



# **NSRL-1 RUN**

## FINAL REPORT

Marcelo E. Vazquez Medical Department NASA-BNL Liaison Scientist BNL/NASA webpage: http://www.bnl.gov/medical/NASA/NASA-home%20frame.htm

January 2004

## TABLE OF CONTENTS

| Executive Summary                                | 3  |
|--------------------------------------------------|----|
| NSRL-1 Proposals/SACR Review                     | 4  |
| Participants                                     | 5  |
| Participants Statistics                          | 7  |
| Participants Institutions                        | 8  |
| NSRL-1 Iron Run Description                      | 9  |
| NSRL-1 Titanium Run Description                  | 10 |
| NSRL-1 Carbon Run Description                    | 11 |
| NSRL-1 Final Run Description                     | 12 |
| Descriptive Statistics                           | 13 |
| Beam Characteristics                             | 16 |
| Run Statistics and Incidents                     | 17 |
| Experimenters and Run Statistics                 | 20 |
| Participants, Experimental Samples and Endpoints | 21 |
| List of Personnel                                | 23 |

## **EXECUTIVE SUMMARY**

During the summer of 2003, a series of radiobiological and physics experiments were performed using the NASA Space Radiation Laboratory to accelerate iron, carbon and titanium beams (NSRL-1). These experiments were part of the NSRL commissioning run sponsored by NASA's Space Radiation Health Program (SRHP) heavy ion radiobiology research program at BNL.

A total of 27 proposals were approved to participate in the NSRL-1 run. Twenty one institutions from the United States and 2 from Italy were represented, totaling 73 users. More than 2000 biological samples were exposed at the NSRL beam line, employing 285 hours of beam time (36.5 hours for in vivo studies, 96 hours for in vitro studies and 20 hours for electronics and calibration). In addition, 36 hours were used for physics experiments (Fe and Ti), and a total of 23 hours were necessary for beam characterization, tuning, dosimetry, and calibration. A total of 42.5 hours of beam time were lost (15%) due to accelerator or power supply related problems.

During NSRL-1, AGS-Booster provided iron (780 and 0.970 GeV/nucleon, LET: 159.6 and 151.3 keV/ $\mu$ m), Carbon (0.294 GeV/n, LET: 12.8 keV/ $\mu$ m) and Titanium (0.980 GeV/n, LET: 108.1 keV/ $\mu$ m) ion beams for biology and physics experiments. The dose/rates used were as low as 1 cGy/min and as high as 2.5 Gy/min. The spill rate employed was 20 for Fe, Ti and C with duration of 400 msec/spill. The spill fluence was (particles/spill) 1.2 x 1010 (max) and 500 (min). Square beam spots as big as 20 x 20 cm and small as 1 x 1 cm was employed for biology and physics experiments.

Tandem-Booster set-up started on October 25 with the transport and circulation of Fe beams at the NSRL complex. Beam was tuned into cave on October 26. 800 MeV/n Fe beams were available for tuning on October 27. The next several shifts were spent on physics experiments (J. Miller: beam characterization). Biology studies started on the evening of October 28 using 1 GeV/n iron beams (B. Rydberg, LBNL) and proceeded through November 11. On November 13, AGS tuned 1 GeV/n titanium beams for biology studies. Physics studies started on November 18 and continued for 20 hours. The titanium run ended on November 21. On November 19, AGS complex delivered carbon beams biology experiments running until late afternoon on November 24. NSRL-1 officially ended at 1700 pm, November 24 2003.

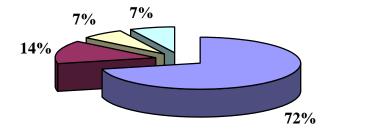
Radiobiological experiments employed cells, tissues, and intact specimens, which required a complex coordination and planning of their respective logistic support. Biological studies used human, mouse, rat and hamster cell lines, human-hamster hybrid cell lines, tumor cell lines and intact specimens (rodents). The full program was completed in 27 days.

NSRL-1 Projects Reviewed by the BNL's Scientific Advisory Committee in Radiobiology (SACR):

| Proposal    | PI                 | NSRL-1 Participation |
|-------------|--------------------|----------------------|
| <b>B-7</b>  | Bernard Rabin      | Yes                  |
| B-10        | Polly Y. Chang     | Yes                  |
| <b>B-44</b> | Marco Durante      | Yes                  |
| B-52        | Alan Gewirtz       | Yes                  |
| B-54        | Ann Kennedy        | Yes                  |
| N-64        | Marcelo Vazquez    | Yes                  |
| N-65        | Marcelo Vazquez    | Yes                  |
| <b>B-66</b> | Livio Narici       | Yes                  |
| B-67        | Eleanor A. Blakely | Yes                  |
| B-73        | Betsy Sutherland   | Yes                  |
| B-74        | J.S. Bedford       | Yes                  |
| N-76        | Laura Green        | No                   |
| N-80        | Steve Gonda        | Yes                  |
| N-82        | Andre Obenaus      | Yes                  |
| N-86        | Ya Wang            | Yes                  |
| N-87        | Hiroki Nagase      | No                   |
| N-88        | Betsy Sutherland   | Yes                  |
| N-89        | Kathryn D. Held    | Yes                  |
| N-90        | Susan M. Bailey    | Yes                  |
| N-91        | Bjorn Ryberg       | Yes                  |
| N-93        | K. Rithidech       | Yes                  |
| N-94        | Jeff Bacher        | Yes                  |
| N-95        | Micheal Story      | Yes                  |
| N-96        | Gregory Nelson     | No                   |
| N-97        | Amy Kronenberg     | Yes                  |
| N-99        | Yongliang Zhao     | Yes                  |
| N-100       | Jack Miller        | Yes                  |

## **NSRL-1 PARTICIPANTS**

| Exp.        | Participants         | Affiliation                                  | Title                                |
|-------------|----------------------|----------------------------------------------|--------------------------------------|
| <b>B-7</b>  | Bernard Rabin        | UMD, Balitmore City                          | Ph.D., Principal Investigator        |
|             | James Joseph         |                                              | Ph.D.                                |
|             | Barbara Shukitt-Hale | .د                                           | Ph.D.                                |
|             | Amanda Carey         | "                                            | B.A.                                 |
| <b>B-10</b> | Polly Chang          | Stanford Research Institute                  | Ph.D., Principal Investigator        |
|             | James Bakke          | .د                                           | B.S.                                 |
|             | Juan Orduna          | دد                                           | B.S.                                 |
| <b>B-44</b> | Marco Durante        | University "Federico II", Napoli, Italy      | Ph.D., Principal Investigator        |
|             | Gianfranco Grossi    | "                                            | Ph.D.                                |
|             | Antonella Tabocchini | "                                            | Ph.D.                                |
|             | Guistina Simone      | "                                            | Ph.D.                                |
|             | Daniela Bettega      | "                                            | Ph.D.                                |
|             | Paola Calzolari      | "                                            | Ph.D.                                |
| <b>B-52</b> | Gewirtz Alan         | University of Pennsylvania                   | Ph.D., Principal Investigator        |
|             | Betsy Sutherland     | Brookhaven National Laboratory               | Pĥ.D.                                |
| <b>B-73</b> | Betsy Sutherland     | Brookhaven National Laboratory               | Ph.D., Principal Investigator        |
| N-88        | Debashish Roy        | دد                                           | Pĥ.D.                                |
|             | Mamta Naidu          | "                                            | Ph.D.                                |
|             | Megumi Hada          | "                                            | Ph.D.                                |
|             | Sunirmal Paul        | "                                            | Ph.D.                                |
|             | Prem Kumar           | "                                            | Ph.D.                                |
|             | Guangming Zhou       | "                                            | Ph.D. (observer)                     |
|             | Paula Bennett        | "                                            | M.S.                                 |
|             | Denise Monteleone    | "                                            | B.S.                                 |
|             | John Trunk           | "                                            | B.S.                                 |
|             | James Jardine        | "                                            | N/A                                  |
| B-54        | Ann Kennedy*         | University of Pennsylvania                   | Sc. D., Principal Investigator       |
|             | Jeffrey Ware         | ٠٠                                           | Ph.D.                                |
|             | Jun Guan             | 22                                           | Ph.D.                                |
|             | Jelena Stewart       | "                                            | Ph.D.                                |
|             | Jeremiah Donahue     |                                              | M.S.                                 |
| N-64        | Marcelo Vazquez      | Brookhaven National Laboratory               | MD, Ph.D., Principal Invest.         |
| N-65        | Peter Guida          | ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~       | Ph.D.                                |
|             | Magalie Bruneus      | ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~       | M.A.                                 |
|             | Bea Pyatt            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~      | M.S.                                 |
|             | Stacey Russell       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~      | B.S.                                 |
| <b>D</b> (( | Adele Billups        |                                              | B.A.                                 |
| <b>B-66</b> | Livio Narici         | University of Rome                           | Ph.D., Principal Investigator        |
|             | Adele Rinaldi        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~      | Italian Laurea Deg. Ph.D Stud.       |
|             | Francesco Belli      | ۰۵                                           | Italian Laurea Degree                |
| D (7        | Vittorio Bidoli      |                                              | Senior Technician                    |
| <b>B-67</b> | Eleanor A. Blakely   | Lawrence Berkeley National. Laboratory       | Ph.D., Principal Investigator        |
|             | Polly Chang          | SRI<br>Lawrange Parkelay National Laboratory | Ph.D.                                |
| <b>B-74</b> | Kathleen Bjornstad   | Lawrence Berkeley National. Laboratory       | B.S.<br>Dh.D. Dringingl Investigator |
| D-/4        | J.S. Bedford         | Colorado State University                    | Ph.D., Principal Investigator        |
| D 01        | Paul Wilson          | Lama Linda II.                               | B.S./B.A.                            |
| <b>B-82</b> | A. Obenaus*          | Loma Linda University                        | Ph.D., Principal Investigator        |
| NOC         | M. Vazquez           | Brookhaven National Laboratory               | Ph.D., M.D., CoWorker                |
| N-86        | Ya Wang              | Thomas Jefferson University                  | Ph.D., Principal Investigator        |
| N-89        | Kathryn Held         | Massachusetts General Hospital               | Ph.D., Principal Investigator        |
|             | Hongying Yang        | "                                            | Ph.D.                                |
|             | Aruna Karkala        | "                                            | Ph.D.                                |
|             |                      |                                              |                                      |
|             | 1                    |                                              |                                      |


| Exp.  | Participants        | Affiliation                            | Title                          |
|-------|---------------------|----------------------------------------|--------------------------------|
| N-90  | Susan M. Bailey*    | Colorado State University              | Ph.D., Principal Investigator  |
|       | Betsy Sutherland    | Brookhaven National Laboratory "       | Ph.D.                          |
| N-91  | Bjorn Rydberg       | Lawrence Berkeley National. Laboratory | Ph.D., Principal Investigator  |
|       | Torsten Groesser    | "                                      | Ph.D.                          |
|       | Brian Cooper        | "                                      | Ph.D.                          |
| N-93  | Kanokporn Rithidech | SUNY Stony Brook                       | Ph.D., Principal Investigator  |
|       | Prantika Som        | "                                      | D.V.M., Sc. M.                 |
|       | Robert A. Brown     | "                                      | B.A.                           |
| N-94  | Jeff Bacher         | Promega Corporation                    | Ph.D., Principal Investigator  |
|       | Richard Halberg     |                                        | Ph.D.                          |
| N-95  | Michael Story       | University of Texas, MD Anderson       | Ph.D., Principal Investigator  |
|       | Uma Giri            |                                        | Pĥ.D.                          |
| N-97  | Amy Kronenberg      | Lawrence Berkeley National. Laboratory | Sc. D., Principal Investigator |
|       | Mitchell Turner     | "                                      | Ph.D.                          |
|       | Stacey Gauny        | "                                      | M.S.                           |
|       | Lanelle Connolly    | "                                      | B.S.                           |
| N-99  | Yongliang Zhao      | Columbia University                    | Ph.D., Principal Investigator  |
|       | Changqing Piao      | ~~                                     | M.D.                           |
| N-100 | Jack Miller         | Lawrence Berkeley National. Laboratory | Ph.D., Principal Investigator  |
|       | Cary Zeitlin        | "                                      | Pĥ.D.                          |
|       | Lawrence Heilbronn  | "                                      | Ph.D.                          |
|       | Steve Guetersloh    | "                                      | Ph.D.                          |
| N-80  | Steve Gonda         | NASA, Johnson Space Center             | Ph.D., Principal Investigator  |
|       | Essy Behravesh      | "                                      | Ph.D.                          |
|       | Kamal Emami         | ٠٠                                     | M.S.                           |

\*Not Present During Actual Run

## **NSRL-1 PARTICIPANTS STATISTICS**

| PARTICIPANTS                         | NSRL-1 |
|--------------------------------------|--------|
| Ph.D., Principal Investigators       | 19     |
| M.D., Ph.D., Principal Investigators | 1      |
| Sc.D., Principal Investigators       | 1      |
| Co-Workers                           |        |
| Ph.D.                                | 24     |
| <b>M.D.</b>                          | 1      |
| D.V.M., Sc.M.                        | 1      |
| Sc. M.                               | 1      |
| Italian Laurea Degrees               | 2      |
| Ph.D. Students                       | 1      |
| M.S.                                 | 5      |
| <b>B.S.</b>                          | 8      |
| <b>B.A.</b>                          | 3      |
| <b>B.S./B.A.</b>                     | 1      |
| <b>M.A.</b>                          | 1      |
| Senior Research Associates           | 1      |
| Italian Laurea Degree                | 1      |
|                                      |        |
| Total:                               | 72     |

## **RESEARCH PROJECT SPONSORS:**



| ■ NASA       |
|--------------|
| <b>NSBRI</b> |
| DOE/NASA     |
| OBPR/NASA    |

## PARTICIPANT INSTITUTIONS

#### NASA related centers/institutes (4)

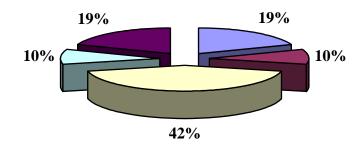
- NASA, Headquarters, DC
- NASA, Johnson Space Center, TX
- National Space Biomedical Research Institute, TX
- Marshall Space Flight Center,

#### National Laboratories/Institutes (2)

- Brookhaven National Laboratory, NY
- Lawrence Berkeley National Laboratory, CA

#### **<u>Universities</u>**(9)

- Loma Linda University, CA
- University of Pennsylvania, PA
- University of Texas M.D. Anderson Cemter, TX
- Thomas Jefferson University, PA
- Colorado State University, CO
- State University Of New York Stony Brook, NY
- Columbia University, NY
- University of Maryland, Baltimore County, MD
- Praire View A&M University


#### **Private Institutions** (4)

- Promega Corporation, WI
- Massachusetts General Hospital, MA
- Stanford Research Institute, CA
- ERIL Research Inc., CA

#### **Foreign Institutions** (2)

- University "Federico II", Napoli, Italy
- University of Rome, Italy

#### **INSTITUTIONS STATISTICS:**



NASA
National Laboratories
Universities
Foreign Institutions
Private Institutions

## **NSRL-1 IRON RUN DESCRIPTION**

## **RUN DATES**

| Run dates                  | Sche  | Scheduled |       | tual |
|----------------------------|-------|-----------|-------|------|
|                            | Date  | Time      | Date  | Time |
| Run start                  | 10/27 | 0700      | 10/27 | 0700 |
| Run end                    | 10/12 | 1600      | 10/12 | 1630 |
|                            |       |           |       |      |
| Tuned into cave            | 10/26 | 1100      | 10/26 | 2359 |
|                            |       |           |       |      |
| Beam delivered for Physics |       |           |       |      |
| Fe 0.8 GeV/n               | 10/27 | 1500      | 10/27 | 1500 |
| End run                    | 10/28 | 1900      | 10/28 | 0700 |
| Beam delivered for Biology |       |           |       |      |
| Fe 1 GeV/n                 | 10/28 | 1300      | 10/28 | 1600 |
| End run                    | 11/12 | 1600      | 11/12 | 1630 |

## **BEAM TIME DESCRIPTION (hours)**

| Total Clock Time                  | (from 10/27 0 | 174.5 |       |
|-----------------------------------|---------------|-------|-------|
|                                   |               |       |       |
| Total Beam-on time                |               |       | 158.5 |
|                                   |               |       |       |
| Total Beam-off time               |               |       | 16.0  |
|                                   |               |       |       |
| Beam Time for Biology             |               |       |       |
| Fe 1 GeV/n In Vitro Studies       | 68.0          |       |       |
| Fe 1 GeV/n In Vivo Studies        | 23.0          |       |       |
| Fe 1 GeV/n Others (gels, testing) | 18.5          |       |       |
| Sub-total                         |               | 109.5 |       |
|                                   |               |       |       |
| Beam Time for Physics             |               |       |       |
| Fe 0.8 GeV/n                      | 16.0          |       |       |
| Sub-total                         |               | 16.0  |       |
|                                   |               |       |       |
| Set Up Time for Physics           |               |       |       |
| Fe 1 GeV/n                        | 8.0           |       |       |
| Sub-total                         |               | 8.0   |       |
| Set Up Time for Biology           |               |       |       |
| Fe 1 GeV/n                        | 25.0          |       |       |
| Sub-total                         |               | 25.0  |       |
| Totals                            |               | 158.5 |       |
|                                   |               |       |       |
| Contingency T. Planned            | 16.0          | 1     |       |
| Contingency T. Used               | 9.0           |       |       |

## **NSRL-1 TITANIUM RUN DESCRIPTION**

## **RUN DATES**

| Run dates                  | Sche  | Scheduled |       | tual |
|----------------------------|-------|-----------|-------|------|
|                            | Date  | Time      | Date  | Time |
| Run start                  | 11/13 | 0700      | 11/13 | 0700 |
| Run end                    | 11/18 | 2030      | 11/18 | 2100 |
|                            |       |           |       |      |
| Tuned into cave            | 11/13 | 0200      | 11/13 | 0200 |
|                            |       |           |       |      |
| Beam delivered for Physics |       |           |       |      |
| Ti 1 GeV/n                 | 11/17 | 2230      | 11/17 | 1500 |
| End run                    | 11/18 | 2030      | 11/18 | 1300 |
| Beam delivered for Biology |       |           |       |      |
| Ti 1 GeV/n                 | 11/13 | 1300      | 11/13 | 1300 |
| End run                    | 11/17 | 2130      | 11/18 | 2100 |

## **BEAM TIME DESCRIPTION (hours)**

| Total Clock Time                  | (from 11/13 ( | 0700 to 11/18 2100) | 64.5 |
|-----------------------------------|---------------|---------------------|------|
|                                   |               |                     |      |
| Total Beam-on time                |               |                     | 52.0 |
|                                   |               |                     |      |
| Total Beam-off time               |               |                     | 12.5 |
|                                   |               |                     |      |
| Beam Time for Biology             |               |                     |      |
| Ti 1 GeV/n In Vitro Studies       | 15.5          |                     |      |
| Ti 1 GeV/n In Vivo Studies        | 4.0           |                     |      |
| Ti 1 GeV/n Others (gels, testing) | 1.0           |                     |      |
| Sub-total                         |               | 20.5                |      |
|                                   |               |                     |      |
| Beam Time for Physics             |               |                     |      |
| Ti 1 GeV/n                        | 20.0          |                     |      |
| Sub-total                         |               | 20.0                |      |
|                                   |               |                     |      |
| Set Up Time for Physics           |               |                     |      |
| Ti 1 GeV/n                        | 3.0           |                     |      |
| Sub-total                         |               | 3.0                 |      |
| Set Up Time for Biology           |               |                     |      |
| Ti 1 GeV/n                        | 8.5           |                     |      |
| Sub-total                         |               | 8.5                 |      |
| Totals                            |               | 56.5                |      |
|                                   | 0.0           | 4                   |      |
| Contingency T. Planned            | 8.0           | 4                   |      |
| Contingency T. Used               | 6.0           |                     |      |

## **NSRL-1 CARBON RUN DESCRIPTION**

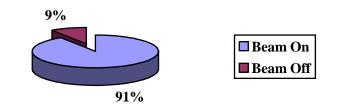
## **RUN DATES**

| Run dates                  | Sche  | Scheduled |       | tual |
|----------------------------|-------|-----------|-------|------|
|                            | Date  | Time      | Date  | Time |
| Run start                  | 11/19 | 0700      | 11/19 | 0700 |
| Run end                    | 11/24 | 1500      | 11/24 | 1700 |
| Tuned into cave            | 11/19 | 0200      | 11/19 | 0200 |
| Beam delivered for Biology |       |           |       |      |
| C 0.29 GeV/n               | 11/19 | 1300      | 11/19 | 1630 |
| End run                    | 11/24 | 1500      | 11/24 | 1700 |

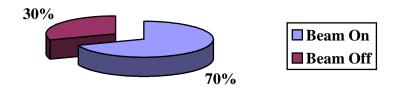
## **BEAM TIME DESCRIPTION (hours)**

| Total Clock Time                    | (from 11/19 0' | 46.0 |      |
|-------------------------------------|----------------|------|------|
| Total Beam-on time                  |                |      | 32.0 |
| T-4-1 D                             |                |      |      |
| Total Beam-off time                 |                |      | 14.0 |
| C 0.29 GeV/n In Vitro Studies       | 13.0           |      |      |
| C 0.29 GeV/n In Vivo Studies        | 9.5            |      |      |
| C 0.29 GeV/n Others (gels, testing) | 1.0            |      |      |
| Sub-total                           |                | 23.5 |      |
| Set Up Time                         |                |      |      |
| C 0.29 GeV/n                        | 8.5            |      |      |
| Sub-total                           |                | 8.5  |      |
| Totals                              |                | 32.0 |      |
|                                     |                |      |      |
| Contingency T. Planned              | 4.0            |      |      |
| Contingency T. Used                 | 4.0            |      |      |

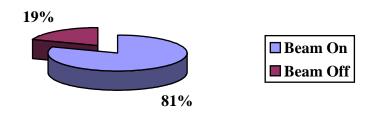
## **NSRL-1 FINAL RUN DATES**


| Run dates       | Scheduled |      | Actual |      |
|-----------------|-----------|------|--------|------|
|                 | Date      | Time | Date   | Time |
| Run start       | 10/27     | 0700 | 10/27  | 0700 |
| Run end         | 11/24     | 1500 | 11/24  | 1700 |
|                 |           |      |        |      |
| Tuned into cave | 10/26     | 1100 | 10/26  | 2359 |
|                 |           |      |        |      |

## **TOTAL BEAM TIME DESCRIPTION (hours)**

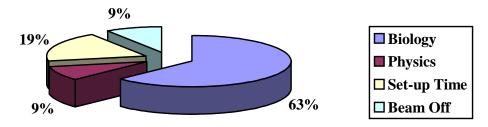

| Total Clock Time              | (from 11/27 0700 t | 285   |       |
|-------------------------------|--------------------|-------|-------|
|                               |                    |       |       |
| Total Beam-on Time            |                    |       |       |
| Fe 1 GeV/n                    | 158.5              |       |       |
| Ti 1 GeV/n                    | 52.0               |       |       |
| C 0.29 GeV/n                  | 32.0               |       |       |
| Total                         |                    |       | 242.5 |
| Total Beam-off time           |                    |       |       |
| Fe 1 GeV/n                    | 16.0               |       |       |
| Ti 1 GeV/n                    | 12.5               |       |       |
| C 0.29 GeV/n                  | 14.0               |       |       |
| Total                         |                    |       | 42.5  |
| Total Beam Time for Biology   |                    |       |       |
| In Vivo Studies               | 36.5               |       |       |
| In Vitro Studies              | 96.5               |       |       |
| Others (gels, testing)        | 20.5               |       |       |
| Total                         |                    | 153.5 |       |
|                               |                    |       |       |
| Beam Time for Physics         | 36.0               | 36.0  |       |
| Total                         |                    |       |       |
| Set Up Time                   | 53.0               |       |       |
| Total                         |                    | 53.0  |       |
| Totals                        |                    | 242.5 |       |
|                               |                    |       |       |
| <b>Contingency T. Planned</b> | 28.0               |       |       |
| Contingency T. Used           | 19.0               |       |       |

#### **DESCRIPTIVE STATISTICS**

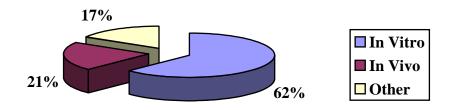

#### • FE 1 GEV/N BEAM AVAILABILITY



• C 290 MEV/N BEAM AVAILABILITY

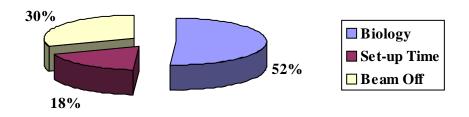



• TI 1 GEV/N BEAM AVAILABILITY

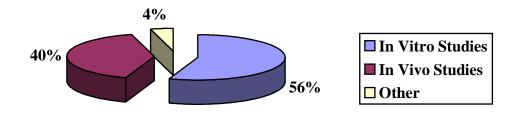



## **IRON ION RUN:**

• FE 1 GEV/N DISTRIBUTION OF BEAM TIME USAGE:

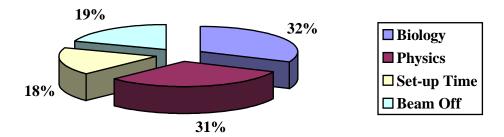



• FE 1 GEV/N DISTRIBUTION OF BEAM TIME FOR BIOLOGY:

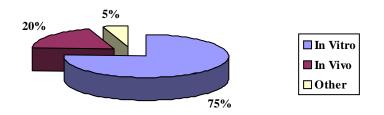



#### **CARBON ION RUN**

• C 0.29 GEV/N DISTRIBUTION OF BEAM TIME USAGE:

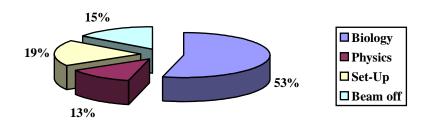



• C 0.29 GEV/N DISTRIBUTION OF BEAM TIME FOR BIOLOGY:

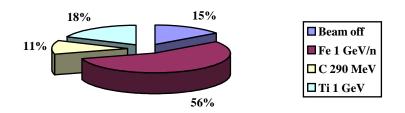



#### TITANIUM ION RUN

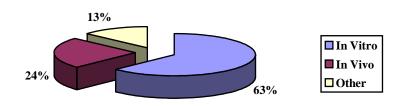
#### • SI 1 GEV/N DISTRIBUTION OF BEAM TIME USAGE:




• TI 1 GEV/N DISTRIBUTION OF BEAM TIME FOR BIOLOGY:




#### **NSRL-1 TOTAL BEAM TIME SUMMARY**


• DISTRIBUTION OF BEAM TEAM USAGE:



• DISTRIBUTION OF BEAM TEAM BY SPECIES AND ENERGIES:



• DISTRIBUTION OF BEAM TEAM FOR BIOLOGY EXPERIMENTS:

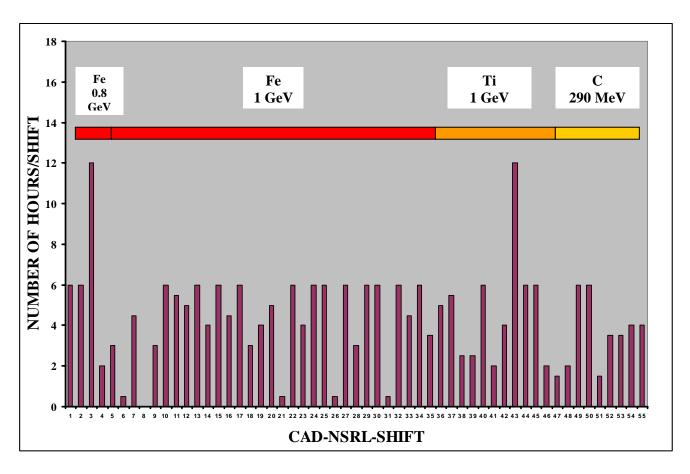


## **BEAM CHARACTERISTICS**

| Ion                                                                                | <sup>56</sup> Fe <sup>26</sup> |                              | <sup>48</sup> Ti <sup>22</sup> | <sup>12</sup> C <sup>6</sup>  |
|------------------------------------------------------------------------------------|--------------------------------|------------------------------|--------------------------------|-------------------------------|
| Fluence (particles/cm <sup>2</sup> /sec)<br>Maximum on target<br>Minimum on target | TBD                            | TBD                          | TBD                            | TBD                           |
| Spill Period (sec)                                                                 | 3.0                            | 3.0                          | 3.0                            | 5.4                           |
| Spill rate (spills/min)                                                            | 20                             | 20                           | 20                             | 20                            |
| Spill length (msec)                                                                | 400                            | 400                          | 400                            | 400                           |
| Particles/spill<br>Maximum<br>Minimum                                              | 1000<br>500                    | 1.0 x 10 <sup>9</sup><br>500 | 4.0 x 10 <sup>8</sup><br>500   | 1.2 x 10 <sup>10</sup><br>500 |
| Beam Cut Off Accuracy                                                              | ~ 0.5 %                        | ~ 0.5 %                      | ~ 0.5 %                        | ~ 0.5 %                       |
| Actual Energy (MeV/n)                                                              |                                |                              |                                |                               |
| Extracted                                                                          | 800                            | 1005                         | 1007                           | 300                           |
| On Target                                                                          | 780                            | 970                          | 980                            | 293.8                         |
| Actual LET on Target<br>(keV/µm)                                                   | 159.6                          | 151.3                        | 108.1                          | 12.8                          |
| Max. Dose Rate (Gy/min)/<br>Beam Size (cm x cm)                                    |                                |                              |                                |                               |
| 20 x 20                                                                            |                                | 7.0                          | 2.5                            | 4.0                           |
| 10 x 10                                                                            |                                | 30.0                         | 10.0                           | 10.0                          |
| 7 x 7                                                                              |                                | 70.0                         | 20.0                           | 20.0                          |
| 7 x 30                                                                             | 0.001                          | 12.0                         | 4.0                            |                               |
| 1 x 1                                                                              | 0.001                          |                              |                                |                               |
| Total Dose (Gy)<br>Maximum                                                         | 0.1                            | 200                          | 200                            | 8                             |
| Minimum                                                                            | 0.1                            | 0.1                          | 0.1                            | 0.1                           |

Listed below are the ions extracted and used for biology experiments at NSRL-1. Maximum intensity and dose-rate are shown only. To achieve lower dose-rates, we use the two-jaw collimator at the extraction to reduce the beam flux without changing its shape. Changing the beam size changes the (dose-rate: the dose-rate are measured at the center of the ion-chamber, and only scales roughly with area). Energy at extraction is deduced from frequency measurements in the Booster. Energy at the NSRL target area is obtained from Bragg-curve measurements (done daily during the run). The LET given here is that for the primary ion at the "on target" energy, in water. Spill period can stay short, around 3 second, as long as NSRL is running alone, without RHIC. Otherwise, when using PPM (**p**ulse to **p**ulse **m**odulation), during which each super-cycle can deliver either a RHIC pulse, an NSRL pulse or BOTH, the length of the period becomes about 6 seconds (for example, see the C run

| Date     | Shift<br>* | HIP Avail.<br>(set-up t.) | Non-<br>HIP** | Remarks (CAD 2 shift/day: 7-14/14-21 hr)            |  |
|----------|------------|---------------------------|---------------|-----------------------------------------------------|--|
| 10/27/03 | 1          | 6 (6)                     | 0             | 0.8 GeV/n Fe run setup.                             |  |
|          | 2          | 6 (2)                     | 0             | Physic run start                                    |  |
|          | 3+         | 12                        | 0             | Physics run continues                               |  |
| 10/28/03 | 1          | 2 (2)                     | 4             | Set up for 1 GeV/n Fe for biology. Magnet overheat. |  |
|          | 2          | 3                         | 3             | Booster main magnet power supply trip. Bio. start   |  |
|          | 3+         | 0.5                       | 0             | First biology experiment end                        |  |
| 10/29/03 | 1          | 4.5 (2)                   | 1.5           | Biology experiment. Beam uniformity problems.       |  |
|          | 2          | 55                        | 0.5           | No incidents.                                       |  |
|          | 3+         | 3                         | 0             | No incidents.                                       |  |
| 10/30/03 | 1          | 6 (2)                     | 0             | No incidents.                                       |  |
|          | 2          | 5.5                       | 0.5           | Booster maim magnet trip. Sweep lost by MCR         |  |
|          | 3+         | 5                         | 3             | Problems continues.                                 |  |
| 10/31/03 | 1          | 6 (2)                     | 0             | Biology continues.                                  |  |
|          | 2          | 4                         | 0             | No incidents.                                       |  |
| 11/01/03 | 1          | 6 (2)                     | 0             | No incidents.                                       |  |
|          | 2          | 4.5                       | 0             | No incidents.                                       |  |
| 11/03/03 | 1          | 6 (2)                     | 0             | No incidents.                                       |  |
|          | 2          | 3                         | 0             | No incidents.                                       |  |
| 11/04/03 | 1          | 4 (1)                     | 2             | Beam transport problems.                            |  |
|          | 2          | 5                         | 1             | Sweep lost and activation check                     |  |
|          | 3+         | 0.5                       | 0             | No incidents.                                       |  |
| 11/05/03 | 1          | 6 (2)                     | 0             | No incidents.                                       |  |
|          | 2          | 4                         | 0.5           | Sweep lost.                                         |  |
| 11/06/03 | 1          | 6 (2)                     | 0             | No incidents.                                       |  |
|          | 2          | 6                         | 0             | No incidents.                                       |  |
|          | 3+         | 0.5                       | 0             | No incidents.                                       |  |
| 11/07/03 | 1          | 6 (2)                     | 0             | No incidents                                        |  |
|          | 2          | 3                         | 0             | No incidents.                                       |  |
| 11/10/03 | 1          | 6 (2)                     | 0             | No incidents.                                       |  |
|          | 2          | 6                         | 0             | No incidents.                                       |  |
|          | 3+         | 1                         | 0             | No incidents.                                       |  |
|          |            |                           |               |                                                     |  |


**NSRL-1 Run Statistics and Incidents** 

| Date     | Shift | HIP Avail.<br>(set-up t.) | Non-HIP* | Remarks (CAD 2 shift/day: 7-14/14-21 hr)          |  |
|----------|-------|---------------------------|----------|---------------------------------------------------|--|
| 11/11/03 | 1     | 6 (2)                     | 0        | No incidents.                                     |  |
|          | 2     | 4.5                       | 0        | No incidents.                                     |  |
| 11/12/03 | 1     | 6 (2)                     | 0        | No incidents.                                     |  |
|          | 2     | 3.5                       | 0        | No incidents.                                     |  |
| 11/13/03 | 1     | 5 (5)                     | 1        | Setup for 1 GeV/n Ti for biology. Power dip.      |  |
|          | 2     | 5.5                       | 0.5      | First biology experiment. Computer crash          |  |
|          | 3+    | 2.5                       | 1.5      | Computer crash                                    |  |
| 11/14/03 | 1     | 2.5 (1.5)                 | 3.5      | Tandem source problems                            |  |
|          | 2     | 6                         | 0        | Biology continues                                 |  |
| 11/17/03 | 1     | 2 (2)                     | 4        | Cooling failure in power supply                   |  |
|          | 2     | 4 (2)                     | 2        | Set up for physics                                |  |
|          | 3+    | 12                        | 0        | No incidents.                                     |  |
| 11/18/03 | 1     | 6                         | 0        | Physics run end. Magnet cooling system problems   |  |
|          | 2     | 6 (1)                     | 0        | Biology run continues                             |  |
|          | 3+    | 2                         | 0        | Ti run ends.                                      |  |
| 11/19/03 | 1     | 1.5 (1.5)                 | 4.5      | Set up for C 290 MeV/n. Septum power supply prob. |  |
|          | 2     | 2 (1)                     | 2.5      | Problems continues. First biology experiment.     |  |
| 11/20/03 | 1     | 6 (2)                     | 0        | Biology experiment continues.                     |  |
|          | 2     | 6                         | 0        | No incidents.                                     |  |
|          | 3+    | 1.5                       | 0        | No incidents.                                     |  |
| 11/21/03 | 1     | 3.5 (2)                   | 2.5      | Beam uniformity problems.                         |  |
|          | 2     | 3.5                       | 2.5      | Beam unstable and power supply failure            |  |
| 11/24/03 | 1     | 4 (2)                     | 2        | Beam intensity fluctuations.                      |  |
|          | 2     | 4                         | 0        | NSRL-1 ends.                                      |  |
| Totals:  | 18    | 242.5 hr.                 | 42.5 hr. |                                                   |  |

\*Shift 1: 7AM to 1PM, Shift 2: 1PM to 7Pm, Shift 3: beyond 7PM

**\*\***Time loss due to machine or power supply problems, setting up operations.

## NSRL-1 BEAM TIME AVAILABILITY SUMMARY



NSRL-1 operational schedule assumptions:

- 7 to 9 am: set-up, initial dosimetry (2 hr)
- 9 to 17 pm: experimental run (8 hr)
- 17 to 19 pm: contingency and wrap up operations (2 hr)

Total daily operation: 12 hrs

| Exp. ID      | Principal<br>Investigator | Ion &<br>Energy             | Beam Time<br>Approved | Beam<br>Time Used | Dose Range<br>(cGy) | Dose/Rate<br>(cGy/min) | Number of<br>Samples |
|--------------|---------------------------|-----------------------------|-----------------------|-------------------|---------------------|------------------------|----------------------|
| B-7          | Rabin                     | Fe, 1 GeV/n                 | 7                     | 4.5               | 50-200 cGy          | 150                    | 80                   |
|              |                           | Ti, 1 GeV/n                 | 7                     | 2.5               |                     |                        | 44                   |
| B-10         | Chang                     | Fe, 1 GeV/n                 | 6                     | 2.0               | 10-200              |                        | 51                   |
|              | C .                       | Ti, 1 GeV/n                 | 3                     | 1.5               | ٠٠                  | 10-150                 | 48                   |
|              |                           | C, 290 MeV/n                | 0                     | 3.5               | ٠٠                  |                        | 48                   |
| B-44         | Durante                   | Fe, 1 GeV/n                 | 9                     | 10.5              | 1-20000             | 10-1500                | 60                   |
|              |                           | Ti, 1 GeV/n                 | 9                     | 7.0               | 1-20000             | 10-1500                | 60                   |
|              |                           | C, 290 MeV/n                | 4                     | 1.0               | 100-800             | 150                    | 15                   |
| B-52         | Gewirtz                   | Fe, 1 GeV/n                 | 2                     | 2                 | NA                  | NA                     | NA                   |
|              |                           | Ti, 1 GeV/n                 | 2                     | 1                 |                     |                        |                      |
|              |                           | C, 290 MeV/n                | 2                     | 1.5               |                     |                        |                      |
| B-54         | Kennedy                   | Fe, 1 GeV/n                 | 7                     | 11                | 10-800              | 20-200                 | 248                  |
| N-64         | Vazquez                   | Fe, 1 GeV/n                 | 6                     | 6.5               | 30-240              | 20-200                 | 181                  |
|              |                           | C, 290 MeV/n                | 7                     | 6.0               | 60-480              |                        | 215                  |
| N-65         | Vazquez                   | Fe, 1 GeV/n                 | 4                     | 5.0               | 15-200              | 30-100                 | 100                  |
|              |                           | Ti, 1 GeV/n                 | 4                     | 2.0               | **                  | **                     | 100                  |
|              |                           | C, 290 MeV/n                | 4                     | 1.0               | "                   | "                      | 100                  |
| B-66         | Narici                    | Fe, 1 GeV/n                 | 16                    | 16.5              | 1                   | NA                     | NA                   |
| <b>B-67</b>  | Blakely                   | Fe, 1 GeV/n                 | 14                    | 5                 | 50-400              | 36-117                 | 120                  |
| B-73         | Sutherland                | Fe, 1 GeV/n                 | 3                     | 2.5               | NA                  | NA                     | NA                   |
|              |                           | Ti, 1 GeV/n                 | 3                     | 3                 |                     |                        |                      |
|              |                           | C, 290 MeV/n                | 3                     | 3                 |                     |                        |                      |
| B-74         | Bedford                   | Fe, 1 GeV/n                 | 5                     | 2.5               | 50-600              | 10-125                 | 15                   |
| N-80         | Gonda                     | C, 290 MeV/n                | 3.5                   | 2.5               | 10-200              | 20-100                 | 72                   |
| N-82         | Obenaus                   | Fe, 1 GeV/n                 | 1.3                   | 2.0               | 20-1500             | 50-300                 | 20<br>20             |
|              |                           | Ti, 1 GeV/n<br>C, 290 MeV/n | 1.3<br>2.3            | 1.0<br>1.0        |                     |                        | 20<br>20             |
| N-86         | Wang                      | Fe, 1 GeV/n                 | 3                     | 3                 | 100-2000            | 100                    | 62                   |
|              |                           |                             |                       |                   |                     |                        |                      |
| B-88<br>N-89 | Sutherland                | Fe, 1 GeV/n<br>Fe, 1 GeV/n  | 2.5<br>4.5            | 2.5<br>4.0        | NA<br>0.1.200       | NA<br>0.1 to           | NA<br>288            |
| 11-09        | Held                      | Ti, 1 GeV/n                 | 4.5<br>4.5            | 4.0<br>2.5        | 0.1-200             | 100                    | 200                  |
|              |                           | C, 290 MeV/n                | 4.5                   | 3.5               |                     | 100                    |                      |
| N-90         | Bailey                    | Fe, 1 GeV/n                 | 1                     | 1                 | NA                  | NA                     | NA                   |
| N-91         | Rydberg                   | Fe, 1 GeV/n                 | 8                     | 8.5               | 1-1000              | 2-130                  | 94                   |
| N-93         | Rithidech                 | Fe, 1 GeV/n                 | 8                     | 8                 | 10-100              | 100                    | 272                  |
| N-94         | Bacher                    | Fe, 1 GeV/n                 | 2                     | 1.5               | 10-500              | 50                     | 32                   |
| N-95         | Story                     | Fe, 1 GeV/n                 | 4.5                   | 2.5               | 25-200              | 100                    | 110                  |
|              | 5                         | C, 290 MeV/n                | 4.5                   | 2.5               | 50-300              | 200-300                | 120                  |
| N-97         | Kronenberg                | Fe, 1 GeV/n                 | 9                     | 5.5               | 0-300               | 100                    | 18                   |
| N-99         | Zhao                      | Fe, 1 GeV/n                 | 1                     | 1                 | 60-100              | 50                     | 12                   |
| N-100        | Miller                    | Fe, 1 GeV/n                 | 20                    | 16.0              |                     |                        |                      |
|              |                           | Ti, 1 GeV/n                 | 20                    | 20.0              |                     |                        |                      |
| Totals       | Ì                         |                             | 232.4                 | 189.5             | 0.1 to 20000        | 0.1 - 1500             | 2625                 |

## NSRL-1 EXPERIMENTERS AND RUN STATISTICS

## NSRL-1 PARTICIPANTS, EXPERIMENTAL SAMPLES AND ENDPOINTS

| Exp. | Participants                                                                                                                                     | Samples                                                                                  | Endpoints                                                                                                          |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| B-7  | Effects of Exposure to Heavy<br>Particles                                                                                                        | Sprague Dawley Rats                                                                      | Behavioral paradigms and neurchemistry                                                                             |
|      | B. Rabin (PI)                                                                                                                                    |                                                                                          |                                                                                                                    |
| B-10 | Charged Particle Radiation-<br>induced Genetic Damage in<br>Transgenic Mice                                                                      | LacZ transgenic mouse with different p53 genotypes                                       | Mutation frequency, micronucleous formation and chromosomal aberrations                                            |
|      | P. Chang (PI)                                                                                                                                    |                                                                                          | ~                                                                                                                  |
| B-44 | Influence of the Shielding on<br>the Space Radiation Biological<br>Effectiveness.<br><b>M. Durante (PI)</b>                                      | Human lymphocyte, human<br>cell lines (AG1522, H184B5,<br>F5-1 M/10, SQ20B and<br>SCC25) | Cell survival, chromosomal aberrations,<br>DNA fragmentation                                                       |
| B-52 | Effect of Deep Space radiation<br>on Human Hematopoietic<br>Stem Cells.<br>A. Gewirtz (PI)                                                       | Human bone marrow cells                                                                  | DNA complex damages, DNA replication<br>and apoptosis, gene expression                                             |
| B-54 | Screening of Agents for<br>Protecion of Radiation<br>Induced Oxidative Stress.<br>A. Kennedy (PI)                                                | Sprague-Dawley rats<br>HTori Cells                                                       | Blood and tissue chemistry (antioxidant<br>status).<br>Gene expression and survival<br>Effect of several compounds |
| B-64 | Risk Assessment and<br>Chemoprevention of HZE-<br>Induced CNS Damage<br>M. Vazquez (PI)                                                          | NT2 human neural stem cells, oligodendrocytes                                            | Survival, apoptosis, gene expression.                                                                              |
| B-65 | CNS Damage and<br>Countermeasure<br>M. Vazquez (PI)                                                                                              | C57Bl/6 Mice                                                                             | Behavioral Testing: Locomotor activity<br>and Morris Water Maze.<br>Neurochemistry.                                |
| B-66 | ALTEA-Mice: Effects of<br>Transient Heavy Ion Radiation<br>on the Electrophysiology of<br>the Mouse Visual System.<br>L. Narici (PI)             | Solid state detectors and electrophysiology equipment                                    | Test beam characteristics, beam collimation and electronics check-out                                              |
| B-67 | Lens Epithelium and Proton-<br>Induced Cataractogenesis.<br>E. Blakely (PI)                                                                      | Human lens epithelial cells                                                              | RNA or protein analyses                                                                                            |
| N-73 | DNA damage clusters in low<br>level radiation responses of<br>human cells.<br><b>B. Sutherland (PI)</b>                                          | T7 DNA, Human monocytes<br>Supercoiled DNA                                               | DNA damage cluster induction and repair<br>at the molecular and cellular levels.                                   |
| B-74 | Chromosomal Damage<br>Measurements.<br>J. Bedford and A. Chatterjee<br>(PIs)                                                                     | Ag155 human fribroblats                                                                  | Chromosomal aberration scoring                                                                                     |
| N-80 | Comparison of Cell and<br>Tissue 3D Models for<br>Assessment of Genotoxic<br>Damage by High Energy<br>Charged Particles.<br><b>S. Gonda (PI)</b> | Normal & Transgenic<br>fibroblast cells<br>Normal & Transgenic<br>epithelial cells       | Mutation types and frequency induced in<br>target genes at molecular level<br>Dose relationships                   |
| N-82 | Dosimetry Gels (Magic Gels)<br>as Biological Reporters of<br>Radiation Dose.<br><b>A. Obenaus (PI)</b>                                           | Dosimetry Gels (Magic Gels)                                                              | Dosimetry, calibration.                                                                                            |
| N-86 | Cellular Response to High<br>Energy Particle Exposures.                                                                                          | GM 847 and ATR-kd human fibroblasts                                                      | Clonogenic survival, G2 checkpoint,<br>DNA replication, CHK1 phosphorylation                                       |

|       | Y. Wang (PI)                                                                                                                                                          |                                                                                                        | and DNA repair.                                                      |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| N-88  | Complex Space Radiation-<br>induced DNA damage<br>Clusters in Human Cell<br>Transformation: Mechanisms,<br>relationships and Mitigation.<br><b>B. Sutherland (PI)</b> | Human normal fibroblasts                                                                               | DNA damage cluster and transformation                                |
| N-89  | Induction of Bystander Effects<br>by High LET Radiation in<br>Cells<br><b>K. Held (PI)</b>                                                                            | Human keratinocytes and fibroblasts                                                                    | Micronuclei formation, expression of p21 and foci formation of γH2AX |
| N-90  | HZE Radiation Modulation of<br>Genetic Effects by RNA<br>Interference of NHEJ<br><b>S. Bailey (PI)</b>                                                                | Human lymphoblast cells<br>transfected with siRNA for<br>the proteins related to NHEJ<br>repair system | Mutation frequency, chromosome aberrations and telomere fusions.     |
| N-91  | Repair of HZE-induced DNA<br>Double Strand Breaks and<br>PCC Breaks.<br><b>B. Rydberg (PI)</b>                                                                        | HeLa cells, CHO cells and xrs6 cells                                                                   | DSB determination, PCC and bystander effects                         |
| N-93  | In Vivo Induction of<br>Chromosomal Damage: A<br>Spectral Karyotyping Study.<br><b>K. Rithidech (PI)</b>                                                              | C57Bl6 and CBA/Ca mice                                                                                 | Cell cycle study and spectral karyotyping                            |
| N-94  | Sensitivity of DNA Repair<br>Loci to Radiation-Induced<br>Mutations<br>J. Bacher (PI)                                                                                 | MLH1 mismatch repair<br>proficient (HCT116+chr3)<br>and deficient (HCT116)<br>cells                    | Analysis of DNA repeat loci and mutation quantification              |
| N-95  | Gene Expression Profile<br>Analysis.<br><b>M. Story (PI)</b>                                                                                                          | Human fibroblast cell lines                                                                            | Gene expression by microarray studies                                |
| N-97  | Comparative Analysis of Fe<br>ion-induced Autosomal<br>Mutations<br><b>A. Kronenberg (PI)</b>                                                                         | Mouse kidney epithelial cells                                                                          |                                                                      |
| N-99  | Tranformation of hTERT-<br>immortalized human bronchial<br>epithelial Cells by High<br>Energy Heavy Ions.<br><b>Y. Zhao (PI)</b>                                      | hTERT-immortalized human<br>bronchial epithelial Cells and<br>MEF cells                                | Cell survival and transformation                                     |
| N-100 | Cross Section, Fluence and<br>Materials Measurements with<br>Heavy Ions.<br>J. Miller (PI)                                                                            | Solid state silicon detectors,<br>CR39 detectors and TEPC                                              | Nuclear fragmentation on elemental and material targets.             |

#### List of personnel that participated in the planning, organization and execution of NSRL-1 run

#### **BNL Management:**

- Laboratory Director: **Peter Paul**
- Associate Director for High Energy and Nuclear Physics: Tom Kirk
- Associate Laboratory Director for Life Sciences: Helene Benveniste

#### NASA Management:

- Headquarters: Walter Schimmerling, David Tomko
- JSC: Frank Cucinotta, Frank Sulzman, Barbara Corbin

#### **Scientific Advisory Committee:**

- Betsy Sutherland (Chair), BNL
- Louis Pena, BNL
- Richard Setlow, BNL
- Joel Bedford, CSU
- Les Braby, PNL
- Charles Geard, Columbia University

#### **Collider Accelerator Department-AGS**

- Chairman: Derek Lowenstein
- Deputy Chairman: W.T. Weng
- Associate Chair of Operations: A.J. McNerney
- Experimental Planning and Support Head: Philip Pile
- Associate Chair for ESHQ: Ed Lessard
- ESHQ Division Head: Ray Karol
- ESH Coordinator: Asher Etkin
- Facility Support Representative: Chuck Schaefer / Henry Kahnhauser
- Environmental Coordinator: Joel Scott
- Training and Procedures Manager : John Maraviglia
- Main Control Room: Peter Ingrassia
- Work Control Manager: Peter Cirnigliaro
- BNL Laser Safety Officer: Chris Weilandics
- Experimental Safety Review Committee: Yousef Makdisi (Chair)
- Radiation Safety Committee: Dana Beavis (Chair)
- Accelerator Safety Review Committee: Woody Glenn (Chair)
- ALARA Committee: Chuck Schaefer (Chair
- Associate Chair for ES&H/Q.A: **E. Lessard**
- Accelerator Division Head: Thomas Roser
- Chief Electrical Engineer: J. Sandberg

- Chief Mechanical Engineer: J. Tuozzolo
- Accelerator Physicist lead by: Leif Aherns
- Tanden Group leader: Peter Thieberger
- Physics Support: Yusef Makadisi
- CAD Components and instrumentation support: David Gassner
- AGS Radiation Safety Committee: Ken Reece
- C-A Dept Training Manager: John Maraviglia
- AGS Control Section lead by: Don Barton
- Liaison Engineering Group lead by: David Phillips
- Liaison physicist: Adam Rusek
- RHIC&AGS Users Center: Susan White-DePace, Angela Melocoton
- Mechanical Service Technicians led by: Fred Kobasiuk
- Survey Group led by: Frank Karl
- Beam Service Technicians led by: Paul Valli
- Electronic Service Technicians led by: Bill Anderson
- AGS Instrumentation Group led by: Pete Stillman
- AGS Main Control Room and Operations led by: Pete Ingrassia
- AGS MCR Operation Coordinators:
  - Jim Jamilkowski Greg Marr Sanjee Abeytunge Jennifer Kozak

#### Brian van Kuik,

#### Travis Shrey

- AGS Electricians led by **Bill Softye**
- AGS Riggers led by: Nick Cipolla
- Carpenter and Welder Support Service and Technical Support led by: Roger Hubbard

#### **Dosimetry:**

- Don Lazarus
- Adam Rusek
- I-Hung Chiang
- Kin Yip
- Peter Oddo
- Bart Frak

#### Medical Department:

#### NASA LTSF TEAM:

- Medical Liaisons: Marcelo E. Vazquez, Peter Guida
- Technical support: Bea Pyatt, Stacey Russell, Adele Billups
  - Dept. Chair: John Gatley
  - Building Manager: Chris Harris
  - Administration: Denise White and Donna Russo
  - Animal Care Facilities: Maryann Kershaw, Kerry Bonti, Patricia Leone
  - Training Coordinator: Ann Emrick
  - <u>RCD</u>
    - Kay Conkling
    - Dennis Ryan
    - Deana Buckallew
    - Jim Williams
    - Bob Colichio

#### Plant Engineering:

- BLAF Custodian, P. Abrams
- Plumbers: **B. McCafferty**
- Painters/Carpenters: B. Laakmann
- Electricians: **T. Baldwin**

#### **Biology Department**:

- Chairman: Carl Anderson
- Biology Liason: Betsy Sutherland
- Technical Support: Mamta Naidu, Debasish Roy
- Cesiun Source Manager: Richard Sautkulis

#### Lawrence Berkeley National Laboratory Dosimetry Technical Suppoer:

• R. P. Singh