
The Earth Observer

• 46 •

The Good, The Bad, And The Useful:
Do Things Ever Go Right?

— Bruce Barkstrom (brb@ceres.larc.nasa.gov), NASA Langley Research Center

During one of the early EOSDIS design reviews,
Dave Emmitt and I were lamenting the fact that

the production scenarios being used to scope out the
amount of computing power and disk storage didn’t
really represent the experience of validating large data
sets very well. Right after the EOS satellites are
launched, we expected the instrument teams to be as
busy as they’ll ever be, trying to piece together how
their instruments are behaving and why the algo-
rithms don’t give what their inventors expected.
However, the processing scenarios used in the review
looked benign—continuous increases in computer
power for algorithm testing and integration and gentle
turn-ons for reprocessing—no frustrating error diag-
nosis sessions while Headquarters is breathing down
your neck asking for “spectacular results.” At the same
time, we didn’t really have a specific counterproposal
to make.

By happenstance, a book I read, called “Just in Time”
Production (Manufacturing Systems Engineering by
Stanley Gershwin [1994]), has an interesting model for
machines that fail and then have to be repaired. Either
a production machine is ”working,” or it is “under
repair.” I thought “that’s like algorithms— either
they’re working correctly or we have to fix them!” In
Gershwin’s book, just as with real algorithms, we find
machines breaking at random (or, to be a little more
precise about our problem, we discover at random that
our algorithms aren’t working). The time it takes us to
fix what’s broken is also random: sometimes we can
find what we have to change quickly; at other times it
takes almost forever.

The model Gershwin describes looks at a machine
producing µ products in a given time. We might call µ
the “rate of production.” The probability that this
machine fails in a time δt is pδt. When the machine is

“down,” the probability that it gets fixed and can
return to production in a similar time interval is rδt.
The interesting outcome is that over a long time, the
average rate of production is

q
r

r p
µ =

+
µ (1)

If we imagine that the machine doesn’t necessarily
stop production when it fails, but that it produces
“defective” products, then we could interpret q as the
probability that the machine is producing good
products.

Does this make sense for algorithms and data products
as well as machines? Well, if we discover a lot of errors
in a short time and if it takes us a long time to fix each
one, then p is high and r is low—q will be small. In this
case, interpreting q as the probability of having a good
product makes sense, because we will develop a
backlog of errors and what we produce when we run
the algorithm isn’t likely to be right. On the other
hand, if we fix errors quickly and don’t discover very
many new ones, we’re likely to have a lot of confi-
dence that the products are good.

It’s also reasonable to expect us to find fewer errors as
we go forward in time. In a sense, we expect the pool
of errors to be fixed and “the faster we find ’em, the
fewer there are left.” Thus, a plausible way in which
our error discovery rate will behave over time is

dp

dt
p= − 1

λ
or p p e t= −

0
/ λ (2)

Here, p0 is the rate at which we discover errors ini-
tially. We might call λ the “error discovery lifetime.”
If we use these two equations together, we obtain the
“famous” logistic equation

The Earth Observer

• 47 •

repair is strongly influenced by the errors that were
hardest to fix: the “more than one year” struggle to get
the Angular Distribution Models right, the six-month
ordeal with “striping,” the several-year struggle with
“offsets.” Thus, six months Tr seems reasonable. And
finally, what do we do about λ ? I’ll take it to be about
0.3 years, hoping to catch at least a rough sense of how
long it takes our error discovery process to damp out.

What Happens When Things Don’t Go Right

Of course, if you’re a data producer and discover
problems, your immediate thought is: “Where’s the
problem?” After you’ve gotten some data and looked
at it, you’re likely to respond: “I need to make some
more runs with this program—but with a few
changes!!” Life in the Distributed Active Archive
Centers (DAACs) and in the Science Computing
Facilities (SCFs) is really fun when this happens.

There are several strategies we could apply to error
diagnosis and repair. One that we used on ERBE was
to concentrate on small samples of data and work on
them until we seemed to remove the errors. Then, we
would take a larger sample and reexamine that for
errors, using the corrections we had developed on the
first, small sample of data. Finally, we would try
integrating the correction into the operational code
and modify the statistics we were tracking to monitor
the data product quality. Often, we stopped produc-
tion while we searched for good ways to fix the
algorithms. Of course, this made error detection
slower, since then error detection and fixes became a
strictly serial processing procedure.

The important thing to note is that error diagnosis and
algorithm repair are major activities after launch.
Somehow, we feel that the amount of diagnostic
processing should be related to how bad the data
seems to be and how rapidly we’re finding and
correcting errors. The good side of this model is that
it’s simple, it’s continuous, and (intentionally) doesn’t
care about the real details of the repair and production
strategy we’re using. The bad side of the model is that
it doesn’t give us an easy way to estimate the three
parameters from our previous experience without a
fairly detailed study.

q t
p T tr

()
exp(/)

=
+ −

1

1 0 λ
(3)

Instead of using r, we have used T rr = 1/ , the mean
time to repair the algorithm. Initially, q has a value of

1 1 0/()+ p Tr . If we look at the situation several error
discovery lifetimes after we start, then q ≈ 1. Figure 1
shows how q depends on time for a rough estimate of

the parameters, p0, Tr , and λ .

Figure 1. Estimated Probability of Reliable Data from a Single

Algorithm. q is the probability of producing “good” data with an

algorithm as expressed by equation (3). We have taken p0 = 24 per

year, Tr = 0.5 years, and λ = 0.3 years, based on informal estimates

from ERBE experience.

For right now, we’ll use some rough estimates of the
parameters based on my own memories of the kind of
struggle we had getting the Earth Radiation Budget
Experiment (ERBE) data into condition for archive. I
remember looking at image-like plots we made of
those data in the first month or two after launch, and
recall several errors we had to fix immediately. From
this recollection, it seems that setting p0 = 2 per month
(or 24 per year) as the initial error discovery rate puts
us in a reasonable ballpark. The second parameter we
need is Tr . In thinking back over the ERBE experience,
I recall many errors that were easy to fix— simple one-
line problems in the code. However, the mean time to

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5 3.0

q

t [Years]

The Earth Observer

• 48 •

In the absence of a detailed historical study or a better
theory, we’ll make the simplest assumption we can:
the amount of work we have to do is proportional to
how many errors we’ve found recently. With the curve
in Figure 1, we’ll have lots of work early, and then as
the algorithm’s reliability improves, the amount of
additional diagnostic work will decrease as well. Thus,
if µ is the number of jobs we have to run in a given
month for “standard production,” we estimate the
number of jobs we’ll have to run at the PI’s SCF to be
about (())1 − µq t , and the number at the DAAC to be
about µ + − µ = − µ(()) (())1 2q t q t . The primary reason
the DAAC load increases with this model is that we’re
accounting for a continuous flow of algorithm repairs,
which have to be tested and integrated into the
standard production software.

It also seems that it’s reasonable to expect the network
traffic to increase. No PI is a team unto himself or
herself. Other members of an investigation will need
to look at the data to make their own judgments of
what needs to be done. If this assumption is reason-
able, the diagnostic data flow will probably be propor-
tional to 1 − q t() . Building up a detailed traffic model
that estimates how many diagnostic files have to be
transfered from the production site to other locations
is a matter for another article.

We can also use this model of data quality to estimate
when the teams will want to start reprocessing. The
usual philosophy seems to be “wait until the data are
good enough before we start re-doing products.” In
more-quantitative terms, if we set a threshold, q

0
, such

that we don’t start reprocessing until q t qreproc() > 0 ,
then we wait until

t q q p Treproc r= − −λ ln[() /()]1 0 0 0 (4)

If we allow the teams to be careful, and q0 0 99= . , so
there’s only about a 1% chance of something being
wrong, we find t yearsreproc ≈ 2 1. —a calculation we can
perform just with a $15 pocket calculator.

Some Implications

This model for how algorithms act under stress is a lot
simpler than real life. However, it seems to have the

right sense in three important ways: a) diagnostic
work will be heavy at first and will taper off; b) both
the estimated initial data product quality and the
length of time needed to get things to the point where
reprocessing is justified seem in accord with my
experience as a data producer on ERBE; and c) the
time to start reprocessing looks “reasonable.”

In talking with other EOS data producers who’ve had
experience with large-scale data production, this
model also seems to fit with at least a rough character-
ization of their experience.

One important way in which EOS production differs
from this model is that all of the EOS data producers
have “algorithmic food chains,” in which higher level
data products have dependencies on lower level
products that we now see to be of evolving quality. A
simple way to look at how good the higher level
products are is to assume that the errors lower down
are independent of the errors higher in the food chain.
If we do such a multiplication, we can expect the
higher level products to take longer to get right—it
takes a while to find out which errors come from
products lower down and then it takes more time to
fix them. This observation also fits with our ERBE (and
other data producer) experience.

This model is also likely to be useful for investigators
who want to do science with EOS products (or with
other data—there’s no reason to think EOS is excep-
tional in this regard). Clearly, if you want to use Level
1 (radiance) data, the parameter q in Figure 1 is
probably descriptive of whether you’re likely to have
reliable data. If you want to use higher levels, the
product reliability is likely to look like some integer
power of this curve until the data are reprocessed.

Certainly, there’s a lot of work to do. For one thing, the
numerical parameters I’ve suggested here need a
stronger basis in what we’ve recorded from our past
history. I have used this model to estimate how many
computers we need for the early years of production.
Ellen Herring in the Earth Science Data & Information
System (ESDIS) Project’s System Engineering Office
suggested that these estimates need to allow the
computer MFLOPS ratings to grow with time. Her

The Earth Observer

• 49 •

group’s experience on the Upper Atmosphere Re-
search Satellite (UARS) may be very helpful in setting
up contingencies for EOSDIS. It may even be useful to
consider other models to estimate how much diagnos-
tic work we have to do and how that diagnostic work
is related to data quality.

An Opportunity For Reader Involvement

For those members of the EOS community who want
to take a more-active interest in these kinds of prob-
lems, here are a few “brain teasers” to work on. I
won’t offer any prizes, except to suggest that good
answers be published here or in some other suitable
place:

1. Either suggest an alternative form for this data
quality expectation or provide a more-detailed
justification for this curve—preferably with some
empirical or theoretical justification for any param-
eters you need to apply the model to practical
problems of EOSDIS production. Extra credit for
detailed empirical studies with documentation.

2. Confirm or provide a theoretical or empirical
counterexample to the suggestions that the number
of processing jobs at the DAACs will scale as
(())2 − µq t and that the diagnostic product flow
between the production site and the SCFs will be
proportional to (())1 − µq t . Extra credit to anyone
finding the constant of proportionality. Failing
mark awarded for mere complaints that the form
suggested here is unreasonable.

3. Determine an optimal quality assurance (QA)
processing strategy that jointly minimizes the cost
of processing and the delay in archiving high-
quality data for the following conditions: a) all
errors to be found are initial errors of omission in
the algorithms; b) continuous generation of new
errors due to instrument perturbations such as
contamination of calibration sources, or radiation
damage and aging of electronics; and c) continuous
creation of new errors by code used to fix old errors
[this possibility suggested by Rich Ullman].

Answers to this problem must be accompanied by a
bona fide proof of optimality. Practical answers or

hypotheses should be identified as such, although
good reasoning gets partial credit. Without proof,
answers are subject to trial by battle with real data
from EOS.

4. Provide a closed, analytic form for the expected
data quality of a chain of algorithms and products
as production and algorithm repair proceed. In the
absence of such a solution, establish a plausible
form by computer simulation or analytic approxi-
mation. If either of these two solutions proves too
difficult, at least provide a study of some simple
cases.

References

Gershwin, Stanley B., 1994: Manufacturing Systems
Engineering, Prentice-Hall, Englewood Cliffs, NJ, 501
pp.

Note: The author hopes that this article will be the
start of a regular series of columns in the The Earth
Observer on Engineering EOSDIS. As part of the work
the EOS Ad Hoc Working Group on Production
(AHWGP) has done to improve our understanding of
production, I’ve begun to build an integrated com-
puter model of EOSDIS and its costs. There are several
topics that have surprised me as I’ve tried to put this
model together, and I’d like to share them with the
community. If time allows, I may also be able to
assemble this material into a more-extended form.

