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About ATP’s Economic Assessment Office 
 
The Advanced Technology Program (ATP) is a partnership between government and private 
industry to conduct high-risk research to develop enabling technologies that promise significant 
commercial payoffs and widespread benefits for the economy. 
 
Since the inception of ATP in 1990, ATP’s Economic Assessment Office (EAO) has performed 
rigorous and multifaceted evaluations to assess the impact of the program and estimate the returns 
to the taxpayer. To evaluate whether the program is meeting its stated objectives, EAO employs 
statistical analyses and other methodological approaches to measure program effectiveness in 
terms of: 
 
• Inputs (program funding and staffing necessary to carry out the ATP mission) 
• Outputs (research outputs from ATP supported projects) 
• Outcomes (innovation in products, processes, and services from ATP supported projects) 
• Impacts (long term impacts on U.S. industry, society, and economy) 
 
 
Key features of ATP’s evaluation program include: 
• Business Reporting System, a unique online survey of ATP project participants, that gathers 

regular data on indicators of business progress and future economic impact of ATP projects. 
• Special Surveys, including the Survey of Applicants and the Survey of Joint Ventures. 
• Status Reports, mini case studies that assess ATP projects on several years after project 

completion, and rate projects on a scale of zero to four stars to represent a range of project 
outcomes. 

• Benefit-cost analysis studies, which identify and quantify the private, public, and social 
returns and benefits from ATP projects. 

• Economic and policy studies that assess the role and impact of the program in the U.S. 
innovation system. 

• Data Enclave to allow for analysis of innovation and entrepreneurship (Spring 2007). 
 
 
EAO measures against ATP’s mission.  The findings from ATP surveys and reports 
demonstrate that ATP is meeting its mission: 
• Nine out of 10 organizations indicate that ATP funding accelerated their R&D cycle. 
• An ATP award establishes or enhances the expected value in the eyes of potential investors, 

which is called a “Halo Effect.” 
• ATP stresses the importance of partnerships and collaborations in its projects.  About 85 

percent of project participants had collaborated with others in research on their ATP projects. 
 
Contact ATP’s Economic Assessment Office for more information: 
• On the Internet: www.atp.nist.gov/eao/eao_main.htm 
• By e-mail: atp-eao@nist.gov 
• By phone: 301-975-8978, Stephanie Shipp, Director, Economic Assessment Office, 

Advanced Technology Program 
• By writing: Economic Assessment Office, Advanced Technology Program, National Institute 

of Standards and Technology, 100 Bureau Drive, Stop 4710, Gaithersburg, MD 20899-4710 
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Abstract iii

Spillovers serve a central role in justifying public support for R&D, but are difficult to
identify and to measure. Improving methods of identifying and quantifying R&D spillovers is
an important goal for public R&D programs like ATP. Research networks or systems—the
patterns of interaction and communication among firms, universities, and other
laboratories—reveal the generation and exchange of scientific and technological knowledge.
An implicit hypothesis links the concepts of spillovers and research networks: the closer and
denser the system of linkages is among various organizations, the greater the likelihood of
knowledge spillovers. This new method builds on past research of identifying and quantifying
knowledge spillovers using patent citations.

Where traditional approaches treat the spillover process as linear and additive, this emerging
methodology uses systems analysis and fuzzy logic to analyze R&D knowledge spillovers
within networks of R&D organizations, locating researchers within a mutually
interconnected network. Spillovers that occur from one researcher in an organization to
another researcher in a second organization depend on both the communications between
those two researchers and their organizations, as well as communications that each engages
in with other researchers at other organizations. This report’s approach identifies spillover
patterns across organizations, technological areas, geographic regions, and industries. It is
illustrated by the mapping of two research networks, one underlying micro-electromechanical
systems (MEMS), and the second underlying short wavelength sources for optical recording.
For example, the methodology was able to identify the top five MEMS technologies, the
most influential segment of the MEMS network, the key universities, and the key regions.

The most straightforward application of this new methodology to measure knowledge
spillovers is ex post evaluation. Other potential uses include analysis of the evolution of
networks surrounding particular industry-based technologies, or to evaluate the evolving
status of different network members. 

Abstract
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Executive Summary v

Executive Summary

Scholars who study the process of innovation and technological change generally agree that
the public or social benefits of commercial research exceed the private benefits. Private
benefits are benefits that can be captured by the firms that undertake the research. This
excess of the public benefits of research over the private benefits is commonly referred to as
research “spillovers, ” and their existence constitutes an important part of the public policy
motivation for ATP. 

An important category of research spillovers is knowledge spillovers. Projects generating a
large volume of knowledge spillovers are especially attractive candidates for ATP funding
because many of those projects by their very nature may not produce sufficient profit to
provide enough incentive for the private sector to undertake the work. Plus, companies that
will benefit from the knowledge spillovers produced by the project may be competitors of the
originating firm, and thus may erode the competitive edge and reduce the profits of the
originating firm even further, making these projects less likely to attract private investment.
Thus, if ATP can identify projects that are likely to produce above-average knowledge
spillovers, then ATP’s ability to create high social returns from its technology investments
would be further enhanced. Moreover, if ex post evaluation shows that ATP-funded projects
result in actual substantial knowledge spillovers, then the public benefit of the program
would be clearly demonstrated. 

This study explores the potential for patent citation data to be used as a proxy for research
spillovers, on both a prospective and retrospective basis. The growing empirical evidence
showing that patent citations can be used as a proxy for flows of scientific and technical
knowledge is summarized. By using citations data, ATP would obtain a quantitative indicator
of the spillover potential of proposed projects, as well as assess the magnitude of spillovers
generated by funded projects after the fact. This methodology can be used for technologies
that are protected by patents. It may not be as useful for technologies that are protected by
trade secrets and industries that do not patent their intellectual property.

Spillovers from a specific research project do not occur in a vacuum. Rather, research occurs
within an existing research and innovation system, in which established patterns of
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communication and influence change slowly. Organizations or technological areas or regions
that are well connected within this system have generated large spillovers in the past, and are
likely to continue to do so in the future. Conversely, researchers who are not well connected
within the innovation system are less likely to generate large research spillovers. The spillover
potential can be assessed by using systems analysis methods. For this reason, the study goes
beyond previous work by using patent citations as a proxy for knowledge spillovers to
explore the usefulness of systems analysis methods for mapping patterns or networks of
communication and influence within the innovation system. The systems approach
maximizes the value of patent citations for understanding research spillover patterns.

The systems methodology that is developed identifies research entities organized as a network
existing across organizations, technologies, and geographic regions. A node in this network is
a particular organization (e.g., IBM or MIT) engaged in research in a particular technology
(defined by U.S. Patent and Trademark Office technology classes; for example, Dynamic
Information Storage and Retrieval) in a particular geographic region (e.g., a metropolitan
area, a state, or a country, depending on the focus of interest). The extent of communication
between nodes is initially measured by the extent to which patents assigned to each node cite
patents assigned to other nodes. The structure of the resulting communications network
results from assigning the nodes to clusters in organizational, technological, and geographical
space by using fuzzy clustering methods. That is, the membership of a node in each cluster is
a matter of degree rather than an absolute assignment.

Once nodes have been organized into networks, the system influence of each node is
measured. Each node’s system influence is based on the strength of its communication with
other nodes, weighted by the strength of communication of the interacting nodes with the
rest of the system. The use of this system influence measure as an indicator of the spillovers
likely to be generated by research performed at a given node is then explored. This measure
of influence can be aggregated in any of the dimensions of interest, which allows for the
ranking of the spillover potential within a particular R&D network by the overall
organization, a given technology class, or a given region.

The study then uses the methodology to construct mappings of the research networks
underlying two emerging technologies: micro-electromechanical systems (MEMS) and optical
recording. In each case, the structure of the research network is examined in technological,
geographic, and organizational space. The United States and Japan, for example, are shown
to be both major sources and recipients of MEMS spillover flows. The San Francisco, Los
Angeles, and Boston metropolitan regions are the primary U.S. spillover generators and
recipients for MEMS research. The important role played by particular organizations in the
MEMS network, such as MIT, is also illustrated.

The structure of the underlying R&D network for optical recording and its relationship to a
significant joint venture funded by ATP in this area is then examined. The optical recording
network is found to be dominated by U.S. firms, two of which were members of the ATP-
funded joint venture. Moreover, the ATP-funded joint venture was itself managed by the
National Storage Industry Consortium (NSIC), among whose members are additional
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influential organizations within the optical recording network. The network analysis also
reveals that university and government laboratories are influential network members. Given
the public research entities’ influence within the network, the likelihood of spillovers due to
ATP’s funding of optical recording is greater if they are involved in the project. Involvement
of a number of the key public research institutions in NSIC may have provided an important
mechanism for the transmission of spillovers resulting from ATP cost-shared research.

The use of the methodology for looking systematically at possible patterns of spillovers
across broadly defined industrial sectors is also illustrated. The MEMS research is shown, for
example, to likely create significant spillovers to the auto and aerospace sectors and, to a
lesser extent, to the biomedical devices industry. Optical recording research appears to
produce spillovers for the aerospace and information technology sectors.

Finally, the study concludes with some initial suggestions about how the methodology might
be used by ATP. First, it could be used on an ex-post basis to quantify the spillover impacts
of ATP-funded projects, individually or collectively. Such an impact analysis could, in
principle, measure the direct spillovers from awardees, which would be reflected in an
increased rate of system citation to the awardees’ patents. It could also examine the broader
influence of ATP funding on the relevant R&D network by looking at overall changes in the
flows of knowledge through the network. For example, ATP funding of joint ventures, in
addition to generating spillovers related to the joint ventures’ research output, may enhance
the overall spillover capability of the network. In principle, such an increase in the overall
quality of communication links could be measurable in terms of increased overall network
knowledge flows.

Prospectively, quantitative measures of system influence (in the appropriate R&D networks)
of the organizations, regions, and technologies represented by project proposals could
provide part of the basis for assessing the likely spillover potential of proposals. This kind of
analysis could be used to identify ways in which the proposed joint venture might be made
more effective by expanding the membership or roster of subcontractors to ensure connection
to important nodes in the relevant R&D network.

At the end of the day, the concept of knowledge spillovers remains elusive and difficult to
measure. It is not possible to do better than to provide numerous proxies that have been
shown to be connected to the underlying knowledge flows. There is now significant evidence
that patent citations constitute one such proxy. Use of such data, particularly in conjunction
with a methodology that places spillover analysis in the context of an overall R&D system,
offers significant potential for providing more quantitative, systematic information about
spillovers.

Note: The research and data used in this report were collected in the late 1990s. 
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One economic rationale for the Advanced Technology Program (ATP) rests on the
assumption that the public or social benefits of the research projects ATP funds far outweigh
the private benefits that can be captured by the firms that undertake the research. This excess
of the public benefits of research beyond the private benefits is commonly referred to as
research spillovers (Jaffe, 1996). An important aspect of investment in R&D is that the
knowledge benefits tend to spill over to others not directly involved in the original R&D
work. When one company conducts research, other companies also receive benefits because
the results of R&D often become more generally known through patents, publications, and
other means of industry dissemination of knowledge spillovers. Because of such spillovers,
when one company conducts R&D, the overall benefit is greater than what this one company
receives. Since other companies also benefit, there is a strong policy rationale for encouraging
R&D investment through a public program such as ATP.

Spillovers have a central role in justifying public support of R&D, but are difficult to identify
and measure. Improving methods of identifying and quantifying R&D spillovers is an
important goal of a public R&D program. If it is assumed that commercial research typically
generates some level of spillovers, this implies that any government program seeking to foster
commercial R&D will generate some spillovers. Following that logic, if ATP can identify
commercial R&D projects that would not otherwise be undertaken, or would be pursued less
vigorously, in the absence of ATP support, ATP could reasonably assume that funding such
projects would generate R&D spillovers. On the other hand, if all commercial R&D
generates some level of spillovers, it seems more straightforward and less likely to cause
economic distortions in the economy to subsidize commercial R&D using tax breaks or other
tax incentives. 

As described in an earlier ATP study (Jaffe, 1996), there are several distinct mechanisms by
which commercial R&D generates spillovers. One of these, knowledge spillovers, occurs
because the knowledge created by research is used by other researchers to facilitate their own
research projects. Unfortunately, knowledge spillovers are extremely difficult to quantify
because knowledge itself is essentially unobservable, the mechanisms or pathways by which
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knowledge moves are not well understood, and the impact that a particular bit of knowledge
has on a subsequent research project is difficult to separate out from other influences.

Perhaps for this reason, ATP analyses of spillovers have focused mainly on market spillovers.
Market spillovers result when a new product or process generated by research creates
benefits for consumers or downstream industries. For example, new materials, new tools or
methods, or better parts reduce costs and improve the performance of the industries that use
them. To justify projects supported by ATP, market spillover analysis has been the common
method used to present the broad-based economic benefits that these projects have delivered.
Economic benefits of this kind have been identified and studied in the after-the-fact
evaluation of ATP projects (Long, 1999).1

The emphasis on market spillovers, however, raises the question of the need for public suport
of technologies that create large market benefits. Why wouldn’t they be supported by the
private sector? That is, while it is easy to show theoretically that the firm developing a new
product or process will only capture a fraction of the benefits created for consumers, if the
overall benefit is very large, then that fraction may generate a large profit. Projects generating
large knowledge spillovers may or may not generate profits, and thereby be attractive
candidates for private financing. To the extent that the spillover recipients are competitors of
the spillover-generating firm, projects that generate large knowledge spillovers are not likely
to be funded privately.

An emerging method using systems analysis and fuzzy logic to analyze R&D spillovers
within networks of R&D organizations is introduced in this study. This novel method holds
promise for retrospective evaluation as well as prospective selection of projects with above-
average spillover potential. Furthermore, the method identifies spillover patterns across
organizations, technological areas, geographic regions, and industries, and permits separation
of knowledge spillovers into those realized by the United States and those realized by other
countries. By funding projects involving particular organizations and technologies, ATP
would be able to implicitly pick networks with implications for expected social benefits. An
important theoretical aspect of this methodology is that it highlights the fact that the firm’s
value as a source of knowledge spillovers depends on its ability to learn from its external
environment.

The potential for patent citation data to be used as a proxy for research spillovers, on both a
prospective and retrospective basis, is explored in some detail. As will be discussed more
fully, there exists growing empirical evidence that patent citations can be used as a proxy for
flows of scientific and technical knowledge (Jaffe, Trajtenberg, and Fogarty, 2000a, 2000b).
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1. The ATP uses a prototype evaluation tool, the Composite Performance Rating System (CPRS), to measure
ATP projects’ success through indicator metrics. A mini-case study of every ATP project is written about five years
after project completion. One of the CPRS metrics for project achievement includes knowledge creation and
dissemination—that is, evidence that the project has created a significant body of new knowledge, and that it is
being disseminated. Knowledge creation and dissemination is a proxy for potential knowledge spillovers. Other
metrics include measures of commercialization. See ATP (2001, 2005); Long (1999); Ruegg (2006). 



Although there exists a fair amount of noise in the relationship between citations and
knowledge flows, the overall magnitude of knowledge flows between organizations or
regions appears to be correlated in a statistical sense with the underlying knowledge flows. 

Thus, analysis of patent citations can provide a valuable window on the otherwise
unobservable process of research spillovers between and among research organizations. By
using citations data, ATP may be able to develop a quantitative indicator of the spillover
potential of firms proposing projects, as well as assess the magnitude of R&D spillovers
generated by funded proposals after the fact.

Spillovers from a specific research project do not occur in a vacuum. Rather, research occurs
within an existing research and innovation system, where established patterns of
communication and influence change slowly. Organizations or regions that are well
connected within this system have generated large spillovers in the past, and are likely to
continue to do so in the future. Conversely, researchers who are not well connected within
the innovation system are less likely to generate large research spillovers.

System analysis methods can be used to assess spillover potential. For this reason, this study
goes beyond previous work by using patent citations as a proxy for knowledge spillovers to
explore the usefulness of systems analysis methods for mapping patterns or networks of
communication and influence within the innovation system. This systems approach attempts
to maximize the value of patent citations for understanding patterns of research spillovers.

Note: The research and data used in this report were collected in the late 1990s. 
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PATENT AND PATENT CITATION DATA
Micro-level data on patents that include a detailed technology field, for instance, or citations
to other patents, number of claims, and inventor’s geographical location are becoming
increasingly available. These data have enormous potential for economists who study
technical change and innovation, and are the only measure of technological and innovative
activity available at this level of detail. The data have been used to explore questions
involving spatial spillovers (e.g., Jaffe et al, 1993), knowledge flows among firms in a
research consortium (e.g., Ham, Linden, and Appleyard, 1998), spillovers from public
research (Jaffe and Trajtenberg 1997), and differences between corporate and university
patenting (Trajtenberg, Henderson, and Jaffe, 1997).

Some of this literature has been self-referential. While the results from using measures based
on patents have been internally consistent, measures like patent counts, citation counts,
“basicness” (identifying basic inventions), and so forth have not generally been validated by
external economic criteria, such as revenues or profits. Some exceptions exist, however. For
example, Pakes and Schankerman (1984), Schankerman and Pakes (1986), Pakes (1986), and
Schankerman (1998) use patent renewal data and fees to uncover the distribution of patent
values; Trajtenberg (1990b) correlates consumer welfare measures for CT scanners with
citation counts; Shane (1993) conducts an analysis of the market value of a small number of
large semiconductor firms and their intangible assets; Austin (1993) employs an event study
of biotechnology patents and their citations; and Harhoff et al. (1999) analyze individual
German inventions that are patented in the United States and Germany. All of these authors
have found that patenting is correlated with economic value, albeit with substantial error,
and some have found that citation counts are even more highly correlated.

The use of patent data in the economic analysis of technological change has a fairly long, if
somewhat unsatisfactory, history, stretching back to the path-breaking analyses of
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Schmookler (1966).1 A patent, as a matter of definition, is a temporary legal monopoly
granted to inventors for the commercial use of an invention. In principle, in order for the
inventor to receive this right, the invention must be nontrivial in the sense that it must not be
obvious to a skilled practitioner of the relevant technology, and it must be useful, meaning
that it has potential commercial value. If a patent is granted, then an extensive public
document is created that contains detailed information about the invention, the inventor, the
organization to which the inventor assigns the patent property right, and the technological
antecedents of the invention.

This last category of information is the focus of our study. The citations that appear in a
patent document serve to identify earlier inventions whose claims are sufficiently close to the
claims of the citing patent that the inventor or the patent examiner deems it necessary to
identify them. By identifying the prior art that is not covered by the property right granted in
the citing patent, the citations that appear in a patent serve the important legal function of
delimiting the property right granted by the patent. Thus, citations contained within a patent
convey information about the technological antecedents of the new technological innovation
embodied within the patent document.

Viewed optimistically, patent citations can be seen as providing direct observations of
knowledge spillovers in that one technological innovation explicitly identifies others as
constituting the technological state-of-the-art on which it builds. Unfortunately, this
optimistic view is somewhat clouded by the reality that there is substantial noise in the
patent citations data (Jaffe, Fogarty, and Banks, 1998; Jaffe et al., 2000a, 2000b). In addition
to cites that are included in the patent document because the inventor actually learned
something important from the cited invention or its inventor, there are also citations that are
placed in the patent document for strictly legal reasons. These typically arise when the patent
attorney wants to avoid potential lawsuits for patent infringement by citing a patent even
when the inventor does not consider it part of the prior art. There are also after-the-fact
citations, which are citations to relevant patents added to the patent document after the
actual invention, and teaching cites that everyone considers basic even if they are old. Finally,
the patent examiner may also require the inventor to add relevant citations to further bound
the scope of intellectual property rights conferred by the patent, even though the inventor
may not have been aware of the patent that was added to the citations.

EMPIRICAL EVIDENCE ON CITATIONS AND SPILLOVERS
These problems notwithstanding, economic research indicates that patent citations,
particularly at levels of aggregation higher than the individual patent, yield valid, if
sometimes noisy, information on real knowledge spillovers. Previous research has utilized
citations data in a number of ways, but this prior research can perhaps best be summarized

6 ATP AND THE U.S. INNOVATION SYSTEM

1. Another pioneer who deserves mention is F. M. Scherer, who also brought the study of patents to the
attention of the American economics research community with his 1965 article in the American Economic
Review. For a comprehensive review of the promise and the problems of patents as economic indicators, see the
survey by Griliches (1990). 



under two themes: the use of ex-post citations to infer the quality or importance of the cited
inventions and the use of citation patterns to make inferences about the nature and direction
of knowledge spillovers. 

Trajtenberg (1990b) demonstrated that within a particular class of medical instruments
(computerized tomography or CT scanners), there was a strong correlation between the ex-
post citations received by certain patents and the estimated social surplus attributed to the
inventions based on those patents. This result validated the link between citations as a
measure of invention quality and the social welfare generated by those inventions.
Trajtenberg’s method for calculating social surplus is quite demanding in terms of data
requirements. It is, however, a powerful vindication of the potential usefulness of citation-
weighted patents as a measure of innovative output. If we assume that such a link holds in
general, then we can get a potentially much less noisy measure of research output at the
organization, industry, or regional level at relatively low cost simply by weighting patents by
the ex-post citations received. A simple weighting by ex-post citations is not the only measure
of quality that could be developed using citations. For example, in a slightly different
manner, Trajtenberg et al. (1997) investigated the basicness of inventions by looking at the
breadth of ex-post citations across patent classes.2

Interesting work by Lanjouw and Schankerman (1998) also uses citations as a proxy for
patent quality. They explore the relationship between (1) citations, ownership, the number of
claims, and various technology class measures and (2) the probability that a patent will be
litigated. They find that the ratio of citations to claims for a patent is positively correlated
with the probability that that patent will be litigated and interpret this finding to imply that
more valuable patents (as measured by citations per claim) are more likely to find themselves
in court.

Another line of work examines the relationship between estimates of profits generated or
licensing revenues received by the owner of the patent and the number of citations
subsequently received by the same patent. Several researchers have recently begun or
completed analyses of this kind: Harhoff et al. (1999) surveyed German patent holders of
962 U.S. patents that were also filed in Germany. The patent holders were asked to estimate
at what price they would have been willing to sell the patent right in 1980, about three years
after the date at which the German patent was filed. Harhoff et al. find, first, that more
valuable patents are more likely to be renewed to full term and, second, that the estimated
value is correlated with subsequent citations to that patent. The most highly cited patents are
very valuable, “with a single U.S. citation implying on average more than $1 million of
economic value” (Harhoff et al., 1999).
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Another line of citations-related research has looked directly at citations as an indicator of
knowledge spillovers. Jaffe et al. (1993) investigated the extent to which knowledge spillovers
are geographically localized by examining the location of inventors of cited and citing
patents. They found that the tendency of subsequent inventors to cite previous local
inventions was much higher than could be explained simply by the distribution of research
activity across U.S. states. Jaffe and Trajtenberg (1999) have extended this work to analyze
knowledge flows between countries, adding to the evidence of geographic and firm
localization of citations. In an ambitious attempt to test theories of endogenous growth based
on knowledge spillovers, Caballero and Jaffe (1993) estimated a complex structural model in
which knowledge spillovers increase the innovative output of current R&D efforts. Finally,
Jaffe et al. (1998) have attempted to measure the private sector benefits from research
undertaken by the National Aeronautics and Space Administration (NASA). Their study
examines citations to a set of NASA-generated inventions, finding again that knowledge
spillovers tend to occur more frequently when firms are geographically proximate to NASA
labs. In all these cases, knowledge spillovers were proxied by citation patterns in the U.S.
patent data.

SURVEY EVIDENCE ON CITATIONS AND SPILLOVERS
This statistical evidence has recently been supplemented by survey results exploring the
extent to which inventors’ perceptions of research spillovers are correlated with patent
citations (Jaffe et al., 2000a, 2000b). A national survey of recent patentees was conducted to
elicit their perceptions regarding the importance of their inventions, the extent of their
communication with other inventors, and the relationship of both importance and
communication to observed patent citations. A cohort of 1993 patentees were asked
specifically about two patents they had cited, and a third “placebo” patent that was similar
but which they did not cite. One of the two cited inventors was also surveyed.

The surveyed inventors reported significant communication, at least some of which suggests
spillovers from the cited inventor to the citing inventor. In particular, the citing inventors
reported that they were more likely to have heard of the cited patents than the placebos; they
learned about them sooner; they learned of them by more information-rich modes of
communication; and they were more likely to have benefited from them. The contrasts
revealed by the results are illustrated in Figure 1, which is taken from Jaffe et al. (2000a). In
more than half of the cases, inventors reported that they had benefited in some way from
their knowledge of the cited inventions. In contrast, they reported deriving such benefits from
the “placebo” patents only about 20 percent of the time. This difference and others found in
the survey were statistically significant.

Figure 1 also shows that in 40 percent of the cases, the citing inventor stated that nothing
useful was learned from the cited patent. One might expect that the results are affected by a
human tendency to minimize the dependence of personal creations on those of others; in fact,
survey responses from the cited inventors do provide some support for the proposition that
the citing inventors’ statements minimize their dependence on the cited inventions.
Nonetheless, the results clearly show that a significant fraction of citations do not correspond

8 ATP AND THE U.S. INNOVATION SYSTEM



to research spillovers. Indeed, it is clear that in a significant fraction of cases, the citing
inventors did not even know about the cited inventions, or learned about them only while
completing the patent application process. 

Overall, then, it is clear that for any given patent citation there is a nontrivial chance that no
spillover occurred. It is still true, however, that the probability of a spillover, conditional on a
citation being observed, is significantly greater than the unconditional probability. This is
quite consistent with there being a correlation, but not a perfect correspondence, at the level
of organizations or regions, between the rate of citation and the rate of research spillover.

CITATIONS FROM A SYSTEMS PERSPECTIVE
All of the above analysis considers spillovers and citations as a “pair-wise” phenomenon
between researchers, research organizations, or regions. But innovation is an inherently
cumulative phenomenon that occurs within the context of an overall innovation system. The
spillovers that one organization gets from another depend not only on the communication
between the two organizations but also on the communication that each engages in with
other organizations.
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One way to incorporate this idea is to look at the cascading sequences of citations. That is,
to determine an impact we would look not only at the inventors that cite the work but also
at the inventors that cite the work of those who cite the original work, and so on. This idea
was originally proposed by Trajtenberg et al. (1997). The importance of an invention was
taken to be the number of citations it received plus l times the number of citations received
by the patents that cited it. The parameter l is a weighting factor between 0 and 1 that
determines the relative importance of subsequent generations of citations. This approach is
inherently somewhat ad hoc since there is no particular basis for choosing the value of l.

A more satisfactory approach would be to begin by recognizing that researchers working on
a technology or set of related technologies constitute a network. If so, then established
methods of network analysis can be used to measure the communication flows within that
network and, as a consequence, to measure the influence of the different nodes in the
network. 

10 ATP AND THE U.S. INNOVATION SYSTEM



OVERVIEW AND MOTIVATION

There exists a growing literature developing the use of patent citations as an indicator of
technological impact or knowledge spillovers. Here we will describe the methodology that we
have developed to push this idea further. Just as the information contained in citations can be
used to analyze differences in the importance or impact of patents, our systems approach
allows us to show that citations themselves likely differ in their significance. For example, we
would probably expect that a patent receiving five cites from Hewlett-Packard, Raytheon,
MIT, Hughes Electronics, and Toshiba—known leaders in a field—might be more important
than an equally cited patent with cites from less well known companies like Pegasus
Technologies, Crystalloid, Cintas, Infocision, and Ball State University.

Although it is easy to speculate that citations from so-called influential organizations are
more indicative of spillovers than citations from so-called less important organizations, we
must discuss what distinguishes influential organizations, and how such distinctions can be
quantified. Fundamentally, the systems methodology is based on the idea that the influence of
organizations can be understood—and measured—by examining the place of each
organization within an R&D network. From this perspective, influential organizations are
those that are connected to and communicating with a lot of other organizations, and
particularly a lot of other influential organizations. They represent important nodes in the
communication system, meaning that a large fraction of the overall information flow in the
network passes through them.

We believe that this systems perspective can broaden and deepen our understanding of
spillover phenomena. For example, in their paper on localized spillovers, Podolny and
Shepard (1997) present an interesting puzzle. They find that patent citations are more likely
to be external (i.e., come from organizations outside the geographic region) when there exists
a high level of local inventive activity. To the extent that geographic proximity facilitates
spillovers, this result is surprising. We would expect that a high level of local activity would
make dependence on more distant knowledge sources less necessary. From a systems
perspective, however, R&D labs are connected, and a change in one lab will induce further
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change among all of the labs. We can view regions with a high level of local inventive activity
as influential nodes in a worldwide R&D spillover network. Such places are highly connected
to the world’s regions, all poised to tap into influential parts of the R&D network, whether
local or external.

The existence of spillover networks may also explain an interesting finding on CT scanner
technology. Trajtenberg et al.’s (1997) study provides quantitative evidence showing the
inequality of patent cites. He finds that the social value of CT patents increases nonlinearly
with the number of patents (i.e., the information content increases disproportionately with
the number of citations). The study findings hint at a much broader issue, that a larger
number of citations may reflect diffusion through increasingly influential nodes in the R&D
network. More generally, viewing R&D organizations as nodes in a network suggests the
importance of feedback phenomena that can be a source of increasing returns. Because
influential organizations benefit more from spillovers, their own R&D is more productive,
making them more successful, which reinforces their influence. Such virtuous cycles can
operate at the level of firms, technologies, or regions. Conversely, firms, technologies, and
regions can be caught in a vicious cycle, because nodes that are not well connected find R&D
less productive, and hence become less influential over time.

SYSTEMS METHODOLOGY IN RELATION TO THE EXISTING LITERATURE
The systems methodology builds upon the existing understanding and analysis of R&D and
the role of spillovers in the research process. It develops, however, a somewhat different
conception of how that process works. It also postulates a different set of relationships
between the underlying R&D spillover concepts and the data that are observed. Before
developing the new methodology’s elements in detail it is helpful to describe the relationship
between our new conception of the process and earlier work.

At the heart of both approaches is the notion that knowledge spillovers among organizations
foster the research process, and that there are cases where the path and magnitude of these
spillovers can be somewhat proxied using patent citations data. But the two approaches
describe different concepts of the spillover process and relationship to patent citations. The
traditional concept characterizes each spillover as a distinct bit of knowledge that flows from
researcher A to researcher B, benefiting researcher B. Sometimes the flow of this bit of
knowledge is subsequently recognized by a patent citation and sometimes not. Also,
sometimes patent citations occur when no such bit of knowledge has actually flowed. In a
sense these bits are additive or cumulative (i.e., researchers who receive a lot of them get a
lot of spillover benefits; researchers who generate a lot of them created a lot of spillover
externalities for others). By using this approach we can count the total citations received by
the patents of researcher A as a (noisy) indicator of the quantity of spillovers researcher A is
producing. And we can count the total number of citations made by researcher B’s patents as
a noisy indicator of the spillover externalities to B from other researchers.

In contrast, the systems approach does not conceive of spillovers as taking the form of
individual knowledge bits that flow from or accumulate at particular locations. Rather, we
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think of spillovers as reflecting a communications process. In other words, research is an
inherently collaborative and communicative process. Consequently, it is not so much that
researcher B gets a discrete benefit from a knowledge bit garnered from researcher A.
Instead, it is that researcher B will generally be more productive because that researcher
communicates easily and frequently with other researchers within his sphere. (Researchers
are less likely to communicate directly where proprietary knowledge is involved.) By using
the systems approach, patent citations are seen as a proxy for this communication process,
indicating the degree of openness and regularity of communication generally. Because the
citations process provides only a noisy indicator, we think of the communications proxied by
our systems analysis of patent citations as an indicator of the overall health of
communication rather than as counting the “amount” of knowledge that has flowed.

The systems approach conceives of the relationship between pairs of inventors as embedded
in a larger notion of a research communications network. On the one hand, the traditional
approach treats the spillover process as a linear and additive. If researcher B gets 10 spillover
units from researcher A and 5 spillover units from researcher C, then researcher B has
received 15 spillover units. In contrast, using the systems approach we think of researcher B
as residing within a mutually interconnected network. Researcher B’s productivity will be
affected by the overall vitality of knowledge flow in that network and the strength of the
connections to the network generally. A researcher is well connected to the network by being
well connected to other researchers, who are themselves well connected to the network.

This network conceptualization of the research and spillover process leads to specific
methods for measuring which researchers are the most crucial. We utilize results from
network theory and fuzzy set theory1 to develop these methods. Fuzzy theory yields a
particularly valuable methodology because it provides a rigorous way to model the reality
that any given researcher belongs, in varying degrees, to multiple amorphous groups of
researchers with whom that researcher communicates. Fuzzy theory gives us a way to make
operational the notion of a researcher being well connected to the research network.

We have undertaken several case studies to understand how the systems approach leads to
results different from traditional methods. We do not think the differences in results are due
to random variations. Rather, they derive from the underlying differences in the concept of
the R&D spillover process. In particular, because the systems approach derives from
communication, what we call “influence”—the overall impact that a particular lab has on
the network—depends on two-way communication. This means that a lab whose patents
receive a lot of citations will not necessarily be influential if its researchers do not in turn
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and falsehood. For example, the statement, today is sunny, may be 100 percent true if it is a cloudless day, 
80 percent true if there are some clouds, 50 percent true if it is hazy, and 0 percent true if it rains the 
entire day. Fuzzy logic was developed by Lofti Zadeh of the University of California, Berkley. See
<http://www.cs.berkeley.edu/~zadeh/pripub.html>. 



communicate with and draw on the work of others. In effect, a lab cannot be influential
simply by sending out a lot of spillovers while receiving very few. If it is not engaged in two-
way communication, then it is not an active and thereby influential member of the network.

Another important consequence of the systems approach is that it provides a rigorous
framework for aggregation. Under the traditional approach, if there are 10 IBM labs around
the country that received 100 citations in the aggregate, then our measure of the importance
of IBM would simply be the overall citation count of 100. By using the systems approach, if
we want to know the influence of IBM as an organization, then we must look at the overall
interaction of the 10 labs within the network. The whole will be greater than or less than the
sum of the parts, depending on the nature of the interactions among the individual parts, and
between each part and the network.

Conversely, if we know a particular lab has received 10 citations, but belongs to a company
that has received 100, we might suspect that its association with this larger entity has
important consequences for its research productivity, and its role in generating spillovers. The
traditional approach does not provide a clear way to measure effects of this kind. The
systems approach explicitly incorporates a lab’s links with other labs within the same
organization. In principle, these aggregation effects can be analyzed across organizations,
across technologies, and across geographic regions.

Later we will introduce the specific concepts from the network literature used in our
analyses. Although these concepts are likely to be unfamiliar to many readers, by drawing
from this explanation of the differences between the two spillover approaches, these concepts
can be “mapped” onto more traditional concepts. 

At the heart of the systems method is the concept of a node: a specific research lab,
characterized by the organization that owns it, the technology it focuses on, and its
geographic location. Nodes are the generators and recipients of spillovers. As was discussed,
we focus on their overall connection to the network rather than the individual bits of
knowledge they use or generate.

In principle every node in a network communicates with every other node. Following the
fuzzy set terminology, we characterize the strength of these pair-wise communication
interactions between nodes with the concept of a truth value. Finally, the overall importance
or impact of a node is its system influence. System influence is analogous to the overall
extent of spillovers generated by a lab under the traditional conception. We can calculate
system influence at any level of aggregation (for an individual lab, a company, a
technological area, or a geographic region).

THE R&D LAB
The basic unit in our model is the R&D lab located in a specific region, working on a
specific technology, in a particular time period. The R&D networks are constructed from
interactions among R&D labs. We analyze these interactions by using patent citations, which
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are interpreted as a form of communication. Although communication is an unfamiliar term
in economics, laden with ambiguity, it is nonetheless at the heart of R&D spillovers. It can
take many forms, including reading of papers, attendance at conferences, hiring of leading
research consultants as windows on technology developments, indirect word-of-mouth
learning, analysis of a patent database, hiring of key researchers from competitor labs,
placing students in top graduate programs, and industrial espionage. In fact, sometimes it
even involves personal conversation among inventors and R&D lab directors.2 We conceive
of patent citations as being a proxy or indicator variable and do not believe that one
inventor’s reading of another inventor’s patent document is necessarily a particularly
important mode of communication. Rather, consistent with the survey results discussed
above, we expect that the likelihood of substantive knowledge flow from inventor A to
inventor B is higher if inventor B’s patent cites inventor A’s patent than if no such citation
occurred.

This communication interpretation incorporates learning, which strengthens the
interpretation of patent citations as communication. For example, an inventor or R&D
organization may not be aware of an important technology source until the patent examiner
adds the citation to the application. If the cited organization is truly an important source,
however, then the inventor is alerted and will monitor the newly found source for continuing
developments. This is one reason why information content (communication) increases for
strongly interacting R&D organizations.

We distinguish each lab by the organization that owns it, its technological focus, and its
geographical location. This means that the R&D network exists in a multidimensional space
of organization-technology-region. As will be discussed, once the network has been conceived
it is often useful to focus on two of these three dimensions and look at a “slice” of the
network along one dimension. That is, we can choose to ignore the technological and
geographic complexity and look only at the relationships among organizations, or we can
ignore the organizations and geography and look only at relationships among technologies,
or again we can focus on the relationships among regions, ignoring organizations and
technologies.

Figure 2 illustrates the idea that each node has a location in organizational, technological,
and geographic space. Thus, as shown in the figure, the activities of the organization IBM in
technology area 1 in New York constitute a node distinct from IBM’s activities in other
technologies at the same location, and in technology 1 at other locations. With respect to the
patent data, the “organization” is associated with the patent assignee, the “technology” is
associated with the patent class, and “geography” is based on the address of the primary
inventor. Conceptually, then, the node “IBM—Technology 1—New York” corresponds to
that portion of the IBM organization that lives in New York and works in technology area 1.
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2. Based on evidence from the semiconductor industry, geographic localization of citations across firms
partially results from the tendency of inventors who change firms to take their research tracts with them,
combined with a greater likelihood for an inventor to move to another firm in the same geographic area. See
Almeida and Kogut (1999). 



Operationally, this node is represented by the body of patents assigned to IBM, in the patent
class corresponding to technology 1, for whom the primary inventor resides in New York.

For the sake of illustration, suppose that for a particular network the nodes shown in Figure
2 comprise the entire network. We calculate a truth value, which is a fuzzy logic measure of
the magnitude of interaction, for every pair of nodes. This interaction measure is based on
the patent citations between the two nodes, in both directions. These pair-wise truth values
are then used in the fuzzy clustering algorithm to map the full R&D network. If the node
IBM—Technology 1—New York has strong interactions with other nodes, and/or the nodes
that it interacts with themselves have strong interactions with the rest of the network, then
IBM—Technology 1—New York will be well connected to the overall network. (Ultimately,
the fuzzy logic measure of interaction between any two nodes incorporates the system
position of each node; that is, the measures of interaction reflect direct and indirect effects.)
Our hypothesis is that new knowledge generated at well-connected nodes will create large
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FIGURE 2
Construction of Influence Measure from Hypothetical Pair-wise Citation Pattern
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knowledge spillovers because such nodes are well connected to the rest of the relevant
innovation system.

Nodes that are highly connected to each other are presumed to communicate with each other
more intensely. The implication is that spillovers generated at highly connected nodes will
flow more completely to other nodes in the system. Conversely, highly connected nodes will
receive greater benefit from spillovers created within the system.

Once we have mapped the strength of interaction among the nodes in the network, it is then
possible to accumulate the system influence of each node. The system influence of each node
results from the strength of its interaction with other nodes, compounded by the strength of
interaction of those nodes with other nodes. Crudely, an influential organization is one that
is well connected to other influential organizations. The apparent circularity of this definition
is resolved by the fuzzy-logic algorithm, which builds the measures of system influence with
an iterative procedure.

Although the organization-technology-geography node is the fundamental building block of
the network, for many purposes we are interested in the nature of the network interactions at
a higher level of aggregation. To do this we can construct slices of the multidimensional
system along any dimension of interest. We can, for example, estimate the overall system
influence (within this particular technology network) of IBM as an organization. For this
purpose we would sum the measures of interaction (truth values) for the three IBM nodes
shown in the figure. In a completely analogous way we can create slices of the network along
the geography or technology dimensions. This allows us to examine the influence of
particular technologies or particular regions within the technology network we have singled
out for examination.

Note that in this formulation, the treatment of the three dimensions—organization,
technology, and geography—is completely symmetric. It is important to be clear about the
implications of this symmetry. We are not assuming that the magnitude of spillovers within
organizations is somehow the same as the magnitude of spillovers within regions. The
citations data themselves tell us the extent to which nodes that share a region or nodes that
share a technology are more likely or not to cite each other. In the hypothetical example
illustrated in Figure 2, for example, we allow the citations data to tell us how the interaction
between IBM—Technology 1—New York and IBM—Technology 1—New Jersey compares in
magnitude with the interaction between IBM—Technology 1—New York and Columbia—
Technology 1—New York or IBM—Technology 2—New York. We are assuming, however,
that the relationship between observed citations and actual communication or spillovers is
similar across these different dimensions. That is, we are relying on the maintained
hypothesis (supported by the empirical regularities discussed above) that a greater volume of
patent citations between node pairs is associated, on average, with greater communication
between them. Moreover, we are assuming that the tightness of the link between citations
and communications does not differ systematically across the different dimensions of
organization, technology, and geography.
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A NUMERICAL FUZZY SYSTEMS EXAMPLE 

We now formally develop an abbreviated spillover systems model utilizing hypothetical
patent data and patent citations. Appendix A develops the R&D spillover networks
algorithm. By a system we mean that there exists a hierarchy of technologies, R&D
organizations, and regions connected by a communication network. System effects exist
when a change in any component diffuses throughout the network.3

The system can be described by four key components: 

• An invention (embodied in the patent). 
• Units of the system—a unit is a source of innovation as well as a destination for the

knowledge flows communicated in patent citations. In our model a unit is a particular
R&D lab, in a particular technology, region, and year. 

• Channel of communication—citations are taken as a proxy. 
• Flow of knowledge—depends on the position of the two units within the system and

strength of interaction. 

Source: Constructing the Set around Cited Behavior

Figure 3, using patent citations, illustrates a one-way knowledge flow from organizations in
one time period to organizations in the following three time periods. We denote A-B to refer
to the interaction between two labs, A and B. Our example includes three organizations, A,
B, and C, and three time periods (T = t1, t2, and t3). Patents have been assigned to A, B, and
C. (In practice, the basic unit of analysis is an R&D lab, by technology, location, and time.)
The term “center” refers to the organization from whose perspective the members of the set
are developed. A-B_t1 denotes A being cited by B in t1. The whole number in the chart
represents the number of times the source node is cited by the destination (use) node. (The
source node corresponds to the cited organization in a particular time period, while the
destination or “use” node is the citing organization in a particular time period.)

Fractions

The corresponding fraction in Figure 3 is simply the number of times the cited organization
in a particular time period is cited by the citing organization, divided by the total number of
times the organization is cited in that time period. For example, based on time period 1’s
patents, A is cited a total of 40 times (10 by B in t1, 20 by B in t2, and 10 by A itself in t2).
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3. Chatterji (1996) points out the increasing interest in external sources of technology. In fact, the Industrial
Research Institute has formed a working group to identify and document “best practices” being used by
companies to acquire external knowledge. The follow quote suggests the importance of R&D networks as a
vehicle for firms’ external learning: “… firms do not search in isolation; rather, they search as members of a
population of simultaneously searching organizations.” See Podolny and Stuart (1995). One measure of the
significance given to the technology search process is the existence of a national organization called the Society of
Competitive Intelligence Professionals. 



Thus A_t1 is cited 10 times by A_t2, 10 times by B_t1, and 20 times by B_t2. The
corresponding fractions are 0.25, 0.25, and 0.50, respectively. 

Truth of Interaction

The fractions indicate the extent to which a cited organization contributes knowledge to
citing organizations. If we were to associate with each fraction a measure of the percentage
of such fractions that are below a particular value, then we would have a ranking of flow out
of the cited organization to the citing organization in a particular time period relative to all
such flows. In the fuzzy logic literature this term would be referred to as a truth value. Table
1 constructs truth values representing the cited numbers contained in Figure 3. Here we
associate with each fraction the corresponding truth value. 
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FIGURE 3
R&D Spillover Network: Cited Behavior Fractions
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First, our illustration sorts fractions into 10 intervals. Second, the area represented by each
fraction is simply the percentage of all fractions that lie within a particular interval (e.g., one
cited fraction lies in the interval 0–0.1, so (2) is simply 1/15 = 0.0667, where 15 is the total
number of fractions). Third, we next calculate the cumulative area, which represents the
percentage of all such fractions up to a specific interval (e.g., the interval up to and including
0.3–0.4 includes 10 of the 15, or 0.6666 cited fractions). Finally, the truth value is defined as
the area below a particular interval. For example, the truth value for 0.3–0.4 is 0.53336 (the
area below 0.3–0.4). The resulting truth values are shown in Figure 4 along with fractions. 

Constructing the Fuzzy Set 

These data can now be used to identify a cluster or network of citing organizations by time
period, around each cited organization in a particular time period. The (one-way)
interactions with citing organizations belong to the set with varying truth values. In our
example, the set around A_t1 on its being cited behavior is shown in Figure 5. The three
members of the set are the interactions with B_t2, B_t1, and A_t2. The membership value of
the interaction with B_t2 with respect to this set is 0.7333. 

How true is the statement that the interaction with B_t2 belongs to the set of “being cited”
behavior constructed around A_t1? The interaction with B_t2 belongs to the set with a
membership value (truth) of 0.7333. Therefore, the truth values are a measure of the
confidence we have in making the statement that A_t1-B_t2 interaction belongs to the set
being cited around A_t1. 

Systems Value

It is important to remember how the truth measure and, therefore, the set were constructed. At
the first step we place the flow from a cited unit A_t1 to citing unit B_t2 relative to all units
citing A_t1 (which is the fraction of A_t1 being cited by B_t2 = 0.50). In the second step, we
place the relative measure in relation to all such relative measures and found that .7333 percent
of all such fractions across all one-way flows are below the fraction of A_t1 being cited by
B_t2. The sum of such a measure for cited organizations by time period would yield a ranking
of the organizations on the knowledge being contributed by the organization. The sum would

20 ATP AND THE U.S. INNOVATION SYSTEM

TABLE 1 
Truth of Interaction (on Cited Behavior)

Interval 0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8 0.8–0.9 0.9–0.10

(1) Number of Fractions 0 1 7 2 1 1 0 0 0 3

(2) Area = (1/total) 0 0.0667 0.46666 0.13333 0.0667 0.0667 0 0 0 0.2

Cumulative Area 0 0.0667 0.53336 0.6666 0.7333 0.8000 0.800 0.800 0.800 1

Area Below = Truth 0 0 0.667 0.53336 0.6666 0.7333 0.8 0.8 0.8 0.8 
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FIGURE 4
Truth of One-way Knowledge Flows On Cited Behavior
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be high if the cited organization contributes knowledge to a very large number of similarly
influential organizations. The high sum would reflect a rich knowledge source. 

We also rank organizations on the variable value, which is defined as the relative ability of
the organization to disburse knowledge or its influence. For an organization, the variable
value is the sum of its truth values of one-way flows with other organizations divided by the
total of the truth value of all one-way flows for all organizations. (See Table 2.) (As discussed
previously, this is a way to measure the system influence of each node, which is based on the
strength of its communication with other nodes, weighted by the strength of communication
of the interacting nodes with the rest of the system. This measure of influence can be
aggregated in different dimensions of interest, and allows for the rankings of the spillover
potential within a particular R&D network by the overall organization.)

Learning: Constructing the Set around B on Citing Behavior

We follow a parallel process for constructing the set around B as citing (learning) behavior.4

(See Figures 6, 7, and 8, which illustrate the methodology when applied to citing patents in a
parallel fashion. Table 3 is based on the calculations included in Figure 6). To summarize, for
each citing organization and cited organization, we first compute the relative fraction of
times that the citing organization cites the cited organization. Next, we compute for each
such fraction the percentage of citing fractions that are below the particular fraction. This
yields the truth of citing behavior. We then define the citing organization’s “learning ability”
as the sum of its citing truth values divided by the total across all citing organizations (see
Table 3). A ranking of organizations by this variable provides a hierarchical list of
organizations as learners. If the citing (learning) organization is doing R&D that closely
parallels the source organization’s R&D, then we expect a greater flow of knowledge to
occur. Our measure value captures the importance of a cited organization’s R&D.

(1) Organization_Time Period (2) Sum of Truth (3) Value = (2)/total

A_t2 1.333 0.22988

C_t2 1.2666 0.21838

C_t1 0.8 0.137933

A_t3, B_t3, C_t3 0.8 0.137933

Total 5.799

TABLE 2
Organizations Ranked on Influence

4. The previous section uses Figures 3, 4, and 5 based on Table 1 to explain the methodology when applied to
cited patents behavior. This section shows the parallel side of the description for citing behavior in an abbreviated
fashion. 
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FIGURE 6
R&D Spillover Network: One-way Knowledge Flows as Evidenced by Citing Pattern
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TABLE 3 
Truth of Interaction (on Cited Behavior)

Interval 0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8 0.8–0.9 0.9–0.10

(1) Number of Fractions 0 3 0 0 2 4 0 0 0 6

(2) Area = (1/total) 0 0.2 0 0 0.13333 0.2667 0 0 0 0.5

Cumulative Area 0 0.2 0.2 0.2 0.333 0.600 0.600 0.600 0.600 1

Area Below = Truth 0 0 0.2 0.2 0.2 0.333 0.600 0.600 0.600 0.600
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FIGURE 7
Truth of One-way Knowledge Flows as Evidenced by Citing Patterns
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The Truth of Interaction 

To summarize, the truth of A’s cited behavior with respect to citing organization B is the
membership value that A-B interaction has in the set of cited behavior around A. Similarly,
the truth of B’s citing behavior with respect to cited organization A is the membership value
that A-B interaction has in the set of citing behavior around B. It follows from fuzzy set
theory that the membership value of the A-B interaction to both the cited set around A and
the citing set around B is the minimum of the truth values. 

In our example, the (one-way) interaction A_t1-B_t2 belongs to the cited set around A_t1
with a truth of 0.7333 and the A-B interaction belongs to the citing set around B_t2 with a
truth of 0.44 (see Table 4). It follows that the interaction belongs to both sets (the
intersection of the two fuzzy sets) with a truth of 0.44. In other words, on the scale of 0–1
we are 0.44 sure that the interaction belongs to both sets of cited around A_t1 and citing
around B_t2. Keep in mind that the truth value is developed with reference to the whole
space of one-way flow interactions. 

Why the Minimum?

Our analyses take the truth of the interaction between i and j to be the minimum of the truth
based on citing and cited behavior from i’s perspective. Of course we could have employed
any number of possible operators (e.g., the maximum, the average of the citing truth and
cited truth, or even one or the other of citing/cited truths). Why the minimum? 

We began by looking for an operator that distinguishes strong two-way communication. We
chose to employ the minimum assumption for three reasons: first, the minimum assumption
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TABLE 4
Organizations Ranked on Ability to Learn

(1) Organization_Time Period (2) Sum of Truth (3) Value = (2)/total

A_t3 0.9332 0.159

A_t1, A_t2, B_t1, C_t3 0.7333 0.125

B_t2, B_t3, C_t3 0.6666 0.1135

C_T1 0.0 0

Total 5.8662



is consistent with fuzzy set theory (i.e., the interaction between two organizations A-B can be
measured by the intersection of two fuzzy sets, which is the minimum of the truth of the
cited set around A and the truth of the citing set around B; for a fuller treatment, see Sinha
(2000)); second, the choice of the minimum provides a strict indicator of a two-way
relationship, which we assume to reflect more influential forms of communication (the choice
of the maximum could produce one-way flows); and, third, in experimentation with three
operators (the maximum, the average, and the minimum) the minimum yielded the best
results. We used knowledge of Cleveland’s R&D base and its technologies to gauge the
reasonableness of the results derived from each assumption. In essence, we used the
algorithm utilizing three alternative assumptions to generate separate results specific to
Cleveland (at three levels: technology, organization, and region). In all cases, the minimum
assumption yielded results that were consistently the most reasonable. 

Other possible constructions of the truth value are possible. For example, we could have used
the maximum truth value, the average of the two values, or simply the truth on citing or
cited behavior. Future work should analyze the many possible operators for fuzzy
intersections and experiment with each of them (see Sinha, 2000).

We interpret the quantity (the value of A) multiplied by the second term (the membership
value of A-B interaction with respect to the cited set around A and the citing set around B) as
an indicative measure of the flow from A to B. The first term captures the importance or
influence of the cited (source) organization, whereas the second term reflects the confluence
of A and B’s R&D. The product of the two terms suggests that a larger flow results when a
larger knowledge pool is mediated by the truth of interaction. We follow this approach to
develop an indicative measure of the flow of knowledge from cited to citing organizations
across time periods. 

Diffusion to Second and Third Level

Our model also assumes that when an organization A interacts with an organization B, B
benefits not only from A’s knowledge but also from the organizations that A interacts with
(see Figure 9). Thus, the knowledge flow from A to B is determined by the truth of the
interaction between the center and the member, as well as the group value associated with
the center. And, the group value multiplied by the interaction between the center and a
member measures the flow from the group around the center to the member. This group
value captures second-level diffusion effects. The algorithm used in this paper allows for
third-level diffusion. In other words, the sum of group-level interaction truth values gives us
a hierarchical communication structure on second-, then third-level, diffusion effects.

Summarizing Steps 

Here we illustrate the use of patent citations to construct the system that represents the R&D
network. A formal mathematical description of the procedure is given in Appendix A. The
fuzzy methodology allows us to develop indicative membership measures between 0 and 1
representing the strength of interaction between any pair-wise combination of R&D labs,
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specific to organization, technology, and region. Our systems model then builds the system
iteratively incorporating the first, second, and then the third level of diffusion of spillovers.
The result is a hierarchical R&D network system.

At the first step we construct sets on cited and citing behavior around each R&D lab,
working in specific technologies at a specific geographic location, by year. The R&D lab is
called the center of the set. At this stage the set members are other R&D labs working in
specific technologies by year that cite or are being cited by the center. In classical set theory, a
member either belongs to a set or does not belong to the set. In the first case, the member
has a membership value of “1” and in the second a membership value of “0.” Fuzzy set
theory develops indicative membership measures of how true the statement is that a member
belongs to a particular set. These measures are called truth values. The truth measure lies
between 0 and 1. Different methods for constructing truth measures have been developed in
the fuzzy set literature. 

To model spillovers, in the following we develop a method to construct truth values, estimate
the strength of R&D lab interactions, and construct a measure of system influence. The first
four steps describe a hierarchical system defined on first-level diffusion. In developing the
fuzzy measures, using data from Figure 9 we take the following steps:
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FIGURE 9 
All Citations Are Not Equal: A One-way Flow Illustration (B Citing 65 times)
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Step 1. Compute cited fractions: 

fA→= 5/50 = 0.1 (the fraction of citations received by A coming from B)

fB←A = 5/65 = 0.08 (the fraction of citations made by B going to A)

Step 2. Normalize fractions relative to all such flows: Is the flow a lot or a little relative to all
flows in the dataset? Evaluate the cumulative distribution of all such fA→B. Then calculate
the area under the cumulative distribution up to fA→B and compute this area as a percent of
the total area. At this step, we have constructed the set around A on the flow out from A
based on citations to A. The computed percentage is an indicative measure of how true the
statement is that B belongs to the set around the center A on flow out. Computed for each
citing member, the truth value represents the relative importance of B, E, C, and D as
learners from A from A’s perspective. We denote truth values on the flow-out property as α.
So B belongs to the set around A on the flow-out pattern with a truth of αAB. Next evaluate
the cumulative distribution of all such fB←A. Calculate the area under the cumulative
distribution up to fB←A and compute this area as a percent of the total area. At this step,
we have constructed the set around B on the flow into B based on citations made by B. This
is termed the truth of fB←A interaction. Computed for each cited organization, the truth
value represents the relative importance of A, F, G, and H as sources to B from B’s
perspective. We denote the truth based on the flow-in property as β. So A belongs to the set
around B on the flow into B with a truth of βBA. 

Step 3. For a specific pair A and B, we take the minimum of the two truths αAB and βBA as a
measure of the strength of interactions between any two R&D organizations by technology
and year. 

In set theory terms, by taking the minimum we have constructed the intersection of the sets
on flow out of A and flow into B. Interaction corresponds to the intersection of sets. We
denote the minimum as δ. The strength of interaction captures the distinction between
communication links of differing intensity. We choose the minimum to reflect the view that
interaction between any two parties is likely to be constrained by the lesser of the two
communications (the source and use). Using a classroom analogy, imagine four teaching-
learning situations: “A” teacher, “A” student; “A” teacher, “C” student; “C” teacher, “A”
student; and “C” teacher, “C” student. Where the two are different, our assumption takes
the minimum of A-C and C-A. 

Step 4. The truth between a center and any single member measures the system influence of
the link (the interaction) with that member. By summing the interaction truths of a center
across all its members we get the center’s total system influence. For each center we have two
system values, one based on the flow out of the center (the technology source) and a second
based on flow into the center (the technology user). The value of the center, which is what
the center has to offer, is estimated as the minimum of the term (the sum of truth of the
center as a source and the truth of the center as a learner). The center also incorporates a
time dimension; therefore, the analyses reveal evolution of spillover networks.
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Calculating System Value

We can then determine the influence of particular R&D labs by technology and region. The
sum of the interaction truths (values between 0 and 1) across an R&D network is the lab’s
total system value (SV) for the technology. The SV is a function of the number of links in a
network and the strength of each pair-wise interaction. Therefore, an individual R&D lab’s
SV is high when there are a large number of intensive links with other influential labs. 

For each pair of R&D labs in a network we develop three measures: the relative importance
of the unit (system value); the strength of interaction (the truth value); and the relative
systems influence of the link between the two units (the system value of the source multiplied
by the truth of interaction between the source and learning R&D labs). The results can be
aggregated across the three dimensions by year: technology, organization, and region.

Illustrating the Results of the Systems Analysis

Here we will present full-blown analyses of the R&D networks underlying two technologies
that have been of interest to the ATP. Before turning to the two cases, it is useful to get a
sense for the nature of the systems “maps” by examining small segments of larger systems.
We present two such illustrations here. The first focuses on the structure of a network in
organizational space, and a second focuses on the structure of a network in technology space.

The Micro-electromechanical Systems (MEMS) Network Surrounding MIT

Figure 10 illustrates one segment of a specific R&D organizational network for micro-
electromechanical systems (MEMS) centered on the Massachusetts Institute of Technology
(MIT) over the period 1985 to 1995. The full network is much larger and is discussed later.
(See Figure 16 for the top 25 MEMS organizations.) This segment is centered on MIT, which
is ranked twentieth in the full network. It illustrates that R&D networks operate as both
sources and learners. (In Figure 10, an arrow pointing away from a lab indicates the lab as a
source of spillovers; an arrow pointing to a lab indicates the lab as a learner from spillovers.)
One implication is that a firm’s value as a source depends on its ability to learn from its
external environment. The nodes in the R&D network correspond to the R&D labs and the
arrows indicate spillover flows between labs. The color bar indicates importance of the R&D
lab and the systems influence of interactions. The most influential node is brown; the least
(not shown) is dark blue. Arrows follow the same scheme. 

The analysis, which is based on real data, identifies AT&T, Honeywell, and Xerox as the
most important MEMS organizations in this part of the network. The full network contains
more nodes, incorporating interactions through third-order diffusion of spillovers. Next are
GTE, MIT, and the U.S. Army. The figure incorporates the most important interactions (i.e.,
those closest members of MIT’s R&D MEMS neighborhood). The interactions include first-
and second-order diffusion spillovers. For example, the flow from MIT to Xerox is about
0.5. This means that about 50 percent of all R&D pair-wise interactions in the full MEMS
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network are less intense than that between MIT and Xerox. Also shown, GTE has a second-
order influence on MIT. This occurs through its direct influence on AT&T. 

To illustrate, MIT’s system value for MEMS technologies is the sum of estimated interaction
truth values across all links in the network. If Figure 10 represents the full MEMS network,
then MIT’s system value for MEMS would simply be the sum of the value of each link in
Figure 2 (values between 0 and 1). Of course, the full network is much larger. 

The methodology tells us that funding projects involving particular organizations and
technologies inadvertently leads to specific networks. The expected social benefits can vary
by industry (depending on the underlying network interactions), and regional beneficiaries
can easily vary greatly as well.

The Polymer Network 

Our methodology also permits us to analyze networked clusters of technologies. For instance,
the MEMS organizational network surrounding MIT simultaneously identifies networks by
organization, technology, region, and year. The technology we refer to as MEMS consists of
a hierarchical set of specific patent classes connected by the network we model with patent

30 ATP AND THE U.S. INNOVATION SYSTEM

FIGURE 10
MEMS R&D Network around the Massachusetts Institute of Technology
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citations and the fuzzy systems methodology. Within the full MEMS network, some
technologies contribute more to the full network MEMS system value and, therefore, are
ranked higher within the broader technology called MEMS.

By using patent data covering the period 1985 to 1995, we can illustrate this point with an
application of the methodology to polymers. Figure 11 shows the cluster components
comprising the network around one important polymer patent class, Resins with Nonreactive
Additives (class 524). In effect, the chart depicts the technology space for polymers centered
on Resins and Nonreactive Additives, and R&D spillovers related to this specific patent class
(524) involve the components shown in the chart. The chart shows a hierarchy from the
perspective of the center based on interactions incorporating three levels of diffusion. One
way to think about the chart is to imagine the full polymer network, which is not shown.
Each member of the set around 524 is a center for its own network cluster, which in turn
interacts with its members in the same way as depicted in this figure. In effect, there exists
another network cluster which looks like Figure 11 for each of Figure 2’s components, and
another for each component at the third level of diffusion. Obviously, all of the components
cannot be presented in one figure. The measures contained in Figure 11, however, include
their effects. 
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FIGURE 11
Technology Network around the Polymer Patent Class 524
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The hierarchy is represented by the four rings surrounding 524. Technologies in the first ring
interact more intensely with the center and, therefore, might be considered as 524’s core
technologies. Note that the figure includes two values. The first value defines each ring and,
therefore, the position of each component technology within the full polymer network. This
value is based on a pair-wise interaction (i.e., the ring value represents the interactions of the
specific technology with the center (524)). For example, the outer (fourth) ring includes
technologies with an interaction truth value of 0.66033. Notice, however, that Stock
Materials by itself interacts with 524 with a value of 0.95973. In other words, this individual
interaction exceeds that of 96 percent of all such interactions within the full network,
indicating that this class is very closely associated with 524. The second measure, which
places Stock Materials in the outer ring, incorporates additional interactions that Stock
Materials has with the set of technology members around it (i.e., it has its own network). As
a consequence, when allowing for diffusion of R&D spillovers, Stock Materials is farther
from the center than one might expect based on its individual interaction with 524. This can
be contrasted with Ion Exchange Resins, which, despite its lower degree of interaction with
524, contributes more to 524. This happens because the network components surrounding
Ion Exchange Resins are more important to 524 than the network components surrounding
Stock Materials. One implication is that the indirect interactions picked up by this systems
methodology, as R&D spillovers occur through three levels of diffusion, can significantly
alter the measure of a technology’s broader influence.
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In this section we focus on MEMS. This is an emerging technology that appears to be
potentially enabling, at least in the sense of having apparently wide applicability to a number
of different industries.1

MEMS combines computation, sensing, and actuation with miniaturization to make
mechanical and electrical components.2 The bulk of applications are pressure sensors, optical
switching, inertial sensors, fluid regulation and control, and mass data storage. These
applications cut across a number of manufacturing industries, including sensors, industrial
and residential controls, electronic components, computer peripherals, automotive and
aerospace electronics, analytical instruments, and office equipment. It is also likely that
MEMS interacts extensively with other technologies. The industry list suggests a potential for
generating a large, broad-based volume of R&D spillovers. 

Our analysis suggests that R&D networks generating precompetitive, enabling technologies
may have certain characteristics, such as that the universities and government labs play
significant roles as sources, the network is sparse and evolving, the technology is new (the
cited patents are relatively current), the total system spillovers increase significantly and
technology gets diffused rapidly, influential companies perform significant basic research, and
the technologies become geographically concentrated in important regions serving as
incubators.3
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4. ATP and the Case of MEMS

1. When we began this research project, MEMS was under consideration for the formation of an ATP-focused
program. Although this is possibly indicative of its enabling potential, none of our research or conclusions were
tied to the focused-program analysis.

2. For a description of MEMS, see U.S. Department of Defense (1995). For an interesting description of
MEMS, see Discover (March 1998). 

3. Serious R&D organizations invest a portion of R&D to actively acquire external knowledge and
aggressively search what Stuart and Podolny (1995) call the technological landscape for ideas, knowledge of
competitors’ technology, etc. See Cohen and Levinthal (1990). Clearly, a firm’s learning process is not random.
Evidence from our interviews suggests that firms are focusing more resources on acquiring technology from
external sources. See Jaffe et al. (1998).  



MEMS is an emerging technology worldwide. About 200 firms are actively engaged in
MEMS R&D: roughly 80 are U.S. firms, and Japan is the second major player. According to
the U.S. Department of Defense, the MEMS market was $1 billion in 1994. Projections for
the year 2000 ranged from $8 to $14 billion.4

The U.S. industry investment in MEMS so far has been fairly modest (about $120 million in
1995). In contrast, in the same year federal R&D support of MEMS was a large component
(about $35 million), $30 million of which came from the U.S. Department of Defense
(mainly the Defense Advanced Research Projects Agency (DARPA)).5 Suggestive of the
technology’s emerging character, about 30 universities and government labs are actively
pursuing MEMS technologies. The National Science Foundation’s (NSF) MEMS support was
$3 million. National labs contributed about $2 million. Between 1989 and 2000, NSF
sponsored 124 MEMS-related projects at 61 organizations (mainly universities), with funding
of about $25 million. Approximately $1.4 million consists of Small Business Innovation
Research (SBIR) grants.6

DATA AND MEMS PATENTS
The data are drawn from the universe of patents granted by the U.S. Patent Office from 1963
through 1995.7 Information on patent citations begins in 1977. Electronic data on the
assignee is available beginning in 1969. We geographically locate patents using the inventor’s
address, which means that the location in our analysis is the R&D lab’s location and not the
headquarters’ (assignee’s) location. In addition to country and state, inventors have been
sorted first into counties and then metropolitan areas. 

As a foundation for analyzing MEMS, starting with a short list of key inventors and federally
funded MEMS projects, we developed a core database of about 1,200 MEMS patents.
Citations to these initial patents were used to identify additional MEMS candidate patents.
Each candidate patent’s abstract and exemplary claims were read to ensure that the patent
was a MEMS technology.8
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4. The data for this report was compiled for the period 1985 to 1995.
5. Our research shows that DARPA has funded 62 projects at 48 organizations (17 universities, 5 government

labs, 18 large companies, and 8 small firms). DARPA funded five SBIR projects at four companies; they
previously funded an additional five SBIR projects. The U.S. Army has funded 17 MEMS-related projects at 14
firms through its SBIR program. The projects amount to nearly $2 million. NASA has sponsored 20 MEMS-related
SBIR projects. (No dollar amount was available.) However, the MEMS working group at NASA-Lewis in
Cleveland supported $2.5 million MEMS R&D by 17 scientists and engineers. Moreover, Ohio MEMS-Net has
funded $2.4 million for capital investments in 1995 and 1996. 

6. Ranked by total NSF support of MEMS projects, the top 10 institutions include: Stanford, UC Berkeley,
University of Michigan, Cornell, University of Utah, University of Pennsylvania, University of Illinois Chicago,
Case Western Reserve University, University of Minnesota, and University of Hawaii. Most of the MEMS
university projects are associated with fairly extensive patenting. The 61 MEMS universities currently account for
312 MEMS patents. 

7. The study uses the comprehensive patent database developed jointly by the Center for Regional Economic
Issues at Case Western Reserve University and the National Bureau of Economic Research. 

8. The analysis of MEMS patents was done by David Hochfelder, a research assistant on the ATP project. 



There is considerable international competition involving MEMS technology. The technology
is concentrated in a few countries. As shown in Figure 12, our systems analysis of MEMS
technologies ranks the United States first, Japan second, followed by Germany, France, and
Great Britain. Rank is based on each country’s systems value as a MEMS source (i.e., our
fuzzy estimate of each country’s contribution to MEMS technologies built up from the nodes
in the MEMS network). Spillovers occur across international boundaries. Figure 13 shows
the balance of MEMS spillover flows for seven countries with the largest MEMS
concentrations (flow in minus flow out). What the data show for MEMS is that higher-order
countries are net exporters of the technology. The balance of MEMS knowledge flows
between the United States and Japan favors the United States. 

The results suggest the potential for ATP to use the methodology to become more
knowledgeable in its project support by incorporating knowledge of spillover networks. For
example, one important consideration for ATP could be to use understanding of R&D
networks to measure any knowledge spillover trade flows from its projects. Although a
technology’s importance can be evaluated by using total R&D network spillovers, the
methodology permits separating these spillovers into two components, those benefiting the
United States and those benefiting other countries.

THE MEMS R&D NETWORK
We can describe networks in detail: about 400 technologies (patent classes), individual R&D
labs by organization, and metropolitan region location. Each member’s position is
simultaneously located in the three spaces by year. The data cover the period 1985 to 1995.
We can also analyze change (i.e., the evolution of R&D networks). For example, in the case
of MEMS, given the importance of investing in enabling networks, an important issue is: Are
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FIGURE 12 
World's Top Five Sources of MEMS

FIGURE 13
Balance of International Flows in MEMS
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university members becoming less important sources of the technology while companies
become increasingly important network members? 

Also, as mentioned earlier, it is possible to analyze evolution of networks surrounding
particular industry-based technologies. (These are developed in greater detail later.) We
construct industry R&D networks by first identifying R&D companies whose R&D is
predominantly focused on a particular industry using either CorpTech or more specialized
technology information, as in the case of MEMS.9 The second step involves identifying both
significant sources and users of the technology generated by the initial data set. This step is
repeated up to the third level of diffusion. The system source and user interactions are then
normalized with respect to all interactions contained in the specific industry R&D network.
We can then aggregate these measures in various ways to analyze how regions, organizations,
and technologies interact over time as sources and learners in developing new technology by
industry. 

Take one specific example, auto technologies. See Figure 14. What the figure shows is the
growing importance of computer technology as an auto ingredient. This result reflects the
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9. The CorpTech database is a directory of about 50,000 high-tech companies provided by Corporate
Technology Services, Inc. The file used here is 1996. CorpTech estimates that the file contains 99 percent of
companies over 1,000 employees, 75 percent of companies with 250–1,000 employees, and 65 percent of
companies with fewer than 250 employees.

FIGURE 14
The Increasing Role of Computer-Related Technology in the Auto Network
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increasing significance of nontraditional sources of auto technology (sources other than the
major assemblers and component suppliers, such as IBM). The system value is normalized
with respect to all interactions in the auto R&D network, so that the different technologies
can be compared in one figure. (In normalizing the value for each separate auto technology,
the minimum equals “0” and the maximum equals “1”. Automotive technologies with values
closer to 1.0 are more influential within the set of all automotive technologies. The procedure
parallels the calculation that was made for the individual patent citations, which also range
from 0 to 1).

Each R&D network’s spillovers can be analyzed across all three dimensions. This capability
might provide ATP with the means to select projects associated with enabling MEMS R&D
networks, or to measure knowledge spillovers associated with ongoing or completed projects.
One hypothesis could be that ATP’s funding would be more “enabling” (i.e., draws on more
basic, early-stage research, and stimulates broader, more influential spillovers across a wider
spectrum of important uses), if it leverages other important federal R&D funding. 

Only the findings for each network’s most influential members as influential sources are
shown. These particular examples characterize the R&D network sources of MEMS
technologies. A parallel network exists for spillover use networks. 

Technologies

Here we illustrate the system importance of leading technologies in the MEMS network. See
Figure 15. The top five MEMS technologies, which we can think of as the MEMS core, are
Semiconductor Device Manufacturing Process, Metal Working, Electricity: Electrical Systems
and Devices, Incremental Printing of Symbolic Information, and Optics: Systems (including
Communication) and Elements. Our analysis shows that each of the top five MEMS
technologies plays an influential role in both auto and aerospace industry technologies. ATP-
funded projects might be more likely to create greater R&D spillovers if projects focused on
core MEMS technologies.

Organizations

Figure 16 shows the top MEMS organizations ranked by system influence. An organization’s
position on the list is determined by the magnitude of spillovers generated by its associated
R&D network. In other words, organizations that are members of the most influential
segments of the MEMS network are higher ranked. The analysis shows that IBM ranks first
as a source, followed by U.S. Phillips, NEC, General Electric (GE), Texas Instruments, and
United Technologies. Some of the key universities are (in order of their influence) MIT,
Stanford, and Berkeley. The full organization list (not shown) would reflect the prominence
of federal labs and universities as prominent MEMS sources. The ATP’s projects are more
likely to create more R&D spillovers if they involve organizations or joint ventures whose
R&D is core to MEMS (i.e., they operate within influential portions of the MEMS network;
that is, interacting with influential neighbors). 
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FIGURE 15
Fuzzy MEMS Technology R&D Networks
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FIGURE 16
Fuzzy MEMS Organization R&D Networks
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Regions

When ATP selects a project, it is also inadvertently selecting the geography of R&D
spillovers and, consequently, the regional beneficiaries of ATP-funded R&D. Previously we
saw that MEMS is highly concentrated in a small set of leading countries. As shown in
Figure 17, an analysis of U.S. regions reveals that development of MEMS is also
geographically concentrated in a few top regions: San Francisco, Boston, Los Angeles, New
York, Chicago, and Dallas account for the largest share of the technology. 
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FIGURE 17
Regional Distribution of MEMS Technology
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Our hypothesis is that an important characteristic of enabling networks is location in a
successful regional agglomeration supportive of new technology development. Although
influential R&D organizations search in a global R&D network, in a precompetitive,
incubation phase, geography plays a critical function; that is, the accumulation of a critical
mass of strong network connections that speed growth of the enabling technology. In general,
we expect that as local activity increases, the volume of important spillovers grows but an
increasingly large fraction becomes external as a region develops higher-order R&D
organizations with worldwide connections. Because R&D labs have a specific location, an
agglomeration of strong R&D networks serves a dual function; that is, good regional sources
are also good learners. Local R&D networks are strong only if they are solidly linked to the
global network.

Both San Francisco and Boston are important MEMS sources—both regions are influential
external sources of MEMS. Only San Francisco, however, appears to be developing
significant local spillovers. Based on this particular enabling characteristic of networks, it is
reasonable to anticipate that ATP investments in projects with strong connections to San
Francisco’s MEMS network may produce more spillovers and faster development of the
technology. Investing in ATP projects located in these large R&D agglomerations will likely
produce a higher social rate of return because the investment builds from critical mass,
creating increasing spillover returns to R&D. The ATP’s investments in leading regions may
also result in capture of a greater share of spillovers by the United States. The reason stems
from the expected increasing returns to R&D coupled with a faster rate of technology
diffusion and commercialization. Even if ATP’s investments are concentrated in leading
regions, spillover benefits would be shared by a much larger set of U.S. industries and regions
that draw from incubator regions. 

COMPARISON OF SYSTEMS RESULTS TO SIMPLE CITATION COUNTS 
To illustrate the spillover process, we have utilized the systems approach to generate
information along a variety of different dimensions. It is worth asking, however, whether the
systems approach presents any differences in its basic ranking of organizations as potential
sources of spillovers, relative to what we would conclude by simply counting the patent
citations of different organizations. In the case of MEMS, the answer is that the two ranks
are correlated but several interesting and important differences emerge. 

Table 5 ranks leading MEMS organizations based on both measures. For example, United
Technologies ranks considerably lower by the total citations (12) than by the systems source
rank (6). The reverse is true for Xerox, which has a citations total rank of 2 and a systems
methodology source rank of 13. If ATP were evaluating MEMS projects involving these two
organizations solely based on “expected” R&D spillovers, the simple citation count would
prefer Xerox (ranked 2 versus 12) while the systems methodology would prefer United
Technologies (ranked 6 versus 13). In other words, our analysis of MEMS R&D networks
tells us that United Technologies is more influential than Xerox as a source of MEMS
technologies, although this difference is not visible in the simple counts.
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Differences in the two ranks are due to differences in R&D networks. The systems analysis
assigns higher value to the intensity and spread of spillovers through the network’s three
dimensions: technology, organization, and geography. If an organization’s system rank is
higher (lower) than its citation count rank, this means that the higher-order interactions (the
influence of the nodes citing the patents of the organization of interest) are higher (lower)
than average.

TABLE 5
Comparison of Organizational Ranks by Existing (Citation) and System Methods

Citation System System 
Organization Method Rank Source Rank Use Rank

IBM 3 1 1

U.S. Philips 5 2 3

NEC 7 3 9

General Electric 6 4 6

Texas Instruments 4 5 4

United Technologies 12 6 22

AT&T 14 7 17

Honeywell 15 8 30

Hughes Aircraft 21 9 10

Motorola 18 10 2

Brother 16 11 46

Hitachi 10 12 26

Xerox 2 13 13

Mitsubishi 20 14 37

Thomson-CSF 22 15 20

Robert Bosch 27 16 21

Seiko Epson 33 17 36

Plessey Overseas 49 18 79

Olympus Optical 9 19 11

MIT 8 20 15



NSIC AND SWAT
We have chosen to illustrate the usefulness of the R&D spillover systems methodology with
an important ATP-funded project: the Joint Venture on Short-wavelength Sources for Optical
Recording (SWAT). This joint venture was one of ATP’s initial (1991) awards. It received a
grant of $5.4 million as part of a $14.6 million cost-shared five year project budget. SWAT’s
purpose was “to develop a short-wavelength integrated laser source.”1 Importantly, the joint
venture was managed by the National Storage Industry Consortium (NSIC), which was
formed as a response to increased Japanese competition in the recording industry.2

In 1994 the data storage device industry was a $50 billion per-year market. Roughly two
thirds of the market belonged to U.S. companies and one third to Japanese firms. Although
optical recording technology represented a relatively small share of the market, in 1991 it
was viewed as the most promising new technology. The fact that Japanese companies
controlled 80 percent of the optical recording market represented a threat to U.S. industry
dominance in the recording industry. As a response, the SWAT joint venture proposed to
develop an integrated short-wavelength laser source for optical recording. 

NSIC, which managed the SWAT joint venture, had 39 companies and 35 universities and
government laboratories as members in 1994. The ATP-funded joint venture involved a
handful of NSIC members: Applied Magnetics, Bernoulli Optical Systems, Eastman Kodak,
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5. ATP and the Case of Short-
wavelength Sources for Optical
Recording

1. Information concerning the SWAT Joint Venture comes from an ATP study by Link (1994). According to
NIST, “Multiple lasers (for multichannel recording), solid-state components to increase frequency, and a
nonmechanical scanning system for tracking the beams will be fabricated in a single device. Besides greatly
advancing the art of diode laser sources and optical modeling, these new heads would revolutionize the industry—
data storage four times as dense, data read and write speeds twice as fast or better, in significantly small, more
rugged devices.” See http://jazz.nist.gov/atpcf/prjbriefs/prbrief.cfm? ProjectNumber=90-01-0231.

2. NSIC’s objective was “…to enhance the competitiveness of the U.S. recording industry through a strategic
plan to form joint venture programs on precompetitive technologies and to coordinate technology developments
among corporations, universities, and governmental organizations.” See http://www.nsic.org/members.html.



IBM, Maxoptix, and the Optical Storage Center of the University of Arizona. Importantly,
SWAT membership changed considerably over time, even though most of the current
members were in the original group. The current participants consist of Carnegie-Mellon
University; Eastman Kodak, Mass Memory Division, Research Labs (Rochester, New York);
IBM (San Jose, California); Uniphase (San Jose, California); and University of Arizona. Only
Uniphase was not among the original joint venture members.3

A SYSTEMS ANALYSIS OF OPTICAL WAVEGUIDE TECHNOLOGIES 
The ATP case study presents an opportunity to illustrate the R&D spillover systems analysis
as applied to an ATP-funded joint venture. Our purpose is to illustrate the potential of the
methodology, and not to evaluate it . An evaluation would require considerably more
information and more current data. Our data and systems analysis covers the period 1985 to
1995. (The joint venture grant was awarded in 1991.)

We began our analysis of Optical Waveguide (OWG)4 technologies by first developing a core
set of OWG patents. We started with patents held by the SWAT members as well as OWG
patents assigned to the other NSIC members. We then expanded our core set of OWG
patents by using the Science Citations Database to identify leading researchers in the field
and their OWG patents. Citations to the patents were used to identify additional OWG
candidate patents. Each candidate patent’s abstract and exemplary claims were read to ensure
that the patent was an OWG technology.5 Using our systems analysis methodology, we built
the full OWG network from the initial set of OWG patents. The full OWG network was
analyzed in four spaces: technology, organization, region, and time. Each member’s network
position is simultaneously located in the four spaces. These particular examples characterize
the R&D network as sources of OWG technologies.

Technologies

The resulting top 20 most influential OWG technologies are shown in Figure 18. The top
five OWG technologies are Coherent Light Generators (372); Optics: Systems (Including
Communication) and Elements (359); Optical Waveguides (385); Dynamic Information
Storage or Retrieval (369); and Compositions (252). (The number in parenthesis is the U.S.
Patent and Trademark Office’s patent class number.) The technology slice of the network
could be used to analyze the technology area where research activity is most intensely
occurring. For instance, by analyzing the system value associated with each component
technology, it may be possible to identify which technologies (patent classes) are growing or
declining in importance within the OWG network. Also, with more current data, ATP might
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3. Other companies had shown strong interest: 3M, DEC, HP, KOMAG, Quantum, Storage Technology,
Carlisle Memory Products, and Visqus. CMU’s Data Storage System Center also expressed early interest, and
eventually became a SWAT member. 

4. Optical waveguide is any structure having the ability to guide optical energy. Optical waveguides may be (a)
thin film deposits used in integrated circuits or (b) optical fibers. See ATIS website <http://www.atis.org>.

5. The analysis of OWG patents was done by David Hochfelder, a research assistant on the ATP project. 
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FIGURE 18
Top 20 Optical Waveguide Technologies
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Semiconductor Device Manufacturing: Process 437

Static Information Storage and Retrieval 365

Incremental Printing of Symbolic Information 347

Road Structure, Process, or Apparatus 404

Etching a Substrate: Processes 216

Facsimilie or Television Recording 358

Dynamic Magnetic Information Storage or
Retrieval 360

Adhesive Bonding and Miscellaneous
Chemical Manufacture 156

Radiation Imagery Chemistry: Process, Composition,
or Product Thereof 430

Bleaching and Dyeing: Fluid Treatment and
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Synthetic Resins or Natural Rubbers—
Part of the Cl520 Series 525

System Value (Measure of Influence) as Source
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Optics: Systems (including Communication)
and Elements 359

be able to determine what joint venture participants were generating the most activity
relative to the development of the proposed technology’s most important components.

Organizations

Figure 19 shows the top 20 OWG organizations ranked on system influence (i.e., each
organization’s total system influence within the OWG network). An organization’s position
on the list is determined by its R&D spillover contribution to the OWG network. For
example, the top five ranked organizations are 3M, Eastman Kodak, IBM, Stanford, and



Spectra Diode Laboratories. Suggestive of OWG’s emerging character, several universities as
well as government labs are ranked among the top 50 organizations: Stanford University and
MIT, and three government labs (one each of the U.S. Navy, U.S. Air Force, and U.S. Army).
As a gauge of the degree of competition within the recording industry, Japanese companies
are among the influential members of the OWG network, including Fuji Photo, Hitachi,
Hoya, Sumitomo Electric, and Asahi Glass. 

Table 6 lists the original SWAT members, the current SWAT members, and other NSIC
members determined to be ranked among the top 50 most influential organizations within
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FIGURE 19
Top 20 Waveguide Organizations
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the OWG network but not members of the joint venture. The table also provides each
organization’s system value rank. Of note, the top four OWG sources are NSIC members; the
fifth-ranked organization in Figure 19, Spectra Diode Laboratories, was a subcontractor to
the project, but not an NSIC member. (There are also a number of highly important sources
of OWG technology that are not members of the NSIC. Included within the top 20 listed in
Figure 19 are Corning, Xerox, AT&T, Motorola, U.S. Phillips, and TRW.)

Regions

As shown in Figure 20, OWG technology in the United States is concentrated in a few
regions: San Francisco is the first, followed by Minneapolis, Rochester, New York-New
Jersey, and Los Angeles. Our hypothesis is that an important characteristic of enabling
networks is location in a successful regional agglomeration supportive of new technology
development. It is not surprising that the NSIC formed in San Francisco, which is the top
OWG agglomeration. Two of SWAT’s five active members are located in the San Francisco
Bay Area: IBM’s Almaden Research and Uniphase are both located in San Jose. 
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TABLE 6 
OWG System Influence of Joint Venture and Other NSIC Members

Other Top 50 System- 
Original Members Current Members Ranked NSIC Members Value Rank

Applied Magnetics Not ranked

Bernoulli Optical Systems Not ranked

Eastman Kodak Eastman Kodak 2

IBM IBM 5

Maxoptix Not ranked

University of Arizona University of Arizona Not ranked

Carnegie-Mellon University Carnegie-Mellon University Not ranked

Uniphase Not ranked

3M 1

MIT 13

Polaroid 17

HP 27

Energy Conversion Devices 28

Texas Instruments 30
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FIGURE 20
Top 20 Optical Waveguide Regions
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LIKELY SPILLOVERS FROM THE ATP-FUNDED PROJECT

The results suggest that ATP could reasonably have expected its investments in the joint
venture to generate a large volume of R&D spillovers for three reasons. First, the OWG
network is dominated by U.S. organizations. The top six most influential organizations are
U.S. owned: 3M, Eastman Kodak, Stanford University, IBM, Corning, and the U.S. Navy.
Two of these are joint venture members. Second, several top-ranked companies within the
OWG network are NSIC members and joint venture participants. The inclusion of at least
one top-ranked member within the network might lead one to expect significant R&D



spillovers stemming from an ATP grant. By including at least one top-ranked member, the
R&D spillover contribution of an unranked joint venture member would be enhanced by
connecting it to more intense segments of the network. Third, because the joint venture was
lodged within NSIC, ATP could also have reasonably expected its investments to produce
even broader spillover benefits (i.e., effects beyond the immediate joint venture members). 

Although only a few members participated in the joint venture, NSIC represents a potentially
powerful mechanism for magnifying R&D spillovers from the joint venture. It is likely that
other partnerships and linkages already existed or developed between joint venture members
and nonparticipating NSIC members. For instance, ATP’s requirement that ownership of the
technology be assigned to a for-profit joint venture member might reduce a university’s
incentive to participate in the joint venture. Universities also might participate and contribute
to the technology’s development indirectly outside SWAT (e.g., through other forms of
university-industry interaction, such as consulting, company-funded applied research at
universities, and through their graduates taking jobs with NSIC companies). Stanford
University, for instance, the first ranked university within the OWG network, probably has
multiple research and consulting relationships with various NSIC members, whether SWAT
participants or not. If the data were available, a reasonable hypothesis might be that
Stanford’s graduates represent another R&D spillover mechanism as they take jobs with
NSIC members, forming even stronger OWG network connections, later traceable to patents.
Such informal mechanisms associated with other ATP-funded projects could also be analyzed. 

OTHER OBSERVATIONS
ATP’s support of SWAT through the NSIC increases the likelihood that its investment in the
OWG will generate a large volume of R&D spillovers. The ATP’s support likely influences
the R&D decisions of several highly connected OWG network members, both directly (joint
venture members) and indirectly (through NSIC). The OWG technology also exhibits several
enabling technology characteristics. In particular, universities and government labs play
significant roles, and the technologies are highly concentrated geographically.6 By investing in
a technology in which universities and government labs play a prominent role, ATP’s
investment can leverage millions of dollars of federal government support of basic research
funding and likely increase the odds of commercialization and result in capture of economic
benefits in the United States. 

What made the OWG a good joint venture candidate? First, it presents a large market,
dominated by U.S. companies, in which the most promising, emerging technology is
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6. We tentatively identify the characteristics of enabling technologies as the following: universities and
government labs play significant roles, the network is sparse and evolving, the technology is new (cited patents are
relatively current), total system spillovers increase significantly and get diffused rapidly, influential companies
perform significant basic research, and technologies become geographically concentrated in important regions
serving as incubators. (For startups, with an important technology but too small to be picked up by our
methodology, we may look for venture capital funding.) 



controlled by Japanese companies. Second, U.S. companies representing highly influential
sources of technology in the recording industry formed NSIC as a collective response to
increased competition (in other words, a partnership among industry participants was
forming). Third, a number of universities and government labs with research related to
optical recording became associate members of NSIC, indicating that the consortium and the
joint venture would likely leverage the millions of dollars of federal R&D support to
universities and government labs. Finally, several key companies from NSIC were among the
joint venture participants. Although the joint venture consists of a small subset of NSIC
organizations, facilitated by increased interaction among NSIC members, ATP’s investment in
the joint venture may be substantially magnified by increased R&D spillovers and a faster
rate of technology development.
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One of the ATP’s mission goals is to support projects that deliver broad-based economic
benefits. To what extent are the R&D spillovers widely distributed across industry sectors?
An industry-wide distribution of spillovers suggests that a firm or joint venture will be less
able to capture all of the benefits. It also suggests that such projects will contribute to the
development of the new technology in more geographic regions. This section illustrates the
application of the fuzzy methodology to the analysis of spillovers that cut across five broad
industries: automotive, aerospace, information technologies, advanced materials, and
biomedical devices. 

Imagine an ATP-funded MEMS R&D joint venture involving MIT, Honeywell, and Xerox.
As shown earlier in Figure 10, Honeywell and Xerox are part of the tightly knit MEMS
network centered on MIT, which was the top-ranked university in MEMS during the period
1985 to 1995. Honeywell is ranked 8 and Xerox is ranked 13 in this full MEMS network.
Suppose that the ATP-funded collaboration supports MEMS research that advances
technology in dynamic information storage and retrieval. This patent class is highly ranked in
both MEMS and in the auto industry. (Recall that Figure 14 illustrates the growing relative
importance of computer-related technology in the auto network.) It is reasonable to
anticipate that, with diffusion, the auto industry would be a significant beneficiary of MEMS
spillovers from the hypothetical project.1 In fact, because organizations will vary in the extent
to which their networks overlap the networks underlying different industries, ATP’s project
selection has the potential to significantly influence the distribution of spillovers across
industries. 
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6. R&D Spillovers from MEMS and
Optical Recording

1. Even though this patent class grew significantly in importance within the auto industry, its average rank
over the period 1985 to 1995 was not high. One implication is that it may be possible (and desirable) to analyze
emerging technologies that trigger the evolution or change in the mix of influential technologies within particular
industry sectors, such as autos. 



METHODOLOGY

One way to examine this issue is to analyze the overlap between each of the two networks—
MEMS and OWG—and the network of technologies associated with several broad
industries. To accomplish this we separately analyzed the R&D networks related to specific
technologies vital to the five major industries discussed.2 This step involved identifying
companies whose R&D was predominantly focused on a particular industry. For example,
we developed an initial list for the auto industry using several industry directories to identify
major auto assemblers and auto suppliers. We also drew extensively from the CorpTech
database, a directory of about 50,000 high-tech companies, in developing our initial list.
(CorpTech develops broad industry technology categories consistent with four of our five
industries.) The company lists were then used to develop a company-level patent database for
each broad industry. Finally, we constructed the R&D networks associated with each
industry using our fuzzy systems methodology.

By using the same methodology applied to MEMS and OWG, we identify the most
influential technologies underlying each industry as the aggregate of their system influence as
sources by industry. For example, Table 7 lists the top 25 technologies (patent classes) based
on the aggregation of their system influence for information technology as sources. As
before, the system value is the sum of interaction values across all links representing the
network for each broad industry. Although we ignore location and organization in our
presentation, their effects are incorporated in the analysis and system measures. 

To make the methodology more specific, assume that we have two R&D networks: MEMS
and biomedical devices. Our objective is to determine the extent to which the two networks
overlap. The hypothetical intersection is illustrated in Figure 21.3

In essence, our analysis involves determining the truth value of membership within both
technologies. We evaluate the joint truth value as the product of the two truth values. We
then sum the product of the two truth values across all technologies within each R&D network. To
summarize, we evaluate the intersection of the two fuzzy networks in several steps:

1. Let: i = organization and j = technology
2. Tijm = the truth of technology j specific to organization i in “MEMS”
3. Tijb = the truth of technology j specific to organization i in “biomedical”
4. Tijm × Tijb: the truth of technology j specific to organization i in both “MEMS” and “biomedical”
5. Sum over i (Tijm × Tijb) for all i, j, k (all earlier truths by i, j, k).

Thus our analysis occurs at the i, j, k, t level (a specific organization’s lab), in a particular
region, working within specific patent class, by year. 
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2. See Fogarty et al. (1999). 
3. The picture is somewhat misleading because the R&D networks are hierarchical, with the core (most

influential) components located closest to the center of each network, and less influential component technologies
located further from the center. 
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TABLE 7
The Top 25 Technologies: System Influence by Source in the Information 
R&D Network, 1985–1995

Class Patent Class Source

395 Information Processing System Organization 1,586.9

364 Electrical Computers and Data Processing Systems 1,351.3

361 Electricity: Electrical Systems and Devices 892.4

324 Electricity: Measuring and Testing 860.5

371 Error Detection/Correction and Fault Detection/Recovery 739.3

250 Radiant Energy 708.6

428 Stock Material or Miscellaneous Articles 674.9

370 Multiplex Communications 667.1

327 Miscellaneous Active Electrical Nonlinear Devices, Circuits, and Systems 653.9

359 Optics: Systems (including Communication) and Elements 642.7

375 Pulse or Digital Communications 641.2

360 Dynamic Magnetic Information Storage or Retrieval 620.7

326 Electronic Digital Logic Circuitry 588.8

430 Radiation Imagery Chemistry: Process, Composition, or Product Thereof 566.7

345 Selective Visual Display Systems 540.3

437 Semiconductor Device Manufacturing: Process 533.6

439 Electrical Connectors 533.2

257 Active Solid-State Devices (e.g., Transistors, Solid-State Diodes) 517.3

380 Cryptography 514.5

347 Incremental Printing of Symbolic Information 504.5

156 Adhesive Bonding and Miscellaneous Chemical Manufacture 475.3

340 Communications: Electrical 471.7

235 Registers 464.3

348 Television 457.6

400 Typewriting Machines 445.2

341 Coded Data Generation or Conversion 426.6

RESULTS

Tables 8 and 9 contain the spillover calculations for MEMS and OWG across the five
industries. The first number represents estimated spillovers, and the second number in
parenthesis provides the system value rank of the patent class within each industry’s R&D
network. For example, spillovers from MEMS’ top patent class (semiconductor device
manufacturing (437)) to the same class within information technology is 63. The (16)



indicates that this class was ranked sixteenth in importance (influence) within the
information technology network. 

Not surprisingly, because of the defense and aerospace origins of the technology, MEMS has
disproportionately created spillovers for the aerospace industry (roughly 60 percent). The
second most important recipient of MEMS spillovers was biomedical devices (about one-fifth
of the total). The remaining 20 percent of spillovers were somewhat evenly distributed
among the other three industries. The implication is that MEMS spillovers have influenced
many of the core technologies of four of the five industries (the exception was biomedical
devices). This is shown by the relatively large number of top 25 technologies for each
industry that were influenced by MEMS R&D spillovers.4, 5

One limitation of these calculations is that the quantities represent an average covering the
period 1985–1995. Ideally, the analysis would examine trends. It is very likely that an
analysis of the trend in MEMS system influence by industry would find a broader diffusion
of the technology. For instance, MEMS spillovers contributed relatively little to the core
technologies in biomedical devices (as Table 8 shows, no high-ranked technologies within
biomedical devices were among the high-ranked MEMS technologies). Our result reflects that
the MEMS R&D network, however, is based on all MEMS, even though, as pointed out earlier, MEMS
technologies can be grouped into several categories, one of which is in the rapidly growing bio-MEMS
field. Moreover, as the auto example points out, special attention in future research should be focused
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FIGURE 21
Hypothetical MEMS Spillovers across Biomedical Devices
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4. The MEMS totals and percent by industry are auto: 1,700 (8.4 percent); aerospace (12,185 (60.0 percent);
advanced materials: 1,422 (7.0 percent); information technology: 1,117 (5.5 percent); and biomedical devices:
1,117 (19.1 percent). Amounts for OWG are auto: 49 (11.5 percent); aerospace: 174 (40.9 percent); advanced
materials: 53 (12.4 percent); information technology: 59 (13.8 percent); and biomedical devices: 91 (21.4 percent). 

5. Appendix B provides 6 tables that show the Top 25 Technologies in six industries: (1) aerospace, (2)
information technology, (3) automotive, (4) advanced materials, (5) bio-medical devices, and (6) Mems. 
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TABLE 8
R&D Spillovers from MEMS to Selected Broad Industries, 1985–1995 

Advanced Information Biomedical

Class Top 25 MEMS Technologies Auto Aerospace Materials Technology Devices 

437 Semiconductor Device Manufacturing: etc. 63 (16) 

29 Metal Working 191 (7) 1321 (7) 179 (18) 65 

361 Electricity: Electrical Systems etc. 189 (6) 943 (6) 120 (3) 474 

347 Incremental Printing of Symbolic Info. 76 (20) 

359 Optics: Systems and Elements 132 (12) 940 (10) 86 (10) 521 

216 Etching a Substrate: Processes 

156 Adhesive Bonding etc. 118 (18) 995 (25) 138 (15) 57 (21) 565 

338 Electrical Resistors 

73 Measuring and Testing 205 (5) 1664 (9) 251 (7) 832 (19) 

345 Selective Visual Display Systems 66 

428 Stock Material or Miscellaneous Articles 259 (1) 1635 (4) 332 (1) 85 (7) 866 (17) 

310 Electrical Generator or Motor Structure 166 (10) 678 (11) 

257 Active Solid-State Devices (23) 67 (18) 

250 Radiant Energy 161 (13) 1352 (2) 243 (10) 102 620 

369 Dynamic Information Storage or Retrieval 

251 Valves and Valve Actuation 

365 Static Information Storage and Retrieval 

430 Radiation Imagery Chemistry: etc. 77 (14) 

348 Television 543 57 (24) 

353 Optics: Image Projectors 

324 Electricity: Measuring and Testing 130 (16) 1157 (5) 166 (17) 133 (4) 

60 Power Plants 149 (8) (14) 113 

381 Electrical Audio Signal Processing etc.

335 Electricity: Magnetically Operated etc.

340 Communications: Electrical 957 (17) 63 (22) 602 

on the task of identifying emerging technologies within specific R&D networks, including
those that cut across industries. This analysis might lead us to ask if ATP’s funding of a
project will speed the diffusion of the technology across industries.

As shown in Table 9, the OWG fostered fewer spillovers over the period 1985 to 1995 (the
spillover calculation is much smaller); spillovers, however, are more evenly distributed across
the five industries than was the case for MEMS. Our spillover estimates produce a smaller
number largely because OWG consists of a much smaller slice of technology than MEMS. In
this case, aerospace is also the primary beneficiary. This sector received approximately two-
fifths of OWG spillovers. Biomedical devices, with one-fifth of total spillovers, was the next
most important spillover recipient. The remaining two-fifths was evenly distributed among
the other industries: auto, advanced materials, and information technology. 
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TABLE 9
R&D Spillovers from OWG to Selected Broad Industries, 1985–1995 

Advanced Information Biomedical

Class Top 25 OWG Technologies Auto Aerospace Materials Technology Devices 

372 Coherent Light Generators 13.1 26.8 13.4 15.0 12.3 (18) 

359 Optics: Systems (including Communication) 

and Elements 5.5 (12) 31.6 (10) 6.9 (19) 9.3 (10) 17.8 

385 Optical Waveguides 8.3 (23) 30.2 (8) 15.7 (12) 10.1 22.1 

369 Dynamic Information Storage or Retrieval 2.0 16.2 4.4 6.0 11.4 

252 Compositions 5.0 14.0 2.4 (3) 2.5 7.2 (25) 

346 Recorders 2.7 7.9 0.7 1.7 5.6 

362 Illumination 1.7 9.1 1.3 0.1 

360 Dynamic Magnetic Information Storage or Retrieval 1.3 2.3 1.8 (12) 1.4 

428 Stock Material or Miscellaneous Articles 2.8 (1) 3.2 (4) 1.7 (1) 0.5 (7) 1.2 (17) 

156 Adhesive Bonding and Miscellaneous Chemical 

Manufacture 0.2 (18) 4.3 (25) (15) 0.1 (21) 2.4 

430 Radiation Imagery Chemistry: Process, Composition,

or Product Thereof 1.0 2.4 0.9 0.7 (14) 1.0 

356 Optics: Measuring and Testing 0.4 3.1 (12) 2.9 0.1 1.1 

250 Radiant Energy 0.0 (13) 3.9 (2) 0.7 (10) 3.1 (6) 2.2 

8 Bleaching and Dyeing; Fluid Treatment and Chemical 

Modification of Textiles and Fibers 2.5 1.0 

437 Semiconductor Device Manufacturing: Process 2.6 0.9 0.9 (16) 0.4 

365 Static Information Storage and Retrieval 1.7 0.1 0.2 0.5 

347 Incremental Printing of Symbolic Information 0.8 1.1 (20) 0.9 

404 Road Structure, Process, or Apparatus 1.8 1.8 

525 Synthetic Resins or Natural Rubbers—Part of the 

Cl520 Series 1.0 1.3 0.2 (6) 0.6 

216 Etching a Substrate: Processes 2.0 1.9 0.1 

358 Facsimile or Television Recording 2.2 0.5 0.4 

427 Coating Processes 0.9 (24) 1.3 0.1 (16) 0.3 

257 Active Solid-State Devices (e.g., Transistors,

Solid-State Diodes) 0.1 (23) 0.2 1.0 (18) 

355 Photocopying 0.6 1.5 1.6 0.6 

528 Synthetic Resins or Natural Rubbers—Part of the 

Cl520 Series 1.8 (13) 



We have explored the use of patent citation information, analyzed in the context of R&D
networks, to measure potential R&D spillovers. A significant quantity of empirical and
survey evidence exists suggesting that patent citations are an indicator of knowledge
spillovers, albeit one with considerable noise. This study’s key contribution is the
identification of R&D networks as the main spillover mechanism. We have developed a
systems methodology using fuzzy logic methods to construct mappings of R&D-based
networks. The mappings are based on the assumption that patent citations between any two
R&D organizations occurring over a period of time identify communication and interaction.
We illustrated the methodology with two applications to two technologies that have been of
interest to the ATP (micro-electromechanical systems and optical recording).

Our fuzzy system methodology offers a new and potentially useful way to analyze and
interpret R&D spillovers. The spillover literature conceptualizes spillovers as pools, thereby
abstracting from specific diffusion pathways and specific spillover mechanisms. We introduce
the idea of R&D spillover networks. We argue that our methodology more closely
approximates a system that exists in the real world where the quality of network connections
matters a good deal. A comparison of spillover ranks based on the existing method and our
systems method shows that, while the ranks are correlated, there are significant differences in
ranks that can be interpreted as stemming from variation in the strength of the networks.

The new fuzzy logic methodology makes identification of the system possible. Previously,
researchers studying spillovers were constrained by methodology and were unable to discover
and analyze patterns in the complex patent data set. If the spillover pool metaphor is the
right one, then the statistical methods and interpretations found in the literature make sense.
If there is an underlying spillover network structure embedded in the patent data, however,
then the existing methods fall short. The new methodology helps frame new research on
spillovers, provides a framework for developing ATP strategies to maximize spillovers, and
suggests one approach for evaluating ATP projects.
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7. Conclusion



Even though it is possible to provide some interesting, new evidence on spillover patterns and
R&D networks, currently the methodology does not permit us to draw statistical inferences
and formally test hypotheses about the network structure. For example, we would like to
know if differences in the measured system influence between two organizations are
statistically significant. Statistics assume a certain structure satisfying the condition of
measurability. Since fuzzy measures do not necessarily satisfy classical measure properties,
fuzzy models cannot be readily used for standard statistical hypothesis testing. Without new
research, it remains unclear whether it would be possible to develop a fuzzy measure
theoretic basis for our methodology, which could then be used to develop the associated
statistical tests.

USE OF PATENT CITATIONS AND SYSTEMS METHOD BY THE ATP
The ATP would like to maximize spillovers produced by the research it funds and measure
the extent to which its awardees have generated spillovers. Both of these tasks are difficult
because spillovers are hard to see and harder to measure quantitatively. We believe that the
analysis here indicates that more systematic analysis of patent citations would potentially be
useful to the ATP. 

Experience with the methodology is still limited. Because we are on new ground, the findings
are essentially exploratory. Therefore, the suggestions are very much in the form of
conjectures or hypotheses rather than demonstrated results.

Ex-post evaluation

The most straightforward possible application would be in ex-post evaluation of the impact
of ATP funding. Such evaluations can, with relative ease, measure direct outputs of the ATP-
funded project, such as patents applied for by awardees, products introduced, sales of those
products, and so forth. But such direct measures do not address measuring and generating
spillovers and, more broadly, enabling the development of commercially valuable new
technology.

The patent citations literature suggests that a logical next step (beyond counting patents, new
products, and revenues) would be to examine the citations to ATP grantees’ patents. For
example, it would be useful to know whether the rate of citations made and citations
received increase in association with the ATP grant. If so, the citations would indicate
communication between the grantees and its surrounding R&D network.

The systems analysis methods described in this paper offer the potential for detecting indirect
effects more rigorously than previous methods. Moreover, because the system influence
measures and total knowledge flow are time-specific, it might be possible to undertake
before-and-after analysis of the R&D network in the technology area where an ATP project
lies. If ATP funding helped to generate spillovers, then not only should the system influence
of the funded organization(s) rise (i.e., the funded organizations become more influential
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players within the network), but the overall intensity of knowledge flow through the system
should also have risen. In principle, then, such an analysis could be used to look for the
ultimate effects that ATP is seeking to stimulate; that is, enabling of the overall R&D
network. Examination of the awardees’ performance alone would probably not fully capture
such effects. Examination of how the system or network has changed could, in principle,
however, provide useful evidence of the system impacts associated with an ATP-funded
project.1

In addition, the systems analysis approach could be applied to different settings in which
ATP funding was provided (and perhaps also settings in which it was not provided). If so,
then we could eventually undertake comparisons of systems that were substantially
strengthened with systems that were not. These comparisons might include some analysis of
where ATP grants strengthened network influence in some industries, as well as the relative
impact of ATP grants of different sizes and forms on certain technology areas.

Project selection

The potential value of these methods for project selection is less clear, but perhaps still worth
exploring. As things stand, ATP has no quantitative measures of the spillover potential of
applicants.2 (The source selection boards are comprised of experts in their fields who readily
recognize potential for spillover benefits in an applicant’s proposal.) Objective criteria and
judgment regarding the industrial background, the nature of the applicants, and the nature of
the technology is used to assess the relative likelihood of R&D spillovers. But it might be
useful to supplement the use of such qualitative tools with quantitative indicators, even if
those indicators are noisy and imperfect.

A starting point might be to analyze the citation intensity of the project applicant’s patents in
the relevant technological area. Spillovers are more likely to be generated by applicants who
are connected to the relevant R&D network, and patent citations made and received are
indicative of such connections. With greater investment of time and effort, software and a
database might be developed that would provide a capability for routine use of the fuzzy-
logic methodology to measure the system influence of applicants within the relative
technological area of their proposal. Having a quantitative indicator of each applicant’s
position within the relevant R&D network would help evaluate the likelihood of spillovers
resulting from a proposed project and be used as one possible measure of the applicant’s
strength in this area. The software and database might provide a new tool for learning more
about the fundamental characteristics of enabling R&D networks.

Conclusion 59

1. Of course, the question of causation—whether the system changes that have occurred would or would not
have occurred without the ATP funding—is not resolved by this analysis. That is a problem that is endemic to the
evaluation setting.

2. The project selection process occurs in a compressed timeframe, thus limiting the ability and opportunity of
staff to conduct such research in an effective and timely manner. 



In addition, the methodology offers the possibility of a broader set of uses for joint venture
proposals. By definition, multiple members of a proposed joint venture occupy a wider
spectrum of positions within an R&D network. Perhaps the proposed joint venture members
represent the most influential organizations, technologies, and geographic regions in the
relevant R&D network represented. This methodology might expose any gaps within the
joint venture team, and ATP could discuss any noticeable gaps with the applicants, which
could lead the joint venture to seek additional members or subcontractors, or to a better
explanation to the ATP why their proposed membership is already sufficiently broad. It could
also potentially lead to concluding that the proposal is not likely to be enabling.

Another potentially valuable application to joint ventures would be the modeling of the joint
venture’s formation itself. One way to think of joint venture formation is that it increases
communication among the joint venture members. It may be possible to simulate such effects
by examining the impact of the joint venture on total system knowledge flows (the increased
communication between the specific nodal pairs that constitute the joint venture). Again, it
may be possible to identify weak links within the relevant R&D network, which, if
strengthened, would generate particularly beneficial impacts on the network as a whole.

Broader analyses

In addition to evaluation of specific project proposals, it is possible that the methodology
could be useful in providing broader background to the ATP’s planning and policy process.
For example, the methodology could be used to construct an overall mapping of broad
technologies into industries. Such a mapping could be done periodically, providing a basis to
gauge the broad-based economic impacts of projects in various technological categories. Such
a structure would also provide an additional framework for thinking about cumulative or
systemic impacts of ATP’s funding of a number of related projects. In the 1990s, ATP sought
to increase the impact of its funding by funding a number of technologically related projects
in its focused programs. At present, there are not many methods for assessing synergistic or
cumulative impacts of multiple projects in a systematic way.3 If ATP were to evaluate a number
of its projects within a given technological area, the overall broad-based economic impacts of
technological advances in that area could be examined in the same way as the MEMS and
optical recording were done in this study. Individual projects could then be evaluated within
the context of the estimated overall economic impact of the technological area.

POSSIBILITIES FOR FURTHER RESEARCH
This report suggests several possible avenues for future research, each of which would
involve interaction among the fuzzy network analysis, case studies (e.g., drawing from ATP’s
database and cases), and surveys focused on enabling networks.
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3. The ATP’s Economic Assessment Office has conducted benefit-cost studies for its projects in specific
technology areas, and has been able to assess some of the related economic impacts in systematic ways. 



• Develop the database and software to permit ATP to routinely evaluate the spillover
potential of project participants (focused on several dimensions, such as technology,
industry, and geography), retrospectively evaluate spillovers generated by funded projects,
and explore the full patent database for particularly enabling networks. Development of
this generic capability would permit ATP to monitor, on an ongoing basis, the interaction
of awardees with the relevant R&D networks.

• Use the methodology, coupled with case study and survey methods, to model the
formation of joint ventures. For example, how does the formation and operation of joint
ventures affect communication (and, therefore, spillovers) among members and the full
network? Can network analysis be used to design more effective joint ventures?

• Use the methodology to develop analogous/parallel networks based on citations to the
scientific literature. Under what conditions do the science and technology networks
intersect and interact? How does each influence the other? Do certain networks exhibit
characteristics that are associated with the network drawing extensively from science?
How can ATP use this knowledge to leverage early-stage federal R&D support of basic
science? Such an analysis would require integrating our patent networks with networks
derived from science citations data.

• Advance the fuzzy logic methodology for analysis of R&D networks. Advancing the
methodology would require combining development of the underlying mathematics (e.g.,
what is the best way to model two-way flows; that is, learning from and using knowledge
spillovers) with case studies and surveys to add institutional knowledge to the picture,
especially for cases involving emerging, enabling technologies. 

• Develop the measurement theory basis for our fuzzy logic measures. Given the nature of
fuzzy measures, currently the methodology does not permit us to draw statistical
inferences and formally test hypotheses about the network structure. New research is
necessary to determine whether it is possible to develop a fuzzy measure theoretic basis for
our methodology, which could then be used to develop the associated statistical tests.
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1 A MODEL OF THE U.S. INNOVATION SYSTEM
In this section we summarize the steps taken to model the U.S. innovation system. This
section develops the system requirements that satisfy the objectives of an economic analysis
of the patent data set.

1.1 System Specifications of the Innovation System

The U.S. innovation system was described as a network of R&D labs where the strengths of
interaction between labs are indicated by citations made by one lab to the other. These
citations can be further specified by technology classes of cited and citing patents, and their
respective grant years. The model specifications are as listed below.

System Specifications

S1. The system is defined on a network of nodes, where each node represents the inventions
of an R&D lab, in a specific technology and year.

S2. There are knowledge flows from cited node to citing node, as evidenced by citations.

S3. Measures of connectivity between nodes reflect system-wide diffusion effects of the
interaction, and system-wide diffusion effects of the nodes. A direct citation is
interpreted as a one-step diffusion.

S4. Measures of connectivity of nodes satisfy the assumption that the influential (strongly
connected) is what is strongly interconnected with the influential, which is what is
strongly interconnected with the influential, and so forth.

S5. The system of networks can be partitioned into overlapping subnetworks of strongly
interconnected nodes.
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S1 specifies a node as representing the inventions of an R&D lab, in a specific technology
and year because the R&D lab is where the invention occurs and because the issues of interest
are the organizational, technological, and geographical spread of knowledge over time.

S2 states a commonly used but widely discussed assumption that citations are evidence of
knowledge flows. This issue had been discussed in more detail in the text of the report.

The system significance of knowledge flow from one node to another can be properly gauged
only if measured relative to knowledge flows between all pairs of nodes. Further, it is
reasonable to assume that an R&D lab has greater potential to influence another lab if the
R&D lab is innovative. An indicator of an R&D lab’s innovativeness is the organizational,
technological, and geographical spread of citations made and received. Another factor is the
innovativeness of the citing and cited R&D labs. S3 and S4 model the hypotheses discussed.

Patents draw on existing knowledge classified by technology, organization, region, and time
and embody usable knowledge distinguishable from prior art. This is seen from the
distribution of citations on a single patent across the three dimensions. In other words, nodes
influence the innovative activity of other nodes in varying degrees of significance.

So intuitively, and drawing on domain knowledge, a multivalent, logic-based approach is in
this case more likely to provide a more true model of the reality than a bivalent approach.
One objective of analysis is to identify broad categories of technology, R&D labs, and
regions, and also to evaluate the significance of specific technologies, R&D labs, and regions
within and across the categories. By requiring that the model enable a partition of the system
into overlapping partitions, S5 ensures the use of a multivalent logic in structuring
overlapping networks which can then be characterized.

2 A SYSTEMS APPROACH TO CLUSTERING 
In this section, we develop a new approach to the problem of clustering. Grouping objects
into self-similar groups involves evaluation of individual pairs of proximities in relation to all
pairs of proximities in the data set. It follows that proximities amongst data points behave
like a system, where change in proximities in a sector diffuses, changing orders in the
neighborhoods. So, from the perspective of clustering, all data can be described as a system
irrespective of the objective of the analysis. We propose a new definition of a partition matrix
that attempts to mathematically approximate this thinking. The definition, although
motivated by the specific problem of developing a model of the innovation system based on
the U.S. patent data, is valid for all problems of clustering. 

We also develop an algorithm for generating the partition matrix and a graph-theoretic
procedure to construct the clusters. The definition of the partition matrix and the algorithm
assume that the data has a network structure. This is a nonrestrictive assumption. Any given
weight matrix, including a distance matrix on n data points, can be viewed as a network
defined on n objects with weights between the data points as the flows on the arcs, suitably
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scaled depending on whether the problem is that of minimization or maximization. We
establish results on validity and convergence of the approach. The proofs show that the
measures generated by the proposed algorithm satisfy the system requirements of the U.S.
innovation system laid out in the previous section. The generality of the new definition and
the algorithm is evident and supported by our computational experience with several
benchmark data sets.

At the outset, we rephrase the system requirements in more general terms.

S1´ The system is defined on a network of nodes, where each node represents the objects in
the data.

S2´ There exists a relationship on (dis)similarities between nodes as evidenced by the weight
on the arcs, which correspond to the given relational matrix.

S3´ Measures of connectivity between nodes are determined by the significance of the
relation relative to the system, and the system-wide connectivity of the modes, with a
direct relation being interpreted as a direct connection.

S4´ Measures of connectivity of nodes satisfy the assumption that the highly modal is what
is strongly interconnected with the highly modal, which is what is strongly
interconnected with the highly modal, ad infinitum.

S5´ The system of networks can be partitioned into overlapping subnetworks of strongly
interconnected nodes.

2.1 Notation and Definitions

G = (V = {i}, E = {(ij)}, i, j = 1, 2,…, n a network defined on the nodes {i } corresponding to
the objects of the system. (ij)∈E if i ∈V and j ∈V and there is a flow from node i to node j

α ∈(0, 1): a predefined intersection parameter

β ∈(0, 1): a predefined algebraic sum parameter.

Traversal: an arc (lm) is said to be traversed from a node i in I steps if there exist a path
Pi→…l→m of length l ≤ I. A node l is said to be traversed from node i in I steps if the arcs
incident to node l are traversed in I steps. The direction of traversal of the arcs depends on
the networks considered as defined below.

NI,1(i): I-step Outflow Network of a node i is the set of all nodes and arcs traversed in I steps
from i, the first step being restricted to be in the direction of the arcs.

NI,2(i): I-step Inflow Network of a node i is the set of all nodes and arcs traversed in I steps
of diffusion from i, the first step being restricted to be the direction reverse that of the arcs.
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NI(i) = NI,1(i) ∪ NI,2(i): I-step Neighborhood of a node i is the union of the I-step outflow
network and I-step inflow network of node i, where the union of networks is defined as the
set union of the set of arcs in the networks, incident to set union of sets of nodes in the
networks.

An I-step Neighborhood Parameter

Any parameter constructed on I-step neighborhoods is said to contain full information on I-
step neighborhoods if and only if a simple ordering of the parameter values orders the I-step
neighborhoods on the property being measured.

Any parameter constructed on I-step neighborhoods is defined to be a I-step Neighborhood
Parameter if the parameter contains full information on the I-step neighborhoods and partial
or no additional information on higher order, i.e.; on I + k, k = 1, 2,…, n step
neighborhoods.

I-step Neighborhood Parameters

: 

measure of connectivity on the arc (ij) evaluated on I-step neighborhood of
node j.

:

measure of connectivity of the arc (ij) evaluated on I-step neighborhood of
node i.

:

fraction of , the I-step out-connectivity of i to j .

:

fraction of , I-step in-connectivity of j from i.

:

typicality of , the fraction of connectivity.f ji
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:

typicality of , the fraction of connectivity.

OI(i): 

set centered on i on the property of I-step out-connectivity of i.

I(j): 

set centered on j on the property of in-connectivity of j.

:

the membership value of the arc (ij) in OI(i).

:

the membership value of the arc (ij) in I(j).

:

the membership value of the arc (ij) in the intersection of OI(i) and II(j).

:

I-step outdegree of node i.

:

I-step indegree of node i.

:

total connectivity of node i evaluated on I-step outflow networks. Also
referred to as I-step outmodality.

:

total connectivity of node i evaluated on I-step inflow networks. Also referred
to as I-step inmodality.
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:

total connectivity of node i evaluated on I-step neighborhoods. Also referred
to as I-step modality.

2.2 Partition Matrix—A New Definition and An Associated Algorithm

At the outset we introduce some more definitions:

Defn. Weak Equivalence Neighborhoods N(i) and N(k) are said to be weakly equivalent if
the sum of the modality parameters of the nodes in the two neighborhoods are
approximately equal. N(i) and N(k) are said to be β-weakly equivalent if the modality sums
on the two neighborhoods differ by no more than β.

Defn. Strong Equivalence Neighborhoods N(i) and N(k) are said to be strongly equivalent if
they are weakly equivalent and if {v∈N(i)} = {v∈N(k)}. N(i) and N(k) are said to be
β–strongly equivalent if they are β-weakly equivalent and if {v∈N(i)} = {v∈N(k)}.

Defn. A Fuzzy-Possibilistic Partition Matrix Given X = {x1, x2,…, xn,}, a set of n objects, and
an arbitrary n × n, asymmetrical relational matrix R = [rij], the set of n × n matrices,

describe the fuzzy-possibilistic network partition of X, where

1.

: the membership value of the arc (ij) in O(i)

: the membership value of the arc (ij) in the I(j)

: the membership value of the arc (ij) in the intersection of O(i) and I(j)

2. is r-significant to i and j in the system.
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As before S1 and S2 are satisfied by construction and assumption respectively. Property (3)
stipulates that if the membership values of the arcs in the I-step neighborhoods of two nodes
are the same then the nodes have weakly equivalent neighborhoods, implying that measures
of interaction between nodes, and that of the nodes, reflect system-wide diffusion effects. As
such, the partition matrix as defined satisfies S3 and S4.
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TABLE B.1
System Influence by Source and Destination in the Aerospace R&D Network

Class
Number Patent Class Name Source Destination

364 Electrical Computers and Data Processing Systems 1,986.18 2,029.79

250 Radiant Energy 1,510.77 1,509.65

439 Electrical Connectors 1,413.83 1,329.40

428 Stock Material or Miscellaneous Articles 1,406.01 1,322.59

324 Electricity: Measuring and Testing 1,349.58 1,449.16

361 Electricity: Electrical Systems and Devices 1,321.60 1,246.72

29 Metal Working 1,311.32 1,342.37

385 Optical Waveguides 1,309.06 1,285.97

73 Measuring and Testing 1,267.97 1,304.24

359 Optics: Systems (including Communication) and Elements 1,119.24 1,097.68

310 Electrical Generator or Motor Structure 1,044.80 1,112.91

356 Optics: Measuring and Testing 938.10 828.17

327 Miscellaneous Active Electrical Nonlinear Devices, Circuits, and Systems 894.43 885.59

60 Power Plants 893.97 894.84

74 Machine Element or Mechanism 887.60 904.72

318 Electricity: Motive Power Systems 840.93 901.25

340 Communications: Electrical 828.52 725.94

395 Information Processing System Organization 798.87 946.76

342 Communications: Directive Radio Wave Systems and Devices 

(e.g., Radar, Radio Navigation) 792.38 825.96

375 Pulse or Digital Communications 779.70 803.05

363 Electric Power Conversion System 761.69 730.05

219 Electric Heating 737.44 729.00

257 Active Solid-State Devices (e.g., Transistors, Solid-State Diodes) 734.32 743.47

333 Wave Transmission Lines and Networks 710.74 631.87

156 Adhesive Bonding and Miscellaneous Chemical Manufacture 709.11 737.48
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TABLE B.2
System Influence by Source and Destination in the Information Technology R&D Network

Class
Number Patent Class Name Source Destination

395 Information Processing System Organization 1,586.95 1,844.16

364 Electrical Computers and Data Processing Systems 1,351.31 1,376.68

361 Electricity: Electrical Systems and Devices 892.40 852.58

324 Electricity: Measuring and Testing 860.51 907.52

371 Error Detection/Correction and Fault Detection/Recovery 739.36 730.13

250 Radiant Energy 708.61 727.75

428 Stock Material or Miscellaneous Articles 674.95 554.22

370 Multiplex Communications 667.12 700.07

327 Miscellaneous Active Electrical Nonlinear Devices, Circuits, and Systems 653.92 650.87

359 Optics: Systems (including Communications) and Elements 642.79 581.73

375 Pulse or Digital Communications 641.22 592.28

360 Dynamic Magnetic Information Storage or Retrieval 620.77 515.57

326 Electronic Digital Logic Circuitry 588.88 547.80

430 Radiation Imagery Chemistry: Process, Composition, or Product Thereof 566.71 546.93

345 Selective Visual Display Systems 540.31 522.99

437 Semiconductor Device Manufacturing: Process 533.61 514.86

439 Electrical Connectors 533.23 501.35

257 Active Solid-State Devices (e.g., Transistors, Solid-State Diodes) 517.32 582.45

380 Cryptography 514.51 535.19

347 Incremental Printing of Symbolic Information 504.52 485.20

156 Adhesive Bonding and Miscellaneous Chemical Manufacture 475.39 435.55

340 Communications: Electrical 471.79 403.74

235 Registers 464.36 446.12

348 Television 457.61 415.89

400 Typewriting Machines 445.21 440.34

341 Coded Data Generation or Conversion 426.65 431.28
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TABLE B.3
System Influence by Source and Destination in the Auto R&D Network

Class
Number Patent Class Name Source Destination

428 Stock Material or Miscellaneous Articles 1,924.79 1,745.27

364 Electrical Computers and Data Processing Systems 1,481.10 1,581.37

123 Internal Combustion Engines 1,475.58 1,490.37

74 Machine Element or Mechanism 1,475.04 1,519.00

73 Measuring and Testing 1,212.05 1,292.44

361 Electricity: Electrical Systems and Devices 1,188.98 1,062.54

29 Metal Working 1,120.25 1,189.90

60 Power Plants 1,073.36 1,057.41

439 Electrical Connectors 1,029.13 991.11

310 Electrical Generator or Motor Structure 1,017.47 1,066.06

192 Clutches and Power-Stop Control 996.58 970.70

359 Optics: Systems (including Communication) and Elements 958.74 947.27

250 Radiant Energy 958.04 1,012.16

318 Electricity: Motive Power Systems 935.89 995.40

340 Communications: Electrical 924.63 857.48

324 Electricity: Measuring and Testing 898.79 951.23

264 Plastic and Nonmetallic Article Shaping or Treating: Processes 895.94 918.31

156 Adhesive Bonding and Miscellaneous Chemical Manufacture 834.32 878.75

210 Liquid Purification or Separation 825.75 860.03

180 Motor Vehicles 794.88 699.18

137 Fluid Handling 785.30 729.30

280 Land Vehicles 768.29 759.44

385 Optical Waveguides 762.29 750.78

427 Coating Processes 751.91 814.03

188 Brakes 709.20 736.74

252 Compositions 700.93 734.35
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TABLE B.4 
System Influence by Source and Destination in the Advanced Materials R&D Network

Class
Number Patent Class Name Source Destination

428 Stock Materials or Miscellaneous Articles 2,728.03 2,595.63

210 Liquid Purification or Separation 1,730.55 1,770.28

252 Compositions 1,631.23 1,710.80

439 Electrical Connectors 1,574.50 1,506.97

364 Electrical Computers and Data Processing Systems 1,557.07 1,619.67

525 Synthetic Resins or Natural Rubbers—Part of the Class 520 Series 1,471.39 1,319.59

73 Measuring and Testing 1,415.93 1,422.15

524 Synthetic Resins or Natural Rubbers—Part of the Class 520 Series 1,415.71 1,387.30

264 Plastic and Nonmetallic Article Shaping or Treating: Processes 1,387.61 1,380.16

250 Radiant Energy 1,341.32 1,363.10

423 Chemistry of Inorganic Compounds 1,289.52 1,239.35

385 Optical Waveguides 1,286.07 1,261.73

528 Synthetic Resins or Natural Rubbers—Part of the Class 520 Series 1,284.77 1,172.02

502 Catalyst, Solid Sorbent, or Support Thereof: Product or Process of Making 1,116.04 990.85

156 Adhesive Bonding and Miscellaneous Chemical Manufacture 1,098.47 1,142.23

427 Coating Processes 1,027.39 1,080.86

324 Electricity: Measuring and Testing 998.70 1,049.80

29 Metal Working 973.10 967.49

359 Optics: Systems (including Communications) and Elements 948.26 888.89

361 Electricity: Electrical Systems and Devices 936.56 881.53

166 Wells 885.83 931.75

568 Organic Compounds—Part of the Class 532–570 Series 775.44 715.17

514 Drug, Bio-Affecting and Body Treating Compositions 754.61 707.84

521 Synthetic Resins or Natural Rubbers—Part of the Class 520 Series 747.43 659.59

219 Electric Heating 745.03 734.25
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TABLE B.5
System Influence by Source and Destination in the Biomedical Devices R&D Network

Class
Number Patent Class Name Source Destination

606 Surgery 240.15 249.46

604 Surgery 239.84 253.75

623 Prosthesis (i.e., Artificial Body Members) 175.09 156.33

607 Surgery: Light, Thermal and Electrical Application 156.85 167.83

600 Surgery 83.11 84.80

280 Land Vehicles 74.67 74.09

424 Drug, Bio-Affecting and Body Treating Compositions 63.16 65.07

514 Drug, Bio-Affecting and Body Treating Compositions 58.67 58.73

422 Chemical Apparatus and Process Disinfecting 58.42 48.32

227 Elongated-Member-Driving Apparatus 56.39 48.20

222 Dispensing 52.02 50.21

435 Chemistry: Molecular Biology and Microbiology 50.74 45.46

429 Chemistry: Electrical Current Producing Apparatus 48.92 40.43

264 Plastic and Nonmetallic Article Shaping 43.67 42.21

206 Special Receptacle or Package 38.78 48.15

439 Electrical Connectors 37.80 27.75

428 Stock Materials or Miscellaneous Articles 36.92 26.31

372 Coherent Light Generators 33.70 36.46

73 Measuring and Testing 33.04 29.81

601 Surgery: Kinesitherapy 28.23 26.93

378 X-ray or Gamma Ray Systems or Devices 26.89 32.86

180 Motor Vehicles 23.86 21.73

29 Metal Working 23.29 22.35

72 Metal Deforming 22.89 24.52

252 Compositions 21.46 22.26

427 Coating Processes 20.89 26.10

310 Electrical Generator or Motor Structure 19.68 9.33

219 Electrical Heating 19.55 21.25

351 Optics: Eye Examining, Vision Testing and Correcting 18.98 17.50

549 Organic Compounds—Part of the Class 532–570 Series 18.95 14.08

525 Synthetic Resins or Natural Rubbers—Part of the Class 520 17.82 17.38
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TABLE B.6 
System Influence by Source and Destination in the MEMS R&D Network

Class
Number Patent Class Name Source Destination

359 Optics: Systems (including Communications) and Elements 459.68 176.34

385 Optical Waveguides 353.79 208.52

73 Measuring and Testing 330.39 287.77

310 Electrical Generator or Motor Structure 312.26 204.82

437 Semiconductor Device Manufacturing: Process 250.74 106.89

257 Active Solid-State Devices (e.g., Transistors, Solid-State Diodes) 188.62 138.65

347 Incremental Printing of Symbolic Information 124.30 49.21

216 Etching a Substrate: Processes 117.86 70.90

156 Adhesive Bonding and Miscellaneous Chemical Manufacture 112.25 52.82

369 Dynamic Information Storage or Retrieval 106.24 51.95

428 Stock Material or Miscellaneous Articles 97.40 34.38

348 Television 90.02 55.67

60 Power Plants 86.36 43.55

345 Selective Visual Display Systems 84.20 28.28

136 Batteries: Thermoelectric and Photoelectric 70.55 40.08

365 Static Information Storage and Retrieval 63.48 47.30

361 Electricity: Electrical Systems and Devices 56.62 54.27

367 Communications, Electrical: Acoustic Wave Systems and Devices 54.58 31.67

356 Optics: Measuring and Testing 47.67 56.02

353 Optics: Image Projectors 42.31 24.59

251 Valves and Valve Actuation 26.92 26.22

29 Metal Working 23.48 31.54

324 Electricity: Measuring and Testing 13.88 3.67

338 Electrical Resistors 11.48 7.85
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