
CCfits Reference Manual
2.0

Generated by Doxygen 1.5.4

Tue Feb 5 11:26:55 2008

CONTENTS 1

Contents

1 CCfits Documentation 1

2 CCfits User’s Guide 4

3 CCfits Module Index 29

4 CCfits Namespace Index 29

5 CCfits Hierarchical Index 30

6 CCfits Class Index 32

7 CCfits Page Index 34

8 CCfits Module Documentation 35

9 CCfits Namespace Documentation 36

10 CCfits Class Documentation 37

1 CCfits Documentation

CCfits-2.0 requires cfitsio version 3.02 or later

1.1 Introduction

CCfits is an object oriented interface to the cfitsio library. cfitsio is a widely used library
for manipulating FITS (Flexible Image Transport System) formatted files. This follow-
ing documentation assumes prior knowledge of the FITS format and some knowledge
of the use of the cfitsio library, which is in wide use, well developed, and available on
many platforms.

Readers unfamiliar with FITS but in need of performing I/O with
FITS data sets are directed to the first cfitsio manual, available at
http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html Information about the
FITS file format and the current standard is available from http://fits.gsfc.nasa.gov

The CCfits library provides an interface that allows the user to manipulate FITS for-
mat data through the high-level building blocks of FITS files and Header-Data Units

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html

1.2 About this Manual 2

(HDUs). The implementation is designed to hide the details of performing FITS I/O
from the user, who will write calls that manipulate FITS objects by passing filenames
and lists of strings that represent HDUs, keywords, image data and data columns. Un-
like cfitsio, which typically requires several calls to access data (e.g. open file, move to
correct header, determine column containing table data, read data) CCfits is designed
to make reading data atomic. For example, it exploits internally existing optimization
techniques for FITS I/O, choosing the optimal reading strategy as available [see the
cfitsio manual, Chapter 13] when data are read on initialization. Data written by CCfits
will also be compliant with the FITS standard by specification of class constructors
representing FITS dataset elements.

CCfits necessarily works in a fundamentally different way than cfitsio. The general
pattern of usage for CCfits is: create a FITS object, which either opens a disk file or
creates a new disk file, create references to existing or new HDU objects within it, and
manipulated the data through the references. For files with Write access the library is
designed to keep the FITS object on disk in sync with the memory copy. The additional
memory copy increases the resources required by a calling program in return for some
flexibility in accessing the data.

1.2 About this Manual

This document lays out the specification for the CCfits library.

The next sections document the installation procedure and the demonstration program
cookbook which gives examples of usage with comments.

Following sections give a list of what is implemented in CCfits compared to the cfitsio
library. For background information and as an example there is a section describing
how CCfits is to be used in XSPEC, for which it was originally designed, which may
serve to give the reader some insight into the design decisions made.

1.3 Release Notes For Version 2.0 Feb 2008

Enhancements to CCfits:

• Checksum Capability: 4 checksum related functions have been added to the
HDU class, which now allows users to set and verify checksums directly from
inside CCfits.

• Capturing Error Messages: The FitsException base class now stores its output
error message, and it can be retrieved from any of the exception subclass objects
with a call to the new FitsException::message() function.

• Improved Keyword Handling: New functions copyAllKeys, keywordCate-
gories, and a second addKey function have been added to the HDU class. The

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

1.4 Authors and Acknowledgements 3

Keyword class now offers a public setValue function to modify an existing key-
word. Also the class member documentation for keyword related functions has
been upgraded and expanded.

• Image Scaling: In the HDU class (for instances of its PHDU and image Ex-
tHDU subclasses), scale and zero set functions can now write BSCALE and
BZERO keywords to the file. A new suppressScaling function has been added
to temporarily turn off scaling. The ImageExt<T> class has also been added to
the documentation.

• Miscellaneous New Functions:Table::getRowsize() (submitted by Patrik Jons-
son), Fits::fitsPointer(), Column::parent().

Bug Fixes:

• FITS constructor in Write mode caused a segmentation fault when used on read-
only files. (Reported by Gerard Zins)

• Column write functions were not turning off NULL checking even when the
nulval pointer was set to 0. (Reported by Gerard Zins)

• For the FITS constructor which takes an existing FITS object as an argument,
when given the filename of an existing file (and without the ’!’ specifier), it
places a new primary HDU in the first extension. It shouldn’t allow a write
operation at all in this case. (Reported by Andy Beardmore)

• Some additional include statements are needed for compilation on a test version
of g++4.3 (Reported by Aurelien Jarno)

Backwards Compatibility Issues:

• The following documented public access member functions have now been
removed or made protected/private. As these functions were either never
fully implemented or could not successfully be used from external code, it is
hoped that these removals will not break any pre-existing code: FITS::clone,
HDU::setKeyWord, the HDU::bitpix set function, the Keyword class construc-
tors.

For a more complete listing, see the CHANGES file distributed with the software. For
earlier versions, see Previous Release Notes.

1.4 Authors and Acknowledgements

CCfits was written as part of a re-engineering effort for the X-Ray data anal-
ysis program, XSPEC. It was designed using Rational Rose and originally im-
plemented on a Solaris platform by Ben Dorman to whom blame should be at-
tached. Sandhia Bansal worked on part of the implementation and, and Paul

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

2 CCfits User’s Guide 4

Kunz (pfkeb@slac.stanford.edu) wrote the configuration scheme and dis-
pensed helpful advice: both are also thanked profusely for the port to Win-
dows2000/VC++.net. Thanks to R. Mathar (MPIA) and Patrik Jonsson (Lick Obs.)
for contributing many helpful suggestions and bug reports, and ports to HP-UX and
AIX respectively.

CCfits is currently maintained by Craig Gordon and Bryan Irby
(ccfits@heasarc.gsfc.nasa.gov). Suggestions and bug reports are
welcome, as are offers to fill out parts of the implementation that are missing. We
are also interested in knowing which parts of cfitsio that are not currently supported
should be the highest priority for future extensions.

2 CCfits User’s Guide

2.1 User Guide Contents

Installing the Package 5

Implementation Notes 7

Xspec and CCfits 8

Getting Started 9

Writing The Primary Image 11

Creating and Writing to an Ascii Table Extension 14

Creating and Writing to a Binary Table Extension 17

Copying an Extension between Files 22

Selecting Table Data 23

Reading Header information from a HDU 24

Reading an Image 24

Reading a Table Extension 25

What’s Present, What’s Missing, and Calling CFITSIO 26

Previous Release Notes 28

Todo List 29

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

mailto:pfkeb@slac.stanford.edu
mailto:ccfits@heasarc.gsfc.nasa.gov

2.2 Installing the Package 5

2.2 Installing the Package

2.2.1 Platforms

CCfits is generally supported on the same platforms as HEASOFT, and on Windows
with VC++ 7.0 or later. See the HEASOFT supported platforms page.

2.2.2 Building

To build and install CCfits from source code on a UNIX-like (e.g. UNIX, Linux, or
Cygwin) platform, take the following steps. For building on a Microsoft Windows
platform with Visual Developer Studio, see below.

2.2.2.1 Instructions for Building CCfits on UNIX-like platforms: 1. Configure

By default, the GCC compiler and linker will be used. If you want to compile and
link with a different compiler and linker, you can set some environment variable before
running the configure script. For example, to use Sun’s C++ compiler, do the following:

> setenv CXX CC (csh syntax)

or

> export CXX=CC (bash syntax)

You can set the absolute path to the compiler you want to use if necessary.

CCfits requires that the CFITSIO package, version 3.02 or later, is available on your
system. See

http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html

for more information. The configure script that you will run takes an option to specify
the location of the CFITSIO package.

If the CFITSIO package is installed in a directory consisting of a ’lib’ subdirectory
containing "libcfitsio.a" or "libcfitsio.so" and an ’include’ subdirectory containing "fit-
sio.h", then you can run the configure script with a single option. For example, if the
cfitsio package is installed in this fashion in /usr/local/cfitsio/ then the configure script
option will be

–with-cfitsio=/usr/local/cfitsio

If the CFITSIO package is not installed in the above manner, then you need to run
the configure script with two options, one to specify the include directory and the
other to specify the library directory. For example, if the cfitsio package was built
in /home/user/cfitsio/ then the two options will be

–with-cfitsio-include=/home/user/cfitsio –with-cfitsio-libdir=/home/user/cfitsio

For users of HEASOFT (instead of stand-alone CFITSIO): Note that modern distri-

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

http://heasarc.gsfc.nasa.gov/docs/software/lheasoft/
http://heasarc.gsfc.nasa.gov/docs/software/lheasoft/supported_platforms.html
http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html

2.2 Installing the Package 6

butions of HEASOFT only include a "libcfitsio_X.XX.so" library by default, but the
configure script needs to find "libcfitsio.so", so you will need to create a symbolic link
in $HEADAS/lib/ linking libcfitsio.so -> libcfitsio_X.XX.so in order for CCfits to con-
figure properly. You can then configure CCfits using "–with-cfitsio=$HEADAS/lib".

You have the option of carrying out the build in a separate directory from the source
directory or in the same directory as the source. In either case, you need to run the
configure script in the directory where the build will occur. For example, if building
in the source directory with the cfitsio directory in /usr/local/cfitsio/ then the configure
command should be issued like this:

> ./configure –with-cfitsio=/usr/local/cfitsio

If you do the build in a separate directory from the source, you may need to issue the
configure command something like this:

> ../CCfits/configure –with-cfitsio=/usr/local/cfitsio

The configure script will create the Makefile with the path to the compiler you choose
(or GCC by default), and the path to the CFITSIO package. The configure script has
other options, such as the install location. To see these options type

> ./configure –help

2. Build

Building the C++ shared library and Java classes will be done automatically by running
make without arguments like this:

> gmake

3. Install

To install, type:

> make install

The default install location will be /usr/local/lib for the library and /usr/local/include
for the header files. You can change this with the –prefix option when you configure,
or with something like...

> make DESTDIR=/usr/local/CCfits install

2.2.2.2 Instructions for Microsft Windows build: Compiling CCfits with MS
VC++ requires VC++ 7.0 or later. This is the compiler that comes with Visual Stu-
dio.NET. Earlier versions of the compiler has too many defects in the area of instanci-
ating templates.

Take the following steps.

1. Compile the C++ code. Open the vs.net/CCfits/CCfits.sln file with Visual Stu-
dio.NET. The includes paths have been set to find the cfitsio build directory at the same
level as the CCfits directory. If this is not the case, use Visual Studio.NET to edit the

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

2.3 Implementation Notes 7

include paths and extra library paths to where you have cfitsio installed.

Next, just use the build icon or the build menu item.

To build the test program, cookbook, use the vs.net/cookbook.cookbook.sln file

Author: Paul_Kunz@slac.stanford.edu Revised 1 Nov 2006 by Bryan Irby

2.3 Implementation Notes

This section comments on some of the design decisions for CCfits. We note the role of
cfitsio in CCfits as the underlying "engine," the use of the C++ standard library. We also
explain some of the choices made for standard library containers in the implementation
- all of which is hidden from the user [as it should be].

Most importantly, the library wraps rather than replaces the use of cfitsio library; it
does not perform direct disk I/O. The scheme is designed to retain the well-developed
facilities of cfitsio (in particular, the extended file syntax), and make them available to
C++ programmers in an OO framework. Some efficiency is lost over a ’pure’ C++ FITS
library, since the internal C implementation of many functions requires processing if
blocks or switch statements that could be recoded in C++ using templates. However,
we believe that the current version strikes a resonable compromise between developer
time, utility and efficiency.

The implementation of CCfits uses the C++ Standard Library containers and algorithms
[also referred to as the Standard Template Library, (STL)] and exception handling.
Here is a summary of the rationale behind the implementation decisions made.

• HDUs are contained within a FITS object using a std::multimap<string, HDU∗>
object.

1. The map object constructs new array members on first reference

2. Objects stored in the map are sorted on entry and retrieved efficiently using
binary search techniques.

3. The pointer-to-HDU implementation allows for polymorphism: one set of
operations will process all HDU objects within the FITS file

4. String objects (char∗) are represented by the std::string class, which has a
rich public interface of search and manipulation facilities.

• Scalar column data [one entry per cell] are implemented using std::vector<T>
objects.

• Vector column data [multiple and either fixed or variable numbers of entries
per cell] are implemented using std::vector<std::valarray <T> > objects. The
std::valarray template is intended for optimized numeric processing. valarrays
are have the following desirable features:

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

mailto:Paul_Kunz@slac.stanford.edu

2.4 Xspec and CCfits 8

1. they are dynamic, but designed to be allocated in full on construction rather
than dynamic resizing during operation: this is, what is usually needed in
FITS files.

2. They have built-in vectorized transcendental functions (e.g.
std::valarray<T> sin(const std::valarray<T>&).

3. They provide std::valarray<T> apply(T f(const T&)) operation, to apply a
function f to each element

4. They provide slicing operations [see the "Getting Started" section for a
simple example].

• Exceptions are provided in for by a FitsException hierarchy, which prints out
messages on errors and returns control to wherever the exception is caught. Non-
zero status values returned by cfitsio are caught by subclass FitsError, which
prints the string corresponding to an input status flag. FitsException’s other sub-
classes are thrown on array bounds errors and other programming errors. Rare
[we hope] errors that indicate programming flaws in the library throw FitsFatal
errors that suggest that the user report the bug.

2.4 Xspec and CCfits

This section is provided for background. Users of CCfits need not read it except to
understand how the library was conceived and therefore what its strengths and weak-
nesses are likely to be in this initial release.

2.4.1 About XSPEC

XSPEC is a general-purpose, multi-mission X-Ray spectral data analysis program
which fits data with theoretical models by convolving those models through the in-
strumental responses. In XSPEC 11.x and all prior versions that use FITS format data,
each individual data file format that is supported can have up to 4 anciliary files. That
is, for each data file, there can be a response, correction, background and auxiliary
response (efficiency) file. Additionally there are table models that read FITS format
data. All told, therefore, much duplicated procedural code for reading FITS data can
be eliminated by use of the greater encapsulation provided by CCfits. XSPEC’s pri-
mary need is to read FITS floating point Binary Tables. XSPEC also creates simulated
data by convolving users’ models with detector responses, so it also has a need for writ-
ing tabular data. Images are not used in XSPEC. We have provided a support for image
operations which has undergone limited testing compared to the reading interface for
table extensions.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

2.5 Getting Started 9

2.4.2 New Data Formats

New formats to be read in XSPEC that are specialized for a particular satellite mission
can be supported almost trivially by adding new classes that read data specified with
different FITS format files. A single constructor call specifying the required columns
and keys is all that is needed to read FITS files, rather than a set of individual cfitsio
calls. The library is designed to encourage the “resource acquisition is initialization”
model of resource management; CCfits will perform more efficiently if data are read
on construction.

2.4.3 Modularity

Third, in an object oriented design, it is possible to make a program only loosely de-
pendent on current implementation assumptions. In XSPEC, data are read as SF and
FITS format (of three different varieties) and the user interface is written in tcl/tk. Both
of these assumptions could be changed over the future life of the program. Thus the
design of XSPEC, and any similar program, consists of defining an abstract DataSet
class which has a subclass that uses FITS data. The virtual functions that support read-
ing and writing can easily be overloaded by alternatives to FITS. Thus, the class library
specified here fits in with the need for modularity in design.

2.5 Getting Started

The program cookbook.cxx, analogous to the cookbook.c program supplied with cfit-
sio, was generated to test the correct functioning of the parts of the library and to
provide a demonstration of its usage.

The code for cookbook is reproduced here with commentary as worked example of the
usage of the library.

2.5.1 Driver Program

// The CCfits headers are expected to be installed in a subdirectory of
// the include path.

// The <CCfits> header file contains all that is necessary to use both the CCfits
// library and the cfitsio library (for example, it includes fitsio.h) thus making
// all of cfitsio’s macro definitions available.

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

// this includes 12 of the CCfits headers and will support all CCfits operations.
// the installed location of the library headers is $(ROOT)/include/CCfits

// to use the library either add -I$(ROOT)/include/CCfits or #include <CCfits/CCfits>

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

2.5 Getting Started 10

// in the compilation target.

#include <CCfits>

#include <cmath>
// The library is enclosed in a namespace.

using namespace CCfits;

int main();
int writeImage();
int writeAscii();
int writeBinary();
int copyHDU();
int selectRows();
int readHeader();
int readImage();
int readTable();

int main()
{

FITS::setVerboseMode(true);

try

{

if (!writeImage()) std::cerr << " writeImage() \n";
if (!writeAscii()) std::cerr << " writeAscii() \n";
if (!writeBinary()) std::cerr << " writeBinary() \n";
if (!copyHDU()) std::cerr << " copyHDU() \n";
if (!readHeader()) std::cerr << " readHeader() \n";
if (!readImage()) std::cerr << " readImage() \n";
if (!readTable()) std::cerr << " readTable() \n";
if (!selectRows()) std::cerr << " selectRows() \n";

}
catch (FitsException&)
// will catch all exceptions thrown by CCfits, including errors
// found by cfitsio (status != 0)
{

std::cerr << " Fits Exception Thrown by test function \n";

}
return 0;

}

The simple driver program illustrates the setting of verbose mode for the library, which
makes all internal exceptions visible to the programmer. This is primarily for de-
bugging purposes; exceptions are in some cases used to transfer control in common

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

2.6 Writing Primary Images and Image Extensions 11

circumstances (e.g. testing whether a file should be created or appended to in write
operations). Most of the exceptions will not produce a message unless this flag is set.

Nearly all of the exceptions thrown by CCfits are derived from FitsException, which
is caught by reference in the above example. This includes all nonzero status codes
returned by cfitsio by the following construct (recall that in the cfitsio library
nearly all functions return a non-zero status code on error, and have a final argument
status of type int):

if ([cfitsio call](args,...,&status)) throw FitsError(status);

FitsError, derived from FitsException, uses a cfitsio library call to convert the status
code to a string message.

The few exceptions that are not derived from FitsException indicate fatal conditions
implying bugs in the library. These print a message suggesting the user contact
HEASARC to report the problem.

Note also the lack of statements for closing files in any of the following routines, The
destructor (dtor) for the FITS object does this when it falls out of scope. A call

FITS::destroy() throw()

is provided for closing files explicitly; destroy() is also responsible for cleaning up the
FITS object and deallocating its resources.

When the data are being read instead of written, the user is expected to copy the data
into other program variables [rather than use references to the data contained in the
FITS object].

The routines in this program test the following functionality:

writeImage() Writing Primary Images and Image Extensions

writeAscii() Creating and Writing to an Ascii Table Extension

writeBinary() Creating and Writing to a Binary Table Extension

copyHDU() Copying an Extension between Files

selectRows() Selecting Table Data

readHeader() Reading Header information from a HDU

readImage() Reading an Image

readTable() Reading a Table Extension

2.6 Writing Primary Images and Image Extensions

This section of the code demonstrates creation of images. Because every fits file must
have a PHDU element, all the FITS constructors (ctors) instantiate a PHDU object.
In the case of a new file, the default is to establish an empty HDU with BITPIX = 8

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html
mailto:xanprob@olegacy.gsfc.nasa.gov>

2.6 Writing Primary Images and Image Extensions 12

(BYTE_IMG). A current limitation of the code is that the data type of the PHDU
cannot be replaced after the FITS file is created. Arguments to the FITS ctors allow
the specification of the data type and the number of axes and their lengths. An image
extension of type float is also written by calls in between the writes to the primary
header demonstrating switch between HDUs during writes.

Note that in the example below data of type float is written to an image of type unsigned
int, demonstrating both implicit type conversion and the cfitsio extension to unsigned
data.

User keywords can be added to the PHDU after successful construction and these will
both be accessible as container contents in the in-memory FITS object as well as being
written to disk by cfitsio.

Images are represented by the standard library valarray template class which supports
vectorized operations on numeric arrays (e.g. taking the square root of an array) and
slicing techniques.

The code below also illustrates use of C++ standard library algorithms, and the facilities
provided by the std::valarray class.

int writeImage()
{

// Create a FITS primary array containing a 2-D image
// declare axis arrays.
long naxis = 2;
long naxes[2] = { 300, 200 };

// declare auto-pointer to FITS at function scope. Ensures no resources
// leaked if something fails in dynamic allocation.
std::auto_ptr<FITS> pFits(0);

try
{

// overwrite existing file if the file already exists.

const std::string fileName("!atestfil.fit");

// Create a new FITS object, specifying the data type and axes for the primary
// image. Simultaneously create the corresponding file.

// this image is unsigned short data, demonstrating the cfitsio extension
// to the FITS standard.

pFits.reset(new FITS(fileName , USHORT_IMG , naxis , naxes));
}
catch (FITS::CantCreate)
{

// ... or not, as the case may be.
return -1;

}

// references for clarity.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

2.6 Writing Primary Images and Image Extensions 13

long& vectorLength = naxes[0];
long& numberOfRows = naxes[1];
long nelements(1);

// Find the total size of the array.
// this is a little fancier than necessary (It’s only
// calculating naxes[0]*naxes[1]) but it demonstrates use of the
// C++ standard library accumulate algorithm.

nelements = std::accumulate(&naxes[0],&naxes[naxis],1,std::multiplies<long>());

// create a new image extension with a 300x300 array containing float data.

std::vector<long> extAx(2,300);
string newName ("NEW-EXTENSION");
ExtHDU* imageExt = pFits->addImage(newName,FLOAT_IMG,extAx);

// create a dummy row with a ramp. Create an array and copy the row to
// row-sized slices. [also demonstrates the use of valarray slices].
// also demonstrate implicit type conversion when writing to the image:
// input array will be of type float.

std::valarray<int> row(vectorLength);
for (long j = 0; j < vectorLength; ++j) row[j] = j;
std::valarray<int> array(nelements);
for (int i = 0; i < numberOfRows; ++i)
{

array[std::slice(vectorLength*static_cast<int>(i),vectorLength,1)] = row + i;
}

// create some data for the image extension.
long extElements = std::accumulate(extAx.begin(),extAx.end(),1,std::multiplies<long>());
std::valarray<float> ranData(extElements);
const float PIBY (M_PI/150.);
for (int jj = 0 ; jj < extElements ; ++jj)
{

float arg = PIBY*jj;
ranData[jj] = std::cos(arg);

}

long fpixel(1);

// write the image extension data: also demonstrates switching between
// HDUs.
imageExt->write(fpixel,extElements,ranData);

//add two keys to the primary header, one long, one complex.

long exposure(1500);
std::complex<float> omega(std::cos(2*M_PI/3.),std::sin(2*M_PI/3));
pFits->pHDU().addKey("EXPOSURE", exposure,"Total Exposure Time");
pFits->pHDU().addKey("OMEGA",omega," Complex cube root of 1 ");

// The function PHDU& FITS::pHDU() returns a reference to the object representing
// the primary HDU; PHDU::write(<args>) is then used to write the data.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

2.7 Creating and Writing to an Ascii Table Extension 14

pFits->pHDU().write(fpixel,nelements,array);

// PHDU’s friend ostream operator. Doesn’t print the entire array, just the
// required & user keywords, and is provided largely for testing purposes [see
// readImage() for an example of how to output the image array to a stream].

std::cout << pFits->pHDU() << std::endl;

return 0;
}

2.7 Creating and Writing to an Ascii Table Extension

In this section of the program we create a new Table extension of type AsciiTbl, and
write three columns with 6 rows. Then we add another copy of the data two rows down
(starting from row 3) thus overwriting values and creating new rows. We test the use of
null values, and writing a date string. Implicit data conversion, as illustrated for images
above, is supported. However, writing numeric data as character data, supported by
cfitsio, is not supported by CCfits.

Note the basic pattern of CCfits operations: they are performed on an object of type
FITS. Access to HDU extension is provided by FITS:: member functions that return
references or pointers to objects representing HDUs. Extension are never created di-
rectly (all extension ctors are protected), but only through the functions FITS::addTable
and FITS::addImage which add extensions to an existing FITS object, performing the
necessary cfitsio calls.

The FITS::addTable function takes as one of its last arguments a HDU Type parameter,
which needs to be AsciiTbl or BinTbl. The default is to create a BinTable (see next
function).

Similarly, access to column data is provided through the functions ExtHDU::Column,
which return references to columns specified by name or index number - see the docu-
mentation for the class ExtHDU for details.

addTable returns a pointer to Table, which is the abstract immediate superclass of the
concrete classes AsciiTable and BinTable, whereas addImage returns a pointer to Ex-
tHDU, which is the abstract base class of all FITS extensions. These base classes
implement the public interface necessary to avoid the user of the library needing to
downcast to a concrete type.

int writeAscii ()

//**
// Create an ASCII Table extension containing 3 columns and 6 rows *
//**

{
// declare auto-pointer to FITS at function scope. Ensures no resources
// leaked if something fails in dynamic allocation.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

2.7 Creating and Writing to an Ascii Table Extension 15

std::auto_ptr<FITS> pFits(0);

try
{

const std::string fileName("atestfil.fit");

// append the new extension to file created in previous function call.
// CCfits writing constructor.

// if this had been a new file, then the following code would create
// a dummy primary array with BITPIX=8 and NAXIS=0.

pFits.reset(new FITS(fileName,Write));
}
catch (CCfits::FITS::CantOpen)
{

// ... or not, as the case may be.
return -1;

}

unsigned long rows(6);
string hduName("PLANETS_ASCII");
std::vector<string> colName(3,"");
std::vector<string> colForm(3,"");
std::vector<string> colUnit(3,"");

/* define the name, datatype, and physical units for the 3 columns */
colName[0] = "Planet";
colName[1] = "Diameter";
colName[2] = "Density";

colForm[0] = "a8";
colForm[1] = "i6";
colForm[2] = "f4.2";

colUnit[0] = "";
colUnit[1] = "km";
colUnit[2] = "g/cm^-3";

std::vector<string> planets(rows);

const char *planet[] = {"Mercury", "Venus", "Earth",
"Mars","Jupiter","Saturn"};

const char *mnemoy[] = {"Many", "Volcanoes", "Erupt",
"Mulberry","Jam","Sandwiches","Under",

"Normal","Pressure"};

long diameter[] = { 4880, 12112, 12742, 6800, 143000, 121000};
float density[] = { 5.1f, 5.3f, 5.52f, 3.94f, 1.33f, 0.69f};

// append a new ASCII table to the fits file. Note that the user
// cannot call the Ascii or Bin Table constructors directly as they
// are protected.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

2.7 Creating and Writing to an Ascii Table Extension 16

Table* newTable = pFits->addTable(hduName,rows,colName,colForm,colUnit,AsciiTbl);
size_t j = 0;

for (; j < rows; ++j) planets[j] = string(planet[j]);

// Table::column(const std::string& name) returns a reference to a Column object

try
{

newTable->column(colName[0]).write(planets,1);
newTable->column(colName[1]).write(diameter,rows,1);
newTable->column(colName[2]).write(density,rows,1);

}
catch (FitsException&)
{

// ExtHDU::column could in principle throw a NoSuchColumn exception,
// or some other fits error may ensue.
std::cerr << " Error in writing to columns - check e.g. that columns of specified name "

<< " exist in the extension \n";

}

// FITSUtil::auto_array_ptr<T> is provided to counter resource leaks that
// may arise from C-arrays. It is a std::auto_ptr<T> analog that calls
// delete[] instead of delete.

FITSUtil::auto_array_ptr<long> pDiameter(new long[rows]);
FITSUtil::auto_array_ptr<float> pDensity(new float[rows]);
long* Cdiameter = pDiameter.get();
float* Cdensity = pDensity.get();

Cdiameter[0] = 4880; Cdiameter[1] = 12112; Cdiameter[2] = 12742; Cdiameter[3] = 6800;
Cdiameter[4] = 143000; Cdiameter[5] = 121000;

Cdensity[0] = 5.1f; Cdensity[1] = 5.3f; Cdensity[2] = 5.52f;
Cdensity[3] = 3.94f; Cdensity[4] = 1.33f; Cdensity[5] = 0.69;

// this << operator outputs everything that has been read.

std::cout << *newTable << std::endl;

pFits->pHDU().addKey("NEWVALUE",42," Test of adding keyword to different extension");

pFits->pHDU().addKey("STRING",std::string(" Rope "),"trailing blank test 1 ");

pFits->pHDU().addKey("STRING2",std::string("Cord"),"trailing blank test 2 ");
// demonstrate increaing number of rows and null values.
long ignoreVal(12112);
long nullNumber(-999);
try
{

// add a TNULLn value to column 2.
newTable->column(colName[1]).addNullValue(nullNumber);
// test that writing new data properly expands the number of rows
// in both the file]).write(planets,rows-3);
newTable->column(colName[2]).write(density,rows,rows-3);

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

2.8 Creating and Writing to a Binary Table Extension 17

// test the undefined value functionality. Undefineds are replaced on
// disk but not in the memory copy.
newTable->column(colName[1]).write(diameter,rows,rows-3,&ignoreVal);

}
catch (FitsException&)
{

// this time we’re going to ignore problems in these operations

}

// output header information to check that everything we did so far
// hasn’t corrupted the file.

std::cout << pFits->pHDU() << std::endl;

std::vector<string> mnemon(9);
for (j = 0; j < 9; ++j) mnemon[j] = string(mnemoy[j]);

// Add a new column of string type to the Table.
// type, columnName, width, units. [optional - decimals, column number]
// decimals is only relevant for floatingpoint data in ascii columns.
newTable->addColumn(Tstring,"Mnemonic",10," words ");
newTable->column("Mnemonic").write(mnemon,1);

// write the data string.
newTable->writeDate();

// and see if it all worked right.
std::cout << *newTable << std::endl;

return 0;
}

2.8 Creating and Writing to a Binary Table Extension

The Binary Table interface is more complex because there is an additional parameter,
the vector size of each ‘cell’ in the table, the need to support variable width columns,
and the desirability of supporting the input of data in various formats.

The interface supports writing to vector tables the following data struc-
tures: C-arrays (T∗), std::vector<T> objects, std::valarray<T> objects, and
std::vector<valarray<T> >. The last of these is the internal representation of the
data.

The function below exercises the following functionality:

• Create a BinTable extension

• Write vector rows to the table

• Insert table rows

• Write complex data to both scalar and vector columns.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

2.8 Creating and Writing to a Binary Table Extension 18

• Insert Table columns

• Delete Table rows

• Write HISTORY and COMMENT cards to the Table

int writeBinary ()

//***
// Create a BINARY table extension and write and manipulate vector rows
//***

{
std::auto_ptr<FITS> pFits(0);

try
{

const std::string fileName("atestfil.fit");
pFits.reset(new FITS(fileName,Write));

}
catch (CCfits::FITS::CantOpen)
{

return -1;
}

unsigned long rows(3);
string hduName("TABLE_BINARY");
std::vector<string> colName(7,"");
std::vector<string> colForm(7,"");
std::vector<string> colUnit(7,"");

colName[0] = "numbers";
colName[1] = "sequences";
colName[2] = "powers";
colName[3] = "big-integers";
colName[4] = "dcomplex-roots";
colName[5] = "fcomplex-roots";
colName[6] = "scalar-complex";

colForm[0] = "8A";
colForm[1] = "20J";
colForm[2] = "20D";
colForm[3] = "20V";
colForm[4] = "20M";
colForm[5] = "20C";
colForm[6] = "1M";

colUnit[0] = "magnets";
colUnit[1] = "bulbs";
colUnit[2] = "batteries";
colUnit[3] = "mulberries";
colUnit[4] = "";
colUnit[5] = "";
colUnit[6] = "pico boo";

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

2.8 Creating and Writing to a Binary Table Extension 19

std::vector<string> numbers(rows);

const string num("NUMBER-");
for (size_t j = 0; j < rows; ++j)
{

#ifdef HAVE_STRSTREAM
std::ostrstream pStr;

#else
std::ostringstream pStr;

#endif
pStr << num << j+1;
numbers[j] = string(pStr.str());

}

const size_t OFFSET(20);

// write operations take in data as valarray<T>, vector<T> , and
// vector<valarray<T> >, and T* C-arrays. Create arrays to exercise the C++
// containers. Check complex I/O for both float and double complex types.

std::valarray<long> sequence(60);
std::vector<long> sequenceVector(60);
std::vector<std::valarray<long> > sequenceVV(3);

for (size_t j = 0; j < rows; ++j)
{

sequence[OFFSET*j] = 1 + j;
sequence[OFFSET*j+1] = 1 + j;
sequenceVector[OFFSET*j] = sequence[OFFSET*j];
sequenceVector[OFFSET*j+1] = sequence[OFFSET*j+1];
// generate Fibonacci numbers.
for (size_t i = 2; i < OFFSET; ++i)
{

size_t elt (OFFSET*j +i);
sequence[elt] = sequence[elt-1] + sequence[elt - 2];
sequenceVector[elt] = sequence[elt] ;

}
sequenceVV[j].resize(OFFSET);
sequenceVV[j] = sequence[std::slice(OFFSET*j,OFFSET,1)];

}

std::valarray<unsigned long> unsignedData(60);
unsigned long base (1 << 31);
std::valarray<double> powers(60);
std::vector<double> powerVector(60);
std::vector<std::valarray<double> > powerVV(3);
std::valarray<std::complex<double> > croots(60);
std::valarray<std::complex<float> > fcroots(60);
std::vector<std::complex<float> > fcroots_vector(60);
std::vector<std::valarray<std::complex<float> > > fcrootv(3);

// create complex data as 60th roots of unity.
double PIBY = M_PI/30.;

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

2.8 Creating and Writing to a Binary Table Extension 20

for (size_t j = 0; j < rows; ++j)
{

for (size_t i = 0; i < OFFSET; ++i)
{

size_t elt (OFFSET*j+i);
unsignedData[elt] = sequence[elt];
croots[elt] = std::complex<double>(std::cos(PIBY*elt),std::sin(PIBY*elt));
fcroots[elt] = std::complex<float>(croots[elt].real(),croots[elt].imag());
double x = i+1;
powers[elt] = pow(x,j+1);
powerVector[elt] = powers[elt];

}
powerVV[j].resize(OFFSET);
powerVV[j] = powers[std::slice(OFFSET*j,OFFSET,1)];

}

FITSUtil::fill(fcroots_vector,fcroots[std::slice(0,20,1)]);

unsignedData += base;
// syntax identical to Binary Table

Table* newTable = pFits->addTable(hduName,rows,colName,colForm,colUnit);

// numbers is a scalar column

newTable->column(colName[0]).write(numbers,1);

// write valarrays to vector column: note signature change
newTable->column(colName[1]).write(sequence,rows,1);
newTable->column(colName[2]).write(powers,rows,1);
newTable->column(colName[3]).write(unsignedData,rows,1);
newTable->column(colName[4]).write(croots,rows,1);
newTable->column(colName[5]).write(fcroots,rows,3);
newTable->column(colName[6]).write(fcroots_vector,1);
// write vectors to column: note signature change

newTable->column(colName[1]).write(sequenceVector,rows,4);
newTable->column(colName[2]).write(powerVector,rows,4);

std::cout << *newTable << std::endl;

for (size_t j = 0; j < 3 ; ++j)
{

fcrootv[j].resize(20);
fcrootv[j] = fcroots[std::slice(20*j,20,1)];

}

// write vector<valarray> object to column.

newTable->column(colName[1]).writeArrays(sequenceVV,7);
newTable->column(colName[2]).writeArrays(powerVV,7);

// create a new vector column in the Table

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

2.8 Creating and Writing to a Binary Table Extension 21

newTable->addColumn(Tfloat,"powerSeq",20,"none");

// add data entries to it.

newTable->column("powerSeq").writeArrays(powerVV,1);
newTable->column("powerSeq").write(powerVector,rows,4);
newTable->column("dcomplex-roots").write(croots,rows,4);
newTable->column("powerSeq").write(sequenceVector,rows,7);

std::cout << *newTable << std::endl;

// delete one of the original columns.

newTable->deleteColumn(colName[2]);

// add a new set of rows starting after row 3. So we’ll have 14 with
// rows 4,5,6,7,8 blank

newTable->insertRows(3,5);

// now, in the new column, write 3 rows (sequenceVV.size() = 3). This
// will place data in rows 3,4,5 of this column,overwriting them.

newTable->column("powerSeq").writeArrays(sequenceVV,3);
newTable->column("fcomplex-roots").writeArrays(fcrootv,3);

// delete 3 rows starting with row 2. A Table:: method, so the same
// code is called for all Table objects. We should now have 11 rows.

newTable->deleteRows(2,3);

//add a history string. This function call is in HDU:: so is identical
//for all HDUs

string hist("This file was created for testing CCfits write functionality");
hist += " it serves no other useful purpose. This particular part of the file was ";
hist += " constructed to test the writeHistory() and writeComment() functionality" ;

newTable->writeHistory(hist);

// add a comment string. Use std::string method to change the text in the message
// and write the previous junk as a comment.

hist.insert(0, " COMMENT TEST ");

newTable->writeComment(hist);

// ... print the result.

std::cout << *newTable << std::endl;

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

2.9 Copying an Extension between Files 22

return 0;
}

2.9 Copying an Extension between Files

Copying extensions from one fits file to another is very straightforward. A compli-
cation arises, however, because CCfits requires every FITS object to correspond to a
conforming FITS file once constructed. Thus we provide a custom constructor which
copies the primary HDU of a “source" FITS file into a new file. Subsequent extensions
can be copied by name or extension number as illustrated below.

Note that the simple call

FITS::FITS(const std::string& filename)

Reads the headers for all of the extensions in the file, so that after the FITS object cor-
responding to infile in the following code is instantiated, all extensions are recognized
[read calls are also provided to read only specific HDUs - see below].

In the example code below, the file outFile is written straight to disk. Since the code
never requests that the HDUs being written to that file are read, the user needs to add
statements to do this after the copy is complete.

int copyHDU()
{

//**
// copy the 1st and 3rd HDUs from the input file to a new FITS file
//**

const string inFileName("atestfil.fit");
const string outFileName("btestfil.fit");

int status(0);

status = 0;

remove(outFileName.c_str()); // Delete old file if it already exists

// open the existing FITS file
FITS inFile(inFileName);

// custom constructor FITS::FITS(const string&, const FITS&) for
// this particular task.

FITS outFile(outFileName,inFile);

// copy extension by number...
outFile.copy(inFile.extension(2));

// copy extension by name...
outFile.copy(inFile.extension("TABLE_BINARY"));

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

2.10 Selecting Table Data 23

return 0;

}

2.10 Selecting Table Data

This function demonstrates the operation of filtering a table by selecting rows that
satisfy a condition and writing them to a new file, or overwriting a table with the filtered
data. A third mode, where a filtered dataset is appended to the file containing the source
data, will be available shortly, but is currently not supported by cfitsio.

The expression syntax for the conditions that may be applied to table data are de-
scribed in the cfitsio manual. In the example below, we illustrate filtering with
a boolean expression involving one of the columns.

The two flags at the end of the call to FITS::filter are an ‘overwrite’ flag - which only
has meaning if the inFile and outFile are the same, and a ’read’ flag. overwrite defaults
to true. The second flag is a ’read’ flag which defaults to false. When set true the user
has immediate access to the filtered data.

int selectRows()
{

const string inFile("atestfil.fit");
const string outFile("btestfil.fit");
const string newFile("ctestfil.fit");
remove(newFile.c_str());

// test 1: write to a new file
std::auto_ptr<FITS> pInfile(new FITS(inFile,Write,string("PLANETS_ASCII")));
FITS* infile(pInfile.get());
std::auto_ptr<FITS> pNewfile(new FITS(newFile,Write));
ExtHDU& source = infile->extension("PLANETS_ASCII");
const string expression("DENSITY > 3.0");

Table& sink1 = pNewfile->filter(expression,source,false,true);

std::cout << sink1 << std::endl;

// test 2: write a new HDU to the current file, overwrite false, read true.
// AS OF 7/2/01 does not work because of a bug in cfitsio, but does not
// crash, simply writes a new header to the file without also writing the
// selected data.
Table& sink2 = infile->filter(expression,source,false,true);

std::cout << sink2 << std::endl;

// reset the source file back to the extension in question.
source = infile->extension("PLANETS_ASCII");

// test 3: overwrite the current HDU with filtered data.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html

2.11 Reading Header information from a HDU 24

Table& sink3 = infile->filter(expression,source,true,true);

std::cout << sink3 << std::endl;

return 0;
}

2.11 Reading Header information from a HDU

This function demonstrates selecting one HDU from the file, reading the header in-
formation and printing out the keys that have been read and the descriptions of the
columns.

The readData flag is by default false (see below for the alternative case), which means
that the data in the column is not read.

int readHeader()
{

const string SPECTRUM("SPECTRUM");

// read a particular HDU within the file. This call reads just the header
// information from SPECTRUM

std::auto_ptr<FITS> pInfile(new FITS("file1.pha",Read,SPECTRUM));

// define a reference for clarity. (std::auto_ptr<T>::get returns a pointer

ExtHDU& table = pInfile->extension(SPECTRUM);

// read all the keywords, excluding those associated with columns.

table.readAllKeys();

// print the result.

std::cout << table << std::endl;

return 0;
}

2.12 Reading an Image

Image reading calls are made very simple: the FITS object is created with the read-
DataFlag set to true, and reading is done on construction. The following call

image.read(contents)

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

2.13 Reading a Table Extension 25

calls

PHDU::read(std::valarray<S>& image).

This copies the entire image from the FITS object into the std::valarray object contents,
sizing it as necessary. PHDU::read() and ExtHDU::read() [for image extensions] take
a range of arguments that support (a) reading the entire image - as in this example; (b)
sections of an image starting from a given pixel; (c) rectangular subsets. See the class
references for PHDU and ExtHDU for details.

int readImage()
{

std::auto_ptr<FITS> pInfile(new FITS("atestfil.fit",Read,true));

PHDU& image = pInfile->pHDU();

std::valarray<unsigned long> contents;

// read all user-specifed, coordinate, and checksum keys in the image
image.readAllKeys();

image.read(contents);

// this doesn’t print the data, just header info.
std::cout << image << std::endl;

long ax1(image.axis(0));
long ax2(image.axis(1));

for (long j = 0; j < ax2; j+=10)
{

std::ostream_iterator<short> c(std::cout,"\t");
std::copy(&contents[j*ax1],&contents[(j+1)*ax1-1],c);
std::cout << ’\n’;

}

std::cout << std::endl;
return 0;

}

2.13 Reading a Table Extension

Reading table data is similarly straightforward (unsurprisingly, because this application
is exactly what CCfits was designed to do easily in the first place).

The two extensions are read on construction, including all the column data
[readDataFlag == true] and then printed.

Note that if the data are read as part of the construction, then CCfits uses the row-
optimization techniques describe in chapter 13 of the cfitsio manual; a chunk of data
equal to the size of the available buffer space is read from contiguous disk blocks and
transferred to memory storage, as opposed to each column being read in turn. Thus the
most efficient way of reading files is to acquire the data on construction.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

2.14 What’s Present, What’s Missing, and Calling CFITSIO 26

int readTable()
{

// read a table and explicitly read selected columns. To read instead all the
// data on construction, set the last argument of the FITS constructor
// call to ’true’. This functionality was tested in the last release.
std::vector<string> hdus(2);
hdus[0] = "PLANETS_ASCII";
hdus[1] = "TABLE_BINARY";

std::auto_ptr<FITS> pInfile(new FITS("atestfil.fit",Read,hdus,false));

ExtHDU& table = pInfile->extension(hdus[1]);

std::vector < valarray <int > > pp;
table.column("powerSeq").readArrays(pp, 1,3);

std::vector < valarray <std::complex<double> > > cc;
table.column("dcomplex-roots").readArrays(cc, 1,3);

std::valarray < std::complex<float> > ff;
table.column("fcomplex-roots").read(ff, 4);

std::cout << pInfile->extension(hdus[0]) << std::endl;

std::cout << pInfile->extension(hdus[1]) << std::endl;

return 0;
}

2.14 What’s Present, What’s Missing, and Calling CFITSIO

Most of the functionality of cfitsio described in Chapter 5 of the cfitsio manual is
present, although CCfits is designed to provide atomic read/write operations rather
than primitive file manipulation. For example, opening and creating FITS files are pri-
vate operations which are called by reading and writing constructors. Similarly, errors
are treated by C++ exception handling rather than returning status codes, and moving
between HDUs within a file is a primitive rather than an atomic operation [in CCfits,
operations typically call an internal HDU::makeThisCurrent() call on a specific table
or image extension, and then perform the requested read/write operation].

Read/Write operations for keys (in the HDU class) are provided; these implement calls
to fits_read_key and fits_update_key respectively. In the case of keywords, which
have one of five data types (Integer, Logical, String, Floating and Complex) CCfits
will handle certain type conversions between the keyword value and the data type of
the user-supplied variable. This is described in detail in the Keyword class reference
page. In reading image and table data, intrinsic type conversions are performed as
in cfitsio with the exception that reading numeric data into character data is not sup-
ported. There is an extensive set of member functions supporting equivalents of most of

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

2.14 What’s Present, What’s Missing, and Calling CFITSIO 27

cfitsio’s read/write operations: the classes PHDU [primary HDU] and ExtHDU [with
subclasses template <typename T> ImageExt<T>], provide multiple overloaded ver-
sions of read and write functions. The Column class, instances of which can be held in
Table instances [with subclasses AsciiTable and BinTable] has also an extensive set of
read/write operations.

A special constructor is provided which creates a new file with the Primary HDU of
a source file. A FITS::copy(const HDU&) function copies HDUs from one file into
another. Support for filtering table rows by expression is provided by a FITS::filter(...
) call which may be used to create a new filtered file or overwrite an existing HDU (see
cfitsio manual section 5.6.4).

Functions are provided for adding and deleting columns, and inserting and deleting
rows in tables.

HDU objects also have functions to implement writing of history, comment and date
keys.

2.14.1 What’s Not Present

The coordinate library manipulations [cfitsio manual chapter 7] are not supported.

The iterator work functions [cfitsio manual chapter 6] are not supported. Many of the
functions provided are easier to implement using the properties of the standard library,
since the standard library containers either allow vectorized operations (in the case of
valarrays) or standard library algorithms that take iterators or pointers. In some ways
the fits_iterate_data function provide an alternative, approach to the same need for
encapsulation addressed by CCfits.

The hierarchical grouping routines are not supported.

Explicit opening of in-memory data sets as described in Chapter 9 of the manual is not
supported since none of the FITS constructors call the appropriate cfitsio primitives.
The extended file name syntax described in chapters 10 and 11 of the cfitsio manual is
not yet supported as it internally creates in-memory objects. This will be supported in
a future release.

2.14.2 Calling CFITSIO

To gain any functionality currently missing in CCfits, it is possible of course to call
the underlying CFITSIO library functions directly. The CCfits FITS and HDU classes
both have the public member function fitsPointer(), which returns the fitsfile pointer
required in CFITSIO function calls. One should use caution when doing this however,
since any I/O changes made this way will NOT be mirrored in the CCfits FITS object
(nor its component objects) associated with the file. Therefore once a FITS object has
been bypassed this way, it is safest to just not use that object again, and instead continue
calling CFITSIO directly or instantiate a new FITS object that will pick up the current

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

2.15 Previous Release Notes 28

file state.

2.15 Previous Release Notes

Changes for CCfits 1.8 release 10/07.

• Fixes made to bugs in Column write and writeArrays functions which were pre-
venting the writing of variable-width columns. Also now allows writing to fixed-
width columns with arrays that are shorter than the fixed width.

• The HDU::readAllKeys() function will no longer throw if it is unable to read a
particular keyword. Instead it will skip it and move to the next keyword. This
was done primarily to prevent it from tripping on undefined keywords.

Changes for CCfits 1.7 release 6/07. Fixes for the following bugs:

• The FITS::copy function merely wrote the copied HDU to the file, but did not
allow it to be accessed for further modifications within CCfits.

• When reading compressed images, CCfits should use the ZBITPIX and ZNAXIS
keywords rather than BITPIX and NAXIS. (Fix is based on a patch submitted by
Patrik Jonsson.)

• The BSCALE keyword was being ignored if the BZERO keyword didn’t also
exist.

• Cases of out-of-scope usage of std::string’s c_str() pointers, could potentially
cause crash. (Fix submitted by Jeremy Sanders.)

Changes for CCfits 1.6 release 11/06

• Added capbility to write compressed images, including 6 new wrapper public
functions in FITS class.

• In FITS::addImage, corrected the logic which checks for a pre-existing image
extension with the same version number.

• CFITSIO 3.02 renamed fitsfile struct member rice_nbits to noise_nbits. Made
corresponding change in copyFitsPtr function in FITSUtil.cxx. As it stands, this
makes this version of CCfits incompatible with earlier versions of CFITSIO

• In FITS.h definition, removed both friend declarations of HDUCreator Make
functions. It seems neither function needs to be a friend, and one of them is actu-
ally private. Some compilers don’t allow this (report came from MS VisualC++
user).

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

2.16 Todo List 29

• Bug fix in Make function of HDUCreator.cxx. When creating a new ImageExt
(and not the primary), it was only passing the version number along for float and
double types. This causes problems when there is more than 1 image extension
with the same name, and it needs the version number to distinguish them.

• A couple of bug fixes to the first/last/stride version of PHDU read image subset.
It was not passing the proper parameters to fits_read_subset, and was not always
correctly resizing the internal m_image array.

2.16 Todo List

Member CCfits::AsciiTable::AsciiTable(FITSBase ∗p, const String &hduName, int rows, const std::vector< String > &columnName=stdvector< String >(), const std::vector< String > &columnFmt=stdvector< String >(), const std::vector< String > &columnUnit=stdvector< String >(), int version=1)
{enforce equal dimensions for arrays input to AsciiTable, BinTable writing ctor}

Member CCfits::FITS::addTable(const String &hduName, int rows, const std::vector< String > &columnName=stdvector< String >(), const std::vector< String > &columnFmt=stdvector< String >(), const std::vector< String > &columnUnit=stdvector< String >(), HduType type=BinaryTbl, int version=1)
the code should one day check that the version keyword is higher than any
other versions already added to the FITS object (although cfitsio doesn’t do this
either).

Member CCfits::FITS::addImage(const String &hduName, int bpix, std::vector< long > &naxes, int version=1)
Add a function for replacing the primary image

Class CCfits::PHDU Implement functions that allow replacement of the primary im-
age

3 CCfits Module Index

3.1 CCfits Modules

Here is a list of all modules:

FITS Exceptions 35

4 CCfits Namespace Index

4.1 CCfits Namespace List

Here is a list of all documented namespaces with brief descriptions:

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

5 CCfits Hierarchical Index 30

FITSUtil (FITSUtil is a namespace containing functions used internally by
CCfits, but which might be of use for other applications) 36

5 CCfits Hierarchical Index

5.1 CCfits Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

CCfits::FITSUtil::auto_array_ptr< X > 40

CCfits::FITSUtil::CAarray< T > 46

CCfits::Column 46

CCfits::FITSUtil::CVAarray< T > 69

CCfits::FITSUtil::CVarray< T > 70

CCfits::FITS 81

CCfits::FitsException 100

CCfits::Column::InsufficientElements 61

CCfits::Column::InvalidDataType 62

CCfits::Column::InvalidNumberOfRows 63

CCfits::Column::InvalidRowNumber 64

CCfits::Column::InvalidRowParameter 65

CCfits::Column::NoNullValue 66

CCfits::Column::RangeError 67

CCfits::Column::WrongColumnType 68

CCfits::ExtHDU::WrongExtensionType 80

CCfits::FITS::CantCreate 95

CCfits::FITS::CantOpen 96

CCfits::FITS::NoSuchHDU 97

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

5.1 CCfits Class Hierarchy 31

CCfits::FITS::OperationNotSupported 98

CCfits::FitsError 99

CCfits::FITSUtil::UnrecognizedType 139

CCfits::HDU::InvalidExtensionType 112

CCfits::HDU::InvalidImageDataType 113

CCfits::HDU::NoNullValue 114

CCfits::HDU::NoSuchKeyword 115

CCfits::Table::NoSuchColumn 137

CCfits::FitsFatal 101

CCfits::HDU 102

CCfits::ExtHDU 70

CCfits::ImageExt< T > 116

CCfits::Table 131

CCfits::AsciiTable 37

CCfits::BinTable 42

CCfits::PHDU 124

CCfits::Keyword 119

CCfits::FITSUtil::MatchName< T > 122

CCfits::FITSUtil::MatchNum< T > 122

CCfits::FITSUtil::MatchPtrName< T > 123

CCfits::FITSUtil::MatchPtrNum< T > 123

CCfits::FITSUtil::MatchType< T > 124

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

6 CCfits Class Index 32

6 CCfits Class Index

6.1 CCfits Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

CCfits::AsciiTable (Class Representing Ascii Table Extensions) 37

CCfits::FITSUtil::auto_array_ptr< X > (A class that mimics the std:: li-
brary auto_ptr class, but works with arrays) 40

CCfits::BinTable (Class Representing Binary Table Extensions. Contains
columns with scalar or vector row entries) 42

CCfits::FITSUtil::CAarray< T > (Function object returning C array from
a valarray. see CVarray for details) 46

CCfits::Column (Abstract base class for Column objects) 46

CCfits::Column::InsufficientElements (Exception thrown if the data sup-
plied for a write operation is less than declared) 61

CCfits::Column::InvalidDataType (Exception thrown for invalid data type
inputs) 62

CCfits::Column::InvalidNumberOfRows (Exception thrown if user enters
a non-positive number for the number of rows to write) 63

CCfits::Column::InvalidRowNumber (Exception thrown on attempting to
read a row number beyond the end of a table) 64

CCfits::Column::InvalidRowParameter (Exception thrown on incorrect
row writing request) 65

CCfits::Column::NoNullValue (Exception thrown if a null value is speci-
fied without support from existing column header) 66

CCfits::Column::RangeError (Exception to be thrown for inputs that
cause range errors in column read operations) 67

CCfits::Column::WrongColumnType (Exception thrown on attempting to
access a scalar column as vector data) 68

CCfits::FITSUtil::CVAarray< T > (Function object returning C array
from a vector of valarrays. see CVarray for details) 69

CCfits::FITSUtil::CVarray< T > (Function object class for returning C

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

6.1 CCfits Class List 33

arrays from standard library objects used in the FITS library imple-
mentation) 70

CCfits::ExtHDU (Base class for all FITS extension HDUs, i.e. Image Ex-
tensions and Tables) 70

CCfits::ExtHDU::WrongExtensionType (Exception to be thrown on un-
matched extension types) 80

CCfits::FITS (Memory object representation of a disk FITS file) 81

CCfits::FITS::CantCreate (Thrown on failure to create new file) 95

CCfits::FITS::CantOpen (Thrown on failure to open existing file) 96

CCfits::FITS::NoSuchHDU (Exception thrown by HDU retrieval methods
) 97

CCfits::FITS::OperationNotSupported (Thrown for unsupported opera-
tions, such as attempted to select rows from an image extension) 98

CCfits::FitsError (FitsError is the exception thrown by non-zero cfitsio
status codes) 99

CCfits::FitsException (FitsException is the base class for all exceptions
thrown by this library) 100

CCfits::FitsFatal ([potential] base class for exceptions to be thrown on in-
ternal library error) 101

CCfits::HDU (Base class for all HDU [Header-Data Unit] objects) 102

CCfits::HDU::InvalidExtensionType (Exception to be thrown if user re-
quests extension type that can not be understood as ImageExt, Asci-
iTable or BinTable) 112

CCfits::HDU::InvalidImageDataType (Exception to be thrown if user re-
quests creation of an image of type not supported by cfitsio) 113

CCfits::HDU::NoNullValue (Exception to be thrown on seek errors for
keywords) 114

CCfits::HDU::NoSuchKeyword (Exception to be thrown on seek errors for
keywords) 115

CCfits::ImageExt< T > 116

CCfits::Keyword (Abstract base class defining the interface for Keyword

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

7 CCfits Page Index 34

objects) 119

CCfits::FITSUtil::MatchName< T > (Predicate for classes that have a
name attribute; match input string with instance name) 122

CCfits::FITSUtil::MatchNum< T > (Predicate for classes that have an in-
dex attribute; match input index with instance value) 122

CCfits::FITSUtil::MatchPtrName< T > (As for MatchName, only with
the input class a pointer) 123

CCfits::FITSUtil::MatchPtrNum< T > (As for MatchNum, only with the
input class a pointer) 123

CCfits::FITSUtil::MatchType< T > (Function object that returns the
FITS ValueType corresponding to an input intrinsic type) 124

CCfits::PHDU (Class representing the primary HDU for a FITS file) 124

CCfits::Table 131

CCfits::Table::NoSuchColumn (Exception to be thrown on a failure to re-
trieve a column specified either by name or index number) 137

CCfits::FITSUtil::UnrecognizedType (Exception thrown by MatchType if
it encounters data type incompatible with cfitsio) 139

7 CCfits Page Index

7.1 CCfits Related Pages

Here is a list of all related documentation pages:

Implementation Notes 7

Getting Started 9

Writing Primary Images and Image Extensions 11

Creating and Writing to an Ascii Table Extension 14

Creating and Writing to a Binary Table Extension 17

Copying an Extension between Files 22

Selecting Table Data 23

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

8 CCfits Module Documentation 35

Reading Header information from a HDU 24

Reading an Image 24

Reading a Table Extension 25

Previous Release Notes 28

Installing the Package 5

What’s Present, What’s Missing, and Calling CFITSIO 26

Todo List 29

8 CCfits Module Documentation

8.1 FITS Exceptions

Classes

• class CCfits::Column::RangeError
exception to be thrown for inputs that cause range errors in column read operations.

• class CCfits::ExtHDU::WrongExtensionType
Exception to be thrown on unmatched extension types.

• class CCfits::FITS::NoSuchHDU
exception thrown by HDU retrieval methods.

• class CCfits::FITS::CantOpen
thrown on failure to open existing file

• class CCfits::FITS::CantCreate
thrown on failure to create new file

• class CCfits::FITS::OperationNotSupported
thrown for unsupported operations, such as attempted to select rows from an image
extension.

• class CCfits::FitsException
FitsException is the base class for all exceptions thrown by this library.

• class CCfits::FitsError

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

9 CCfits Namespace Documentation 36

FitsError is the exception thrown by non-zero cfitsio status codes.

• class CCfits::FitsFatal
[potential] base class for exceptions to be thrown on internal library error.

• class CCfits::FITSUtil::UnrecognizedType
exception thrown by MatchType if it encounters data type incompatible with cfitsio.

• class CCfits::HDU::InvalidExtensionType
exception to be thrown if user requests extension type that can not be understood as
ImageExt, AsciiTable or BinTable.

• class CCfits::HDU::InvalidImageDataType
exception to be thrown if user requests creation of an image of type not supported by
cfitsio.

• class CCfits::HDU::NoSuchKeyword
exception to be thrown on seek errors for keywords.

• class CCfits::HDU::NoNullValue
exception to be thrown on seek errors for keywords.

• class CCfits::Table::NoSuchColumn
Exception to be thrown on a failure to retrieve a column specified either by name or
index number.

9 CCfits Namespace Documentation

9.1 FITSUtil Namespace Reference

FITSUtil is a namespace containing functions used internally by CCfits, but which
might be of use for other applications.

9.1.1 Detailed Description

FITSUtil is a namespace containing functions used internally by CCfits, but which
might be of use for other applications.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10 CCfits Class Documentation 37

10 CCfits Class Documentation

10.1 CCfits::AsciiTable Class Reference

Class Representing Ascii Table Extensions.

#include <AsciiTable.h>

Inheritance diagram for CCfits::AsciiTable::

CCfits::AsciiTable

CCfits::Table

CCfits::ExtHDU

CCfits::HDU

Public Member Functions

• virtual AsciiTable ∗ clone (FITSBase ∗p) const
virtual copy constructor

• virtual void readData (bool readFlag=false, const std::vector< String >
&keys=std::vector< String >())

read columns and keys specified in the input array.

• virtual void addColumn (ValueType type, const String &columnName, long re-
peatWidth, const String &colUnit=String(""), long decimals=0, size_t column-
Number=0)

add a new column to an existing table HDU.

Protected Member Functions

• AsciiTable (FITSBase ∗p, const String &hduName=String(""), bool read-
Flag=false, const std::vector< String > &keys=std::vector< String >(), int ver-
sion=1)

reading constructor: Construct a AsciiTable extension from an extension of an exist-
ing disk file.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.1 CCfits::AsciiTable Class Reference 38

• AsciiTable (FITSBase ∗p, const String &hduName, int rows, const std::vector<
String > &columnName=std::vector< String >(), const std::vector< String
> &columnFmt=std::vector< String >(), const std::vector< String >
&columnUnit=std::vector< String >(), int version=1)

writing constructor: create new Ascii Table object with the specified columns

• AsciiTable (FITSBase ∗p, int number)
read AsciiTable with HDU number number from existing file.

• ∼AsciiTable ()
destructor.

10.1.1 Detailed Description

Class Representing Ascii Table Extensions.

May only contain columns with scalar row entries and a small range of data types.
AsciiTable (re)implements functions prescribed in the Table abstract class. The im-
plementations allow the calling of cfitsio specialized routines for AsciiTable header
construction.

Direct instantiation of AsciiTable objects is disallowed: they are created by explicit
calls to FITS::addTable(...), FITS::read(...) or internally by one of the FITS ctors on
initialization. The default for FITS::addTable is to produce BinTable extensions.

10.1.2 Constructor & Destructor Documentation

10.1.2.1 CCfits::AsciiTable::AsciiTable (FITSBase ∗ p, const String & hduName
= String(""), bool readFlag = false, const std::vector< String > & keys =
std::vector<String>(), int version = 1) [protected]

reading constructor: Construct a AsciiTable extension from an extension of an existing
disk file.

The Table is specified by name and optional version number within the file. An array of
strings representing columns or keys indicates which data are to be read. The column
data are only read if readFlag is true. Reading on construction is optimized, so it is more
efficient to read data at the point of instantiation. This favours a "resource acquisition
is initialization" model of data management.

Parameters:

p pointer to FITSBase object for internal use

hduName name of AsciiTable object to be read.

readFlag flag to determine whether to read data on construction

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.1 CCfits::AsciiTable Class Reference 39

keys (optional) a list of keywords/columns to be read. The implementation will
determine which are keywords. If none are specified, the constructor will
simply read the header

version (optional) version number. If not specified, will read the first extension
that matches hduName.

10.1.2.2 CCfits::AsciiTable::AsciiTable (FITSBase ∗ p, const String
& hduName, int rows, const std::vector< String > & columnName =
std::vector<String>(), const std::vector< String > & columnFmt =
std::vector<String>(), const std::vector< String > & columnUnit =
std::vector<String>(), int version = 1) [protected]

writing constructor: create new Ascii Table object with the specified columns

The constructor creates a valid HDU which is ready for Column::write or insertRows
operations. The disk FITS file is update accordingly. The data type of each column is
determined by the columnFmt argument (TFORM keywords). See cfitsio documenta-
tion for acceptable values.

Parameters:

hduName name of AsciiTable object to be written

rows number of rows in the table (NAXIS2)

columnName array of column names for columns to be constructed.

columnFmt array of column formats for columns to be constructed.

columnUnit (optional) array of units for data in columns.

version (optional) version number for HDU.

The dimensions of columnType, columnName and columnFmt must match, although
this is not enforced at present.

Todo

{enforce equal dimensions for arrays input to AsciiTable, BinTable writing ctor}

10.1.2.3 CCfits::AsciiTable::AsciiTable (FITSBase ∗ p, int number)
[protected]

read AsciiTable with HDU number number from existing file.

This is used internally by methods that need to access HDUs for which no EXTNAME
[or equivalent] keyword exists.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.2 CCfits::FITSUtil::auto_array_ptr< X > Class Template Reference 40

10.1.3 Member Function Documentation

10.1.3.1 void CCfits::AsciiTable::readData (bool readFlag = false, const
std::vector< String > & keys = std::vector<String>()) [virtual]

read columns and keys specified in the input array.

See Table class documentation for further details.

Implements CCfits::ExtHDU.

10.1.3.2 void CCfits::AsciiTable::addColumn (ValueType type, const String &
columnName, long repeatWidth, const String & colUnit = String(""), long dec-
imals = 0, size_t columnNumber = 0) [virtual]

add a new column to an existing table HDU.

Parameters:

type The data type of the column to be added

columnName The name of the column to be added

repeatWidth for a string valued, this is the width of a string. For a numeric column
it supplies the vector length of the rows. It is ignored for ascii table numeric
data.

colUnit an optional field specifying the units of the data (TUNITn)

decimals optional parameter specifying the number of decimals for an ascii nu-
meric column

columnNumber optional parameter specifying column number to be created. If
not specified the column is added to the end. If specified, the column is
inserted and the columns already read are reindexed. This parameter is pro-
vided as a convenience to support existing code rather than recommended.

Reimplemented from CCfits::ExtHDU.

The documentation for this class was generated from the following files:

• AsciiTable.h
• AsciiTable.cxx

10.2 CCfits::FITSUtil::auto_array_ptr< X > Class Template Ref-
erence

A class that mimics the std:: library auto_ptr class, but works with arrays.

#include <FITSUtil.h>

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.2 CCfits::FITSUtil::auto_array_ptr< X > Class Template Reference 41

Public Member Functions

• auto_array_ptr (X ∗p=0) throw ()
constructor. allows creation of pointer to null, can be modified by reset()

• auto_array_ptr (auto_array_ptr< X > &right) throw ()
copy constructor

• ∼auto_array_ptr ()
destructor.

• void operator= (auto_array_ptr< X > &right)
assignment operator: transfer of ownership semantics

• X & operator ∗ () throw ()
deference operator

• X & operator[] (size_t i) throw ()
return a reference to the ith element of the array

• X operator[] (size_t i) const throw ()
return a copy of the ith element of the array

• X ∗ get () const
return a token for the underlying content of ∗this

• X ∗ release () throw ()
return underlying content of ∗this, transferring memory ownership

• X ∗ reset (X ∗p) throw ()
change the content of the auto_array_ptr to p

Static Public Member Functions

• static void remove (X ∗&x)
utility function to delete the memory owned by x and set it to null.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.3 CCfits::BinTable Class Reference 42

10.2.1 Detailed Description

template<typename X> class CCfits::FITSUtil::auto_array_ptr< X >

A class that mimics the std:: library auto_ptr class, but works with arrays.

This code was written by Jack Reeves and first appeared C++ Report, March 1996
edition. Although some authors think one shouldn’t need such a contrivance, there
seems to be a need for it when wrapping C code.

Usage: replace

float∗ f = new float[200];

with

FITSUtil::auto_array_ptr<float> f(new float[200]);

Then the memory will be managed correctly in the presence of exceptions, and delete
will be called automatically for f when leaving scope.

The documentation for this class was generated from the following file:

• FITSUtil.h

10.3 CCfits::BinTable Class Reference

Class Representing Binary Table Extensions. Contains columns with scalar or vector
row entries.

#include <BinTable.h>

Inheritance diagram for CCfits::BinTable::

CCfits::BinTable

CCfits::Table

CCfits::ExtHDU

CCfits::HDU

Public Member Functions

• virtual BinTable ∗ clone (FITSBase ∗p) const

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.3 CCfits::BinTable Class Reference 43

virtual copy constructor

• virtual void readData (bool readFlag=false, const std::vector< String >
&keys=std::vector< String >())

read columns and keys specified in the input array.

• virtual void addColumn (ValueType type, const String &columnName, long re-
peatWidth, const String &colUnit=String(""), long decimals=0, size_t column-
Number=0)

add a new column to an existing table HDU.

Protected Member Functions

• BinTable (FITSBase ∗p, const String &hduName=String(""), bool read-
Flag=false, const std::vector< String > &keys=std::vector< String >(), int ver-
sion=1)

reading constructor.

• BinTable (FITSBase ∗p, const String &hduName, int rows, const std::vector<
String > &columnName=std::vector< String >(), const std::vector< String
> &columnFmt=std::vector< String >(), const std::vector< String >
&columnUnit=std::vector< String >(), int version=1)

writing constructor

• BinTable (FITSBase ∗p, int number)
read BinTable with HDU number number from existing file represented by fitsfile
pointer p.

• ∼BinTable ()
destructor.

10.3.1 Detailed Description

Class Representing Binary Table Extensions. Contains columns with scalar or vector
row entries.

BinTable (re)implements functions prescribed in the Table abstract class. The imple-
mentations allow the calling of cfitsio specialized routines for BinTable header con-
struction. functions particular to the BinTable class include those dealing with variable
width columns

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.3 CCfits::BinTable Class Reference 44

Direct instantiation of BinTable objects is disallowed: they are created by explicit calls
to FITS::addTable(...), FITS::read(...) or internally by one of the FITS ctors on
initialization. For addTable, creation of BinTables is the default.

10.3.2 Constructor & Destructor Documentation

10.3.2.1 CCfits::BinTable::BinTable (FITSBase ∗ p, const String & hduName
= String(""), bool readFlag = false, const std::vector< String > & keys =
std::vector<String>(), int version = 1) [protected]

reading constructor.

Construct a BinTable extension from an extension of an existing disk file. The Table
is specified by name and optional version number within the file. An array of strings
representing columns or keys indicates which data are to be read. The column data
are only read if readFlag is true. Reading on construction is optimized, so it is more
efficient to read data at the point of instantiation. This favours a "resource acquisition
is initialization" model of data management.

Parameters:

p Pointer to FITSBase class, an internal implementation detail

hduName name of BinTable object to be read.

readFlag flag to determine whether to read data on construction

keys (optional) a list of keywords/columns to be read. The implementation will
determine which are keywords. If none are specified, the constructor will
simply read the header

version (optional) version number. If not specified, will read the first extension
that matches hduName.

10.3.2.2 CCfits::BinTable::BinTable (FITSBase ∗ p, const String &
hduName, int rows, const std::vector< String > & columnName =
std::vector<String>(), const std::vector< String > & columnFmt =
std::vector<String>(), const std::vector< String > & columnUnit =
std::vector<String>(), int version = 1) [protected]

writing constructor

The constructor creates a valid HDU which is ready for Column::write or insertRows
operations. The disk FITS file is update accordingly. The data type of each column is
determined by the columnFmt argument (TFORM keywords). See cfitsio documenta-
tion for acceptable values.

Parameters:

p Pointer to FITSBase class, an internal implementation detail

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.3 CCfits::BinTable Class Reference 45

hduName name of BinTable object to be written

rows number of rows in the table (NAXIS2)

columnName array of column names for columns to be constructed.

columnFmt array of column formats for columns to be constructed.

columnUnit (optional) array of units for data in columns.

version (optional) version number for HDU.

The dimensions of columnType, columnName and columnFmt must match, but this is
not enforced.

10.3.3 Member Function Documentation

10.3.3.1 void CCfits::BinTable::readData (bool readFlag = false, const
std::vector< String > & keys = std::vector<String>()) [virtual]

read columns and keys specified in the input array.

See Table class documentation for further details.

Implements CCfits::ExtHDU.

10.3.3.2 void CCfits::BinTable::addColumn (ValueType type, const String &
columnName, long repeatWidth, const String & colUnit = String(""), long dec-
imals = 0, size_t columnNumber = 0) [virtual]

add a new column to an existing table HDU.

Parameters:

type The data type of the column to be added

columnName The name of the column to be added

repeatWidth for a string valued, this is the width of a string. For a numeric column
it supplies the vector length of the rows. It is ignored for ascii table numeric
data.

colUnit an optional field specifying the units of the data (TUNITn)

decimals optional parameter specifying the number of decimals for an ascii nu-
meric column

columnNumber optional parameter specifying column number to be created. If
not specified the column is added to the end. If specified, the column is
inserted and the columns already read are reindexed. This parameter is pro-
vided as a convenience to support existing code rather than recommended.

Reimplemented from CCfits::ExtHDU.

The documentation for this class was generated from the following files:

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.4 CCfits::FITSUtil::CAarray< T > Class Template Reference 46

• BinTable.h
• BinTable.cxx

10.4 CCfits::FITSUtil::CAarray< T > Class Template Reference

function object returning C array from a valarray. see CVarray for details

#include <FITSUtil.h>

Public Member Functions

• T ∗ operator() (const std::valarray< T > &inArray)
operator returning C array for use with image data.

10.4.1 Detailed Description

template<typename T> class CCfits::FITSUtil::CAarray< T >

function object returning C array from a valarray. see CVarray for details

The documentation for this class was generated from the following file:

• FITSUtil.h

10.5 CCfits::Column Class Reference

Abstract base class for Column objects.

#include <Column.h>

Inherited by CCfits::ColumnData< T >, and CCfits::ColumnVectorData< T >.

Public Member Functions

• Column (const Column &right)
copy constructor, used in copying Columns to standard library containers.

• virtual ∼Column ()
destructor.

• virtual void readData (long firstRow, long nelements, long firstElem=1)=0
read method.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.5 CCfits::Column Class Reference 47

• int rows () const
return the number of rows in the table.

• void setDisplay ()
set the TDISPn keyword

• virtual void setDimen ()
set the TDIMn keyword.

• Table ∗ parent () const
return a pointer to the Table which owns this Column

• int index () const
get the Column index (the n in TTYPEn etc).

• bool isRead () const
flag set to true if the entire column data has been read from disk

• long width () const
return column data width

• size_t repeat () const
get the repeat count for the rows

• bool varLength () const
boolean, set to true if Column has variable length vector rows.

• double scale () const
get TSCALn value

• double zero () const
get TZEROn value

• const String & display () const
return TDISPn keyword

• const String & dimen () const
return TDIMn keyword

• ValueType type () const
returns the data type of the column

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.5 CCfits::Column Class Reference 48

• const String & format () const
return TFORMn keyword

• const String & unit () const
get units of data in Column (TUNITn keyword)

• const String & name () const
return name of Column (TTYPEn keyword)

• template<typename S>

void write (const std::vector< S > &indata, long firstRow)
write a vector of values into a scalar column starting with firstRow

• template<typename S>

void write (const std::valarray< S > &indata, long firstRow)
write a valarray of values into a scalar column starting with firstRow

• template<typename S>

void write (S ∗indata, long nRows, long firstRow)
write a C array of size nRows into a scalar Column starting with row firstRow.

• template<typename S>

void write (const std::vector< S > &indata, long firstRow, S ∗nullValue)
write a vector of values into a scalar column starting with firstRow with undefined
values set to nullValue.

• template<typename S>

void write (const std::valarray< S > &indata, long firstRow, S ∗nullValue)
write a valarray of values into a scalar column starting with firstRow with undefined
values set to nullValue.

• template<typename S>

void write (S ∗indata, long nRows, long firstRow, S ∗nullValue)
write a C array into a scalar Column, processing undefined values.

• template<typename S>

void write (const std::valarray< S > &indata, long nRows, long firstRow)
write a valarray of values into a range of rows of a vector column.

• template<typename S>

void write (const std::vector< S > &indata, long nRows, long firstRow)
write a vector of values into a range of rows of a vector column

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.5 CCfits::Column Class Reference 49

• template<typename S>

void write (S ∗indata, long nElements, long nRows, long firstRow)
write a C array of values into a range of rows of a vector column

• template<typename S>

void write (const std::valarray< S > &indata, long nRows, long firstRow, S
∗nullValue)

write a valarray of values into a range of rows of a vector column.

• template<typename S>

void write (const std::vector< S > &indata, long nRows, long firstRow, S
∗nullValue)

write a vector of values into a range of rows of a vector column, processing undefined
values

• template<typename S>

void write (S ∗indata, long nElements, long nRows, long firstRow, S
∗nullValue)

write a C array of values into a range of rows of a vector column, processing unde-
fined values.

• template<typename S>

void write (const std::valarray< S > &indata, const std::vector< long > &vec-
torLengths, long firstRow)

write a valarray of values into a column with specified number of entries written per
row.

• template<typename S>

void write (const std::vector< S > &indata, const std::vector< long > &vector-
Lengths, long firstRow)

write a vector of values into a column with specified number of entries written per
row.

• template<typename S>

void write (S ∗indata, long nElements, const std::vector< long > &vector-
Lengths, long firstRow)

write a C-array of values of size nElements into a vector column with specified num-
ber of entries written per row.

• template<typename S>

void writeArrays (const std::vector< std::valarray< S > > &indata, long
firstRow)

write a vector of valarray objects to the column, starting at row firstRow >= 1

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.5 CCfits::Column Class Reference 50

• template<typename S>

void writeArrays (const std::vector< std::valarray< S > > &indata, long
firstRow, S ∗nullValue)

write a vector of valarray objects to the column, starting at row firstRow >= 1, pro-
cessing undefined values

• template<typename S>

void read (std::vector< S > &vals, long first, long last)
Retrieve data from a scalar column into a std::vector.

• template<typename S>

void read (std::valarray< S > &vals, long first, long last)
Retrieve data from a scalar column into a std::valarray.

• template<typename S>

void read (std::valarray< S > &vals, long rows)
return a single row of a vector column into a std::valarray

• template<typename S>

void readArrays (std::vector< std::valarray< S > > &vals, long first, long last)
return a set of rows of a vector column into a vector of valarrays

• template<typename S>

void read (std::vector< S > &vals, long first, long last, S ∗nullValue)
Retrieve data from a scalar column into a std::vector, setting nullvalue.

• template<typename S>

void read (std::valarray< S > &vals, long first, long last, S ∗nullValue)
Retrieve data from a scalar column into a std::valarray, setting undefined values.

• template<typename S>

void read (std::valarray< S > &vals, long rows, S ∗nullValue)
return a single row of a vector column into a std::valarray, setting undefined values

• template<typename S>

void readArrays (std::vector< std::valarray< S > > &vals, long first, long last,
S ∗nullValue)

return a set of rows of a vector column into a container, setting undefined values

• template<typename T>

void addNullValue (T nullVal)
Set the TNULLn keyword for the column.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.5 CCfits::Column Class Reference 51

Protected Member Functions

• Column (int columnIndex, const String &columnName, ValueType type, const
String &format, const String &unit, Table ∗p, int rpt=1, long w=1, const String
&comment="")

new column creation constructor

• Column (Table ∗p=0)
Simple constructor to be called by subclass reading ctors.

• fitsfile ∗ fitsPointer ()
fits pointer corresponding to fits file containing column data.

• void makeHDUCurrent ()
make HDU containing this the current HDU of the fits file.

• virtual std::ostream & put (std::ostream &s) const
internal implementation of << operator.

• const String & comment () const
retrieve comment for Column

Classes

• class InsufficientElements
Exception thrown if the data supplied for a write operation is less than declared.

• class InvalidDataType
Exception thrown for invalid data type inputs.

• class InvalidNumberOfRows
Exception thrown if user enters a non-positive number for the number of rows to write.

• class InvalidRowNumber
Exception thrown on attempting to read a row number beyond the end of a table.

• class InvalidRowParameter
Exception thrown on incorrect row writing request.

• class NoNullValue
Exception thrown if a null value is specified without support from existing column
header.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.5 CCfits::Column Class Reference 52

• class RangeError
exception to be thrown for inputs that cause range errors in column read operations.

• class WrongColumnType
Exception thrown on attempting to access a scalar column as vector data.

10.5.1 Detailed Description

Abstract base class for Column objects.

Columns are the data containers used in FITS tables. Columns of scalar type
(one entry per cell) are implemented by the template subclass ColumnData<T>.
Columns of vector type (vector and variable rows) are implemented with the template
subclass ColumnVectorData<T>. AsciiTables may only contain Columns of type
ColumnData<T>, where T is an implemented FITS data type (see the CCfits.h header
for a complete list. This requirement is enforced by ensuring that AsciiTable’s addCol-
umn method may only create an AsciiTable compatible column. The ColumnData<T>
class stores its data in a std::vector<T> object.

BinTables may contain either ColumnData<T> or ColumnVectorData<T>. For
ColumnVectorData, T must be a numeric type: string vectors are handled by
ColumnData<T>; string arrays are not supported. The internal representation of the
data is a std::vector<std::valarray<T> > object. The std::valarray class is designed
for efficient numeric processing and has many vectorized numeric and transcendental
functions defined on it.

Member template functions for read/write operations are provided in multiple over-
loads as the interface to data operations. Implicit data type conversions are supported
but where they are required make the operations less efficient. Reading numeric col-
umn data as character arrays, supported by cfitsio, is not supported by CCfits.

As a base class, Column provides protected accessor/mutator inline functions to allow
only its subclasses to access data members.

10.5.2 Constructor & Destructor Documentation

10.5.2.1 CCfits::Column::Column (const Column & right)

copy constructor, used in copying Columns to standard library containers.

The copy constructor is for internal use only: it does not affect the disk fits file associ-
ated with the object.

10.5.2.2 CCfits::Column::Column (int columnIndex, const String & column-
Name, ValueType type, const String & format, const String & unit, Table ∗ p, int

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.5 CCfits::Column Class Reference 53

rpt = 1, long w = 1, const String & comment = "") [protected]

new column creation constructor

This constructor allows the specification of:

Parameters:

columnIndex The column number

columnName The column name, keyword TTYPEn

type used for determining class of T in ColumnData<T>,
ColumnVectorData<T>

format the column data format, TFORMn keyword

unit the column data unit, TUNITn keyword

p the Table pointer

rpt (optional) repeat count for the row (== 1 for AsciiTables)

w the row width

comment comment to be added to the header.

10.5.3 Member Function Documentation

10.5.3.1 void CCfits::Column::readData (long firstRow = 1, long nelements = 1,
long firstElem = 1) [pure virtual]

read method.

Parameters:

firstRow The first row to be read

nelements The number of elements to read

firstElem The number of the element on the first row to start at (ignored for scalar
columns)

10.5.3.2 int CCfits::Column::rows () const

return the number of rows in the table.

return number of rows in the Column

10.5.3.3 double CCfits::Column::scale () const [inline]

get TSCALn value

TSCALn is used to convert a data array represented on disk in integer format as float-
ing. Useful for compact storage of digitized data.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.5 CCfits::Column Class Reference 54

10.5.3.4 double CCfits::Column::zero () const [inline]

get TZEROn value

TZEROn is an integer offset used in the implementation of unsigned data

10.5.3.5 const String & CCfits::Column::display () const [inline]

return TDISPn keyword

TDISPn is suggested format for output of column data.

10.5.3.6 const String & CCfits::Column::dimen () const [inline]

return TDIMn keyword

represents dimensions of data arrays in vector columns. for scalar columns, returns a
default value.

10.5.3.7 const String & CCfits::Column::format () const [inline]

return TFORMn keyword

TFORMn specifies data format stored in disk file.

10.5.3.8 template<typename S> void CCfits::Column::write (const
std::vector< S > & indata, long firstRow) [inline]

write a vector of values into a scalar column starting with firstRow

Parameters:

indata The data to be written.

firstRow The first row to be written

10.5.3.9 template<typename S> void CCfits::Column::write (const
std::valarray< S > & indata, long firstRow) [inline]

write a valarray of values into a scalar column starting with firstRow

Parameters:

indata The data to be written.

firstRow The first row to be written

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.5 CCfits::Column Class Reference 55

10.5.3.10 template<typename S> void CCfits::Column::write (S ∗ indata, long
nRows, long firstRow) [inline]

write a C array of size nRows into a scalar Column starting with row firstRow.

Parameters:

indata The data to be written.
nRows The size of the data array to be written
firstRow The first row to be written

10.5.3.11 template<typename S> void CCfits::Column::write (const
std::vector< S > & indata, long firstRow, S ∗ nullValue) [inline]

write a vector of values into a scalar column starting with firstRow with undefined
values set to nullValue.

Parameters:

indata The data to be written.
firstRow The first row to be written
nullValue Pointer to the value in the input array to be set to undefined values

10.5.3.12 template<typename S> void CCfits::Column::write (const
std::valarray< S > & indata, long firstRow, S ∗ nullValue) [inline]

write a valarray of values into a scalar column starting with firstRow with undefined
values set to nullValue.

Parameters:

indata The data to be written.
firstRow The first row to be written
nullValue Pointer to the value in the input array to be set to undefined values

10.5.3.13 template<typename S> void CCfits::Column::write (S ∗ indata, long
nRows, long firstRow, S ∗ nullValue) [inline]

write a C array into a scalar Column, processing undefined values.

Parameters:

indata The data to be written.
nRows The size of the data array to be written
firstRow The first row to be written
nullValue Pointer to the value in the input array to be set to undefined values

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.5 CCfits::Column Class Reference 56

10.5.3.14 template<typename S> void CCfits::Column::write (const
std::valarray< S > & indata, long nRows, long firstRow) [inline]

write a valarray of values into a range of rows of a vector column.

The primary use of this is for fixed width columns, in which case Column’s repeat at-
tribute is used to determine how many elements are written to each row; if indata.size()
is too small an exception will be thrown. If the column is variable width, the call will
write indata.size()/nRows elements to each row.

Parameters:

indata The data to be written.
nRows the number of rows to which to write the data.
firstRow The first row to be written

10.5.3.15 template<typename S> void CCfits::Column::write (const
std::vector< S > & indata, long nRows, long firstRow) [inline]

write a vector of values into a range of rows of a vector column

The primary use of this is for fixed width columns, in which case Column’s repeat at-
tribute is used to determine how many elements are written to each row; if indata.size()
is too small an exception will be thrown. If the column is variable width, the call will
write indata.size()/nRows elements to each row.

Parameters:

indata The data to be written.
nRows the number of rows to which to write the data.
firstRow The first row to be written

10.5.3.16 template<typename S> void CCfits::Column::write (S ∗ indata, long
nElements, long nRows, long firstRow) [inline]

write a C array of values into a range of rows of a vector column

Details are as for vector input; only difference is the need to supply the size of the
C-array.

Parameters:

indata The data to be written.
nElements The size of indata
nRows the number of rows to which to write the data.
firstRow The first row to be written

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.5 CCfits::Column Class Reference 57

10.5.3.17 template<typename S> void CCfits::Column::write (const
std::valarray< S > & indata, long nRows, long firstRow, S ∗ nullValue)
[inline]

write a valarray of values into a range of rows of a vector column.

see version without undefined processing for details.

10.5.3.18 template<typename S> void CCfits::Column::write (const
std::vector< S > & indata, long nRows, long firstRow, S ∗ nullValue) [inline]

write a vector of values into a range of rows of a vector column, processing undefined
values

see version without undefined processing for details.

10.5.3.19 template<typename S> void CCfits::Column::write (S ∗ indata, long
nElements, long nRows, long firstRow, S ∗ nullValue) [inline]

write a C array of values into a range of rows of a vector column, processing undefined
values.

see version without undefined processing for details.

10.5.3.20 template<typename S> void CCfits::Column::write (const
std::valarray< S > & indata, const std::vector< long > & vectorLengths,
long firstRow) [inline]

write a valarray of values into a column with specified number of entries written per
row.

Data are written into vectorLengths.size() rows, with vectorLength[n] elements writ-
ten to row n+firstRow -1. Although primarily intended for wrapping calls to multiple
variable-width vector column rows, it may also be used to write a variable number of
elements to fixed-width column rows.

When writing to fixed-width column rows, if the number of elements sent to a particular
row are fewer than the column’s repeat value, the remaining elements in the row will
not be modified.

Since cfitsio does not support null value processing for variable width columns this
function and its variants do not have version which process undefined values

Parameters:

indata The data to be written
vectorLengths the number of elements to write to each successive row.
firstRow the first row to be written.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.5 CCfits::Column Class Reference 58

10.5.3.21 template<typename S> void CCfits::Column::write (const
std::vector< S > & indata, const std::vector< long > & vectorLengths, long
firstRow) [inline]

write a vector of values into a column with specified number of entries written per row.

Intended for writing a varying number of elements to multiple rows in a vector column,
this may be used for either variable or fixed-width columns. See the indata valarray
version of this function for a complete description.

10.5.3.22 template<typename S> void CCfits::Column::write (S ∗ indata,
long nElements, const std::vector< long > & vectorLengths, long firstRow)
[inline]

write a C-array of values of size nElements into a vector column with specified number
of entries written per row.

Intended for writing a varying number of elements to multiple rows in a vector column,
this may be used for either variable or fixed-width columns. See the indata valarray
version of this function for a complete description.

10.5.3.23 template<typename S> void CCfits::Column::writeArrays (const
std::vector< std::valarray< S > > & indata, long firstRow) [inline]

write a vector of valarray objects to the column, starting at row firstRow >= 1

Intended for writing a varying number of elements to multiple rows in a vector column,
this may be used for either variable or fixed-width columns. When writing to fixed-
width column rows, if the number of elements sent to a particular row are fewer than
the column’s repeat value, the remaining elements in the row will not be modified.

Parameters:

indata The data to be written

firstRow the first row to be written.

10.5.3.24 template<typename S> void CCfits::Column::writeArrays (const
std::vector< std::valarray< S > > & indata, long firstRow, S ∗ nullValue)
[inline]

write a vector of valarray objects to the column, starting at row firstRow >= 1, pro-
cessing undefined values

see version without undefined processing for details.

10.5.3.25 template<typename S> void CCfits::Column::read (std::vector< S >
& vals, long first, long last) [inline]

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.5 CCfits::Column Class Reference 59

Retrieve data from a scalar column into a std::vector.

This and the following functions perform implicit data conversions. An exception will
be thrown if no conversion exists.

Parameters:

vals The output container. The function will resize this as necessary

first,last the span of row numbers to read.

10.5.3.26 template<typename S> void CCfits::Column::read (std::valarray< S
> & vals, long first, long last) [inline]

Retrieve data from a scalar column into a std::valarray.

Parameters:

vals The output container. The function will resize this as necessary

first,last the span of row numbers to read.

10.5.3.27 template<typename S> void CCfits::Column::read (std::valarray< S
> & vals, long rows) [inline]

return a single row of a vector column into a std::valarray

Parameters:

vals The output valarray object

rows The row number to be retrieved (starting at 1).

10.5.3.28 template<typename S> void CCfits::Column::readArrays
(std::vector< std::valarray< S > > & vals, long first, long last) [inline]

return a set of rows of a vector column into a vector of valarrays

Parameters:

vals The output container. The function will resize this as necessary

first,last the span of row numbers to read.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.5 CCfits::Column Class Reference 60

10.5.3.29 template<typename S> void CCfits::Column::read (std::vector< S >
& vals, long first, long last, S ∗ nullValue) [inline]

Retrieve data from a scalar column into a std::vector, setting nullvalue.

If the column is of integer type, then any column value that equals this null value is set
equal to the value of the TNULLn keyword. An exception is thrown if TNULLn is not
specified. See cfitsio documentation for further details

Parameters:

vals The output container. The function will resize this as necessary

first,last the span of row numbers to read.

nullValue pointer to integer value regarded as undefined

10.5.3.30 template<typename S> void CCfits::Column::read (std::valarray< S
> & vals, long first, long last, S ∗ nullValue) [inline]

Retrieve data from a scalar column into a std::valarray, setting undefined values.

If the column is of integer type, then any column value that equals this null value is set
equal to the value of the TNULLn keyword. An exception is thrown if TNULLn is not
specified. See cfitsio documentation for further details

Parameters:

vals The output container. The function will resize this as necessary

first,last the span of row numbers to read.

nullValue pointer to integer value regarded as undefined

10.5.3.31 template<typename S> void CCfits::Column::readArrays
(std::vector< std::valarray< S > > & vals, long first, long last, S ∗ nullValue)
[inline]

return a set of rows of a vector column into a container, setting undefined values

Parameters:

vals The output container. The function will resize this as necessary

first,last the span of row numbers to read.

nullValue pointer to integer value regarded as undefined

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.6 CCfits::Column::InsufficientElements Class Reference 61

10.5.3.32 template<typename T> void CCfits::Column::addNullValue (T null-
Val) [inline]

Set the TNULLn keyword for the column.

Only relevant for integer valued columns, TNULLn is the value used by cfitsio in un-
defined processing. All entries in the table equal to an input "null value" are set equal
to the value of TNULLn. (For floating point columns a system NaN values is used).

The documentation for this class was generated from the following files:

• Column.h
• Column.cxx
• ColumnT.h

10.6 CCfits::Column::InsufficientElements Class Reference

Exception thrown if the data supplied for a write operation is less than declared.

#include <Column.h>

Inheritance diagram for CCfits::Column::InsufficientElements::

CCfits::Column::InsufficientElements

CCfits::FitsException

Public Member Functions

• InsufficientElements (const String &msg, bool silent=true)
Exception ctor, prefixes the string "FitsError: not enough elements supplied for write
operation: " before the specific message.

10.6.1 Detailed Description

Exception thrown if the data supplied for a write operation is less than declared.

This circumstance generates an exception to avoid unexpected behaviour after the write
operation is completed. It can be avoided by resizing the input array appropriately.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.7 CCfits::Column::InvalidDataType Class Reference 62

10.6.2 Constructor & Destructor Documentation

10.6.2.1 CCfits::Column::InsufficientElements::InsufficientElements (const
String & msg, bool silent = true)

Exception ctor, prefixes the string "FitsError: not enough elements supplied for write
operation: " before the specific message.

Parameters:

msg A specific diagnostic message, usually the column name

silent if true, print message whether FITS::verboseMode is set or not.

The documentation for this class was generated from the following files:

• Column.h
• Column.cxx

10.7 CCfits::Column::InvalidDataType Class Reference

Exception thrown for invalid data type inputs.

#include <Column.h>

Inheritance diagram for CCfits::Column::InvalidDataType::

CCfits::Column::InvalidDataType

CCfits::FitsException

Public Member Functions

• InvalidDataType (const String &str=string(), bool silent=true)
Exception ctor, prefixes the string "FitsError: Incorrect data type: " before the specific
message.

10.7.1 Detailed Description

Exception thrown for invalid data type inputs.

This exception is thrown if the user requests an implicit data type conversion to a
datatype that is not one of the supported types (see fitsio.h for details).

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.8 CCfits::Column::InvalidNumberOfRows Class Reference 63

10.7.2 Constructor & Destructor Documentation

10.7.2.1 CCfits::Column::InvalidDataType::InvalidDataType (const String &
str = string(), bool silent = true)

Exception ctor, prefixes the string "FitsError: Incorrect data type: " before the specific
message.

Parameters:

str A specific diagnostic message

silent if true, print message whether FITS::verboseMode is set or not.

The documentation for this class was generated from the following files:

• Column.h
• Column.cxx

10.8 CCfits::Column::InvalidNumberOfRows Class Reference

Exception thrown if user enters a non-positive number for the number of rows to write.

#include <Column.h>

Inheritance diagram for CCfits::Column::InvalidNumberOfRows::

CCfits::Column::InvalidNumberOfRows

CCfits::FitsException

Public Member Functions

• InvalidNumberOfRows (size_t number, bool silent=true)
Exception ctor, prefixes the string "Fits Error: number of rows to write must be posi-
tive " before the specific message.

10.8.1 Detailed Description

Exception thrown if user enters a non-positive number for the number of rows to write.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.9 CCfits::Column::InvalidRowNumber Class Reference 64

10.8.2 Constructor & Destructor Documentation

10.8.2.1 CCfits::Column::InvalidNumberOfRows::InvalidNumberOfRows
(size_t number, bool silent = true)

Exception ctor, prefixes the string "Fits Error: number of rows to write must be positive
" before the specific message.

Parameters:

number The number of rows entered.

silent if true, print message whether FITS::verboseMode is set or not.

The documentation for this class was generated from the following files:

• Column.h
• Column.cxx

10.9 CCfits::Column::InvalidRowNumber Class Reference

Exception thrown on attempting to read a row number beyond the end of a table.

#include <Column.h>

Inheritance diagram for CCfits::Column::InvalidRowNumber::

CCfits::Column::InvalidRowNumber

CCfits::FitsException

Public Member Functions

• InvalidRowNumber (const String &diag, bool silent=true)
Exception ctor, prefixes the string "FitsError: Invalid Row Number - Column: " before
the specific message.

10.9.1 Detailed Description

Exception thrown on attempting to read a row number beyond the end of a table.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.10 CCfits::Column::InvalidRowParameter Class Reference 65

10.9.2 Constructor & Destructor Documentation

10.9.2.1 CCfits::Column::InvalidRowNumber::InvalidRowNumber (const
String & diag, bool silent = true)

Exception ctor, prefixes the string "FitsError: Invalid Row Number - Column: " before
the specific message.

Parameters:

diag A specific diagnostic message, usually the column name.
silent if true, print message whether FITS::verboseMode is set or not.

The documentation for this class was generated from the following files:

• Column.h
• Column.cxx

10.10 CCfits::Column::InvalidRowParameter Class Reference

Exception thrown on incorrect row writing request.

#include <Column.h>

Inheritance diagram for CCfits::Column::InvalidRowParameter::

CCfits::Column::InvalidRowParameter

CCfits::FitsException

Public Member Functions

• InvalidRowParameter (const String &diag, bool silent=true)
Exception ctor, prefixes the string "FitsError: row offset or length incompatible with
column declaration " before the specific message.

10.10.1 Detailed Description

Exception thrown on incorrect row writing request.

This exception is thrown if the user requests writing more data than a fixed width row
can accommodate. An exception is thrown rather than a truncation because it is likely
that the user will not otherwise realize that data loss is happening.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.11 CCfits::Column::NoNullValue Class Reference 66

10.10.2 Constructor & Destructor Documentation

10.10.2.1 CCfits::Column::InvalidRowParameter::InvalidRowParameter
(const String & diag, bool silent = true)

Exception ctor, prefixes the string "FitsError: row offset or length incompatible with
column declaration " before the specific message.

Parameters:

diag A specific diagnostic message, usually the column name

silent if true, print message whether FITS::verboseMode is set or not.

The documentation for this class was generated from the following files:

• Column.h
• Column.cxx

10.11 CCfits::Column::NoNullValue Class Reference

Exception thrown if a null value is specified without support from existing column
header.

#include <Column.h>

Inheritance diagram for CCfits::Column::NoNullValue::

CCfits::Column::NoNullValue

CCfits::FitsException

Public Member Functions

• NoNullValue (const String &diag, bool silent=true)
Exception ctor, prefixes the string "Fits Error: No null value specified for column: "
before the specific message.

10.11.1 Detailed Description

Exception thrown if a null value is specified without support from existing column
header.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.12 CCfits::Column::RangeError Class Reference 67

This exception is analogous to the fact that cfitsio returns a non-zero status code if
TNULLn doesn’t exist an a null value (convert all input data with the null value to the
TNULLn keyword) is specified. It is only relevant for integer type data (see cfitsio
manual for details).

10.11.2 Constructor & Destructor Documentation

10.11.2.1 CCfits::Column::NoNullValue::NoNullValue (const String & diag,
bool silent = true)

Exception ctor, prefixes the string "Fits Error: No null value specified for column: "
before the specific message.

Parameters:

diag A specific diagnostic message

silent if true, print message whether FITS::verboseMode is set or not.

The documentation for this class was generated from the following files:

• Column.h
• Column.cxx

10.12 CCfits::Column::RangeError Class Reference

exception to be thrown for inputs that cause range errors in column read operations.

#include <Column.h>

Inheritance diagram for CCfits::Column::RangeError::

CCfits::Column::RangeError

CCfits::FitsException

Public Member Functions

• RangeError (const String &msg, bool silent=true)
Exception ctor, prefixes the string "FitsError: Range error in operation " before the
specific message.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.13 CCfits::Column::WrongColumnType Class Reference 68

10.12.1 Detailed Description

exception to be thrown for inputs that cause range errors in column read operations.

Range errors here mean (last < first) in a request to read a range of rows.

10.12.2 Constructor & Destructor Documentation

10.12.2.1 CCfits::Column::RangeError::RangeError (const String & msg, bool
silent = true)

Exception ctor, prefixes the string "FitsError: Range error in operation " before the
specific message.

Parameters:

msg A specific diagnostic message

silent if true, print message whether FITS::verboseMode is set or not.

The documentation for this class was generated from the following files:

• Column.h
• Column.cxx

10.13 CCfits::Column::WrongColumnType Class Reference

Exception thrown on attempting to access a scalar column as vector data.

#include <Column.h>

Inheritance diagram for CCfits::Column::WrongColumnType::

CCfits::Column::WrongColumnType

CCfits::FitsException

Public Member Functions

• WrongColumnType (const String &diag, bool silent=true)
Exception ctor, prefixes the string "FitsError: Attempt to return scalar data from
vector column, or vice versa - Column: " before the specific message.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.14 CCfits::FITSUtil::CVAarray< T > Class Template Reference 69

10.13.1 Detailed Description

Exception thrown on attempting to access a scalar column as vector data.

This exception will be thrown if the user tries to call a read/write operation with a sig-
nature appropriate for a vector column on a scalar column, or vice versa. For example
in the case of write operations, the vector versions require the specification of (a) a
number of rows to write over, (b) a vector of lengths to write to each row or (c) a subset
specification. The scalar versions only require a number of rows if the input array is a
plain C-array, otherwise the range to be written is the size of the input vector.

10.13.2 Constructor & Destructor Documentation

10.13.2.1 CCfits::Column::WrongColumnType::WrongColumnType (const
String & diag, bool silent = true)

Exception ctor, prefixes the string "FitsError: Attempt to return scalar data from vector
column, or vice versa - Column: " before the specific message.

Parameters:

diag A specific diagnostic message, usually the column name.

silent if true, print message whether FITS::verboseMode is set or not.

The documentation for this class was generated from the following files:

• Column.h
• Column.cxx

10.14 CCfits::FITSUtil::CVAarray< T > Class Template Refer-
ence

function object returning C array from a vector of valarrays. see CVarray for details

#include <FITSUtil.h>

Public Member Functions

• T ∗ operator() (const std::vector< std::valarray< T > > &inArray)
operator returning C array for use with vector column data.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.15 CCfits::FITSUtil::CVarray< T > Class Template Reference 70

10.14.1 Detailed Description

template<typename T> class CCfits::FITSUtil::CVAarray< T >

function object returning C array from a vector of valarrays. see CVarray for details

The documentation for this class was generated from the following file:

• FITSUtil.h

10.15 CCfits::FITSUtil::CVarray< T > Class Template Reference

Function object class for returning C arrays from standard library objects used in the
FITS library implementation.

#include <FITSUtil.h>

Public Member Functions

• T ∗ operator() (const std::vector< T > &inArray)
operator returning C array for use with scalar column data.

10.15.1 Detailed Description

template<typename T> class CCfits::FITSUtil::CVarray< T >

Function object class for returning C arrays from standard library objects used in the
FITS library implementation.

There are 3 versions which convert std::vector<T>, std::valarray<T>, and
std::vector<std::valarray<T> > objects to pointers to T, called CVarray, CAarray,
and CVAarray.

An alternative function, CharArray, is provided to deal with the special case of vector
string arrays.

The documentation for this class was generated from the following file:

• FITSUtil.h

10.16 CCfits::ExtHDU Class Reference

base class for all FITS extension HDUs, i.e. Image Extensions and Tables.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.16 CCfits::ExtHDU Class Reference 71

#include <ExtHDU.h>

Inheritance diagram for CCfits::ExtHDU::

CCfits::ExtHDU

CCfits::HDU

CCfits::ImageExt< T > CCfits::Table

CCfits::AsciiTable CCfits::BinTable

Public Member Functions

• ExtHDU (const ExtHDU &right)
copy constructor

• virtual ∼ExtHDU ()
destructor

• virtual void readData (bool readFlag=false, const std::vector< String >
&keys=std::vector< String >())=0

read data from HDU depending on readFlag and keys.

• const String & name () const
return the name of the extension.

• virtual HDU ∗ clone (FITSBase ∗p) const =0
virtual copy constructor

• virtual void makeThisCurrent () const
move the fitsfile pointer to this current HDU.

• virtual Column & column (const String &colName) const
return a reference to a Table column specified by name.

• virtual Column & column (int colIndex) const
return a reference to a Table column specified by column index.

• virtual long rows () const

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.16 CCfits::ExtHDU Class Reference 72

return the number of rows in the extension.

• virtual void addColumn (ValueType type, const String &columnName, long re-
peatWidth, const String &colUnit=String(""), long decimals=-1, size_t column-
Number=0)

add a new column to an existing table HDU.

• virtual void deleteColumn (const String &columnName)
delete a column in a Table extension by name.

• virtual long getRowsize () const
return the optimal number of rows to read or write at a time

• int version () const
return the extension version number.

• void version (int value)
set the extension version number

• template<typename S>

void write (const std::vector< long > &first, long nElements, const
std::valarray< S > &data, S ∗nullValue)

Write a set of pixels to an image extension with the first pixel specified by an n-tuple,
processing undefined data.

• template<typename S>

void write (long first, long nElements, const std::valarray< S > &data, S
∗nullValue)

write array to image starting with a specified pixel and allowing undefined data to be
processed

• template<typename S>

void write (const std::vector< long > &first, long nElements, const
std::valarray< S > &data)

write array starting from specified n-tuple, without undefined data processing

• template<typename S>

void write (long first, long nElements, const std::valarray< S > &data)
write array starting from specified pixel number, without undefined data processing

• template<typename S>

void write (const std::vector< long > &firstVertex, const std::vector< long >
&lastVertex, const std::valarray< S > &data)

write a subset (generalize slice) of data to the image

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.16 CCfits::ExtHDU Class Reference 73

• template<typename S>

void read (std::valarray< S > &image)
Read image data into container.

• template<typename S>

void read (std::valarray< S > &image, long first, long nElements, S
∗nullValue)

read part of an image array, processing null values.

• template<typename S>

void read (std::valarray< S > &image, const std::vector< long > &first, long
nElements, S ∗nullValue)

read part of an image array, processing null values.

• template<typename S>

void read (std::valarray< S > &image, const std::vector< long > &firstVertex,
const std::vector< long > &lastVertex, const std::vector< long > &stride)

read an image subset

• template<typename S>

void read (std::valarray< S > &image, long first, long nElements)
read an image section starting at a specified pixel

• template<typename S>

void read (std::valarray< S > &image, const std::vector< long > &first, long
nElements)

read an image section starting at a location specified by an n-tuple

• template<typename S>

void read (std::valarray< S > &image, const std::vector< long > &firstVertex,
const std::vector< long > &lastVertex, const std::vector< long > &stride, S
∗nullValue)

read an image subset into valarray image, processing null values

Static Public Member Functions

• static void readHduName (const fitsfile ∗fptr, int hduIndex, String &hduName,
int &hduVersion)

read extension name.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.16 CCfits::ExtHDU Class Reference 74

Protected Member Functions

• ExtHDU (FITSBase ∗p, HduType xtype, const String &hduName, int version)
default constructor, required as Standard Library Container content.

• ExtHDU (FITSBase ∗p, HduType xtype, const String &hduName, int bitpix, int
naxis, const std::vector< long > &axes, int version)

writing constructor.

• ExtHDU (FITSBase ∗p, HduType xtype, int number)
ExtHDU constructor for getting ExtHDUs by number.

• long pcount () const
return required pcount keyword value

• void pcount (long value)
set required pcount keyword value

• long gcount () const
return required gcount keyword value

• void gcount (long value)
set required gcount keyword value

• HduType xtension () const
return the extension type

• void xtension (HduType value)
set the extension type

Classes

• class WrongExtensionType
Exception to be thrown on unmatched extension types.

10.16.1 Detailed Description

base class for all FITS extension HDUs, i.e. Image Extensions and Tables.

ExtHDU needs to have the combined public interface of Table objects and images. It
achieves this by providing the same set of read and write operations as PHDU, and also

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.16 CCfits::ExtHDU Class Reference 75

providing the same operations for extracting columns from the extension as does Table
[after which the column interface is accessible]. Differentiation between extension
types operates by exception handling: .i.e. attempting to access image data structures
on a Table object through the ExtHDU interface will or trying to return a Column
reference from an Image extension will both throw an exception

10.16.2 Constructor & Destructor Documentation

10.16.2.1 CCfits::ExtHDU::ExtHDU (FITSBase ∗ p, HduType xtype, const
String & hduName, int bitpix, int naxis, const std::vector< long > & axes, int
version) [protected]

writing constructor.

The writing constructor forces the user to supply a name for the HDU. The bitpix,
naxes and naxis data required by this constructor are required FITS keywords for any
HDUs.

10.16.2.2 CCfits::ExtHDU::ExtHDU (FITSBase ∗ p, HduType xtype, int num-
ber) [protected]

ExtHDU constructor for getting ExtHDUs by number.

Necessary since EXTNAME is a reserved, not required, keyword. But a synthetic name
is supplied by static ExtHDU::readHduName which is called by this constructor.

10.16.3 Member Function Documentation

10.16.3.1 static void CCfits::ExtHDU::readHduName (const fitsfile ∗ fptr, int
hduIndex, String & hduName, int & hduVersion) [static]

read extension name.

Used primarily to allow extensions to be specified by HDU number and provide their
name for the associative array that contains them. Alternatively, if there is no name
keyword in the extension, one is synthesized from the index.

10.16.3.2 void CCfits::ExtHDU::makeThisCurrent () const [virtual]

move the fitsfile pointer to this current HDU.

This function should never need to be called by the user since it is called internally
whenever required.

Reimplemented from CCfits::HDU.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.16 CCfits::ExtHDU Class Reference 76

10.16.3.3 Column & CCfits::ExtHDU::column (const String & colName) const
[virtual]

return a reference to a Table column specified by name.

The overridden base class implementation ExtHDU::column throws an exception,
which is thus the action to be taken if self is an image extension

Exceptions:

WrongExtensionType see above

Reimplemented in CCfits::Table.

10.16.3.4 Column & CCfits::ExtHDU::column (int colIndex) const
[virtual]

return a reference to a Table column specified by column index.

This version is provided for convenience; the ’return by name’ version is more efficient
because columns are stored in an associative array sorted by name.

Exceptions:

WrongExtensionType thrown if ∗this is an image extension.

Reimplemented in CCfits::Table.

10.16.3.5 long CCfits::ExtHDU::rows () const [virtual]

return the number of rows in the extension.

Exceptions:

WrongExtensionType thrown if ∗this is an image extension.

Reimplemented in CCfits::Table.

10.16.3.6 void CCfits::ExtHDU::addColumn (ValueType type, const String &
columnName, long repeatWidth, const String & colUnit = String(""), long dec-
imals = -1, size_t columnNumber = 0) [virtual]

add a new column to an existing table HDU.

Parameters:

type The data type of the column to be added

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.16 CCfits::ExtHDU Class Reference 77

columnName The name of the column to be added
repeatWidth for a string valued, this is the width of a string. For a numeric column

it supplies the vector length of the rows. It is ignored for ascii table numeric
data.

colUnit an optional field specifying the units of the data (TUNITn)
decimals optional parameter specifying the number of decimals for an ascii nu-

meric column
columnNumber optional parameter specifying column number to be created. If

not specified the column is added to the end. If specified, the column is
inserted and the columns already read are reindexed. This parameter is pro-
vided as a convenience to support existing code rather than recommended.

Reimplemented in CCfits::AsciiTable, and CCfits::BinTable.

10.16.3.7 void CCfits::ExtHDU::deleteColumn (const String & columnName)
[virtual]

delete a column in a Table extension by name.

Parameters:

columnName The name of the column to be deleted.

Exceptions:

WrongExtensionType if extension is an image.

Reimplemented in CCfits::Table.

10.16.3.8 long CCfits::ExtHDU::getRowsize () const [virtual]

return the optimal number of rows to read or write at a time

A wrapper for the CFITSIO function fits_get_rowsize, useful for obtaining maximum
I/O efficiency. This will throw if it is not called for a Table extension.

Reimplemented in CCfits::Table.

10.16.3.9 template<typename S> void CCfits::ExtHDU::write (const
std::vector< long > & first, long nElements, const std::valarray< S > &
data, S ∗ nullValue) [inline]

Write a set of pixels to an image extension with the first pixel specified by an n-tuple,
processing undefined data.

All the overloaded versions of ExtHDU::write perform operations on ∗this if it is an
image and throw a WrongExtensionType exception if not. Where appropriate, alternate
versions allow undefined data to be processed

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.16 CCfits::ExtHDU Class Reference 78

Parameters:

first an n-tuple of dimension equal to the image dimension specifying the first
pixel in the range to be written

nElements number of pixels to be written

data array of data to be written

nullValue pointer to null value (data with this value written as undefined; needs
the BLANK keyword to have been specified).

10.16.3.10 template<typename S> void CCfits::ExtHDU::write (long first, long
nElements, const std::valarray< S > & data, S ∗ nullValue) [inline]

write array to image starting with a specified pixel and allowing undefined data to be
processed

parameters after the first are as for version with n-tuple specifying first element. these
two version are equivalent, except that it is possible for the first pixel number to exceed
the range of 32-bit integers, which is how long datatype is commonly implemented.

10.16.3.11 template<typename S> void CCfits::ExtHDU::write (const
std::vector< long > & firstVertex, const std::vector< long > & lastVertex,
const std::valarray< S > & data) [inline]

write a subset (generalize slice) of data to the image

A generalized slice/subset is a subset of the image (e.g. one plane of a data cube of size
<= the dimension of the cube). It is specified by two opposite vertices. The equivalent
cfitsio call does not support undefined data processing so there is no version that allows
a null value to be specified.

Parameters:

firstVertex the coordinates specifying lower and upper vertices of the n-
dimensional slice

lastVertex
data The data to be written

10.16.3.12 template<typename S> void CCfits::ExtHDU::read (std::valarray<
S > & image) [inline]

Read image data into container.

The container image contains the entire image array after the call. This and all the other
variants of read() throw a WrongExtensionType exception if called for a Table object.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.16 CCfits::ExtHDU Class Reference 79

10.16.3.13 template<typename S> void CCfits::ExtHDU::read (std::valarray<
S > & image, long first, long nElements, S ∗ nullValue) [inline]

read part of an image array, processing null values.

Implicit data conversion is supported (i.e. user does not need to know the type of the
data stored. A WrongExtensionType extension is thrown if ∗this is not an image.

Parameters:

image The receiving container, a std::valarray reference
first The first pixel from the array to read [a long value]
nElements The number of values to read
nullValue A pointer containing the value in the table to be considered as unde-

fined. See cfitsio for details

10.16.3.14 template<typename S> void CCfits::ExtHDU::read (std::valarray<
S > & image, const std::vector< long > & first, long nElements, S ∗ nullValue)
[inline]

read part of an image array, processing null values.

As above except for

Parameters:

first a vector<long> representing an n-tuple giving the coordinates in the image
of the first pixel.

10.16.3.15 template<typename S> void CCfits::ExtHDU::read (std::valarray<
S > & image, const std::vector< long > & firstVertex, const std::vector< long >
& lastVertex, const std::vector< long > & stride, S ∗ nullValue) [inline]

read an image subset into valarray image, processing null values

The image subset is defined by two vertices and a stride indicating the ’denseness’ of
the values to be picked in each dimension (a stride = (1,1,1,...) means picking every
pixel in every dimension, whereas stride = (2,2,2,...) means picking every other value
in each dimension.

10.16.3.16 HduType CCfits::ExtHDU::xtension () const [inline,
protected]

return the extension type

allowed values are ImageHDU, AsciiTbl, and BinaryTbl

The documentation for this class was generated from the following files:

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.17 CCfits::ExtHDU::WrongExtensionType Class Reference 80

• ExtHDU.h
• ExtHDU.cxx
• ExtHDUT.h

10.17 CCfits::ExtHDU::WrongExtensionType Class Reference

Exception to be thrown on unmatched extension types.

#include <ExtHDU.h>

Inheritance diagram for CCfits::ExtHDU::WrongExtensionType::

CCfits::ExtHDU::WrongExtensionType

CCfits::FitsException

Public Member Functions

• WrongExtensionType (const String &msg, bool silent=true)
Exception ctor, prefixes the string "Fits Error: wrong extension type" before the spe-
cific message.

10.17.1 Detailed Description

Exception to be thrown on unmatched extension types.

This exception is to be thrown if the user requested a particular extension and it does
not correspond to the expected type.

10.17.2 Constructor & Destructor Documentation

10.17.2.1 CCfits::ExtHDU::WrongExtensionType::WrongExtensionType
(const String & msg, bool silent = true)

Exception ctor, prefixes the string "Fits Error: wrong extension type" before the specific
message.

Parameters:

msg A specific diagnostic message

silent if true, print message whether FITS::verboseMode is set or not.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.18 CCfits::FITS Class Reference 81

The documentation for this class was generated from the following files:

• ExtHDU.h
• ExtHDU.cxx

10.18 CCfits::FITS Class Reference

Memory object representation of a disk FITS file.

#include <FITS.h>

Public Member Functions

• FITS (const String &name, RWmode mode=Read, bool readDataFlag=false,
const std::vector< String > &primaryKeys=std::vector< String >())

basic constructor

• FITS (const String &name, RWmode mode, const string &hduName, bool read-
DataFlag=false, const std::vector< String > &hduKeys=std::vector< String >(),
const std::vector< String > &primaryKey=std::vector< String >(), int ver-
sion=1)

Open a FITS file and read a single specified HDU.

• FITS (const String &name, RWmode mode, const std::vector< String
> &hduNames, bool readDataFlag=false, const std::vector< String >
&primaryKey=std::vector< String >())

• FITS (const String &fileName, const FITS &source)
create a new FITS object and corresponding file with copy of the primary header of
the source If the filename corresponds to an existing file and does not start with the
’!’ character the construction will fail with a CantCreate exception.

• FITS (const String &name, RWmode mode, const std::vector< String >
&hduNames, const std::vector< std::vector< String > > &hduKeys, bool read-
DataFlag=false, const std::vector< String > &primaryKeys=std::vector< String
>(), const std::vector< int > &hduVersions=std::vector< int >())

FITS read constructor in full generality.

• FITS (const String &name, int bitpix, int naxis, long ∗naxes)
Constructor for creating new FITS objects containing images.

• FITS (const string &name, RWmode mode, int hduIndex, bool read-
DataFlag=false, const std::vector< String > &hduKeys=std::vector< String >(),
const std::vector< String > &primaryKey=std::vector< String >())

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.18 CCfits::FITS Class Reference 82

read a single numbered HDU.

• FITS (const String &name, RWmode mode, const std::vector< String
> &searchKeys, const std::vector< String > &searchValues, bool read-
DataFlag=false, const std::vector< String > &hduKeys=std::vector< String >(),
const std::vector< String > &primaryKey=std::vector< string >(), int ver-
sion=1)

open fits file and read HDU which contains supplied keywords with [optional] speci-
fied values (sometimes one just wants to know that the keyword is present).

• ∼FITS ()
destructor

• void deleteExtension (const String &doomed, int version=1)
Delete extension specified by name and version number.

• void read (const String &hduName, bool readDataFlag=false, const std::vector<
String > &keys=std::vector< String >(), int version=1)

get data from single HDU from disk file.

• void read (const std::vector< String > &hduNames, bool readDataFlag=false)
get data from a set of HDUs from disk file.

• void read (const std::vector< String > &hduNames, const std::vector<
std::vector< String > > &keys, bool readDataFlag=false, const std::vector<
int > &hduVersions=std::vector< int >())

get data from a set of HDUs from disk file, specifying keys and version numbers.

• void read (int hduIndex, bool readDataFlag=false, const std::vector< String >
&keys=std::vector< String >())

read an HDU specified by index number.

• void read (const std::vector< String > &searchKeys, const std::vector<
String > &searchValues, bool readDataFlag=false, const std::vector< String >
&hduKeys=std::vector< String >(), int version=1)

read method for read header or HDU that contains specified keywords.

• const ExtHDU & extension (int i) const
return FITS extension by index number. N.B. The input index number is currently
defined as enumerating extensions, so the extension(1) returns HDU number 2.

• fitsfile ∗ fitsPointer () const
return the CFITSIO fitsfile pointer for this FITS object

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.18 CCfits::FITS Class Reference 83

• ExtHDU & extension (int i)
return FITS extension by index number. non-const version. see const version for
details.

• const ExtHDU & extension (const String &hduName, int version=1) const
return FITS extension by name and (optionally) version number.

• const PHDU & pHDU () const
return a const reference to the primary HDU.

• PHDU & pHDU ()
return a reference to the primary HDU.

• ExtHDU & extension (const String &hduName, int version=1)
return FITS extension by name and (optionally) version number.

• Table ∗ addTable (const String &hduName, int rows, const std::vector<
String > &columnName=std::vector< String >(), const std::vector< String
> &columnFmt=std::vector< String >(), const std::vector< String >
&columnUnit=std::vector< String >(), HduType type=BinaryTbl, int ver-
sion=1)

Add a table extension to an existing FITS object. Add extension to FITS object for file
with w or rw access.

• ExtHDU ∗ addImage (const String &hduName, int bpix, std::vector< long >
&naxes, int version=1)

Add an image extension to an existing FITS object. (File with w or rw access).

• void destroy () throw ()
Erase FITS object and close corresponding file.

• void flush ()
flush buffer contents to disk

• const String & currentExtensionName () const
return the name of the extension that the fitsfile is currently addressing.

• const ExtMap & extension () const
return const reference to the extension container

• void resetPosition ()
explicit call to set the fits file pointer to the primary.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.18 CCfits::FITS Class Reference 84

• const String & name () const
return filename of file corresponding to FITS object

• void copy (const HDU &source)
copy the HDU source into the FITS object.

• Table & filter (const String &expression, ExtHDU &inputTable, bool over-
write=true, bool readData=false)

Filter the rows of the inputTable with the condition expression, and return a reference
to the resulting Table.

• ExtHDU & currentExtension ()
return a non-const reference to whichever is the current extension.

• void deleteExtension (int doomed)
Delete extension specified by extension number.

• void setCompressionType (int compType)
set the compression algorithm to be used when adding image extensions to the FITS
object.

• void setTileDimensions (const std::vector< long > &tileSizes)
Set the dimensions of the tiles into which the image is divided during compression.

• void setNoiseBits (int noiseBits)
Set the cfitsio noisebits parameter used when compressing floating-point images.

• int getCompressionType () const
Get the int specifying the compression algorithm to be used when adding an image
extension.

• void getTileDimensions (std::vector< long > &tileSizes) const
Get the current settings of dimension sizes for tiles used in image compression.

• int getNoiseBits () const
Get the cfitsio noisebits parameter used when compressing floating-point images.

Static Public Member Functions

• static void clearErrors ()
clear the error stack and set status to zero.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.18 CCfits::FITS Class Reference 85

• static bool verboseMode ()
return verbose setting for library

• static void setVerboseMode (bool value)
set verbose setting for library

Classes

• class CantCreate
thrown on failure to create new file

• class CantOpen
thrown on failure to open existing file

• class NoSuchHDU
exception thrown by HDU retrieval methods.

• class OperationNotSupported
thrown for unsupported operations, such as attempted to select rows from an image
extension.

10.18.1 Detailed Description

Memory object representation of a disk FITS file.

Constructors are provided to get FITS data from an existing file or to create new FITS
data sets. Overloaded versions allow the user to

a) read from one or more specified extensions, specified by EXTNAME and VERSION
or by HDU number. b either just header information or data on construction c) to spec-
ify scalar keyword values to be read on construction d) to open and read an extension
that has specified keyword values e) create a new FITS object and corresponding file,
including an empty primary header.

The memory fits object as constructed is always an image of a valid FITS object, i.e. a
primary HDU is created on construction.

calling the destructor closes the disk file, so that FITS files are automatically deleted at
the end of scope unless other arrangements are made.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.18 CCfits::FITS Class Reference 86

10.18.2 Constructor & Destructor Documentation

10.18.2.1 CCfits::FITS::FITS (const String & name, RWmode mode = Read,
bool readDataFlag = false, const std::vector< String > & primaryKeys =
std::vector<String>())

basic constructor

This basic constructor makes a FITS object from the given filename. The filename
string is passed directly to the cfitsio library: thus all of the extended filename syntax
described in the cfitsio manual should work as documented.

If the mode is Read [default], it will read all of the headers in the file, and all of the
data if the readDataFlag is supplied as true. It will also read optional primary keys.

The file name is the only required argument. If the mode is Write and the file does not
already exist, a default primary HDU will be created in the file with BITPIX=8 and
NAXIS=0: this mode is designed for writing FITS files with table extensions only. For
files with image data the constructor that specified the data type and number of axes
should be called.

Parameters:

name The name of the FITS file to be read/written

mode The read/write mode: must be Read or Write

readDataFlag boolean: read data on construction if true

primaryKeys Allows optional reading of primary header keys on construction

Exceptions:

NoSuchHDU thrown on HDU seek error either by index or {name,version}

FitsError thrown on non-zero status code from cfitsio when not overriden by Fit-
sException error to produce more illuminating message.

10.18.2.2 CCfits::FITS::FITS (const String & name, RWmode mode, const
string & hduName, bool readDataFlag = false, const std::vector< String > &
hduKeys = std::vector<String>(), const std::vector< String > & prima-
ryKey = std::vector<String>(), int version = 1)

Open a FITS file and read a single specified HDU.

This and similar constructor variants support reading table data.

Optional arguments allow the reading of primary header keys and specified data from
hduName, the HDU to be read. An object representing the primary HDU is always
created: if it contains an image, that image may be read by subsequent calls.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.18 CCfits::FITS Class Reference 87

Parameters:

name The name of the FITS file to be read

mode The read/write mode: takes values Read or Write

hduName The name of the HDU to be read.

hduKeys Optional array of keywords to be read from the HDU

version Optional version number. If not supplied the first HDU with name
hduName is read see above for other parameter definitions

10.18.2.3 CCfits::FITS::FITS (const String & name, RWmode mode, const
std::vector< String > & hduNames, bool readDataFlag = false, const
std::vector< String > & primaryKey = std::vector<String>())

This is intended as a convenience where the file consists of single versions of HDUs
and data only, not keys are to be read.

Parameters:

hduNames array of HDU names to be read. see above for other parameter defini-
tions.

10.18.2.4 CCfits::FITS::FITS (const String & fileName, const FITS & source)

create a new FITS object and corresponding file with copy of the primary header of
the source If the filename corresponds to an existing file and does not start with the ’!’
character the construction will fail with a CantCreate exception.

Parameters:

fileName New file to be created.

source A previously created FITS object to be copied.

see above for other parameter definitions.

10.18.2.5 CCfits::FITS::FITS (const String & name, RWmode mode, const
std::vector< String > & hduNames, const std::vector< std::vector< String > >
& hduKeys, bool readDataFlag = false, const std::vector< String > & prima-
ryKeys = std::vector<String>(), const std::vector< int > & hduVersions
= std::vector<int>())

FITS read constructor in full generality.

Parameters:

hduVersions an optional version number for each HDU to be read

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.18 CCfits::FITS Class Reference 88

hduKeys an array of keywords for each HDU to be read. see above for other
parameter definitions.

10.18.2.6 CCfits::FITS::FITS (const String & name, int bitpix, int naxis, long ∗
naxes)

Constructor for creating new FITS objects containing images.

This constructor is only called for creating new files (mode is not an argument) and
creates a new primary HDU with the datatype & axes specified by bitpix, naxis,
and naxes. The data are added to the new fits object and file by subsequent calls to
FITS::pHDU().write(<arguments>)

A file with a compressed image may be creating by appending to the end of the file
name the same "[compress ...]" syntax specified in the cfitsio manual. Note however
that the compressed image will be placed in the first extension and NOT in the primary
HDU.

If the filename corresponds to an existing file and does not start with the ’!’ character
the construction will fail with a CantCreate exception.

The arguments are:

Parameters:

name The file to be written to disk

bitpix the datatype of the primary image. bitpix may be one of the following CFIT-
SIO constants: BYTE_IMG, SHORT_IMG, LONG_IMG, FLOAT_IMG,
DOUBLE_IMG, USHORT_IMG, ULONG_IMG. Note that if you send in a
bitpix of USHORT_IMG or ULONG_IMG, CCfits will set HDU::bitpix() to
its signed equivalent (SHORT_IMG or LONG_IMG), and then set BZERO
to 2∧15 or 2∧31.

naxis the data dimension of the primary image

naxes the array of axis lengths for the primary image. Ignored if naxis =0, i.e. the
primary header is empty. extensions can be added arbitrarily to the file after
this constructor is called. The constructors should write header information
to disk:

10.18.2.7 CCfits::FITS::FITS (const string & name, RWmode mode, int hduIn-
dex, bool readDataFlag = false, const std::vector< String > & hduKeys =
std::vector<String>(), const std::vector< String > & primaryKey =
std::vector<String>())

read a single numbered HDU.

Constructor analogous to the version that reads by name. This is required since HDU
extensions are not required to have the EXTNAME or HDUNAME keyword by the

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.18 CCfits::FITS Class Reference 89

standard. If there is no name, a dummy name based on the HDU number is created and
becomes the key.

Parameters:

hduIndex The index of the HDU to be read. see above for other parameter defi-
nitions.

10.18.2.8 CCfits::FITS::FITS (const String & name, RWmode mode, const
std::vector< String > & searchKeys, const std::vector< String > & search-
Values, bool readDataFlag = false, const std::vector< String > & hduKeys
= std::vector<String>(), const std::vector< String > & primaryKey =
std::vector<string>(), int version = 1)

open fits file and read HDU which contains supplied keywords with [optional] specified
values (sometimes one just wants to know that the keyword is present).

Optional parameters allows the reading of specified primary HDU keys and specified
columns and keywords in the HDU of interest.

Parameters:

name The name of the FITS file to be read

mode The read/write mode: must be Read or Write

searchKeys A string vector of keywords to search for in each header

searchValues A string vector of values those keywords are required to have for
success. Note that the keys must be of type string. If any value does not need
to be checked the corresponding searchValue element can be empty.

readDataFlag boolean: if true, read data if HDU is found

hduKeys Allows optional reading of keys in the HDU that is searched for if it is
successfully found

primaryKey Allows optional reading of primary header keys on construction

version Optional version number. If specified, checks the EXTVERS keyword.

Exceptions:

FitsError thrown on non-zero status code from cfitsio when not overriden by Fit-
sException error to produce more illuminating message.

10.18.3 Member Function Documentation

10.18.3.1 void CCfits::FITS::deleteExtension (const String & doomed, int ver-
sion = 1)

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.18 CCfits::FITS Class Reference 90

Delete extension specified by name and version number.

Removes extension from FITS object and memory copy.

Parameters:

doomed the name of the extension to be deleted

version an optional version number, the EXTVER keyword, defaults to 1

Exceptions:

NoSuchHDU Thrown if there is no extension with the specified version number

FitsError Thrown if there is a non-zero status code from cfitsio, e.g. if the delete
operation is applied to a FITS file opened for read only access.

10.18.3.2 void CCfits::FITS::read (const String & hduName, bool readDataFlag
= false, const std::vector< String > & keys = std::vector<String>(), int
version = 1)

get data from single HDU from disk file.

This is provided to allow the adding of additional HDUs to the FITS object after con-
struction of the FITS object. After the read() functions have been called for the FITS
object, subsequent read method to the Primary, ExtHDU, and Column objects will re-
trieve data from the FITS object in memory (those methods can be called to read data
in those HDU objects that was not read when the HDU objects were constructed.

All the read functions will throw NoSuchHDU exceptions on seek errors since they
involve constructing HDU objects.

The parameter definitions are as documented for the corresponding constructor.

10.18.3.3 void CCfits::FITS::read (const std::vector< String > & hduNames,
bool readDataFlag = false)

get data from a set of HDUs from disk file.

This is provided to allow reading of HDUs after construction. see above for parameter
definitions.

10.18.3.4 void CCfits::FITS::read (const std::vector< String > & hduNames,
const std::vector< std::vector< String > > & keys, bool readDataFlag = false,
const std::vector< int > & hduVersions = std::vector<int>())

get data from a set of HDUs from disk file, specifying keys and version numbers.

This is provided to allow reading of HDUs after construction. see above for parameter
definitions.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.18 CCfits::FITS Class Reference 91

10.18.3.5 void CCfits::FITS::read (int hduIndex, bool readDataFlag = false,
const std::vector< String > & keys = std::vector<String>())

read an HDU specified by index number.

This is provided to allow reading of HDUs after construction. see above for parameter
definitions.

10.18.3.6 CCfits::FITS::read (const std::vector< String > & searchKeys, const
std::vector< String > & searchValues, bool readDataFlag = false, const
std::vector< String > & hduKeys = std::vector<String>(), int version =
1)

read method for read header or HDU that contains specified keywords.

Parameters:

searchKeys A string vector of keywords to search for in each header

searchValues A string vector of values those keywords are required to have for
success. Note that the keys must be of type string. If any value does not need
to be checked the corresponding searchValue element can be empty.

readDataFlag boolean: if true, read data if HDU is found

hduKeys Allows optional reading of keys in the HDU that is searched for if it is
successfully found

version Optional version number. If specified, checks the EXTVERS keyword.

10.18.3.7 Table ∗ CCfits::FITS::addTable (const String & hduName, int rows,
const std::vector< String > & columnName = std::vector<String>(),
const std::vector< String > & columnFmt = std::vector<String>(), const
std::vector< String > & columnUnit = std::vector<String>(), HduType
type = BinaryTbl, int version = 1)

Add a table extension to an existing FITS object. Add extension to FITS object for file
with w or rw access.

Parameters:

rows The number of rows in the table to be created.

columnName A vector containing the table column names

columnFmt A vector containing the table column formats

columnUnit (Optional) a vector giving the units of the columns.

type The table type - AsciiTbl or BinaryTbl (defaults to BinaryTbl) the lists of
columns are optional - one can create an empty table extension but if sup-
plied, colType, columnName and colFmt must have equal dimensions.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.18 CCfits::FITS Class Reference 92

Todo

the code should one day check that the version keyword is higher than any other
versions already added to the FITS object (although cfitsio doesn’t do this either).

10.18.3.8 void CCfits::FITS::addImage (const String & hduName, int bpix,
std::vector< long > & naxes, int version = 1)

Add an image extension to an existing FITS object. (File with w or rw access).

Does not make primary images, which are built in the constructor for the FITS file. The
image data is not added here: it can be added by a call to one of the ExtHDU::write
functions.

bpix may be one of the following CFITSIO constants: BYTE_IMG, SHORT_IMG,
LONG_IMG, FLOAT_IMG, DOUBLE_IMG, USHORT_IMG, ULONG_IMG. Note
that if you send in a bpix of USHORT_IMG or ULONG_IMG, CCfits will set
HDU::bitpix() to its signed equivalent (SHORT_IMG or LONG_IMG), and then set
BZERO to 2∧15 or 2∧31.

Todo

Add a function for replacing the primary image

10.18.3.9 void CCfits::FITS::destroy () throw ()

Erase FITS object and close corresponding file.

Force deallocation and erase of elements of a FITS memory object. Allows a reset of
everything inside the FITS object, and closes the file. The object is inaccessible after
this call.

destroy is public to allow users to reuse a symbol for a new file, but it is identical in
operation to the destructor.

10.18.3.10 void CCfits::FITS::flush ()

flush buffer contents to disk

Provides manual control of disk writing operation. Image data are flushed automati-
cally to disk after the write operation is completed, but not column data.

10.18.3.11 const String & CCfits::FITS::currentExtensionName () const

return the name of the extension that the fitsfile is currently addressing.

If the extension in question does not have an EXTNAME or HDUNAME keyword, then
the function returns HDUn, where n is the sequential HDU index number (primary
HDU = 0).

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.18 CCfits::FITS Class Reference 93

10.18.3.12 const std::multimap< std::String, ExtHDU ∗ > & CC-
fits::FITS::extension () const

return const reference to the extension container

This is useful for such operations as extension().size() etc.

10.18.3.13 void CCfits::FITS::copy (const HDU & source)

copy the HDU source into the FITS object.

This function adds a copy of an HDU from another file into ∗this. It does not create a
duplicate of an HDU in the file associated with ∗this.

10.18.3.14 Table & CCfits::FITS::filter (const String & expression, ExtHDU &
inputTable, bool overwrite = true, bool readData = false)

Filter the rows of the inputTable with the condition expression, and return a reference
to the resulting Table.

This function provides an object oriented version of cfitsio’s fits_select_rows call. The
expression string is any boolean expression involving the names of the columns in the
input table (e.g., if there were a column called "density", a valid expression might be
"DENSITY > 3.5": see the cfitsio documentation for further details).

[N.B. the "append" functionality described below does not work when linked with
cfitsio 2.202 or prior because of a known issue with that version of the library. This
causes the output to be a new extension with a correct header copy and version number
but without the filtered data]. If the inputTable is an Extension HDU of this FITS
object, then if overwrite is true the operation will overwrite the inputTable with the
filtered version, otherwise it will append a new HDU with the same extension name
but the next highest version (EXTVER) number available.

10.18.3.15 void CCfits::FITS::deleteExtension (int doomed)

Delete extension specified by extension number.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

10.18.3.16 void CCfits::FITS::setCompressionType (int compType)

set the compression algorithm to be used when adding image extensions to the FITS
object.

Parameters:

compType Currently 3 symbolic constants are defined in cfitsio for specifying
compression algorithms: GZIP_1, RICE_1, and PLIO_1. See the cfitsio doc-

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.18 CCfits::FITS Class Reference 94

umentation for more information about these algorithms. Entering NULL for
compType will turn off compression and cause normal FITS images to be
written.

10.18.3.17 void CCfits::FITS::setTileDimensions (const std::vector< long > &
tileSizes)

Set the dimensions of the tiles into which the image is divided during compression.

Parameters:

tileSizes A vector of length N containing the tile dimesions. If N is less than the
number of dimensions of the image it is applied to, the unspecified dimen-
sions will be assigned a size of 1 pixel. If N is larger than the number of
image dimensions, the extra dimensions will be ignored.

The default cfitsio behavior is to create tiles with dimensions NAXIS1 x 1 x 1 etc. up
to the number of image dimensions.

10.18.3.18 void CCfits::FITS::setNoiseBits (int noiseBits)

Set the cfitsio noisebits parameter used when compressing floating-point images.

The default value is 4. Decreasing the value of noisebits will improve the overall
compression efficiency at the expense of losing more information.

10.18.3.19 void CCfits::FITS::getTileDimensions (std::vector< long > & tile-
Sizes) const

Get the current settings of dimension sizes for tiles used in image compression.

Parameters:

tileSizes A vector to be filled with cfitsio’s current tile dimension settings. CCfits
will resize this vector to contain the proper number of values.

10.18.3.20 bool CCfits::FITS::verboseMode () [inline, static]

return verbose setting for library

If true, all messages that are reported by exceptions are printed to std::cerr.

The documentation for this class was generated from the following files:

• FITS.h
• FITS.cxx

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.19 CCfits::FITS::CantCreate Class Reference 95

10.19 CCfits::FITS::CantCreate Class Reference

thrown on failure to create new file

#include <FITS.h>

Inheritance diagram for CCfits::FITS::CantCreate::

CCfits::FITS::CantCreate

CCfits::FitsException

Public Member Functions

• CantCreate (const String &diag, bool silent=false)
Exception ctor prefixes the string: "FITS Error: Cannot create file " before specific
message.

10.19.1 Detailed Description

thrown on failure to create new file

10.19.2 Constructor & Destructor Documentation

10.19.2.1 CCfits::FITS::CantCreate::CantCreate (const String & msg, bool
silent = false)

Exception ctor prefixes the string: "FITS Error: Cannot create file " before specific
message.

This exception will be thrown if the user attempts to write to a protected directory or
attempts to create a new file with the same name as an existing file without specify-
ing overwrite [overwrite is specified by adding the character ’!’ before the filename,
following the cfitsio convention].

Parameters:

msg A specific diagnostic message, the name of the file that was to be created.

silent if true, print message whether FITS::verboseMode is set or not.

The documentation for this class was generated from the following files:

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.20 CCfits::FITS::CantOpen Class Reference 96

• FITS.h
• FITS.cxx

10.20 CCfits::FITS::CantOpen Class Reference

thrown on failure to open existing file

#include <FITS.h>

Inheritance diagram for CCfits::FITS::CantOpen::

CCfits::FITS::CantOpen

CCfits::FitsException

Public Member Functions

• CantOpen (const String &diag, bool silent=true)
Exception ctor prefixes the string: "FITS Error: Cannot create file " before specific
message.

10.20.1 Detailed Description

thrown on failure to open existing file

10.20.2 Constructor & Destructor Documentation

10.20.2.1 CCfits::FITS::CantOpen::CantOpen (const String & diag, bool silent
= true)

Exception ctor prefixes the string: "FITS Error: Cannot create file " before specific
message.

This exception will be thrown if users attempt to open an existing file for write access
to which they do not have permission, or of course if the file does not exist.

Parameters:

diag A specific diagnostic message, the name of the file that was to be created.

silent if true, print message whether FITS::verboseMode is set or not.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.21 CCfits::FITS::NoSuchHDU Class Reference 97

The documentation for this class was generated from the following files:

• FITS.h
• FITS.cxx

10.21 CCfits::FITS::NoSuchHDU Class Reference

exception thrown by HDU retrieval methods.

#include <FITS.h>

Inheritance diagram for CCfits::FITS::NoSuchHDU::

CCfits::FITS::NoSuchHDU

CCfits::FitsException

Public Member Functions

• NoSuchHDU (const String &diag, bool silent=true)
Exception ctor, prefixes the string "FITS Error: Cannot read HDU in FITS file:"
before the specific message.

10.21.1 Detailed Description

exception thrown by HDU retrieval methods.

10.21.2 Constructor & Destructor Documentation

10.21.2.1 CCfits::FITS::NoSuchHDU::NoSuchHDU (const String & diag, bool
silent = true)

Exception ctor, prefixes the string "FITS Error: Cannot read HDU in FITS file:" before
the specific message.

Parameters:

diag A specific diagnostic message, usually the name of the extension whose read
was attempted.

silent if true, print message whether FITS::verboseMode is set or not.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.22 CCfits::FITS::OperationNotSupported Class Reference 98

Exception to be thrown by failed seek operations

The documentation for this class was generated from the following files:

• FITS.h
• FITS.cxx

10.22 CCfits::FITS::OperationNotSupported Class Reference

thrown for unsupported operations, such as attempted to select rows from an image
extension.

#include <FITS.h>

Inheritance diagram for CCfits::FITS::OperationNotSupported::

CCfits::FITS::OperationNotSupported

CCfits::FitsException

Public Member Functions

• OperationNotSupported (const String &msg, bool silent=true)
Exception ctor, prefixes the string "FITS Error: Operation not supported:" before the
specific message.

10.22.1 Detailed Description

thrown for unsupported operations, such as attempted to select rows from an image
extension.

10.22.2 Constructor & Destructor Documentation

10.22.2.1 CCfits::FITS::OperationNotSupported::OperationNotSupported
(const String & msg, bool silent = true)

Exception ctor, prefixes the string "FITS Error: Operation not supported:" before the
specific message.

Parameters:

msg A specific diagnostic message.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.23 CCfits::FitsError Class Reference 99

silent if true, print message whether FITS::verboseMode is set or not.

The documentation for this class was generated from the following files:

• FITS.h
• FITS.cxx

10.23 CCfits::FitsError Class Reference

FitsError is the exception thrown by non-zero cfitsio status codes.

#include <FitsError.h>

Inheritance diagram for CCfits::FitsError::

CCfits::FitsError

CCfits::FitsException

Public Member Functions

• FitsError (int errornum, bool silent=true)
ctor for cfitsio exception: translates status code into cfitsio error message

10.23.1 Detailed Description

FitsError is the exception thrown by non-zero cfitsio status codes.

10.23.2 Constructor & Destructor Documentation

10.23.2.1 CCfits::FitsError::FitsError (int errornum, bool silent = true)

ctor for cfitsio exception: translates status code into cfitsio error message

The exception prefixes the string "Fits Error: " to the message printed by cfitsio.

Parameters:

errornum The cfitsio status code produced by the error.

silent A boolean controlling the printing of messages

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.24 CCfits::FitsException Class Reference 100

The documentation for this class was generated from the following files:

• FitsError.h
• FitsError.cxx

10.24 CCfits::FitsException Class Reference

FitsException is the base class for all exceptions thrown by this library.

#include <FitsError.h>

Inheritance diagram for CCfits::FitsException::

CCfits::FitsException

CCfits::Column::InsufficientElements

CCfits::Column::InvalidDataType

CCfits::Column::InvalidNumberOfRows

CCfits::Column::InvalidRowNumber

CCfits::Column::InvalidRowParameter

CCfits::Column::NoNullValue

CCfits::Column::RangeError

CCfits::Column::WrongColumnType

CCfits::ExtHDU::WrongExtensionType

CCfits::FITS::CantCreate

CCfits::FITS::CantOpen

CCfits::FITS::NoSuchHDU

CCfits::FITS::OperationNotSupported

CCfits::FitsError

CCfits::FITSUtil::UnrecognizedType

CCfits::HDU::InvalidExtensionType

CCfits::HDU::InvalidImageDataType

CCfits::HDU::NoNullValue

CCfits::HDU::NoSuchKeyword

CCfits::Table::NoSuchColumn

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.25 CCfits::FitsFatal Class Reference 101

Public Member Functions

• FitsException (const string &msg, bool &silent)
• const string & message () const

returns the error message

10.24.1 Detailed Description

FitsException is the base class for all exceptions thrown by this library.

All exceptions derived from this class can be caught by a single ’catch’ clause catching
FitsException by reference (which is the point of this base class design).

A static "verboseMode" parameter is provided by the FITS class to control diagnostics
- if FITS::verboseMode() is true, all diagnostics are printed (for debugging purposes).
If not, then a boolean silent determines printing of messages. Each exception derived
from FitsException must define a default value for the silent parameter.

10.24.2 Constructor & Destructor Documentation

10.24.2.1 CCfits::FitsException::FitsException (const string & diag, bool &
silent)

Parameters:

diag A diagnostic string to be printed optionally.
silent A boolean controlling the printing of messages

10.24.3 Member Function Documentation

10.24.3.1 const string & CCfits::FitsException::message () const [inline]

returns the error message

This returns the diagnostic error message associated with the exception object, and
which is accessible regardless of the verboseMode and silent flag settings.

The documentation for this class was generated from the following files:

• FitsError.h
• FitsError.cxx

10.25 CCfits::FitsFatal Class Reference

[potential] base class for exceptions to be thrown on internal library error.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.26 CCfits::HDU Class Reference 102

#include <FitsError.h>

Public Member Functions

• FitsFatal (const string &diag)
Prints a message starting "∗∗∗ CCfits Fatal Error: ..." and calls terminate().

10.25.1 Detailed Description

[potential] base class for exceptions to be thrown on internal library error.

As of this version there are no subclasses. This error requests that the user reports this
circumstance to HEASARC.

10.25.2 Constructor & Destructor Documentation

10.25.2.1 CCfits::FitsFatal::FitsFatal (const string & diag)

Prints a message starting "∗∗∗ CCfits Fatal Error: ..." and calls terminate().

Parameters:

diag A diagnostic string to be printed identifying the context of the error.

The documentation for this class was generated from the following files:

• FitsError.h
• FitsError.cxx

10.26 CCfits::HDU Class Reference

Base class for all HDU [Header-Data Unit] objects.

#include <HDU.h>

Inheritance diagram for CCfits::HDU::

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.26 CCfits::HDU Class Reference 103

CCfits::HDU

CCfits::ExtHDU CCfits::PHDU

CCfits::ImageExt< T > CCfits::Table

CCfits::AsciiTable CCfits::BinTable

Public Member Functions

• HDU (const HDU &right)
copy constructor

• bool operator== (const HDU &right) const
equality operator

• bool operator!= (const HDU &right) const
inequality operator

• virtual HDU ∗ clone (FITSBase ∗p) const =0
virtual copy constructor, to be implemented in subclasses.

• fitsfile ∗ fitsPointer () const
return the fitsfile pointer for the FITS object containing the HDU

• FITSBase ∗ parent () const
return reference to the pointer representing the FITSBase object containing the HDU

• virtual void makeThisCurrent () const
move the fitsfile pointer to this current HDU.

• const String & getComments ()
read the comments from the HDU and add it to the FITS object.

• const string & comment () const
return the comment string previously read by getComment()

• void writeComment (const String &comment="Generic Comment")
write a comment string.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.26 CCfits::HDU Class Reference 104

• const String & getHistory ()
read the history information from the HDU and add it to the FITS object.

• const string & history () const
return the history string previously read by getHistory()

• void writeHistory (const String &history="Generic History String")
write a history string.

• void writeDate ()
write a date string to ∗this.

• long axes () const
return the number of axes in the HDU data section (always 2 for tables).

• long axis (size_t index) const
return the size of axis numbered index [zero based].

• void index (int value)
set the HDU number

• int index () const
return the HDU number

• long bitpix () const
return the data type keyword.

• virtual double scale () const
return the BSCALE keyword value

• virtual void scale (double value)
set the BSCALE keyword value for images (see warning for images of int type)

• virtual double zero () const
return the BZERO keyword value

• virtual void zero (double value)
set the BZERO keyword value for images (see warning for images of int type)

• void suppressScaling (bool toggle=true)
turn off image scaling regardless of the BSCALE and BZERO keyword values

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.26 CCfits::HDU Class Reference 105

• void writeChecksum ()
compute and write the DATASUM and CHECKSUM keyword values

• void updateChecksum ()
update the CHECKSUM keyword value, assuming DATASUM exists and is correct

• std::pair< int, int > verifyChecksum () const
verify the HDU by computing the checksums and comparing them with the CHECK-
SUM/DATASUM keywords

• std::pair< unsigned long, unsigned long > getChecksum () const
compute and return the checksum values for the HDU without creating or modifying
the CHECKSUM/DATASUM keywords.

• void deleteKey (const String &doomed)
delete a keyword from the header

• void readAllKeys ()
read all of the keys in the header

• void copyAllKeys (const HDU ∗inHdu)
copy all keys from another header

• std::map< String, Keyword ∗ > & keyWord ()
return the associative array containing the HDU keywords so far read.

• Keyword & keyWord (const String &keyName)
return a (previously read) keyword from the HDU object.

• const std::map< string, Keyword ∗ > & keyWord () const
return the associative array containing the HDU Keywords that have been read so
far.

• const Keyword & keyWord (const string &keyname) const
return a (previously read) keyword from the HDU object. const version

• template<typename T>

void readKey (const String &keyName, T &val)
read a keyword of specified type from the header of a disk FITS file and return its
value.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.26 CCfits::HDU Class Reference 106

• template<typename T>

void readKeys (std::vector< String > &keyNames, std::vector< T > &vals)
read a set of specified keywords of the same data type from the header of a disk FITS
file and return their values

• template<typename T>

Keyword & addKey (const String &name, T val, const String &comment)
create a new keyword in the HDU with specified value and comment fields

• Keyword ∗ addKey (const Keyword ∗inKeyword)
create a copy of an existing Keyword and add to HDU

Static Public Member Functions

• static std::vector< int > keywordCategories ()
return the enumerated keyword categories used by readAllKeys() and copyAllKeys()

Protected Member Functions

• HDU (FITSBase ∗p=0)
default constructor, called by HDU subclasses that read from FITS files.

• HDU (FITSBase ∗p, int bitpix, int naxis, const std::vector< long > &axes)
constructor for creating new HDU objects, called by HDU subclasses writing to FITS
files.

• virtual ∼HDU ()
destructor

• std::vector< long > & naxes ()
return the HDU data axis array.

Classes

• class InvalidExtensionType
exception to be thrown if user requests extension type that can not be understood as
ImageExt, AsciiTable or BinTable.

• class InvalidImageDataType

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.26 CCfits::HDU Class Reference 107

exception to be thrown if user requests creation of an image of type not supported by
cfitsio.

• class NoNullValue
exception to be thrown on seek errors for keywords.

• class NoSuchKeyword
exception to be thrown on seek errors for keywords.

10.26.1 Detailed Description

Base class for all HDU [Header-Data Unit] objects.

HDU objects in CCfits are either PHDU (Primary HDU objects) or ExtHDU (Extension
HDU) objects. Following the behavior. ExtHDUs are further subclassed into ImageExt
or Table objects, which are finally AsciiTable or BinTable objects.

HDU’s public interface gives access to properties that are common to all HDUs, largely
required keywords, and functions that are common to all HDUs, principally the manip-
ulation of keywords and their values.

HDUs must be constructed by HDUCreator objects which are called by FITS methods.
Each HDU has an embedded pointer to a FITSBase object, which is private to FITS
[FITSBase is a pointer encapsulating the resources of FITS. For details of this coding
idiom see Exceptional C++ by Herb Sutter (2000) and references therein].

10.26.2 Member Function Documentation

10.26.2.1 void CCfits::HDU::makeThisCurrent () const [virtual]

move the fitsfile pointer to this current HDU.

This function should never need to be called by the user since it is called internally
whenever required.

Reimplemented in CCfits::ExtHDU.

10.26.2.2 const String & CCfits::HDU::getComments ()

read the comments from the HDU and add it to the FITS object.

The comment string found in the header is concatenated and returned to the calling
function

10.26.2.3 void CCfits::HDU::writeComment (const String & comment =
"Generic Comment")

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.26 CCfits::HDU Class Reference 108

write a comment string.

A default value for the string is given ("Generic Comment String") so users can put a
placeholder call to this function in their code.

10.26.2.4 const String & CCfits::HDU::getHistory ()

read the history information from the HDU and add it to the FITS object.

The history string found in the header is concatenated and returned to the calling func-
tion

10.26.2.5 void CCfits::HDU::writeHistory (const String & history =
"Generic History String")

write a history string.

A default value for the string is given ("Generic History String") so users can put a
placeholder call to this function in their code.

10.26.2.6 long CCfits::HDU::axis (size_t index) const [inline]

return the size of axis numbered index [zero based].

return the length of HDU data axis i.

10.26.2.7 long CCfits::HDU::bitpix () const [inline]

return the data type keyword.

Takes values denoting the image data type for images, and takes the fixed value 8 for
tables.

10.26.2.8 void CCfits::HDU::scale (double value) [inline, virtual]

set the BSCALE keyword value for images (see warning for images of int type)

For primary HDUs and image extensions, this will add (or update) the BSCALE key-
word in the header. The new setting will affect future image array read/writes as de-
scribed in section 4.7 Data Scaling of the CFITSIO manual. For table extensions this
function does nothing.

WARNING: If the image contains integer-type data (as indicated by the bitpix() return
value), the new scale and zero value combination must not be such that the scaled data
would require a floating-point type (this uses the CFITSIO function fits_get_img_-
equivtype to make the determination). If this situation occurs, the function will throw
a FitsException.

Reimplemented in CCfits::ImageExt< T >, and CCfits::PHDU.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.26 CCfits::HDU Class Reference 109

10.26.2.9 void CCfits::HDU::zero (double value) [inline, virtual]

set the BZERO keyword value for images (see warning for images of int type)

For primary HDUs and image extensions, this will add (or update) the BZERO keyword
in the header. The new setting will affect future image array read/writes as described
in section 4.7 Data Scaling of the CFITSIO manual. For table extensions this function
does nothing.

WARNING: If the image contains integer-type data (as indicated by the bitpix() return
value), the new scale and zero value combination must not be such that the scaled data
would require a floating-point type (this uses the CFITSIO function fits_get_img_-
equivtype to make the determination). If this situation occurs, the function will throw
a FitsException.

Reimplemented in CCfits::ImageExt< T >, and CCfits::PHDU.

10.26.2.10 void CCfits::HDU::suppressScaling (bool toggle = true)

turn off image scaling regardless of the BSCALE and BZERO keyword values

For toggle = true, this turns off image scaling for future read/writes by resetting the
scale and zero to 1.0 and 0.0 respectively. It does NOT modify the BSCALE and
BZERO keywords. If toggle = false, the scale and zero values will be restored to the
keyword values.

10.26.2.11 void CCfits::HDU::writeChecksum ()

compute and write the DATASUM and CHECKSUM keyword values

Wrapper for the CFITSIO function fits_write_chksum: This performs the datasum and
checksum calculations for this HDU, as described in the CFITSIO manual. If either
the DATASUM or CHECKSUM keywords already exist, their values will be updated.

10.26.2.12 void CCfits::HDU::updateChecksum ()

update the CHECKSUM keyword value, assuming DATASUM exists and is correct

Wrapper for the CFITSIO function fits_update_chksum: This recomputes and writes
the CHECKSUM value with the assumption that the DATASUM value is cor-
rect. If the DATASUM keyword doesn’t yet exist or is not up-to-date, use the
HDU::writeChecksum function instead. This will throw a FitsError exception if called
when there is no DATASUM keyword in the header.

10.26.2.13 std::pair< int, int > CCfits::HDU::verifyChecksum () const

verify the HDU by computing the checksums and comparing them with the CHECK-
SUM/DATASUM keywords

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.26 CCfits::HDU Class Reference 110

Wrapper for the CFITSIO function fits_verify_chksum: The data unit is verified cor-
rectly if the computed checksum equals the DATASUM keyword value, and the HDU
is verified if the entire checksum equals zero (see the CFITSIO manual for further
details).

This returns a std::pair<int,int> where the pair’s first data member = DATAOK and
second = HDUOK. DATAOK and HDUOK values will be = 1 if verified correctly, 0 if
the keyword is missing, and -1 if the computed checksum is not correct.

10.26.2.14 std::pair< unsigned long, unsigned long > CC-
fits::HDU::getChecksum () const

compute and return the checksum values for the HDU without creating or modifying
the CHECKSUM/DATASUM keywords.

Wrapper for the CFITSIO function fits_get_chksum: This returns a std::pair<unsigned
long, unsigned long> where the pair’s first data member holds the datasum value and
second holds the hdusum value.

10.26.2.15 void CCfits::HDU::deleteKey (const String & doomed)

delete a keyword from the header

removes doomed from the FITS file and from the FITS object

10.26.2.16 void CCfits::HDU::readAllKeys ()

read all of the keys in the header

This member function reads keys that are not meta data for columns or image informa-
tion, [which are considered to be part of the column or image objects]. Also, history
and comment keys are read and returned by getHistory() and getComment(). The exact
list of keyword classes this will read is returned by the function keywordCategories().

Note that readAllKeys can only construct keys of type string, double, complex<float>,
integer, and bool because the FITS header records do not encode exact type informa-
tion.

10.26.2.17 void CCfits::HDU::copyAllKeys (const HDU ∗ inHdu)

copy all keys from another header

Parameters:

Parameters:

inHdu (const HDU∗) An existing HDU whose keys will be copied.

This will copy all keys that exist in the keyWord map of inHDU, and which belong to

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.26 CCfits::HDU Class Reference 111

one of the keyword classes returned by the keywordCategories() function. This is the
same group of keyword classes used by readAllKeys().

10.26.2.18 static std::vector< int > CCfits::HDU::keywordCategories ()
[static]

return the enumerated keyword categories used by readAllKeys() and copyAllKeys()

This returns a vector of integers indicating which categories of keywords apply for the
readAllKeys and copyAllKeys functions. The list of categories currently hardcoded
is: TYP_CMPRS_KEY (20), TYP_CKSUM_KEY (100), TYP_WCS_KEY (110),
TYP_REFSYS_KEY (120), and TYP_USER_KEY (150).

For the list of ALL keyword categories, see the CFITSIO documentation
at: http://heasarc.gsfc.nasa.gov/docs/software/fitsio/c/c_-
user/node50.html

10.26.2.19 template<typename T> void CCfits::HDU::readKey (const String &
keyName, T & val) [inline]

read a keyword of specified type from the header of a disk FITS file and return its value.

T is one of the types String, double, float, int, std::complex<float>, and bool. If a
Keyword object with the name keyName already exists in this HDU due to a previous
read call, then this will re-read from the file and create a new Keyword object to replace
the existing one.

10.26.2.20 template<typename T> void CCfits::HDU::readKeys (std::vector<
String > & keyNames, std::vector< T > & vals) [inline]

read a set of specified keywords of the same data type from the header of a disk FITS
file and return their values

T is one of the types String, double, float, int, std::complex<float>, and bool.

10.26.2.21 template<typename T> Keyword & CCfits::HDU::addKey (const
String & name, T value, const String & comment) [inline]

create a new keyword in the HDU with specified value and comment fields

The function returns a reference to keyword object just created. If a keyword with
this name already exists, it will be overwritten. Note that this is mostly intended for
adding user-defined keywords. It should not be used to add keywords for which there
are already specific HDU functions, such as scaling or checksum. Nor should it be used
for image or column structural keywords, such as BITPIX, NAXIS, TFORMn, etc. As
a general rule, it is best to use this for keywords belonging to the same categories listed
in the keywordCategories() function.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

http://heasarc.gsfc.nasa.gov/docs/software/fitsio/c/c_user/node50.html
http://heasarc.gsfc.nasa.gov/docs/software/fitsio/c/c_user/node50.html

10.27 CCfits::HDU::InvalidExtensionType Class Reference 112

Parameters:

Parameters:

name (String) The keyword name

value (Recommended T = String, double, std::complex<float>, int, or bool

comment (String) the keyword value

It is possible to create a keyword with a value of any of the allowed data types in fitsio
(see the cfitsio manual section 4.3). However one should be aware that if this keyword
value is read in from the file at a later time, it will be stored in a templated Keyword
subclass (KeyData<T>) where T will be one of the recommended types listed above.
Also see Keyword::value (T& val) for more details.

10.26.2.22 Keyword ∗ CCfits::HDU::addKey (const Keyword ∗ inKeyword)

create a copy of an existing Keyword and add to HDU

This is particularly useful for copying Keywords from one HDU to an-
other. For example the inKeyword pointer might come from a different HDU’s
std::map<string,Keyword∗>. If a keyword with this name already exists, it will be
overwritten. The return value is a pointer to the newly created Keyword inserted into
this HDU. Also see copyAllKeys().

The documentation for this class was generated from the following files:

• HDU.h
• HDU.cxx

10.27 CCfits::HDU::InvalidExtensionType Class Reference

exception to be thrown if user requests extension type that can not be understood as
ImageExt, AsciiTable or BinTable.

#include <HDU.h>

Inheritance diagram for CCfits::HDU::InvalidExtensionType::

CCfits::HDU::InvalidExtensionType

CCfits::FitsException

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.28 CCfits::HDU::InvalidImageDataType Class Reference 113

Public Member Functions

• InvalidExtensionType (const string &diag, bool silent=true)
Exception ctor, prefixes the string "Fits Error: Extension Type: " before the specific
message.

10.27.1 Detailed Description

exception to be thrown if user requests extension type that can not be understood as
ImageExt, AsciiTable or BinTable.

10.27.2 Constructor & Destructor Documentation

10.27.2.1 CCfits::HDU::InvalidExtensionType::InvalidExtensionType (const
string & diag, bool silent = true)

Exception ctor, prefixes the string "Fits Error: Extension Type: " before the specific
message.

Parameters:

diag A specific diagnostic message

silent if true, print message whether FITS::verboseMode is set or not.

The documentation for this class was generated from the following files:

• HDU.h
• HDU.cxx

10.28 CCfits::HDU::InvalidImageDataType Class Reference

exception to be thrown if user requests creation of an image of type not supported by
cfitsio.

#include <HDU.h>

Inheritance diagram for CCfits::HDU::InvalidImageDataType::

CCfits::HDU::InvalidImageDataType

CCfits::FitsException

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.29 CCfits::HDU::NoNullValue Class Reference 114

Public Member Functions

• InvalidImageDataType (const string &diag, bool silent=true)
Exception ctor, prefixes the string "Fits Error: Invalid Data Type for Image " before
the specific message.

10.28.1 Detailed Description

exception to be thrown if user requests creation of an image of type not supported by
cfitsio.

10.28.2 Constructor & Destructor Documentation

10.28.2.1 CCfits::HDU::InvalidImageDataType::InvalidImageDataType (const
string & diag, bool silent = true)

Exception ctor, prefixes the string "Fits Error: Invalid Data Type for Image " before the
specific message.

Parameters:

diag A specific diagnostic message

silent if true, print message whether FITS::verboseMode is set or not.

The documentation for this class was generated from the following files:

• HDU.h
• HDU.cxx

10.29 CCfits::HDU::NoNullValue Class Reference

exception to be thrown on seek errors for keywords.

#include <HDU.h>

Inheritance diagram for CCfits::HDU::NoNullValue::

CCfits::HDU::NoNullValue

CCfits::FitsException

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.30 CCfits::HDU::NoSuchKeyword Class Reference 115

Public Member Functions

• NoNullValue (const string &diag, bool silent=true)
Exception ctor, prefixes the string "Fits Error: No Null Pixel Value specified for Image
" before the specific message.

10.29.1 Detailed Description

exception to be thrown on seek errors for keywords.

10.29.2 Constructor & Destructor Documentation

10.29.2.1 CCfits::HDU::NoNullValue::NoNullValue (const string & diag, bool
silent = true)

Exception ctor, prefixes the string "Fits Error: No Null Pixel Value specified for Image
" before the specific message.

Parameters:

diag A specific diagnostic message, the name of the HDU if not the primary.

silent if true, print message whether FITS::verboseMode is set or not.

The documentation for this class was generated from the following files:

• HDU.h
• HDU.cxx

10.30 CCfits::HDU::NoSuchKeyword Class Reference

exception to be thrown on seek errors for keywords.

#include <HDU.h>

Inheritance diagram for CCfits::HDU::NoSuchKeyword::

CCfits::HDU::NoSuchKeyword

CCfits::FitsException

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.31 CCfits::ImageExt< T > Class Template Reference 116

Public Member Functions

• NoSuchKeyword (const string &diag, bool silent=true)
Exception ctor, prefixes the string "Fits Error: Keyword not found: " before the spe-
cific message.

10.30.1 Detailed Description

exception to be thrown on seek errors for keywords.

10.30.2 Constructor & Destructor Documentation

10.30.2.1 CCfits::HDU::NoSuchKeyword::NoSuchKeyword (const string &
diag, bool silent = true)

Exception ctor, prefixes the string "Fits Error: Keyword not found: " before the specific
message.

Parameters:

diag A specific diagnostic message, usually the name of the keyword requested.

silent if true, print message whether FITS::verboseMode is set or not.

The documentation for this class was generated from the following files:

• HDU.h
• HDU.cxx

10.31 CCfits::ImageExt< T > Class Template Reference

Inheritance diagram for CCfits::ImageExt< T >::

CCfits::ImageExt< T >

CCfits::ExtHDU

CCfits::HDU

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.31 CCfits::ImageExt< T > Class Template Reference 117

Public Member Functions

• virtual ∼ImageExt ()
destructor

• virtual ImageExt< T > ∗ clone (FITSBase ∗p) const
virtual copy constructor

• virtual void readData (bool readFlag=false, const std::vector< String >
&keys=std::vector< String >())

read Image extension HDU data

• const std::valarray< T > & image () const
return the image data

• virtual void zero (double value)
set the BZERO keyword value for images (see warning for images of int type)

• virtual void scale (double value)
set the BSCALE keyword value for images (see warning for images of int type)

• virtual double zero () const
return the BZERO keyword value

• virtual double scale () const
return the BSCALE keyword value

10.31.1 Detailed Description

template<typename T> class CCfits::ImageExt< T >

ImageExt<T> is a subclass of ExtHDU that contains image data of type T.

10.31.2 Member Function Documentation

10.31.2.1 template<typename T> void CCfits::ImageExt< T >::readData
(bool readFlag = false, const std::vector< String > & keys =
std::vector<String>()) [inline, virtual]

read Image extension HDU data

Called by FITS ctor, not intended for general use. parameters control how much gets
read on initialization.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.31 CCfits::ImageExt< T > Class Template Reference 118

Parameters:

readFlag read the image data if true

key a vector of strings of keyword names to be read from the HDU

Implements CCfits::ExtHDU.

10.31.2.2 template<typename T> void CCfits::ImageExt< T >::zero (double
value) [inline, virtual]

set the BZERO keyword value for images (see warning for images of int type)

For primary HDUs and image extensions, this will add (or update) the BZERO keyword
in the header. The new setting will affect future image array read/writes as described
in section 4.7 Data Scaling of the CFITSIO manual. For table extensions this function
does nothing.

WARNING: If the image contains integer-type data (as indicated by the bitpix() return
value), the new scale and zero value combination must not be such that the scaled data
would require a floating-point type (this uses the CFITSIO function fits_get_img_-
equivtype to make the determination). If this situation occurs, the function will throw
a FitsException.

Reimplemented from CCfits::HDU.

10.31.2.3 template<typename T> void CCfits::ImageExt< T >::scale (double
value) [inline, virtual]

set the BSCALE keyword value for images (see warning for images of int type)

For primary HDUs and image extensions, this will add (or update) the BSCALE key-
word in the header. The new setting will affect future image array read/writes as de-
scribed in section 4.7 Data Scaling of the CFITSIO manual. For table extensions this
function does nothing.

WARNING: If the image contains integer-type data (as indicated by the bitpix() return
value), the new scale and zero value combination must not be such that the scaled data
would require a floating-point type (this uses the CFITSIO function fits_get_img_-
equivtype to make the determination). If this situation occurs, the function will throw
a FitsException.

Reimplemented from CCfits::HDU.

The documentation for this class was generated from the following file:

• ImageExt.h

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.32 CCfits::Keyword Class Reference 119

10.32 CCfits::Keyword Class Reference

Abstract base class defining the interface for Keyword objects.

#include <Keyword.h>

Inherited by CCfits::KeyData< T >.

Public Member Functions

• virtual ∼Keyword ()
virtual destructor

• Keyword & operator= (const Keyword &right)
assignment operator

• bool operator== (const Keyword &right) const
equality operator

• bool operator!= (const Keyword &right) const
inequality operator

• virtual Keyword ∗ clone () const =0
virtual copy constructor

• virtual void write ()
left in for historical reasons, this seldom needs to be called by users

• fitsfile ∗ fitsPointer () const
return a pointer to the FITS file containing the parent HDU.

• const String & comment () const
return the comment field of the keyword

• const String & name () const
return the name of a keyword

• template<typename T>

T & value (T &val) const
get the keyword value

• template<typename T>

void setValue (const T &newValue)
modify the value of an existing Keyword and write it to the file

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.32 CCfits::Keyword Class Reference 120

Protected Member Functions

• Keyword (const Keyword &right)
copy constructor

• Keyword (const String &keyname, ValueType keytype, HDU ∗p, const String
&comment="")

Keyword constructor.

• ValueType keytype () const
return the type of a keyword

• void keytype (ValueType value)
set keyword type.

• const HDU ∗ parent () const
return a pointer to parent HDU.

10.32.1 Detailed Description

Abstract base class defining the interface for Keyword objects.

Keyword object creation is normally performed inside FITS constructors or FITS::read,
HDU::readKey, and HDU::addKey functions. Output is performed in HDU::addKey
functions and Keyword::setValue.

Keywords consists of a name, a value and a comment field. Concrete templated sub-
classes, KeyData<T>, have a data member that holds the value of keyword.

Typically, the mandatory keywords for a given HDU type are not stored as object of
type Keyword, but as intrinsic data types. The Keyword hierarchy is used to store
user-supplied information.

10.32.2 Constructor & Destructor Documentation

10.32.2.1 CCfits::Keyword::Keyword (const String & keyname, ValueType key-
type, HDU ∗ p, const String & comment = "") [protected]

Keyword constructor.

This is the common behavior of Keywords of any type. Constructor is protected as the
class is abstract.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.32 CCfits::Keyword Class Reference 121

10.32.3 Member Function Documentation

10.32.3.1 void CCfits::Keyword::write () [virtual]

left in for historical reasons, this seldom needs to be called by users

This writes the Keyword to the file, and is called internally during HDU::addKey op-
erations or the Keyword::setValue function. It shouldn’t normally need to be called
explicitly.

10.32.3.2 template<typename T> T & CCfits::Keyword::value (T & val) const
[inline]

get the keyword value

Parameters:

Parameters:

val (T) Will be filled with the keyword value, and is also the function return value.

Allowed T types: CCfits stores keyword values of type U in a templated subclass of
Keyword, KeyData<U>. Normally U is set when reading the Keyword in from the
file, and is limited to types int, double, string, bool, and complex<float>. (The excep-
tion is when the user has created and added a new Keyword using an HDU::addKey
function, in which case they might have specified other types for U.) To avoid compi-
lation errors, the user should generally try to provide a val of type T = type U, though
there is some flexibility here as the following conversions are handled:

T (to val) U (from Keyword obj)
float double (will lose precision), float, int,

integer string
double double, float, int, integer string
int int, integer string

More conversions may be added in the future as the need arises.

10.32.3.3 template<typename T> void CCfits::Keyword::setValue (const T &
newValue) [inline]

modify the value of an existing Keyword and write it to the file

Parameters:

Parameters:

newValue (T) New value for the Keyword

Allowed T types: This must copy newValue to a data member of type U in the Key-
word subclass KeyData<U> (see description for Keyword::value (T& val) for more

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.33 CCfits::FITSUtil::MatchName< T > Class Template Reference 122

details). To avoid compilation errors, it is generally best to provide a newValue of type
T = type U, though the following type conversions will also be handled:

T (from newValue) U (to Keyword obj)
float double, float
double double, float (will lose precision)
int double, float, int, integer string

The documentation for this class was generated from the following files:

• Keyword.h
• Keyword.cxx
• KeywordT.h

10.33 CCfits::FITSUtil::MatchName< T > Class Template Refer-
ence

predicate for classes that have a name attribute; match input string with instance name.

#include <FITSUtil.h>

10.33.1 Detailed Description

template<class T> class CCfits::FITSUtil::MatchName< T >

predicate for classes that have a name attribute; match input string with instance name.

Usage: MatchName<NamedClass> Ex;

list<NamedClass> ListObject;

... ...

find_if(ListObject.begin(),ListObject().end(),bind2nd(Ex,"needle"));

Since most of the classes within CCfits are not implemented with lists, these functions
are now of little direct use.

The documentation for this class was generated from the following file:

• FITSUtil.h

10.34 CCfits::FITSUtil::MatchNum< T > Class Template Refer-
ence

predicate for classes that have an index attribute; match input index with instance value.

#include <FITSUtil.h>

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.35 CCfits::FITSUtil::MatchPtrName< T > Class Template Reference 123

10.34.1 Detailed Description

template<class T> class CCfits::FITSUtil::MatchNum< T >

predicate for classes that have an index attribute; match input index with instance value.

Usage: MatchName<IndexedClass> Ex;

list<NamedClass> ListObject;

... ...

find_if(ListObject.begin(),ListObject().end(),bind2nd(Ex,5));

Since most of the classes within CCfits are implemented with std::maps rather than
lists, these functions are now of little direct use.

The documentation for this class was generated from the following file:

• FITSUtil.h

10.35 CCfits::FITSUtil::MatchPtrName< T > Class Template
Reference

as for MatchName, only with the input class a pointer.

#include <FITSUtil.h>

10.35.1 Detailed Description

template<class T> class CCfits::FITSUtil::MatchPtrName< T >

as for MatchName, only with the input class a pointer.

The documentation for this class was generated from the following file:

• FITSUtil.h

10.36 CCfits::FITSUtil::MatchPtrNum< T > Class Template Ref-
erence

as for MatchNum, only with the input class a pointer.

#include <FITSUtil.h>

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.37 CCfits::FITSUtil::MatchType< T > Class Template Reference 124

10.36.1 Detailed Description

template<class T> class CCfits::FITSUtil::MatchPtrNum< T >

as for MatchNum, only with the input class a pointer.

The documentation for this class was generated from the following file:

• FITSUtil.h

10.37 CCfits::FITSUtil::MatchType< T > Class Template Refer-
ence

function object that returns the FITS ValueType corresponding to an input intrinsic type

#include <FITSUtil.h>

10.37.1 Detailed Description

template<typename T> class CCfits::FITSUtil::MatchType< T >

function object that returns the FITS ValueType corresponding to an input intrinsic type

This is particularly useful inside templated class instances where calls to cfitsio need
to supply a value type. With this function one can extract the value type from the class
type.

usage:

MatchType<T> type;

ValueType dataType = type();

Uses run-time type information (RTTI) methods.

The documentation for this class was generated from the following file:

• FITSUtil.h

10.38 CCfits::PHDU Class Reference

class representing the primary HDU for a FITS file.

#include <PHDU.h>

Inheritance diagram for CCfits::PHDU::

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.38 CCfits::PHDU Class Reference 125

CCfits::PHDU

CCfits::HDU

Public Member Functions

• virtual ∼PHDU ()
destructor

• virtual void readData (bool readFlag=false, const std::vector< String >
&keys=std::vector< String >())=0

read primary HDU data

• virtual PHDU ∗ clone (FITSBase ∗p) const =0
virtual copy constructor, to be implemented in subclasses.

• virtual void zero (double value)
set the BZERO keyword value for images (see warning for images of int type)

• virtual void scale (double value)
set the BSCALE keyword value for images (see warning for images of int type)

• virtual double zero () const
return the BZERO keyword value

• virtual double scale () const
return the BSCALE keyword value

• template<typename S>

void write (const std::vector< long > &first, long nElements, const
std::valarray< S > &data, S ∗nullValue)

Write a set of pixels to an image extension with the first pixel specified by an n-tuple,
processing undefined data.

• template<typename S>

void write (long first, long nElements, const std::valarray< S > &data, S
∗nullValue)

write array to image starting with a specified pixel and allowing undefined data to be
processed

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.38 CCfits::PHDU Class Reference 126

• template<typename S>

void write (const std::vector< long > &first, long nElements, const
std::valarray< S > &data)

write array starting from specified n-tuple, without undefined data processing

• template<typename S>

void write (long first, long nElements, const std::valarray< S > &data)
write array starting from specified pixel number, without undefined data processing

• template<typename S>

void write (const std::vector< long > &firstVertex, const std::vector< long
> &lastVertex, const std::vector< long > &stride, const std::valarray< S >
&data)

write a subset (generalize slice) of data to the image

• template<typename S>

void read (std::valarray< S > &image, long first, long nElements)
read an image section starting at a specified pixel

• template<typename S>

void read (std::valarray< S > &image, long first, long nElements, S
∗nullValue)

read part of an image array, processing null values.

• template<typename S>

void read (std::valarray< S > &image, const std::vector< long > &first, long
nElements)

read an image section starting at a location specified by an n-tuple

• template<typename S>

void read (std::valarray< S > &image, const std::vector< long > &first, long
nElements, S ∗nullValue)

read part of an image array, processing null values.

• template<typename S>

void read (std::valarray< S > &image, const std::vector< long > &firstVertex,
const std::vector< long > &lastVertex, const std::vector< long > &stride)

read an image subset

• template<typename S>

void read (std::valarray< S > &image, const std::vector< long > &firstVertex,
const std::vector< long > &lastVertex, const std::vector< long > &stride, S
∗nullValue)

read an image subset into valarray image, processing null values

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.38 CCfits::PHDU Class Reference 127

Protected Member Functions

• PHDU (const PHDU &right)
copy constructor

• PHDU (FITSBase ∗p, int bpix, int naxis, const std::vector< long > &axes)
Writing Primary HDU constructor, called by PrimaryHDU<T> class.

• PHDU (FITSBase ∗p=0)
Reading Primary HDU constructor.

• virtual void initRead ()

10.38.1 Detailed Description

class representing the primary HDU for a FITS file.

A PHDU object is automatically instantiated and added to a FITS object when a FITS
file is accessed in any way. If a new file is created without specifying the data type for
the header, CCfits assumes that the file is to be used for table extensions and creates a
dummy header. PHDU instances are only created by FITS ctors. In the first release of
CCfits, the Primary cannot be changed once declared.

PHDU and ExtHDU provide the same interface to writing images: multiple overloads
of the templated PHDU::read and PHDU::write operations provide for (a) writing im-
age data specified in a number of ways [C-array, std::vector, std::valarray] and with in-
put location specified by initial pixel, by n-tuple, and by rectangular subset [generalized
slice]; (b) reading image data specified similarly to the write options into a std::valarray.

Todo

Implement functions that allow replacement of the primary image

10.38.2 Constructor & Destructor Documentation

10.38.2.1 CCfits::PHDU::∼PHDU () [virtual]

destructor

Destructor

10.38.2.2 CCfits::PHDU::PHDU (const PHDU & right) [protected]

copy constructor

required for cloning primary HDUs when copying FITS files.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.38 CCfits::PHDU Class Reference 128

10.38.2.3 CCfits::PHDU::PHDU (FITSBase ∗ p, int bpix, int naxis, const
std::vector< long > & axes) [protected]

Writing Primary HDU constructor, called by PrimaryHDU<T> class.

Constructor used for creating new PHDU (i.e. for writing data to FITS). also doubles
as default constructor since all arguments have default values, which are passed to the
HDU constructor

10.38.2.4 CCfits::PHDU::PHDU (FITSBase ∗ p = 0) [protected]

Reading Primary HDU constructor.

Constructor used when reading the primary HDU from an existing file. Does nothing
except initialize, with the real work done by the subclass PrimaryHDU<T>.

10.38.3 Member Function Documentation

10.38.3.1 void CCfits::PHDU::readData (bool readFlag = false, const
std::vector< String > & keys = std::vector<String>()) [pure
virtual]

read primary HDU data

Called by FITS ctor, not intended for general use. parameters control how much gets
read on initialization. An abstract function, implemented in the subclasses.

Parameters:

readFlag read the image data if true

key a vector of strings of keyword names to be read from the primary HDU

10.38.3.2 void CCfits::PHDU::zero (double value) [virtual]

set the BZERO keyword value for images (see warning for images of int type)

For primary HDUs and image extensions, this will add (or update) the BZERO keyword
in the header. The new setting will affect future image array read/writes as described
in section 4.7 Data Scaling of the CFITSIO manual. For table extensions this function
does nothing.

WARNING: If the image contains integer-type data (as indicated by the bitpix() return
value), the new scale and zero value combination must not be such that the scaled data
would require a floating-point type (this uses the CFITSIO function fits_get_img_-
equivtype to make the determination). If this situation occurs, the function will throw
a FitsException.

Reimplemented from CCfits::HDU.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.38 CCfits::PHDU Class Reference 129

10.38.3.3 void CCfits::PHDU::scale (double value) [virtual]

set the BSCALE keyword value for images (see warning for images of int type)

For primary HDUs and image extensions, this will add (or update) the BSCALE key-
word in the header. The new setting will affect future image array read/writes as de-
scribed in section 4.7 Data Scaling of the CFITSIO manual. For table extensions this
function does nothing.

WARNING: If the image contains integer-type data (as indicated by the bitpix() return
value), the new scale and zero value combination must not be such that the scaled data
would require a floating-point type (this uses the CFITSIO function fits_get_img_-
equivtype to make the determination). If this situation occurs, the function will throw
a FitsException.

Reimplemented from CCfits::HDU.

10.38.3.4 template<typename S> void CCfits::PHDU::write (const
std::vector< long > & first, long nElements, const std::valarray< S > &
data, S ∗ nullValue) [inline]

Write a set of pixels to an image extension with the first pixel specified by an n-tuple,
processing undefined data.

All the overloaded versions of PHDU::write perform operations on ∗this if it is an
image and throw a WrongExtensionType exception if not. Where appropriate, alternate
versions allow undefined data to be processed

Parameters:

first an n-tuple of dimension equal to the image dimension specifying the first
pixel in the range to be written

nElements number of pixels to be written

data array of data to be written

nullValue pointer to null value (data with this value written as undefined; needs
the BLANK keyword to have been specified).

10.38.3.5 template<typename S> void CCfits::PHDU::write (long first, long
nElements, const std::valarray< S > & data, S ∗ nullValue) [inline]

write array to image starting with a specified pixel and allowing undefined data to be
processed

parameters after the first are as for version with n-tuple specifying first element. these
two version are equivalent, except that it is possible for the first pixel number to exceed
the range of 32-bit integers, which is how long datatype is commonly implemented.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.38 CCfits::PHDU Class Reference 130

10.38.3.6 template<typename S> void CCfits::PHDU::write (const
std::vector< long > & firstVertex, const std::vector< long > & lastVertex, const
std::vector< long > & stride, const std::valarray< S > & data) [inline]

write a subset (generalize slice) of data to the image

A generalized slice/subset is a subset of the image (e.g. one plane of a data cube of size
<= the dimension of the cube). It is specified by two opposite vertices. The equivalent
cfitsio call does not support undefined data processing so there is no version that allows
a null value to be specified.

Parameters:

firstVertex The coordinates specifying lower and upper vertices of the n-
dimensional slice

lastVertex
stride Pixels to skip in each to dimension, e.g. stride = (1,1,1,...) means picking

every pixel in every dimension, whearas stride = (2,2,2,...) means picking
every other value in each dimension.

data The data to be written

10.38.3.7 template<typename S> void CCfits::PHDU::read (std::valarray< S
> & image, long first, long nElements, S ∗ nullValue) [inline]

read part of an image array, processing null values.

Implicit data conversion is supported (i.e. user does not need to know the type of the
data stored. A WrongExtensionType extension is thrown if ∗this is not an image.

Parameters:

image The receiving container, a std::valarray reference

first The first pixel from the array to read [a long value]

nElements The number of values to read

nullValue A pointer containing the value in the table to be considered as unde-
fined. See cfitsio for details

10.38.3.8 template<typename S> void CCfits::PHDU::read (std::valarray< S
> & image, const std::vector< long > & first, long nElements, S ∗ nullValue)
[inline]

read part of an image array, processing null values.

As above except for

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.39 CCfits::Table Class Reference 131

Parameters:

first a vector<long> representing an n-tuple giving the coordinates in the image
of the first pixel.

10.38.3.9 template<typename S> void CCfits::PHDU::read (std::valarray< S
> & image, const std::vector< long > & firstVertex, const std::vector< long > &
lastVertex, const std::vector< long > & stride, S ∗ nullValue) [inline]

read an image subset into valarray image, processing null values

The image subset is defined by two vertices and a stride indicating the ’denseness’ of
the values to be picked in each dimension (a stride = (1,1,1,...) means picking every
pixel in every dimension, whereas stride = (2,2,2,...) means picking every other value
in each dimension.

10.38.3.10 void CCfits::PHDU::initRead () [protected, virtual]

Read image header and update fits pointer accordingly.

Private: called by ctor.

Implements CCfits::HDU.

The documentation for this class was generated from the following files:

• PHDU.h
• PHDU.cxx
• PHDUT.h

10.39 CCfits::Table Class Reference

#include <Table.h>

Inheritance diagram for CCfits::Table::

CCfits::Table

CCfits::ExtHDU

CCfits::HDU

CCfits::AsciiTable CCfits::BinTable

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.39 CCfits::Table Class Reference 132

Public Member Functions

• Table (const Table &right)
copy constructor

• virtual ∼Table ()
destructor

• const std::map< String, Column ∗ > & column () const
return a reference to the array containing the columns.

• virtual Column & column (const String &colName) const
return a reference to a Table column specified by name.

• virtual Column & column (int colIndex) const
return a reference to the column identified by colIndex

• virtual long rows () const
return the number of rows in the table (NAXIS2).

• void updateRows ()
update the number of rows in the table

• void rows (long numRows)
set the number of rows in the Table.

• virtual void deleteColumn (const String &columnName)
delete a column in a Table extension by name.

• void insertRows (long first, long number=1)
insert empty rows into the table

• void deleteRows (long first, long number=1)
delete a range of rows in a table.

• void deleteRows (const std::vector< long > &rowList)
delete a set of rows in the table specified by an input array.

• virtual long getRowsize () const
return the optimal number of rows to read or write at a time

• virtual std::map< string, Column ∗ > & column ()
return a reference to the array containing the columns.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.39 CCfits::Table Class Reference 133

Protected Member Functions

• Table (FITSBase ∗p, HduType xtype, const String &hduName, int rows, const
std::vector< String > &columnName, const std::vector< String > &colum-
nFmt, const std::vector< String > &columnUnit=std::vector< String >(), int
version=1)

Constructor to be used for creating new HDUs.

• Table (FITSBase ∗p, HduType xtype, const String &hduName=String(""), int
version=1)

Constructor to be called by operations that read Table specified by hduName and
version.

• Table (FITSBase ∗p, HduType xtype, int number)
Table constructor for getting Tables by number.

• void init (bool readFlag=false, const std::vector< String > &keys=std::vector<
String >())

• virtual void column (const String &colname, Column ∗value)
set the column with name colname to the input value.

• int numCols () const
return the number of Columns in the Table (the TFIELDS keyword).

• void numCols (int value)
set the number of Columns in the Table

Classes

• class NoSuchColumn
Exception to be thrown on a failure to retrieve a column specified either by name or
index number.

10.39.1 Detailed Description

Table is the abstract common interface to Binary and Ascii Table HDUs.

Table is a subclass of ExtHDU that contains an associative array of Column objects. It
implements methods for reading and writing columns

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.39 CCfits::Table Class Reference 134

10.39.2 Constructor & Destructor Documentation

10.39.2.1 CCfits::Table::Table (FITSBase ∗ p, HduType xtype, const String
& hduName, int rows, const std::vector< String > & columnName, const
std::vector< String > & columnFmt, const std::vector< String > & columnUnit
= std::vector<String>(), int version = 1) [protected]

Constructor to be used for creating new HDUs.

Parameters:

p The FITS file in which to place the new HDU

xtype An HduType enumerator defined in CCfits.h for type of table (AsciiTbl or
BinaryTbl)

hduName The name of this HDU extension

rows The number of rows in the new HDU (the value of the NAXIS2 keyword).

columnName a vector of names for the columns.

columnFmt the format strings for the columns

columnUnit the units for the columns.

version a version number

10.39.2.2 CCfits::Table::Table (FITSBase ∗ p, HduType xtype, int number)
[protected]

Table constructor for getting Tables by number.

Necessary since EXTNAME is a reserved not required keyword, and users may thus
read FITS files without an extension name. Since an HDU is completely specified by
extension number, this is part of the public interface.

10.39.3 Member Function Documentation

10.39.3.1 const std::map< String, Column ∗> & CCfits::Table::column () const
[inline]

return a reference to the array containing the columns.

This public version might be used to query the size of the column container in a routine
that manipulates column table data.

10.39.3.2 Column & CCfits::Table::column (const String & colName) const
[virtual]

return a reference to a Table column specified by name.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.39 CCfits::Table Class Reference 135

The overridden base class implementation ExtHDU::column throws an exception,
which is thus the action to be taken if self is an image extension

Exceptions:

WrongExtensionType see above

Reimplemented from CCfits::ExtHDU.

10.39.3.3 Column & CCfits::Table::column (int colIndex) const [virtual]

return a reference to the column identified by colIndex

Throws NoSuchColumn if the index is out of range -index must satisfy (1 <= index
<= numCols()).

N.B. the column number is assigned as 1-based, as in FORTRAN rather than 0-based
as in C.

Exceptions:

Table::NoSuchColumn passes colIndex to the diagnostic message printed when
the exception is thrown

Reimplemented from CCfits::ExtHDU.

10.39.3.4 void CCfits::Table::updateRows ()

update the number of rows in the table

Called to force the Table to reset its internal "rows" attribute. public, but is called when
needed internally.

10.39.3.5 void CCfits::Table::deleteColumn (const String & columnName)
[virtual]

delete a column in a Table extension by name.

Parameters:

columnName The name of the column to be deleted.

Exceptions:

WrongExtensionType if extension is an image.

Reimplemented from CCfits::ExtHDU.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.39 CCfits::Table Class Reference 136

10.39.3.6 void CCfits::Table::insertRows (long first, long number = 1)

insert empty rows into the table

Parameters:

first the start row of the range

number the number of rows to insert.

Exceptions:

FitsError thrown if the underlying cfitsio call fails to return without error.

10.39.3.7 void CCfits::Table::deleteRows (long first, long number = 1)

delete a range of rows in a table.

In both this and the overloaded version which allows a selection of rows to be deleted,
the cfitsio library is called first to perform the operation on the disk file, and then the
FITS object is updated.

Parameters:

first the start row of the range

number the number of rows to delete; defaults to 1.

Exceptions:

FitsError thrown if the cfitsio call fails to return without error.

10.39.3.8 void CCfits::Table::deleteRows (const std::vector< long > & rowlist)

delete a set of rows in the table specified by an input array.

Parameters:

rowlist The vector of row numbers to be deleted.

Exceptions:

FitsError thrown if the underlying cfitsio call fails to return without error.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.40 CCfits::Table::NoSuchColumn Class Reference 137

10.39.3.9 long CCfits::Table::getRowsize () const [virtual]

return the optimal number of rows to read or write at a time

A wrapper for the CFITSIO function fits_get_rowsize, useful for obtaining maximum
I/O efficiency. This will throw if it is not called for a Table extension.

Reimplemented from CCfits::ExtHDU.

10.39.3.10 std::map< string, Column ∗ > & CCfits::Table::column ()
[inline, virtual]

return a reference to the array containing the columns.

To be used in the implementation of subclasses.

10.39.3.11 void CCfits::Table::init (bool readFlag = false, const std::vector<
String > & keys = std::vector<String>()) [protected]

"Late Constructor." wrap-up of calls needed to construct a table. Reads header infor-
mation and sets up the array of column objects in the table.

Protected function, provided to allow the implementation of extensions of the library.

The documentation for this class was generated from the following files:

• Table.h
• Table.cxx

10.40 CCfits::Table::NoSuchColumn Class Reference

Exception to be thrown on a failure to retrieve a column specified either by name or
index number.

#include <Table.h>

Inheritance diagram for CCfits::Table::NoSuchColumn::

CCfits::Table::NoSuchColumn

CCfits::FitsException

Public Member Functions

• NoSuchColumn (const String &name, bool silent=true)

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.40 CCfits::Table::NoSuchColumn Class Reference 138

Exception ctor for exception thrown if the requested column (specified by name) is not
present.

• NoSuchColumn (int index, bool silent=true)
Exception ctor for exception thrown if the requested column (specified by name) is not
present.

10.40.1 Detailed Description

Exception to be thrown on a failure to retrieve a column specified either by name or
index number.

When a Table object is created, the header is read and a column object created for each
column defined. Thus id this exception is thrown the column requested does not exist
in the HDU (note that the column can easily exist and not contain any data since the
user controls whether the column will be read when the FITS object is instantiated).

It is expected that the index number calls will be primarily internal. The underlying
implementation makes lookup by name more efficient.

The exception has two variants, which take either an integer or a string as parameter.
These are used according to the accessor that threw them, either by name or index.

10.40.2 Constructor & Destructor Documentation

10.40.2.1 CCfits::Table::NoSuchColumn::NoSuchColumn (const String &
name, bool silent = true)

Exception ctor for exception thrown if the requested column (specified by name) is not
present.

Message: Fits Error: cannot find Column named: name is printed.

Parameters:

name the requested column name

silent if true, print message whether FITS::verboseMode is set or not.

10.40.2.2 CCfits::Table::NoSuchColumn::NoSuchColumn (int index, bool silent
= true)

Exception ctor for exception thrown if the requested column (specified by name) is not
present.

Message: Fits Error: column not present - Column number index is printed.

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

10.41 CCfits::FITSUtil::UnrecognizedType Class Reference 139

Parameters:

index the requested column number

silent if true, print message whether FITS::verboseMode is set or not.

The documentation for this class was generated from the following files:

• Table.h
• Table.cxx

10.41 CCfits::FITSUtil::UnrecognizedType Class Reference

exception thrown by MatchType if it encounters data type incompatible with cfitsio.

#include <FITSUtil.h>

Inheritance diagram for CCfits::FITSUtil::UnrecognizedType::

CCfits::FITSUtil::UnrecognizedType

CCfits::FitsException

10.41.1 Detailed Description

exception thrown by MatchType if it encounters data type incompatible with cfitsio.

The documentation for this class was generated from the following files:

• FITSUtil.h
• FITSUtil.cxx

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

Index
∼PHDU

CCfits::PHDU, 127

addColumn
CCfits::AsciiTable, 40
CCfits::BinTable, 45
CCfits::ExtHDU, 76

addImage
CCfits::FITS, 92

addKey
CCfits::HDU, 111, 112

addNullValue
CCfits::Column, 60

addTable
CCfits::FITS, 91

AsciiTable
CCfits::AsciiTable, 38, 39

axis
CCfits::HDU, 108

BinTable
CCfits::BinTable, 44

bitpix
CCfits::HDU, 108

CantCreate
CCfits::FITS::CantCreate, 95

CantOpen
CCfits::FITS::CantOpen, 96

CCfits::AsciiTable, 37
addColumn, 40
AsciiTable, 38, 39
readData, 40

CCfits::BinTable, 42
addColumn, 45
BinTable, 44
readData, 45

CCfits::Column, 46
addNullValue, 60
Column, 52
dimen, 54
display, 54
format, 54

read, 58–60
readArrays, 59, 60
readData, 53
rows, 53
scale, 53
write, 54–58
writeArrays, 58
zero, 53

CCfits::Column::InsufficientElements, 61
InsufficientElements, 62

CCfits::Column::InvalidDataType, 62
InvalidDataType, 63

CCfits::Column::InvalidNumberOfRows,
63

InvalidNumberOfRows, 64
CCfits::Column::InvalidRowNumber, 64

InvalidRowNumber, 65
CCfits::Column::InvalidRowParameter,

65
InvalidRowParameter, 66

CCfits::Column::NoNullValue, 66
NoNullValue, 67

CCfits::Column::RangeError, 67
RangeError, 68

CCfits::Column::WrongColumnType, 68
WrongColumnType, 69

CCfits::ExtHDU, 70
addColumn, 76
column, 75, 76
deleteColumn, 77
ExtHDU, 75
getRowsize, 77
makeThisCurrent, 75
read, 78, 79
readHduName, 75
rows, 76
write, 77, 78
xtension, 79

CCfits::ExtHDU::WrongExtensionType,
80

WrongExtensionType, 80
CCfits::FITS, 81

INDEX 141

addImage, 92
addTable, 91
copy, 93
currentExtensionName, 92
deleteExtension, 89, 93
destroy, 92
extension, 92
filter, 93
FITS, 86–89
flush, 92
getTileDimensions, 94
read, 90, 91
setCompressionType, 93
setNoiseBits, 94
setTileDimensions, 94
verboseMode, 94

CCfits::FITS::CantCreate, 95
CantCreate, 95

CCfits::FITS::CantOpen, 96
CantOpen, 96

CCfits::FITS::NoSuchHDU, 97
NoSuchHDU, 97

CCfits::FITS::OperationNotSupported,
98

OperationNotSupported, 98
CCfits::FitsError, 99

FitsError, 99
CCfits::FitsException, 100

FitsException, 101
message, 101

CCfits::FitsFatal, 101
FitsFatal, 102

CCfits::FITSUtil::auto_array_ptr, 40
CCfits::FITSUtil::CAarray, 46
CCfits::FITSUtil::CVAarray, 69
CCfits::FITSUtil::CVarray, 70
CCfits::FITSUtil::MatchName, 122
CCfits::FITSUtil::MatchNum, 122
CCfits::FITSUtil::MatchPtrName, 123
CCfits::FITSUtil::MatchPtrNum, 123
CCfits::FITSUtil::MatchType, 124
CCfits::FITSUtil::UnrecognizedType,

139
CCfits::HDU, 102

addKey, 111, 112
axis, 108

bitpix, 108
copyAllKeys, 110
deleteKey, 110
getChecksum, 110
getComments, 107
getHistory, 108
keywordCategories, 111
makeThisCurrent, 107
readAllKeys, 110
readKey, 111
readKeys, 111
scale, 108
suppressScaling, 109
updateChecksum, 109
verifyChecksum, 109
writeChecksum, 109
writeComment, 107
writeHistory, 108
zero, 108

CCfits::HDU::InvalidExtensionType, 112
InvalidExtensionType, 113

CCfits::HDU::InvalidImageDataType,
113

InvalidImageDataType, 114
CCfits::HDU::NoNullValue, 114

NoNullValue, 115
CCfits::HDU::NoSuchKeyword, 115

NoSuchKeyword, 116
CCfits::ImageExt, 116

readData, 117
scale, 118
zero, 118

CCfits::Keyword, 119
Keyword, 120
setValue, 121
value, 121
write, 121

CCfits::PHDU, 124
∼PHDU, 127
initRead, 131
PHDU, 127, 128
read, 130, 131
readData, 128
scale, 128
write, 129
zero, 128

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

INDEX 142

CCfits::Table, 131
column, 134, 135, 137
deleteColumn, 135
deleteRows, 136
getRowsize, 136
init, 137
insertRows, 135
Table, 134
updateRows, 135

CCfits::Table::NoSuchColumn, 137
NoSuchColumn, 138

Column
CCfits::Column, 52

column
CCfits::ExtHDU, 75, 76
CCfits::Table, 134, 135, 137

copy
CCfits::FITS, 93

copyAllKeys
CCfits::HDU, 110

currentExtensionName
CCfits::FITS, 92

deleteColumn
CCfits::ExtHDU, 77
CCfits::Table, 135

deleteExtension
CCfits::FITS, 89, 93

deleteKey
CCfits::HDU, 110

deleteRows
CCfits::Table, 136

destroy
CCfits::FITS, 92

dimen
CCfits::Column, 54

display
CCfits::Column, 54

extension
CCfits::FITS, 92

ExtHDU
CCfits::ExtHDU, 75

filter
CCfits::FITS, 93

FITS
CCfits::FITS, 86–89

FITS Exceptions, 35
FitsError

CCfits::FitsError, 99
FitsException

CCfits::FitsException, 101
FitsFatal

CCfits::FitsFatal, 102
FITSUtil, 36
flush

CCfits::FITS, 92
format

CCfits::Column, 54

getChecksum
CCfits::HDU, 110

getComments
CCfits::HDU, 107

getHistory
CCfits::HDU, 108

getRowsize
CCfits::ExtHDU, 77
CCfits::Table, 136

getTileDimensions
CCfits::FITS, 94

init
CCfits::Table, 137

initRead
CCfits::PHDU, 131

insertRows
CCfits::Table, 135

InsufficientElements
CCfits::Column::InsufficientElements,

62
InvalidDataType

CCfits::Column::InvalidDataType,
63

InvalidExtensionType
CCfits::HDU::InvalidExtensionType,

113
InvalidImageDataType

CCfits::HDU::InvalidImageDataType,
114

InvalidNumberOfRows

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

INDEX 143

CCfits::Column::InvalidNumberOfRows,
64

InvalidRowNumber
CCfits::Column::InvalidRowNumber,

65
InvalidRowParameter

CCfits::Column::InvalidRowParameter,
66

Keyword
CCfits::Keyword, 120

keywordCategories
CCfits::HDU, 111

makeThisCurrent
CCfits::ExtHDU, 75
CCfits::HDU, 107

message
CCfits::FitsException, 101

NoNullValue
CCfits::Column::NoNullValue, 67
CCfits::HDU::NoNullValue, 115

NoSuchColumn
CCfits::Table::NoSuchColumn, 138

NoSuchHDU
CCfits::FITS::NoSuchHDU, 97

NoSuchKeyword
CCfits::HDU::NoSuchKeyword, 116

OperationNotSupported
CCfits::FITS::OperationNotSupported,

98

PHDU
CCfits::PHDU, 127, 128

RangeError
CCfits::Column::RangeError, 68

read
CCfits::Column, 58–60
CCfits::ExtHDU, 78, 79
CCfits::FITS, 90, 91
CCfits::PHDU, 130, 131

readAllKeys
CCfits::HDU, 110

readArrays

CCfits::Column, 59, 60
readData

CCfits::AsciiTable, 40
CCfits::BinTable, 45
CCfits::Column, 53
CCfits::ImageExt, 117
CCfits::PHDU, 128

readHduName
CCfits::ExtHDU, 75

readKey
CCfits::HDU, 111

readKeys
CCfits::HDU, 111

rows
CCfits::Column, 53
CCfits::ExtHDU, 76

scale
CCfits::Column, 53
CCfits::HDU, 108
CCfits::ImageExt, 118
CCfits::PHDU, 128

setCompressionType
CCfits::FITS, 93

setNoiseBits
CCfits::FITS, 94

setTileDimensions
CCfits::FITS, 94

setValue
CCfits::Keyword, 121

suppressScaling
CCfits::HDU, 109

Table
CCfits::Table, 134

updateChecksum
CCfits::HDU, 109

updateRows
CCfits::Table, 135

value
CCfits::Keyword, 121

verboseMode
CCfits::FITS, 94

verifyChecksum

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

INDEX 144

CCfits::HDU, 109

write
CCfits::Column, 54–58
CCfits::ExtHDU, 77, 78
CCfits::Keyword, 121
CCfits::PHDU, 129

writeArrays
CCfits::Column, 58

writeChecksum
CCfits::HDU, 109

writeComment
CCfits::HDU, 107

writeHistory
CCfits::HDU, 108

WrongColumnType
CCfits::Column::WrongColumnType,

69
WrongExtensionType

CCfits::ExtHDU::WrongExtensionType,
80

xtension
CCfits::ExtHDU, 79

zero
CCfits::Column, 53
CCfits::HDU, 108
CCfits::ImageExt, 118
CCfits::PHDU, 128

Generated on Tue Feb 5 11:26:55 2008 for CCfits by Doxygen

	CCfits Documentation
	CCfits User's Guide
	CCfits Module Index
	CCfits Namespace Index
	CCfits Hierarchical Index
	CCfits Class Index
	CCfits Page Index
	CCfits Module Documentation
	CCfits Namespace Documentation
	CCfits Class Documentation

