size of
the salt must be at least mc/2 bits long, in order to
prevent the herding attack.

We note that if the length of the salt is short, then
an attacker can still use precomputation to overcome
the security proposed by HAIFA. It is therefore rec-
ommended that the salt length would be of 64 bits
at least, or at least mc/2 bits when possible.

It is possible to treat the two parameters salt and
#bits as additional fields in the chaining value and
removing them in the last block. The approach of
increasing the chaining value was promoted in [11]
and it may seem that our suggestion follows this ap-
proach. However, the analysis in [11] assumes that
the hash function is a “good” hash function for all the
bits of the chaining value, while our approach shows
that the salt and #bits parameters can be treated
under a relatively weak transformation, without af-
fecting the security of the construction. Thus, it is ex-
pected the HAIFA hash functions will be faster than
wide hash constructions. We also note that the addi-
tional memory required by our suggestion is the size
of the salt (which is fixed for all blocks, i.e., can be
cached), unlike the larger memory required for keep-
ing a larger internal value.

We conclude that the security of a Merkle-
Damg̊ard hash function against a pre-image attacks
is equivalent to its security against collision attacks.
For HAIFA this is not the case, as we have showed
earlier. We give the security level of an ideal hash
function and of the Merkle-Damg̊ard and HAIFA con-
structions (under two cases — with a variable salt,
and with a fixed salt) in Table 1.

5 A Short Note on Iteration
and Expansion of the Mes-
sage

The recent results on hash functions has motivated
a lot of suggestions aiming to fix the flaws that were
found. Among the common solutions to the prob-
lems of the Merkle-Damg̊ard solution, are solutions

Type of Attack Ideal Hash MD HAIFA HAIFA
Function fixed salt with (distinct) salts

= ≥ ≥ ≥
Preimage 2mc 2mc 2mc 2mc

One-of-many pre-image 2mc/k′ 2mc/k′ 2mc/k′ 2mc

(k′ targets)
Second-pre-image 2mc 2mc/k 2mc 2mc

(k blocks)
One-of-many second 2mc/k′ 2mc/k 2mc/k′ 2mc

pre-image(k blocks in
total, k′ messages)

Collision 2mc/2 2mc/2 2mc/2 2mc/2

Multi-collision (k-collision) 2mc(k−1)/k dlog2 ke2mc/2 dlog2 ke2mc/2 dlog2 ke2mc/2

Herding [9] – Offline: 2mc/2+t Offline: 2mc/2+t Offline: 2mc/2+t+s

Online: 2mc−t Online: 2mc−t Online: 2mc−t

The figures are given for MD and HAIFA hash functions that use an ideal compression function.

Table 1: Complexities of Attacks on Merkle-Damg̊ard and HAIFA Hash Functions with Comparison for an
Ideal Hash Function

that suggest iterating the message several times dur-
ing the hash process. For example, instead of com-
puting h(M) it was suggested to compute h(MM) or
even h(MM̌), where M̌ is M written backwards, i.e.,
ˇ011 = 110.
Such suggestions aim at solving both the problems

caused by the multi-collision attack, Dean’s attack
(and its improved version), and the herding attack, as
well as the problems identified by the attacks on spe-
cific hash functions [18, 19, 20, 21]. Once a message
is iterated more than once, it prevents the “natural”
flow of all of these attacks.

However, as first noted in [14], and later expanded
in [7, 15], any expansion and iteration function, that
has a constant rate, can be attacked by variants of
the multi-collision attack. Thus, despite their much
slower application, and the additional memory re-
quirements, iteration and expansion of the message
does not offer a much better security.

6 Summary

In this paper we have presented HAIFA as a replace-
ment for the Merkle-Damg̊ard construction. The
main differences are the addition of the number of
bits hashed so far to the compression function along
with a salt value. In cases where there is no need
to add salt (e.g., message authentication codes) it is

possible to set its value to 0.
We note that even today’s compression functions

can be used in HAIFA hash functions by changing
the API of such compression functions. For exam-
ple, by setting in SHA-1 64 bits (out of the 512 bits
of each block) to represent the number of bits hashed
so far, and 64 bits to represent the salt, the new com-
pression function would hash 384 bits per call of the
compression function. This increases the computa-
tional effort of hashing long messages by a factor of
about 4/3, but at the same time provides security
against various attacks. New hash functions are ex-
pected to mix the salt and the number of bits much
more efficiently.

We conclude that new hash functions should be
designed under the HAsh Iterative FrAmework.

References

[1] Eli Biham, Rafi Chen, Near-Collisions of SHA-
0, Advances in Cryptology, proceedings of
CRYPTO 2004, Lecture Notes in Computer Sci-
ence 3152, pp. 290–305, Springer-Verlag, 2004.

[2] Eli Biham, Rafi Chen, Antoine Joux, Patrick
Carribault, Christophe Lemuet, William Jalby,
Collisions of SHA-0 and Reduced SHA-1, Ad-
vances in Cryptology, proceedings of EURO-

CRYPT 2005, Lecture Notes in Computer Sci-
ence 3621, pp. 36–57, 2005.

[3] Florent Chabaud, Antoine Joux, Differential
Collisions in SHA-0, Advances in Cryptology,
proceedings of CRYPTO 1998, Lecture Notes
in Computer Science 1462, pp. 56–71, Springer-
Verlag, 1998.

[4] Ivan Damg̊ard, A Design Principle for Hash
Functions, Advances in Cryptology, proceedings
of CRYPTO 1989, Lecture Notes in Computer
Science 435, pp. 416–427, Springer-Verlag, 1990.

[5] Richared D. Dean, Formal Aspects of Mobile
Code Security., Ph.D. dissertation, Princeton
University, 1999.

[6] Shai Halevei, Hugo Krawczyk, Strength-
ening Digital Signatures via Randomized
Hashing, preproceedings of Cryptographic
Hash Workshop, held in NIST, Gaithers-
burg, Maryland, 2005. Available on-line at
http://www.ee.technion.ac.il/∼hugo/rhash.pdf.

[7] Jonathan J. Hoch, Adi Shamir, Breaking the
ICE — Finding Multicollisions in Iterated Con-
catenated and Expanded (ICE) Hash Functions,
preproceedings of Fast Software Encryption
2006, pp. 199–214, 2006.

[8] Antoine Joux, Multicollisions in Iterated Hash
Functions, Advances in Cryptology, proceedings
of CRYPTO 2004, Lecture Notes in Computer
Science 3152, pp. 306–316, Springer-Verlag,
2004.

[9] John Kelsey, Tadayoshi Kohno, Herding Hash
Functions and the Nostradamus Attack, prepro-
ceedings of Cryptographic Hash Workshop, held
in NIST, Gaithersburg, Maryland, 2005.

[10] John Kelsey, Bruce Schneier, Second Preimages
on n-Bit Hash Functions for Much Less than 2n,
Advances in Cryptology, proceedings of EURO-
CRYPT 2005, Lecture Notes in Computer Sci-
ence 3494, pp. 474–490, Springer-Verlag, 2005.

[11] Stefan Lucks, A Failure-Friendly Design Prin-
ciple for Hash Functions, Advances in Cryptol-
ogy, proceedings of ASIACRYPT 2005, Lecture
Notes in Computer Science 3788, pp. 474–494,
Springer-Verlag, 2005.

[12] Ralph C. Merkle, Secrecy, Authentication, and
Public Key Systems, UMI Research press, 1982.

[13] Ralph C. Merkle, One Way Hash Functions and
DES, Advances in Cryptology, proceedings of
CRYPTO 1989, Lecture Notes in Computer Sci-
ence 435, pp. 428–446, Springer-Verlag, 1990.

[14] Mridul Nandi, Douglas R. Stinson, Multicol-
lision Attacks on Generalized Hash Functions,
IACR eprint report 2004/.

[15] Mridul Nandi, Douglas R. Stinson, Multicol-
lision Attacks on some Generalized Sequential
Hash Functions, IACR eprint report 2006/055.

[16] Phillip Rogaway, Thomas Shrimpton, Crypto-
graphic Hash-Function Basics: Definitions, Im-
plications, and Separations for Preimage Resis-
tance, Second-Preimage Resistance, and Colli-
sion Resistance, proceedings of Fast Software
Encryption 2004, Lecture Notes in Computer
Science 3017, pp. 371–388, Springer-Verlag,
2004.

[17] US National Bureau of Standards, Secure Hash
Standard, Federal Information Processing Stan-
dards Publications No. 180-2, 2002.

[18] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui
Chen, Xiuyuan Yu, Cryptanalysis of the Hash
Functions MD4 and RIPEMD, Advances in
Cryptology, proceedings of EUROCRYPT 2005,
Lecture Notes in Computer Science 3494, pp. 1–
18, 2005.

[19] Xiaoyun Wang, Yiqun Lisa Yin, Hongbo Yu,
Finding Collisions in the Full SHA-1, Ad-
vances in Cryptology, proceedings of CRYPTO
2005, Lecture Notes in Computer Science 3621,
pp. 17–36, 2005.

[20] Xiaoyun Wang, Hongbo Yu, How to Break MD5
and Other Hash Functions, Advances in Cryp-
tology, proceedings of EUROCRYPT 2005, Lec-
ture Notes in Computer Science 3494, pp. 19–35,
2005.

[21] Xiaoyun Wang, Hongbo Yu, Yiqun Lisa Yin, Ef-
ficient Collision Search Attacks on SHA-0, Ad-
vances in Cryptology, proceedings of CRYPTO
2005, Lecture Notes in Computer Science 3621,
pp. 1–16, 2005.

[22] Gideon Yuval, How to Swindle Rabin, Cryptolo-
gia, Vol. 3, pp. 187–190, 1979.

