

“Compute Process Allocator (CPA)”

1. Submitting Organization
 Sandia National Laboratories
 P.O. Box 5800, MS 1110
 Albuquerque, NM 87185-1110

 Submitter’s Name
 Vitus J. Leung, Senior Member of the Technical Staff
 (505) 844-1896, (505) 845-7442 (fax), vjleung@sandia.gov

 Affi rmation
I affi rm that all information submitted as a part of, or supplemental to, this
entry is a fair and accurate representation of this product.

 Submitter’s Signature

2. Joint entry with
 State University of New York
 Department of Computer Science
 Stony Brook, NY 11794-4400
 Michael A. Bender, Associate Professor
 (631) 632-7835, (631) 632-8334 (fax), bender@cs.sunysb.edu

 University of Illinois
 Department of Computer Science
 Urbana, IL 61801
 David P. Bunde, Ph.D. Candidate
 (217) 244-6433, (217) 265-6591 (fax), bunde@uiuc.edu

 Sandia National Laboratories
 P.O. Box 5800, MS 1110
 Albuquerque, NM 87185-1110
 Kevin T. Pedretti, Senior Member of the Technical Staff
 (805) 685-0888, (505) 845-7442, ktpedre@sandia.gov

 Sandia National Laboratories
 P.O. Box 5800, MS 1110
 Albuquerque, NM 87185-1110
 Cynthia A. Phillips, Distinguished Member of the Technical Staff
 (505) 845-7296, (505) 845-7442 (fax), caphill@sandia.gov

3. Product Name
 Compute Process Allocator (CPA)

4. Description of Entry
 CPA is the fi rst allocator to balance individual job allocation with future
 allocations over 10,000 processors, allowing jobs to be processed faster
 and more effi ciently.

5. When Product Was First Marketed/Available for Order
 After extensive prototype development, the CPA was licensed to Cray Inc.
 in June 2005.

6. Inventor or Principal Developer
 Vitus J. Leung, SMTS
 Discrete Algorithms and Math Department
 Sandia National Laboratories
 P.O. Box 5800, MS 1110
 Albuquerque, NM 87185-1110
 (505) 844-1896, (505) 845-7442 (fax), vjleung@sandia.gov

 Additional Developers:
 Michael A. Bender, Associate Professor
 Dept. of Computer Science
 State University of New York
 Stony Brook, NY 11794-4400
 (631) 632-7835, (631) 632-8334 (fax), bender@cs.sunysb.edu

 David P. Bunde, Ph.D. Candidate
 Dept. of Computer Science
 University of Illinois
 Urbana, IL 61801
 (217) 244-6433, (217) 265-6591 (fax), bunde@uiuc.edu

 Kevin T. Pedretti, SMTS
 Scalable Computing Systems Department
 Sandia National Laboratories
 P.O. Box 5800, MS 1110
 Albuquerque, NM 87185-1110
 (805) 685-0888, (505) 845-7442 (fax), ktpedre@sandia.gov

 Cynthia A. Phillips DMTS
 Discrete Algorithms and Math Department
 Sandia National Laboratories
 P.O. Box 5800, MS 1110
 Albuquerque, NM 87185-1110
 (505) 845-7296, (505) 845-7442 (fax), caphill@sandia.gov

7. Product Price
 CPA is licensed to Cray at a price that we cannot disclose.

8. Patents Held/Pending
 Applied for patents April 2005
 U.S. Patent Application Serial No. 11/110,206
 U.S. Patent Application Serial No. 11/110,466

2005 R&D 100 Awards 2

9. Product’s Primary Function

CPA uses resource-allocation strategies to achieve processor locality for parallel

jobs in supercomputers. Specifi cally, given a stream of jobs from a job scheduler,

the CPA allocates processors to optimize processor locality for each job while

preserving locality options for future jobs and therefore increasing the number of

jobs processed. Furthermore, the CPA does not need to alter the behavior of the

scheduler (e.g., block jobs). In experiments at Sandia National Laboratories, the

CPA increased throughput by 23%; in effect, with CPA, fi ve jobs were processed in

the time it normally took to process four.

The CPA operates in the following computing environment. Supercomputer users

submit parallel jobs to a job queue. Each parallel job j is dispatched for processor

allocation with a requested number of processors pj. The jobs arrive online, that is

job j is only known to the CPA after it arrives. When a job is scheduled to run, the

CPA assigns it to a set of processors, which are exclusively dedicated to the job until

it terminates.

Preemption and migration are

not allowed, meaning that

once a job begins, it must be

executed to completion on the

same set of processors. To obtain

maximum throughput, the CPA

chooses processors for a job

that are physically near each

other, thereby minimizing communication costs and avoiding bandwidth contention

caused by jobs sharing communication paths. In experiments, the average number

of communication hops between processors allocated to a job gave the strongest

correlation to job completion time. The CPA optimizes this natural fragmentation

metric.

Remarkably, the CPA can achieve processor locality for a stream of jobs in massively

parallel supercomputers using simple, one-dimensional allocation strategies. The

CPA accomplishes this reduction using a space-fi lling curve, which imposes an

ordering on the network of processors such that locations near each other on the

curve are also near each other in the network of processors. The CPA’s approach is

applicable even when the processors are connected by irregular, higher dimensional

networks.

2005 R&D 100 Awards 3

The one-dimensional strategies for the CPA work as follows: When job j is

dispatched, the CPA determines if the job can be allocated contiguously along the

space-fi lling curve. When a job can be allocated contiguously, the CPA chooses the

interval using an adaptation of the Best Fit, one-dimensional, bin-packing algorithm.

When a job cannot be allocated contiguously, the CPA chooses the allocation that

minimizes the span of the job. (The span of a job is the distance on the curve

between the fi rst and last processors of the job.) Minimizing the span empirically

minimizes the fragmentation metric above.

The CPA can be ported to any system that uses a variant of NASA’s Portable Batch

System (PBS), which maintains code to interface with the CPA. PBS is the defacto

standard in cluster and parallel system resource management. In addition to Cray,

PBS is used to manage systems built by Dell, Hewlett Packard, IBM, and Silicon

Graphics. PBS is supported on most Linux, UNIX, Windows, and Mac OS X based

systems.

10A. Product’s Competitors

While there are no direct competitors, there are many overlapping products. Some

of them are:

 • Altair’s PBS Pro 7.0

 • Cluster Resources’ Maui Cluster Scheduler 3.2.6, Moab Workload

 Manager 4.2.2, and Torque 2.0

 • IBM’s LoadLeveler 3.2

 • LLNL’s SLURM 0.6

 • NASA’s OpenPBS 2.3.16

 • Platform’s LSF 6.x, and

 • Quadrics’ RMS Hawk

All of these products provide allocation in addition to other functions. The closest

match to CPA is the Maui Cluster Scheduler and the Moab Workload Manager, which

are similar products. The Maui Cluster Scheduler is open source, while the Moab

Workload Manager is commercial. Both can provide allocation for all of the other

products.

2005 R&D 100 Awards 4

10B. Product’s and Competitors’ Key Features Table or Matrix

10C. How Product Improves on Competitive Products/Technologies

CPA is superior to other allocators for the following reasons:

1. The CPA is the only allocator that uses a space-fi lling curve to reorder a

network of processors so that locations near each other in the reordering

are also near each other in the network of processors. Simulations and

experiments show that such a reordering alone improved locality and system

throughput by 14-19% over allocators that do not use a space-fi lling curve.

(See Appendix 1.)

2. The CPA is the only allocator that uses Best Fit packing for contiguous

allocation and span minimization for non-contiguous allocation. Simulations

and experiments show that Best Fit packing and span minimization improved

locality and system throughput by an additional 5-11% over allocators that

do not use Best Fit packing and span minimization. (See Appendix 1.)

3. The CPA is the only allocator that uses the above two improvements together.

Simulations and experiments show that reordering a network of processors,

using Best Fit packing for contiguous allocation, and minimizing span for non-

contiguous allocation improved locality and system throughput by 23% over

allocators that do not use these techniques. (See Appendix 1.) Simulations

show that combining these simple, one-dimensional allocation strategies

improved locality over higher-dimensional allocation strategies by an average

of one percent over a stream of jobs. The locally better decisions of these

higher-dimensional allocation strategies seemed to paint the algorithm into a

corner over time. (See Appendix 2.)

4. The CPA is the only allocator that uses a distributed software architecture.

The CPA is scalable to over 10,000 nodes. Non-distributed allocators are

scalable to only 4,096 nodes.

2005 R&D 100 Awards 5

11A. Product’s Principal Applications

CPA’s principal application is to maximize throughput on massively parallel super-

computers by balancing locality of processors assigned to a parallel job over a

stream of parallel jobs. The CPA is distributed and scalable to tens of thousands of

processors and is currently being used on these mesh supercomputers:

• 10,880-node Red Storm machine at Sandia National Laboratories

• 5,200-node Jaguar machine at Oak Ridge National Laboratory

• 4,096-node machine at the Engineer Research and Development Center

 Major Shared Resource Center (ERDC MSRC)

• 2,060-node machine at the Pittsburgh Supercomputing Center

• 1,100-node machine at the Swiss Scientifi c Computing Center, and

• four other machines at three sites that cannot be specifi ed

11B. Other Applications for Which Product Can Now Be Used

The versatility of CPA allows it to work on all other architectures, including

fat trees.

CPA is currently licensed to nine sites, but the sites are unable to specify exactly

what applications CPA impacts. Work applications at these sites vary: nanoscience,

astrophysics, global climate changes, and military and civil work missions. In each

case, CPA improves the speed of the applications run on the machines using CPA

and improves the performance of the hardware by 23%. Moreover, the versatility

of CPA allows it to work on any system that runs PBS, not just the Cray XT3.

12. Summary

CPA is an example of how a small investment in computer algorithms can dramatic-

ally leverage the return on a large investment in computer hardware. CPA is less

than 1% of the cost of a parallel computer. In simulations and experiments, CPA

increased the locality and throughput on a parallel computer by 23% over simpler

one-dimensional allocators. In simulations, CPA increased the locality on a parallel

computer by 1% over more time-consuming, higher-dimensional allocators. The CPA

is distributed and scales to over 10,000 nodes, while non-distributed allocators have

been scaled to only 4,096 nodes.

2005 R&D 100 Awards 6

ORGANIZATION DATA

13. Contact Person

Vitus J. Leung, SMTS

Discrete Algorithms and Math Department

Sandia National Laboratories

P.O. Box 5800, MS 1110

Albuquerque, NM 87185-1110

(505) 844-1896, (505) 845-7442 (fax), vjleung@sandia.gov

APPENDIX

Appendix 1: From “Proc. IEEE International Conference on Cluster Computing”

2002 “Processor Allocation on Cplant: Achieving General Processor

Locality Using One-Dimensional Allocation Strategies” Leung, V. J.;

Arkin, E. M.; Bender, M. A.; Bunde, D. P.; Johnston, J. R.; Lal, A.;

Mitchell, J. S. B.; Phillips, C. A.; Seiden, S. S.

Appendix 2: From “Proc. 9th Workshop on Algorithms and Data Structures” 2005

“Communication-Aware Processor Allocation for Supercomputers”

Bender, M. A.; Bunde, D. P.; Demaine, E. D.; Fekete, S. P.;

 Leung, V. J.; Meijer, H.; Phillips, C. A.

2005 R&D 100 Awards 7

Processor Allocation on Cplant: Achieving General Processor Locality Using
One-Dimensional Allocation Strategies

Vitus Leung∗ Esther M. Arkin† Michael A. Bender ‡ David Bunde§ Jeanette Johnston∗

Alok Lal¶ Joseph S. B. Mitchell† Cynthia Phillips∗ Steven S. Seiden‖

We dedicate this article to the memory of Steve Seiden, who
was killed in a tragic cycling accident on June 11, 2002.

Abstract

The Computational Plant or Cplant is a commodity-
based supercomputer under development at Sandia Na-
tional Laboratories. This paper describes resource-
allocation strategies to achieve processor locality for par-
allel jobs in Cplant and other supercomputers. Users of
Cplant and other Sandia supercomputers submit parallel
jobs to a job queue. When a job is scheduled to run, it is as-
signed to a set of processors. To obtain maximum through-
put, jobs should be allocated to localized clusters of proces-
sors to minimize communication costs and to avoid band-
width contention caused by overlapping jobs.

This paper introduces new allocation strategies and per-
formance metrics based on space-filling curves and one di-
mensional allocation strategies. These algorithms are gen-
eral and simple. Preliminary simulations and Cplant ex-
periments indicate that both space-filling curves and one-
dimensional packing improve processor locality compared
to the sorted freelist strategy previously used on Cplant.
These new allocation strategies are implemented in the new
release of the Cplant System Software, Version 2.0. This
version was phased into the Cplant systems at Sandia by
May 2002.

∗MS 1110, Sandia National Laboratories, Albuquerque, NM 87185-
1110. {vjleung , jjohnst , caphill@mp.sandia.gov .

†Dept. of Appl. Math. and Statistics, SUNY Stony Brook, NY 11794-
3600. {estie , jsbm }@ams.sunysb.edu .

‡Dept. of Computer Science, SUNY Stony Brook, NY 11794-4400.
bender@cs.sunysb.edu .

§Dept. of Computer Science, University of Illinois, Urbana, IL 61801.
bunde@uiuc.edu .

¶Dept. of Electrical Engineering and Computer Science, Tufts Univer-
sity, Medford, MA 02155. a lal@eecs.tufts.edu.

‖Dept. of Computer Science, Louisiana State University, Baton Rouge,
LA 70803. sseiden@acm.org .

1. Introduction

As part of the Accelerated Strategic Computing Initia-
tive [31], the Department of Energy Laboratories are pur-
chasing a sequence of increasingly powerful custom su-
percomputers. In a parallel effort to increase the scal-
ability of commodity-based supercomputers, Sandia Na-
tional Laboratories is developing the Computational Plant
or Cplant [44, 23, 9, 40, 7, 8]. This paper describes
resource-allocation algorithms to optimize processor local-
ity in Cplant and other related supercomputers.

Although Sandia maintains a diverse set of computing
resources, the tools for managing these resources com-
monly rely on scheduling/queueing software such as NQS
or PBS to determine which of the available jobs should be
run next. These jobs are prioritized based on a variety of
factors including computing resources already allocated to
the owners of the jobs, number of processors requested,
running-time estimates, waiting time so far, and even day
of week and time of day. But this decision is not based
on the locations of the free processors. The scheduler sim-
ply verifies a sufficient number of processors are free before
dispatching a job.

When a job is selected to run, the processor allocator
assigns it to a set of processors, which are exclusively ded-
icated to this job until it terminates. To obtain maximum
throughput, the processors allocated to a single job should
be physically near each other to minimize communication
costs and to avoid bandwidth contention caused by over-
lapping jobs. Processor locality is particularly important
in commodity-based supercomputers, which typically have
higher communication latencies and lower bandwidth than
supercomputers with custom networks.

Processor locality is an issue for Cplant. We have shown
that if two high-communication jobs are hand-placed on the
machine so that their communication paths overlap signif-

icantly, both jobs’ running times are approximately dou-
bled. Subramani et al. [48] reach similar conclusions. The
Cplant switches are usually connected in a two or three-
dimensional mesh topology. Most switches contain four
processors. Thus, a good processor allocation includes all
processors in a rough subcube of switches.

For the problem addressed in this paper, we have no con-
trol over the scheduler. Given a stream of jobs from the
scheduler, we wish to allocate processors to maximize pro-
cessor locality. More precisely, we address the following
problem. Each parallel job j has an arrival time aj (the time
when it is dispatched from the scheduler for processor allo-
cation), a requested number of processors pj , and a process-
ing time (the user submits an estimated processing time; the
true processing time is known when the job completes; the
user’s job gets truncated if it does not complete within some
specified factor of the estimated processing time). The jobs
arrive online, that is, job j is only known to the allocator
after the time aj when it is dispatched from the scheduler.
Preemption and migration are not allowed, that is, once a
job is begun it must be executed to completion on the same
set of processors. The objective is to assign a set of proces-
sors to each job to optimize some global measure of locality.
For example, if the machine is a mesh, we may choose to
optimize the average expansion of the bounding box, i.e. the
ratio of the bounding box for the allocated processor set and
the minimum possible bounding box. Section 2.3 defines a
new locality measure motivated by this work.

The thesis of this paper is that processor locality can be
achieved in massively parallel supercomputers using sim-
ple, one-dimensional allocation strategies. This approach is
applicable even when the processors are connected by ir-
regular, higher dimensional networks. We accomplish this
reduction using an space-filling curve which imposes an or-
dering on the network of processors such that locations near
each other on the curve are also near each other in the net-
work of processors.

In this paper we describe our experience applying this
strategy to Cplant. In Cplant supercomputers, the nodes
are usually connected by two or three-dimensional meshs
with toroidal wraps in one or more dimensions, but some
of the oldest systems have more highly-connected irregular
topologies. We use Hilbert curves in two dimensions and
have an integer program for general networks. We present
preliminary experimental results and motivating simula-
tions for 2D and 3D meshes.

The remainder of the paper is organized as follows. The
next subsection describes related theoretical and simulation
work. Section 2 describes our allocation strategies given a
processor ordering. Section 3 summarizes our simulations.
Section 4 describes our experimental results. Section 5 of-
fers some concluding remarks.

1.1 Related Work

The simulation-based investigations of Subramani et
al. [48] show that fragmentation is necessary for high per-
formance. Their work is directly motivated by the Cplant
system, though some of it can be applied to more general
systems. They investigated the effect on system throughput
of a policy forbidding fragmentation. They used trace files
from the Cornell Supercomputing Center. In their simula-
tion, they queued jobs until a set of contiguous processors
were available, scaling the running times down to indicate
the benefit of contiguous allocation. They determined that
fragmentation must cause at least a factor-of-two slowdown
in order for the benefit of completely contiguous allocation
to compensate for the loss of processor utilization. Thus
any real system must allow for fragmentation.

Subramani et al. [48] also investigated a strategy that
allows fragmentation, motivated by the buddy strategy for
memory allocation. They considered 2D and 3D meshes.
The machine is subdivided geometrically. For example two
halves of the machine are a buddy pair, two quarters within
the half, etc. Jobs are allocated to these predefined sub-
blocks. Their system holds some jobs back rather than frag-
menting them. This buddy approach does not directly apply
to Cplant because the allocator cannot ever delay jobs.

A problem closely related to Cplant processor alloca-
tion is memory allocation. In this problem there is an ar-
ray of memory, and contiguous sub-arrays are allocated and
deallocated online [41, 42, 32]. One objective function is
to minimize the highest memory address used and conse-
quently the required memory size. Memory allocation dif-
fers from processor allocation because memory allocators
leave empty space to guarantee contiguity and are allowed
to refuse requests that do not fit contiguously.

Another related problem is online bin packing. In bin
packing, the objective is to pack a set of items with given
sizes into bins. Each bin has a fixed capacity and cannot
be assigned items whose total size exceeds this capacity.
The goal is to minimize the number of bins used. The off-
line version is NP-hard [21] and bin packing was one of
the first problems to be studied in terms of both online and
offline approximability [26, 27, 28]. Multi-dimensional bin
packing, where the items and bins are hyperrectangles, has
also been studied. The seminal offline and online results
appear in [12, 14], while the latest results are in [45]. For
a more detailed review of bin packing, see the surveys [13,
17]. Bin packing results cannot be directly applied to our
problem since we have only a single “bin”. Also objects
can leave the system, creating multiple holes within this bin
because jobs cannot migrate.

Our work adapts several of the algorithms for one-
dimensional online bin packing. A common feature of these
algorithms is they keep a list of partially-filled bins. As ob-

jects arrive, they may be placed in one of these bins (assum-
ing they fit) or they may be placed in a new bin, which is
then added to the list. The First Fit algorithm [26] places
a new object in the first bin in which it fits. Best Fit [26]
places a new object in the bin whose remaining space will
be smallest. When the bins and objects have integral sizes,
the more complicated Sum of Squares algorithm [16] is also
available. This algorithm bases its decisions on a vector
N , where N(i) is the number of bins whose contents have
remaining size i. It places a new item in the bin which
minimizes the resulting value of

∑
N(i)2. This allocation

policy encourages a variety of sizes of unallocated regions.
When the input comes from a discrete distribution, this al-
gorithm has near-optimal behavior [15].

Other researchers have used space-filling curves for a va-
riety of problems. Originally, space-filling curves were in-
troduced by Hilbert [25] and Peano [36]. Recent presen-
tations appear in [18] and [43]. Hilbert curves have been
shown to preserve several measures of ”locality” [34, 22].
An alternative with better performance in two dimensions
is given in [35]. Generalizations of Hilbert curves to
higher dimensions are given in [1]. Specific applications
include matrix multiplication [11, 19], domain decomposi-
tion [3, 24, 37], and image processing [2, 33, 4, 49, 30, 29].
They are also a standard tool in the creation of cache-
oblivious algorithms [20, 38, 5, 39, 6, 10], which have
asymptotically optimal memory performance on multilevel
memory hierarchies while avoiding memory-specific pa-
rameterization.

There is a large body of work on scheduling and on-
line scheduling, in particular. We do not attempt to re-
view all this work here, but refer the reader to the survey
of Sgall [46].

2 Allocation Strategies

2.1 Baseline Cplant Allocation

Our test Cplant system is a 2D (toroidally-wrapped)
mesh. The Cplant version 1.9 default allocator uses a sorted
free list based on a left-to-right, top-to-bottom linear pro-
cessor order. Even for the Cplant machines with non-mesh
interconnection topologies, the processors are physically
placed on planes so that such an ordering is still possi-
ble. When a job j requiring pj processors is dispatched to
the allocator, the allocator queries the system to determine
which processors are free and gathers these processors into
a sorted list. The job is allocated to the first pj processors
in the list. These processors may be far apart with respect
to the linear order (and the real machine), even if there is a
contiguous piece of sufficient size available later in the list.

We use the latest version 1.9 default Cplant system as
our baseline against which to measure improvement.

2.2 Transforming to One-Dimensional Allocation

As with the current Cplant node-allocation algorithms,
we impose a linear ordering on the processors. We use a
Hilbert curve (also called a fractal curve), rather than an
arbitrary order or sorting by row and column. We then allo-
cate to obtain locality within this linear ordering.

The Hilbert curve only applies to grid topologies. We
consider the problem of finding good one-dimensional or-
derings for general parallel interconnection topologies and
formulate this problem as an integer program. If two pro-
cessors’ ranks in the one-dimensional ordering differ by k,
then their contribution to the objective function (which we
minimize) is a parameter w(k) times their distance in the
graph. The parameter w(k) decreases rapidly (e.g., inverse
exponentially) with k, so that close pairs in the linear or-
der are coerced to be close physically. We can also use this
objective function to compare different curves for a given
topology.

The above integer-programming problem for computing
a good one-dimensional ordering is NP-complete since it
is a generalization of the Hamiltonian path (HP) problem.
This problem is HP if we set w(k) = 0 for all k > 1, and
w(1) = 1. The graph has a Hamiltonian path if and only if
the integer program has a solution with an objective func-
tion value of n − 1 where n is the number of nodes in the
graph. Though the problem is NP-complete we may be able
to solve particular instances optimally or to within a prov-
able instance-specific error tolerance using PICO (Parallel
Integer and Combinatorial Optimizer), a massively-parallel
branch-and-bound code developed at Sandia National Lab-
oratories and Rutgers University. PICO includes a (branch-
and-cut) mixed-integer program solver. Though this com-
putation may be time-consuming, it is performed only once
for any given physical machine and choice of w(k).

2.3 One-Dimensional Allocation Strategies

We modify existing memory-allocation and bin-packing
algorithms for the Cplant processor-allocation problem.
This is not a straightforward generalization because it is
not required (although desirable) that processors be allo-
cated contiguously. We use analogs to bin-packing algo-
rithms when processors can be allocated contiguously. The
intervals of contiguous free processors are analogous to free
space in unfilled bins. However, we must determine a differ-
ent allocation strategy when there is no contiguous interval
of sufficient size.

Span Metrics Our one-dimensional processor-locality
metric is motivated by a true line or ring topology. Let rp

be the rank of processor p in the linear ordering. This will
be an integer in the range 1, . . . , |P |, where P is the set

of processors. Let Mj be the set of processors assigned
to job j. The linear span, s`

j is the number of proces-
sors potentially involved in message propagation/delivery
for job j if the processors are connected only in a line.
That is, s`

j is the maximum difference in rank between
any pair of processors assigned to job j (plus one): s`

j =
maxp∈Mj

rp − minp∈Mj
rp + 1. All processors with ranks

between this minimum and maximum rank (plus the end-
points) are involved in routing a message between these two
processors. These are the processors “owned” by job j and
those “trapped” between pieces of job j. The ring span sw

j

is a measure of locality if the processors are connected in a
ring, again corresponding to the processors “owned” by job
j and those “trapped” by these segements. Computation-
ally, it’s easier to determine the largest “free” set of proces-
sors, accounting for the ring wraparound. Let rji be the ith-
smallest rank of a processor in Mj for i = 0 . . . pj−1. Then
we define sw

j = |P | −max(max
pj−2

i=0
rj,i+1 − rji − 1, P −

rj, k − 1 + rj,0 + 1). In this paper, we use ring span which
we call span and denote sj for brevity. Span sj is a measure
of the processor locality of job j for more general topolo-
gies provided the space-filling curve closely reflects proces-
sor locality. The integer program described in Section 2.2
computes a processor ranking for ring span provided differ-
ence in rank is computed as the minimum distance around
the ring.

In this paper we test heuristic methods for span mini-
mization. (Minimizing metrics based on span is compu-
tationally difficult.) Examples of such metrics include the
sum of the spans of jobs (

∑n

i=1
si), the max of the spans

of jobs (maxn
i=1 si), the sum (resp. max) of the spans di-

vided by the requested number of processors (
∑n

i=1
si/pi),

the sum (resp. max) of the spans weighted by the processing
times (

∑n

i=1
siti), etc.

Strategies When job j is dispatched, we determine if
there is a contiguous interval of free processors large
enough to run job j. When a job cannot be allocated con-
tiguously, then it is allocated across multiple intervals. We
choose the allocation that minimizes the span of the job. In
a tie we push the job to the smallest rank possible. When a
job can be allocated contiguously, we choose which interval
to use based on adaptations of one-dimensional bin-packing
algorithms. We consider three strategies:

• First-Fit Allocation – Allocate j to the first interval that
is large enough.

• Best-Fit Allocation – Allocate j to the interval that
minimizes the number of unallocated processors re-
maining in the interval.

• Sum-of-Squares Allocation – For each interval to
which j could be allocated, determine the number of

intervals of each size that would remain. Allocate j to
the interval that minimizes the sum of squares of these
numbers of intervals.

All of these strategies are easy to implement and run
quickly. The gains in system throughput (described in Sec-
tion 5) far outweigh the additional computation time of the
allocator.

3 Simulations

We built an event-driven Cplant simulator, which tests
the allocation strategies from Section 2.3 on space-filling
curves. The objective of the simulator is to exhibit tenden-
cies rather than to predict running times precisely. Our sim-
ulations suggest that one-dimensional allocation strategies
coupled with space-filling curves yield processor locality in
higher dimensions. A variety of performance metrics gauge
the processor locality.

Trace Files The Cplant simulator was run on traces from
October, November, and December 2000. These trace
files contain data about all jobs submitted to a Cplant ma-
chine configured as a heavily augmented 2D mesh with
592 compute processors. The trace file includes the times
that the jobs were dispatched from the scheduler, the num-
ber of processors requested, and the actual running times.
These traces did not contain the processors on which the
job was actually run so we cannot compute the fragmenta-
tion/runtime environment of these jobs.

From a trace it is hard to predict how the running time of
the jobs would change if the allocation were different. The
difficulty is because the running times depend on factors
that are hard or impossible to model. These factors include
the processor allocation, the communication patterns of the
jobs, the overlaps of the jobs, and the properties of the com-
munication network.

Rather than make potentially spurious estimates about
the change in the running time of the job with different allo-
cations, our simulations hold the running times constant and
use metrics based on processor locality. The assumption is
that increased locality improves performance, but that the
actual speed-ups should be determined through experimen-
tation.

We transformed the traces into many inputs that model
different workloads. We developed one parameterized set
of inputs by increasing or decreasing the running times of
the jobs by a factor that we call the work multiple. Increas-
ing running times makes processors busier since jobs are
in the system for a longer amount of time. We developed
a second set of parameterized inputs by duplicating jobs
and perturbing the arrival times; the number of times that
a job is duplicated is called the replication factor. Since

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 S
tr

et
ch

 o
f B

ou
nd

in
g

C
ub

e
V

ol
um

e

Work Multiple

random
sorted free list

first fit
best fit

free list w/space filling
first fit w/space filling

best fit w/space filling

20

30

40

50

60

70

80

90

100

110

120

0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 S
pa

n

Work Multiple

Free list w/space-filling
First Fit w/space-filling

Best Fit w/space-filling

Figure 1. Top: The average bounding cube
divided by the smallest bounding cube. Bot-
tom: The average span of jobs. The x-axis
plots the work multiple, where we simulate
the strategies on a range of workloads.

both types of inputs yield similar results, we report only the
work-multiple results.

Metrics One-dimensional metrics include the average
span and the average span divided by the number of proces-
sors (stretch-span). Three-dimensional metrics include the
average size of a bounding box (size of the region defined
by the maximum difference between the x, y, and z dimen-
sions of the job allocation), the average sum of the dimen-
sions of the bounding box, the average size of the bound-
ing cube, the average number of connected components per
job, as well as metrics based on the maximum and sum-of-
squares of these parameters as well as metrics weighted by
the running times or divided by the number of processors.

Simulator The simulator assumes a single 8x8x5 grid
with one processor per vertex, for a total of 320 processors.
This topology is a simplification of the production Cplant
architecture at the time the traces were obtained.

Our simulator models the Cplant job queue and sched-
uler so that the workloads are similar to those on Cplant.
When a job arrives it is placed in a job queue. The job
queue is sorted first by number of requested processors and
then by requested processing time. (Thus, fairness between
users and different night and day priorities are not modeled.)
Periodically, the scheduler polls to determine which proces-
sors are free to execute jobs, and jobs are removed from the
front of the queue.

Results Our results suggest that one-dimensional alloca-
tion strategies coupled with space-filling curves yield pro-
cessor locality in higher dimensions. We tested a variety
of performance metrics; for the sake of brevity, only a few
representative results appear in Figure 1.

We do not know how much the increased locality speeds
up the running time. However, the work-multiple param-
eterization demonstrates that as workloads increase, it be-
comes harder to obtain processor locality and as workloads
decrease it becomes easier. Thus, as the locality of the
jobs improves, the running time decreases which further de-
creases the load, thus further decreasing the running time.

The overall trend is that the processor locality improves
through our approach. The simulation results were suffi-
ciently promising to justify implementing the allocation al-
gorithms on Cplant.

4 Experiments

We have performed a limited number of experiments on
a 128-processor Cplant machine configured as a 2D mesh.
This development machine has an 8 × 8 mesh of switches
with toroidal wraps in both dimensions. Four of the rows
have four processors per switch. The other rows contain
no compute processors; they contain service and I/O nodes,
but fewer than four per switch on average. This pilot study
serves as a proof of the concept: careful one-dimensional
ordering and allocation to preserve locality within this one-
dimensional ordering both improve system throughput.

All runs use identical job streams containing replicas
of various-sized instances of a single communication test
suite. The communication test suite contains all-to-all
broadcast, all-pairs ping-pong (message sent in each direc-
tion), and ring communication. Each communication test is
repeated a hundred times in each suite. The suite computes
a variety of statistics, which computation consumes a small
fraction of the total running time. Because locality is most
important for jobs with high communication demand, this

Allocation Average Standard
Strategy Makespan Deviation
baseline (no curve) 5:46:31 0:10:10
best fit (no curve) 5:27:58 0:05:48
baseline (Hilbert) 4:58:52 0:07:37
sum of squares (Hilbert) 4:32:09 0:03:16
first fit (Hilbert) 4:30:22 0:06:09
best fit (Hilbert) 4:25:23 0:03:00

Table 1. Effect of allocation policy on the
makespan of the test stream

test suite represents a best-case scenario for the benefits of
allocation improvements.

Our test job stream had 91 jobs of size 2, 33 jobs of
size 5, 31 jobs of size 25, and 33 jobs of size 30. This
gives a small range of “large” (approximately 1/4 or 1/5 of
the machine) and small jobs. The stream starts with some
large jobs to fill up the machine. Small jobs are interspersed
among the large ones to cause fragmentation. The last job
submitted is small, but it always finishes in front of the last
large job. The machine is busy through the release of the
last job.

Running times on the Cplant system are nondeterminis-
tic. If we run the same job stream twice with the same al-
location algorithm, same job ordering, same release times,
starting from an empty machine, and having dedicated pro-
cessors, the running times are not the same. Cplant has in-
herent nondeterminism in the network. There is variabil-
ity in time to load executables, in message delivery times,
and so on. If the completion time of a single job changes,
the options available for the allocation of subsequent jobs
also changes. This effect propagates so that later jobs can
be allocated significantly better or worse than in a previ-
ous run. We can even see different job execution orderings,
when a job that is held up for insufficient free processors in
one run finds enough free processors in a different run. We
found that this nondeterminism did not significantly affect
the makespan of the job stream,1 but the running times of
individual job types did vary by 4-16%.

We ran the job stream two to five times (an average of
four) for each of the following strategies: first fit and sum
of squares with the Hilbert curve, and baseline and best fit
with and without the curve.

Table 1 shows the effect of the allocation algorithm on
the makespan of the job stream. For this particular job
stream, it is better to use a space-filling curve than the row-
based ordering. It is also better to pack a job into a consec-
utive interval if possible. However, the performance of the

1The makespan of a set of jobs is the time between the start of the first
job and the completion of the last job.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 20 40 60 80 100 120 140 160 180 200

W
ai

tin
g

T
im

e
(s

ec
on

ds
)

Job Number

baseline
free list

sum of squares
firstfit
bestfit

Figure 2. The x-axis shows order of job re-
lease. The y-axis shows waiting time. The
baseline points use the default processor or-
dering. All other runs are for the indicated
algorithm with the Hilbert curve. Jobs of size
2, 5, and 25 are not represented since these
would all be near the line y = 0.

various bin-packing-based allocation strategies were indis-
tinguishable.

Figure 2 shows the waiting times of the 30 node jobs as
a function of their order in the job stream. Recall the job
stream is identical for all runs, so job order is comparable
across runs. Wait time measures the amount of time a job
sits in a queue waiting for a sufficient number of free pro-
cessors. This plot does not include the 2-node, 5-node, and
25-node jobs. Their wait time was so insignificant com-
pared to that of the 30-node jobs that they all sit near the
x axis. This figure shows that waiting time is yet another
metric that orders the methods the same way with substan-
tial separation.

Figure 3 examines job completion time as a function of
two job-fragmentation metrics, one inherent to the topol-
ogy of the job placement and one used by the algorithms.
A natural geometric fragmentation metric is the average of
the number of communication hops between processors al-
located to this job. Figure 3(a) plots job completion time as
a function of this average for the 30-node jobs. Figure 3(b)
is a similar plot for span with the Hilbert curve. We do not

800

1000

1200

1400

1600

1800

2000

2200

3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4

C
om

pl
et

io
n

T
im

e
(s

ec
on

ds
)

Average Number of Hops

800

1000

1200

1400

1600

1800

2000

2200

30 40 50 60 70 80 90 100

C
om

pl
et

io
n

T
im

e
(s

ec
on

ds
)

Span

Figure 3. Top: (a) Completion time as a func-
tion of the average number of communication
hops between processors. Bottom: (b) Com-
pletion time as a function of span. Compar-
ison of fragmentation metrics. These plots
include only 30-processor jobs across all al-
location algorithms. (a) includes all proces-
sor orderings. (b) is for Hilbert curve only.

include the 2, 5, and 25-node jobs in these plots. The 2,
5, and 25-node jobs differ enough from the 30-node jobs to
add noise to the plots. When the 2, 5, and 25-node jobs are
plotted by themselves, they show the same weak correlation
on a different scale and with a different slope. These plots
include all 30-node jobs placed with all algorithms since the
effect of fragmentation should be a function of the amount
of fragmentation and independent of how that placement
decision was made.

We observe a weak correlation for both metrics. As ex-
pected, there is a stronger correlation of completion time to
the average number of communication hops because this is
a closer match to the topology of the job placement. We are
encouraged that the general span metric, which can be eas-
ily computed, still tracks this correlation. Neither of these
metrics captures the full environment in which a job is run.

5 Concluding Remarks and Future Work

We are cautiously optimistic that the simple general al-
location methods discussed in this paper will improve the
performance of Cplant systems and apply to more general
systems.

Our experiments were limited by the small size of
our test machine and the specialized nature of the test
jobs/stream. We emphasize that fully rigorous testing will
be very challenging because even our limited test suite re-
quired 4.5 to 6 hours per run. In order to do these runs, we
must take a system away from other users. This is partic-
ularly challenging for the 1500+ node production systems.
Therefore our future work will have to rely on simulation to
some extent. However, these simulations must convincingly
account for the effects of locality on job completion time.

Our experiments support the use of span as a fragmen-
tation metric for the design of algorithms and as a mea-
sure of locality. Jobs with large span do generally take
longer. However, the relationship between span and com-
pletion time is not very tight. More work is needed to deter-
mine how much of this variability is inherent in the problem
and how much results from the imprecision of using span.

We also think that finding the minimum span for a given
machine and set of jobs is an interesting theoretical prob-
lem. It is related to, yet distinct from, well-studied prob-
lems such as memory allocation and bin packing. We have
a simple reduction to show that finding the exact minimum
span is NP-hard, but do not yet know if it is approximable.

We have also studied these problems in the online set-
ting, where the standard (worse-case) model is competitive
analysis [47]. While we omit the proof here, we have been
able to show that no online algorithm for minimizing maxi-
mum span can achieve a competitive ratio better than Ω(n)
even for randomized strategies.

It may be possible to improve the allocation further

by considering the actual processor topology rather than
working entirely within a linear ordering of the processors.
When the processors are arranged as a mesh, this makes
the allocation problem a multidimensional packing prob-
lem, but other processor topologies such as toruses do not
have obvious analogs in the packing literature.

It may also be beneficial to consider scheduling and pro-
cessor allocation together. Currently the allocator is forced
to allocate jobs passed from the scheduler even if these
jobs must be highly fragmented. Combining these modules
might allow more intelligent decisions to be made, but any
replacement would need to provide other functionality of
the scheduler such as preventing starvation and allocating
resources fairly between users.

We intend to evaluate non-greedy allocation methods
for jobs that cannot be allocated a contiguous interval. In
particular sum-of-square-like algorithms are more likely to
leave flexibility in the allocation options for future jobs. In
particular, on Cplant, once a job has span of half the ma-
chine size, it effectively consumes bandwidth across the en-
tire machine. We particularly wish to avoid this situation.

Subramani et al. [48] indicates that any real machine
must allow fragmentation. Our work indicates it is accept-
able to fragment, except possibly at the extremes (a large
job shattered by its allocation). It may suffice to use a sim-
ple one-dimensional strategy as long as the system recog-
nizes situations of shattered jobs that will hurt everyone and
queues these jobs.

Acknowledgments

E. Arkin is partially supported by HRL Laboratories,
NSF grant CCR-0098172, and Sandia National Laborato-
ries. M. Bender acknowledges support from HRL Laborato-
ries, NSF Grant EIA-0112849, and Sandia National Labora-
tories. David Bunde is supported in part by Sandia National
Laboratories. J. Mitchell is supported in part by HRL Labo-
ratories, NASA Ames Research, NSF grant CCR-0098172,
the U.S.-Israel Binational Science Foundation, and San-
dia National Laboratories. S. Seiden is supported in part
by Sandia National Laboratories and by AFOSR grant No.
F49620-01-1-0264.

Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy under Contract DE-AC04-
94AL85000.

References

[1] J. Alber and R. Niedermeier. On multidimensional hilbert
indexings. Theory of Computing Systems, 33:295–312,
2000.

[2] V. V. Alexandrov, A. I. Alexeev, and N. D. Gorsky. A recur-
sive algorithm for pattern recognition. In Proc. IEEE Intl.
Conf. Pattern Recognition, pages 431–433, 1982.

[3] S. Aluru and F. Sevilgen. Parallel domain decomposition
and load balancing using space-filling curves. In Proc. 4th
International Conference on High-Performance Computing,
pages 230–235, 1997.

[4] A. Ansari and A. Fineberg. Image data compression and or-
dering using Peano scan and lot. IEEE Trans. on Consumer
Electronics, 38(3):436–445, 1992.

[5] M. A. Bender, E. Demaine, and M. Farach-Colton. Cache-
oblivious B-trees. In Proc. 41st Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 399–409,
2000.

[6] M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A locality-
preserving cache-oblivious dynamic dictionary. In Proc.
13th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 29–38, 2002.

[7] R. Brightwell, H. E. Fang, and L. Ward. Scalability and
performance of CTH on the Computational Plant. In Proc.
2nd International Conference on Cluster-Based Computing,
2000.

[8] R. Brightwell, L. A. Fisk, D. S. Greenberg, T. Hudson,
M. Levenhagen, A. B. Maccabe, and R. Riesen. Massively
parallel computing using commodity components. Parallel
Computing, 26(2-3):243–266, 2000.

[9] R. Brightwell and A. Maccabe. Scalability limitations of
VIA-based technologies in supporting MPI. In Proc. 4th
MPI Developer’s and User’s Conference, 2000.

[10] G. S. Brodal, R. Fagerberg, and R. Jacob. Cache oblivi-
ous search trees via binary trees of small height (extended
abstract). In Proc. 13th ACM-SIAM Symp. on Discrete Al-
gorithms (SODA), 2002.

[11] S. Chatterjee, A. R. Lebeck, P. K. Patnala, and M. S. Thot-
tethodi. Recursive array layouts and fast matrix multiplica-
tion. In Proc. 11th ACM Symposium on Parallel Algorithms
and Architectures (SPAA), pages 222–231, 1999.

[12] F. R. K. Chung, M. R. Garey, and D. S. Johnson. On pack-
ing two-dimensional bins. SIAM Journal on Algebraic and
Discrete Methods, 3:66–76, 1982.

[13] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approxima-
tion algorithms for bin packing: A survey. In D. Hochbaum,
editor, Approximation Algorithms for NP-hard Problems,
chapter 2. PWS Publishing Company, 1997.

[14] D. Coppersmith and P. Raghavan. Multidimensional online
bin packing: Algorithms and worst case analysis. Opera-
tions Research Letters, 8:17–20, 1989.

[15] J. Csirik, D. Johnson, C. Kenyon, J. Orlin, P. Shor, and
R. Weber. On the sum-of-squares algorithm for bin pack-
ing. In Proc. 32nd Annual ACM Symposium on Theory of
Computation (STOC), pages 208–217, 2000.

[16] J. Csirik, D. Johnson, C. Kenyon, P. Shor, and R. Weber.
A self-organizing bin packing heuristic. In Proc. Algorithm
Engineering and Experimentation: International Workshop
(ALENEX), volume 1619 of Springer Lecture Notes in Com-
puter Science, pages 246–265, 1999.

[17] J. Csirik and G. Woeginger. On-line packing and covering
problems. In A. Fiat and G. Woeginger, editors, On-Line
Algorithms—The State of the Art, Lecture Notes in Com-
puter Science, chapter 7. Springer-Verlag, 1998.

[18] Eric Weisstein’s World of Mathematics. Hilbert curve.
http://mathworld.wolfram.com/HilbertCurve.html .

[19] J. D. Frens and D. S. Wise. Auto-blocking matrix-
multiplication or tracking BLAS3 performance from source
code. ACM SIGPLAN Notices, 32(7):206–216, 1997.

[20] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithms. In Proc. 40th Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages
285–297, 1999.

[21] M. R. Garey and D. S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W.H. Free-
man and Company, 1979.

[22] C. Gotsman and M. Lindenbaum. On the metric properties
of discrete space-filling curves. IEEE Trans. on Image Pro-
cessing, 5(5):794–797, 1996.

[23] D. S. Greenberg, R. Brightwell, L. A. Fisk, A. McCabe, and
R. Riesen. A system software architecture for high-end com-
puting. In Proc. High Performance Networking and Com-
puting (SC97), 1997.

[24] M. Griebel and G. W. Zumbusch. Hash-storage techniques
for adaptive multilevel solvers and their domain decomposi-
tion parallelization. In J. Mandel, C. Farhat, and X.-C. Cai,
editors, Proc. Domain Decomposition Methods 10, DD10,
number 218 in Contemporary Mathematics, pages 279–286,
Providence, 1998. AMS.

[25] D. Hilbert. Über die stetige abbildung einer linie auf ein
flachenstück. Math. Ann., 38:459–460, 1891.

[26] D. S. Johnson. Near-optimal bin packing algorithms. PhD
thesis, Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1973.

[27] D. S. Johnson. Fast algorithms for bin packing. J. Comput.
Syst. Sci., 8:272–314, 1974.

[28] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and
R. L. Graham. Worst-case performance bounds for sim-
ple one-dimensional packing algorithms. SIAM J. Comput.,
3:256–278, 1974.

[29] S. Kamata, R. O. Eason, and Y. Bandou. A new algorithm
for N-dimensional Hilbert scanning. IEEE Trans. on Image
Processing, 8(7):964–973, 1999.

[30] S. Kamata, R. O. Eason, and E. Kawaguchi. An implemen-
tation of the Hilbert scanning algorithm and its application
to data compression. IEICE Trans. on Information and Sys-
tems, E76-D(4):420–428, Apr. 1993.

[31] Lawrence Livermore National Laboratory. Ad-
vanced Simulation and Computing (ASCI).
http://www.llnl.gov/asci/ .

[32] M. G. Luby, J. S. Naor, and A. Orda. Tight bounds for dy-
namic storage allocation. SIAM Journal on Discrete Mathe-
matics, 9(1):155–166, 1996.

[33] Y. Matias and A. Shamir. A video scrambling tech-
nique based on space filling curves. In Proc. Advances in
Cryptology—CRYPTO ’87, volume 293 of Lecture Notes in
Computer Science, pages 398–417. Springer-Verlag, 1987.

[34] B. Moon, H. V. Jagadish, C. Faloutsos, and J. Saltz. Anal-
ysis of the clustering properties of Hilbert space-filling
curve. IEEE Trans. on Knowledge and Data Engineering,
13(1):124–141, 2001.

[35] R. Niedermeier, K. Reinhardt, and P. Sanders. Towards op-
timal locality in mesh-indexings. In Proc. 11th Intl Symp on
Fund. Computation Theory, volume 1279 of LNCS, pages
364–375, 1997.

[36] G. Peano. Sur une courbe, qui remplit toute une aire plane.
Math. Annalen, pages 157–160, 1890.

[37] J. R. Pilkington and S. B. Baden. Dynamic partitioning of
non-uniform structured workloads with spacefilling curves:.
IEEE Transactions on Parallel and Distributed Systems,
7(3):288–300, 1996.

[38] H. Prokop. Cache-oblivious algorithms. Master’s thesis,
Massachusetts Institute of Technology, Cambridge, MA,
1999.

[39] N. Rahman, R. Cole, and R. Raman. Optimized predecessor
data structures for internal memory. In Proc. 5th Workshop
on Algorithms Engineering (WAE), 2001.

[40] R. Riesen, R. Brightwell, L. A. Fisk, T. Hudson, J. Otto,
and A. B. Maccabe. Cplant. In Proc. 2nd Extreme Linux
workshop at the 1999 USENIX Annual Technical Confer-
ence, 1999.

[41] J. M. Robson. An estimate of the store size necessary for
dynamic storage allocation. Journal of the ACM, 18(3):416–
423, 1971.

[42] J. M. Robson. Bounds for some functions concerning dy-
namic storage allocation. Journal of the ACM, 21(3):491–
499, 1974.

[43] H. Sagan. Space-Filling Curves. Springer-Verlag, 1994.
[44] Sandia National Laboratories. The Computational Plant

Project. http://www.cs.sandia.gov/cplant .
[45] S. Seiden and R. van Stee. New bounds for multi-

dimensional packing. In Proc. 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 486–
495, 2002.

[46] J. Sgall. On-line scheduling. In A. Fiat and G. Woegin-
ger, editors, On-Line Algorithms—The State of the Art, Lec-
ture Notes in Computer Science, chapter 9. Springer-Verlag,
1998.

[47] D. D. Sleator and R. E. Tarjan. Amortized efficiency of
list update and paging rules. Communications of the ACM,
28(2):202–208, 1985.

[48] V. Subramani, R. Kettimuthu, S. Srinivasan, J. Johnson, and
P. Sadayappan. Selective buddy allocation for scheduling
parallel jobs on clusters. In Proc. 4th IEEE International
Conference on Cluster Computing, 2002.

[49] K. S. Thyagarajan and S. Chatterjee. Fractal scanning for
image compression. In Conference Record of the 25th Asilo-
mar Conference on Signals, Systems and Computers, pages
467–471, 1992.

Communication-Aware Processor Allocation for
Supercomputers�

Michael A. Bender1, David P. Bunde2, Erik D. Demaine3, Sándor P. Fekete4,
Vitus J. Leung5, Henk Meijer6, and Cynthia A. Phillips5

1 Department of Computer Science, SUNY Stony Brook,
Stony Brook, NY 11794-4400, USA

bender@cs.sunysb.edu
2 Department of Computer Science, University of Illinois,

Urbana, IL 61801, USA
bunde@uiuc.edu

3 MIT Computer Science and Artificial Intelligence Laboratory,
Cambridge, MA 02139, USA

edemaine@mit.edu
4 Dept. of Mathematical Optimization,
Braunschweig University of Technology,

38106 Braunschweig, Germany
s.fekete@tu-bs.de

5 Discrete Algorithms & Math Department, Sandia National Laboratories,
Albuquerque, NM 87185-1110, USA
{vjleung, caphill}@sandia.gov

6 Dept. of Computing and Information Science, Queen’s University,
Kingston, Ontario, K7L 3N6, Canada

henk@cs.queensu.ca

Abstract. We give processor-allocation algorithms for grid architec-
tures, where the objective is to select processors from a set of available
processors to minimize the average number of communication hops.

The associated clustering problem is as follows: Given n points in
�d, find a size-k subset with minimum average pairwise L1 distance.
We present a natural approximation algorithm and show that it is a 7

4
-

approximation for 2D grids. In d dimensions, the approximation
guarantee is 2 − 1

2d
, which is tight. We also give a polynomial-time

approximation scheme (PTAS) for constant dimension d and report on
experimental results.

1 Introduction

We give processor-allocation algorithms for grid architectures. Our objective
is to select processors to run a job from a set of available processors so that the
average number of communication hops between processors assigned to the job
is minimized. Our problem is restated as follows: given a set P of n points in
�d, find a subset S of k points with minimum average pairwise L1 distance.

� Extended Abstract. A full version is available as [5].

F. Dehne, A. López-Ortiz, and J.-R. Sack (Eds.): WADS 2005, LNCS 3608, pp. 169–181, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

170 M.A. Bender et al.

Motivation: Processor Allocation in Supercomputers. Our algorithmic work is
motivated by a problem in the operation of supercomputers. The supercomputer
for which we targeted our simulations and experiments is called Computational
Plant or Cplant [7, 25], a commodity-based supercomputer developed at San-
dia National Laboratories. In Cplant, a scheduler selects the next job to run
based on priority. The allocator then independently places the job on a set of
processors which exclusively run that job to completion. Security constraints
forbid migration, preemption, or multitasking. To obtain maximum throughput
in a network-limited computing system, the processors allocated to a single job
should be physically near each other. This placement reduces communication
costs and avoids bandwidth contention caused by overlapping jobs. Experiments
have shown that processor allocation affects throughput on a range of architec-
tures [3,17,20,21,23]. Several papers suggest that minimizing the average number
of communication hops is an appropriate metric for job placement [20, 21, 16].
Experiments with a communication test suite demonstrate that this metric cor-
relates with a job’s completion time [17].

Early processor-allocation algorithms allocate only convex sets of processors
to each job [18, 9, 29, 6]. For such allocations, each job’s communication can
be routed entirely within processors assigned to that job, so jobs contend only
with themselves. But requiring convex allocations reduces the achievable system
utilization to levels unacceptable for a government-audited system [15,26].

Recent work [19,22,8,17,26] allows discontiguous allocation of processors but
tries to cluster them and minimize contention with previously allocated jobs.
Mache, Lo, and Windisch [22] propose the MC algorithm for grid architectures:
For each free processor, algorithm MC evaluates the quality of an allocation
centered on that processor. It counts the number of free processors within a
submesh of the requested size centered on the given processor and within “shells”
of processors around this submesh. The cost of the allocation is the sum of the
shell numbers in which free processors occur; see Figure 1 reproduced from [22].
MC chooses the allocation with lowest cost. Since users of Cplant do not request
processors in a particular shape, in this paper, we consider MC1x1, a variant in
which shell 0 is 1 × 1 and subsequent shells grow in the same way as in MC.

Until recently, processor allocation on the Cplant system was not based on
the locations of the free processors. The allocator simply verified that enough
processors were free before dispatching a job. The current allocator uses space-
filling curves and 1D bin-packing techniques based upon work of Leung
et al. [17].

A Free processor

Allocated processor

Fig. 1. Illustration of MC: Shells around processor A for a 3 × 1 request

Communication-Aware Processor Allocation for Supercomputers 171

25/15=1.666

124/55=2.25496/45=2.133

374/136=2.750 632/210=3.009563/190=2.963496/171=2.900433/153=2.830

227/91=2.494 272/105=2.590 318/120=2.650

38/21=1.809 72/36=2.00054/28=1.928

16/10=1.6008/6=1.3334/3=1.3331/1=1.000

188/78=2.410152/66=2.303

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

w
(x

)

x

w(x)
circle

Fig. 2. (Left) Optimal unconstrained clusters for small values of k; numbers shown
are the average L1 distances, with truncated decimal values. (Right) Plot from [4] of a
quarter of the optimal limiting boundary curve; the dotted line is a circle

RelatedAlgorithmicWork. Krumkeet al. [16] consider a generalizationof ourprob-
lem on arbitrary topologies for several measures of locality, motivated by allocation
on the CM5. They prove it is NP-hard to approximate average pairwise distance in
general, but give a 2-approximation for distances obeying the triangle inequality.

A natural special case of the allocation problem is the unconstrained problem,
in the absence of occupied processors: For any number k, find k grid points
minimizing average pairwise L1 distance. For moderate values of k, these sets
can be found by exhaustive search; see Figure 2. The resulting shapes appear to
approximate some “ideal” rounded shape, with better and better approximation
for growing k. Karp et al. [14] and Bender et al. [4] study the exact nature of
this shape. Surprisingly, the resulting convex curve can only be described by
a differential equation; the closed-form solution is unknown. The complexity of
this special case remains open, but its mathematical difficulty emphasizes the
hardness of obtaining good solutions for the general constrained problem.

In reconfigurable computing on field-programmable gate arrays (FPGAs),
varying processor sizes give rise to a generalization of our problem: place a
set of rectangular modules on a grid to minimize the overall weighted sum of
L1 distances between modules. Ahmadinia et al. [1] give an optimal Θ(n log n)
algorithm for finding an optimal feasible location for a module given a set of
n existing modules. At this point, no results are known for the general off-line
problem (place n modules simultaneously) or for on-line versions.

Another related problem is min-sum k-clustering : separate a graph into k
clusters to minimize the sum of distances between nodes in the same cluster. For
general graphs, Sahni and Gonzalez [24] show it is NP-hard to approximate this
problem to within any constant factor for k ≥ 3. In a metric space, Guttmann-
Beck and Hassin [12] give a 2-approximation, Indyk [13] gives a PTAS for k = 2,
and Bartel et al. [2] give an O((1/ε) log1+ε n)-approximation for general k.

Fekete and Meijer [11] consider the problem of maximizing the average L1

distance. They give a PTAS for this dispersion problem in �d for constant d,
and show that an optimal set of any fixed size can be found in O(n) time.

172 M.A. Bender et al.

Our Results. We develop algorithms for minimizing the average L1 distance be-
tween allocated processors in a mesh supercomputer. A greedy heuristic we an-
alyze called MM and a 3D version of MC1x1 have been implemented on Cplant.
In particular, we give the following results:
– We prove that MM is a 7

4 -approximation algorithm for 2D grids, reducing
the previous best factor of 2 [16], and we show that this analysis is tight.

– We present a simple generalization to general d-dimensional space with fixed
d and prove that the algorithm gives a 2− 1

2d -approximation algorithm, which
is tight.

– We give an efficient polynomial-time approximation scheme (PTAS) for
points in �d for constant d.

– Using simulations, we compare the allocation performance of our algorithm
to that of other algorithms. As a byproduct, we get insight on how to place
a stream of jobs in an online setting.

In addition, we have a number of other results whose details are omitted due
to space constraints: We have a linear-time exact algorithm for the 1D case based
on dynamic programming. We prove that the d-dimensional version of MC1x1
has approximation factor at most d times that of MM. We have an algorithm to
solve the 2-dimensional case for k = 3 in time O(n log n).

2 Manhattan Median Algorithm for Two-Dimensional
Point Sets

2.1 Median-Based Algorithms

Given a set S of k points in the plane, a point that minimizes the total L1 distance
to these points is called an (L1) median. Given the nature of L1 distances, this
is a point whose x-coordinate (resp. y-coordinate) is the median of the x (resp.
y) values of the given point set. We can always pick a median whose coordinates
are from the coordinates in S. There is a unique median if k is odd; if k is even,
possible median coordinates may form intervals.

The natural greedy algorithm for our clustering problem is as follows:

Consider the O(n2) intersection points of the horizontal and vertical lines
through the points in P . For each of these points p do:

1. Take the k points closest to p (using the L1 metric), breaking ties
arbitrarily.

2. Compute the total pairwise distance between all k points.

Return the set of k points with smallest total pairwise distance.

We call this strategy MM, for Manhattan Median. We prove that MM is a
7
4 -approximation on 2D meshes. (Note that Krumke et al. [16] call this algorithm
Gen-Alg and show it is a 2-approximation in arbitrary metric spaces.)

Communication-Aware Processor Allocation for Supercomputers 173

2.2 Analysis of the Algorithm

For S ⊆ P , let |S| denote the sum of L1 distances between points in S. For
a point p in the plane, we use px and py to denote its x- and y-coordinates
respectively.

Lemma 1. MM is not better than a 7/4 approximation.

Proof. For a class of examples establishing the lower bound, consider the situa-
tion shown in Figure 3. For any ε > 0, it has clusters of k/2 points at (0, 0) and
(1, 0). In addition, it has clusters of k/8 points at (0,±(1 − ε)), (1,±(1 − ε)),
(2− ε, 0), and (−1+ ε, 0). The best choices of median are (0, 0) and (1, 0), which
yield a total distance of 7k2(1−Θ(ε))/16. The optimal solution is the points at
(0, 0) and (1, 0), which yield a total distance of k2/4. ��

k/8 points

k/2 points
(1, 1 − ε)(0, 1 − ε)

(1, 0)(0, 0)

(0, −1 + ε) (1, −1 + ε)

(2 − ε, 0)(−1 + ε, 0)

Fig. 3. A class of examples where MM yields a ratio of 7/4

Now we show that 7/4 is indeed the worst-case bound. We focus on pos-
sible worst-case arrangements and use local optimality to restrict the possible
arrangements until the claim follows.

Let OPT be a subset of P of size k for which |OPT| is minimum. Without
loss of generality assume that the origin is a median point of OPT. This means
that the number of points of OPT with positive or negative x- or y-coordinates
is at most k/2. Let MM be the set of k points closest to the origin. (Since this
is one candidate solution for the algorithm, its sum of pairwise distances is at
least as high as that of the solution returned by the algorithm.)

Without loss of generality, assume that the largest distance of a point in MM
to the origin is 1, so MM lies in the unit circle C. We say that points are either
inside C, on C, or outside C. All points of P inside C are in MM and at least
some points on C are in MM. If there are more than k points on and inside C,
we select all points inside C plus those points on C maximizing |MM|.

Clearly 1 ≤ |MM|/|OPT|. Let ρk be the supremum of |MM|/|OPT| over all
input configurations P . By assuming that ties are broken badly, we can assume
that there is a configuration S ⊆ P for which |MM|/|OPT| = ρk:

Lemma 2. For any n and k, there are point sets P with |P | = n for which
|MM|/|OPT| attains the value ρk.

174 M.A. Bender et al.

Proof. The set of arrangements of n points in the unit circle C is a compact set
in 2d-dimensional space. By our assumption on breaking ties, |MM|/|OPT| is
upper semi-continuous, so it attains a maximum. ��

For k ≤ 8n/11 we show |MM| is at most 7/4 times larger than |OPT|.
Lemma 3. For k ≤ 8n/11 we have ρk ≤ 7/4.

Sketch of Proof. We assume that we have a point set P for which ρk is equal to
7/4. We can assume without loss of generality that P = MM ∪ OPT. If there
is a point p ∈ P that does not lie in a corner of C or on the origin, we look at
all points that lie on the axis-parallel rectangle through p with corners on C.
We move these points simultaneously, in such a way that they stay on an axis-
parallel rectangle with corners on C. This move changes |MM| by some small
amount δa and |OPT| by some amount δo. However if we move all points in the
opposite direction |MM| and |OPT| change by −δa and −δo respectively. So if
δa/δo 	= ρk, one of these two moves increases |MM|/|OPT|, which is impossible.
If δa/δo = ρk we keep moving the points in the same direction until there is a
combinatorial change in P . We can then repeat this argument until all points of
P lie on a corner of C or on the origin.

It is now not too hard to show that the ratio MM/OPT is maximal if there
are k/2 points at the origin, k/2 points in one corner of C and k/8 points at
each of the other three corners. So we have |MM|/|OPT| = 7/4. Notice that n
has to be at least 11k/8 for this value to be obtained. ��

For larger values of k it can be shown that ρk decreases, so we summarize:

Theorem 1. MM is a 7/4-approximation algorithm for minimizing the sum of
pairwise L1 distances in a 2D mesh.

3 PTAS for Two Dimensions

Let w(S, T) be the sum of all the distances from points in S to points in T . Let
wx(S, T) and wy(S, T) be the sum of x- and y- distances from points in S to
points in T , respectively. So w(S, T) = wx(S, T)+wy(S, T). Let w(S) = w(S, S),
wx(S) = wx(S, S), and wy(S) = wy(S, S). We call w(S) the weight of S.

Let S = {s0, s1, . . . , sk−1} be a minimum-weight subset of P , where k is an
integer greater than 1. We label the x- and y-coordinates of a point s ∈ S by
some (xa, yb) with 0 ≤ a < k and 0 ≤ b < k such that x0 ≤ x1 ≤ . . . ≤ xk−1 and
y0 ≤ y1 ≤ . . . ≤ yk−1. (Note that in general, a 	= b for a point s = (xa, yb).) We
can derive the following equations: wx(S) = (k−1)(xk−1−x0)+(k−3)(xk−2−
x1) + . . . and wy(S) = (k − 1)(yk−1 − y0) + (k − 3)(yk−2 − y1) + . . . We
show that there is a polynomial-time approximation scheme (PTAS), i.e., for
any fixed positive m = 1/ε, there is a polynomial approximation algorithm that
finds a solution within (1 + ε) of the optimum.

The basic idea is similar to the one used by Fekete and Meijer [11] to select a
set of points maximizing the overall distance: We find (by enumeration) a subdi-
vision of an optimal solution into m×m rectangular cells Cij , each containing a

Communication-Aware Processor Allocation for Supercomputers 175

η2

η1

η0

ξ0 ξ1 ξ2 ξm

ηm

ηm−1

X0 X1 Xm−1

Ym−1

Y0

Y1

ξm−1

C11

C10

C01

C00

Fig. 4. Dividing the point set in horizontal and vertical strips

specific number kij of selected points. The points from each cell Cij are selected
in a way that minimizes the total distance to all other cells except for the m− 1
cells in the same “horizontal” strip or the m−1 cells in the same “vertical” strip.
As it turns out, this can be done in a way that the total neglected distance within
the strips is bounded by a small fraction of the weight of an optimal solution,
yielding the desired approximation property. See Figure 4 for the setup.

For ease of presentation, we assume that k is a multiple of m and m > 2.
Approximation algorithms for other values of k can be constructed in a similar
fashion. Consider a division of the plane by a set of m+1 x-coordinates ξ0 ≤ ξ1 ≤
. . . ≤ ξm. Let Xi := {p = (x, y) | ξi ≤ x ≤ ξi+1} be the vertical strip between
coordinates ξi and ξi+1. By enumeration of possible values of ξ0, . . . , ξm we may
assume that each of the m strips Xi contains precisely k/m points of an optimal
solution. (A small perturbation does not change optimality or approximation
properties of solutions. Thus, without loss of generality, we assume that no pair
of points share either x-coordinate or y-coordinate.)

In a similar manner, assume we know m+1 y-coordinates η0 ≤ η1 ≤ . . . ≤ ηm

so that an optimal solution has precisely k/m points in each horizontal strip
Yi := {p = (x, y) | ηi ≤ y ≤ ηi+1}.

Let Cij := Xi ∩ Yj , and let kij be the number of points in OPT that are
chosen from Cij . Since for all i, j ∈ {1, 2, . . . ,m},

∑

0≤l<m

klj =
∑

0≤l<m

kil = k/m,

we may assume by enumeration over the O(km) possible partitions of k/m into
m pieces that we know all the numbers kij .

Finally, define the vector ∇ij := ((2i + 1 − m)k/m, (2j + 1 − m)k/m). Our
approximation algorithm is as follows: from each cell Cij , choose kij points that
are minimum in direction ∇ij , i.e., select points p = (x, y) for which (x(2i + 1−
m)k/m, y(2j + 1 − m)k/m) is minimum. For an illustration, see Figure 5.

It can be shown that selecting points of Cij this way minimizes the sum of
x-distances to points not in Xi and the sum of y-distances to points not in Yj .

176 M.A. Bender et al.

k12 = 4

i = 1,
j = 2,

η3

η2

ξ1 ξ2

(
(2+1−m)k

m
,

(4+1−m)k
m

)

Fig. 5. Selecting points in cell C12

The details are somewhat technical and are described in the full version of the
paper [5]. We summarize:

Theorem 2. The problem of selecting a subset of minimum total L1 distance
for a set of points in �2 allows a PTAS.

4 Higher-Dimensional Spaces

Using the same techniques, we also generalize our results to higher dimensions.
We start by describing the performance of MM.

4.1
(
2 − 1

2d

)
-Approximation

As in two-dimensional space, MM enumerates over the O(nd) possible medians.
For each median, it constructs a candidate solution of the k closest points.

Lemma 4. MM is not better than a 2 − 1/(2d) approximation.

Proof. We construct an example based on the cross-polytope in d dimensions,
i.e., the d-dimensional L1 unit ball. Let ε > 0. Denote the origin with O and
the ith unit vector with ei. The example has k/2 points at O and O + e1. In
addition, there are k/(4d) points at O − (1 − ε)e1, O + (2 − ε)e1, O ± (1 − ε)ei

for i = 2, . . . , d, and O + e1 ± (1 − ε)ei for i = 2, . . . , d. MM does best with O
or O + e1 as median, giving a total distance of (k2/4) (2 − 1/(2d)) (1 + Θ(ε)).
Optimal is the points at O and O + e1, giving a total distance of k2/4. ��

Establishing a matching upper bound can be done analogously to Section 2.
Lemma 2 holds for general dimensions. The rest is based on the following lemma:

Lemma 5. Worst-case arrangements for MM can be assumed to have all points
at positions (0, . . . , 0) and ±ei, where ei is the ith unit vector.

Sketch of Proof. Consider a worst-case arrangement within the cross-polytope
centered at the origin with radius 1. Local moves consist of continuous changes in
point coordinates, performed in such a way that the number of coordinate values
is kept. This means that to move a point having a coordinate value different from

Communication-Aware Processor Allocation for Supercomputers 177

0, 1,−1, then all other points sharing that coordinate value are moved to keep
the identical coordinates the same, analogous to the proof of Lemma 3.

Note that under these moves, the functions OPT and MM are locally linear,
so the ratio of MM and OPT is locally constant, strictly increasing, or strictly
decreasing. If a move decreases the ratio, the opposite move increases it, contra-
dicting the assumption that the arrangement is worst-case.

If the ratio is locally constant during a move, it will continue to be extremal
until an event occurs, i.e., when the number of coordinate identities between
points increases, or the number of point coordinates at 0, 1,−1 increase. While
there are points with coordinates different from 0, 1,−1, there is always a move
that decreases the total degrees of freedom, until all dn degrees of freedom have
been eliminated. Thus, we can always reach an arrangement with point coordi-
nates values from the set {0, 1,−1}. These leaves the origin and the 2d positions
±ei as only positions within the cross-polytope. ��

The restricted set of arrangements can be evaluated with symmetry to yield

Theorem 3. For points lying in d-dimensional space, MM is a 2−1/2d-approxi-
mation algorithm, which is tight.

4.2 PTAS for General Dimensions

Theorem 4. For any fixed d, the problem of selecting a subset of minimum total
L1 distance for a set of points in �d allows a PTAS.

Sketch of Proof. For m = Θ(1/ε), we subdivide the set of n points with d(m+1)
axis-aligned hyperplanes, such that (m + 1) are normal for each coordinate di-
rection. Moreover, any set of (m+1) hyperplanes normal to the same coordinate
axis is assumed to subdivide the optimal solution into k/m equal subsets, called
slices. Enumeration of all possible structures of this type yields a total of nm

choices of hyperplanes in each coordinate, for a total of nmd possible choices.
For each choice, we have a total of md cells, each containing between 0 and k
points; thus, there are O(mkd) different distributions of cardinalities to the dif-
ferent cells. As in the two-dimensional case, each cell picks the assigned number
of points extremal in its gradient direction.

It is easily seen that for each coordinate xi, the above choice minimizes the
total sum of xi-distances between points not in the same xi-slice. The remain-
ing technical part (showing that the sum of distances within slices are small
compared to the distances between different slices) is analogous to the details
described in the full version of the paper [5] and omitted. ��

5 Experiments

The work discussed so far is motivated by the allocation of a single job. In the
following, we examine how well our algorithms allocate streams of jobs; now the
set of free processors available for each job depends on previous allocations.

178 M.A. Bender et al.

Table 1. Average sum of pairwise distances when the decision algorithm makes allo-
cations with input provided by the situation algorithm

Situation Decision Algorithm
Algorithm MC1x1 MM MM+Inc HilbertBF

MC1x1 5256 5218 5207 5432

MM 5323 5285 5276 5531

MM+Inc 5319 5281 5269 5495

HilbertBF 5090 5059 5046 5207

To understand the interaction between the quality of an individual allocation
and the quality of future allocations, we ran a simulation involving pairs of algo-
rithms. One algorithm, the situation algorithm, places each job. This determines
the free processors available for the next job. Each allocation decision serves as
an input to the other algorithm, the decision algorithm. Each entry in Table 1
represents the average sum of pairwise distances for the decision algorithm with
processor availability determined by the situation algorithm.

Our simulation used the algorithms MC1x1, MM, MM+Inc, and HilbertBF.
MM+Inc uses local improvement on the allocation of MM, replacing an allocated
processor with an excluded processor that improves average pairwise distance
until it reaches a local minimum. HilbertBF is the 1-dimensional strategy of
Leung et al. [17] used on Cplant. The simulation used the LLNL Cray T3D
trace1 from the Parallel Workloads Archive [10]. This trace has 21323 jobs run
on a machine with 256 processors, treated as a 16 × 16 mesh in the simulation.

In each row, the algorithms are ranked in the order MM+Inc, MM, MC1x1,
and HilbertBF. This is consistent with the worst-case performance bounds; MM
is a 7/4-approximation, MC1x1 is a 7/2-approximation, and HilbertBF has an
unbounded ratio2.

6 Conclusions

The algorithmic work described in this paper is one step toward developing
algorithms for scheduling mesh-connected network-limited multiprocessors. We
have given provably good algorithms to allocate a single job. The next step is to
study the allocation of job sequences, a markedly different algorithmic challenge.

The difference between making a single allocation and a sequence of alloca-
tions is already illustrated by the diagonal entries in Table 1, where the free
processors depend on the same algorithm’s previous decisions. These give the
ranking (from best to worst) HilbertBF, MC1x1, MM+Inc, and MM. The lo-
cally better decisions of MM+Inc seem to paint the algorithm into a corner over
time. Figures 1 and 2 help explain why. When starting on an empty grid, MC

1 We thank Moe Jette and Bill Nitzberg for providing the LLNL and NASA Ames
iPSC/860 traces, respectively, to the Parallel Workloads Archive.

2 On an N × N mesh, the approximation ratio can be Ω(N).

Communication-Aware Processor Allocation for Supercomputers 179

produces connected rectangular shapes. Locally, these shapes are slightly worse
than the round shapes produced by MM, but rectangles have better packing
properties because they avoid small patches of isolated grid nodes.

We confirmed this behavior over an entire trace using Procsimity [27, 28],
which simulates messages moving through the network. We ran the NASA Ames
iPSC/860 trace3 from the Parallel Workloads Archive [10], scaling down the
number of processors for each job by a factor of 4. This made the trace run
on a machine with 32 processors, allowing us to find the greedy placement that
minimizes average pairwise distance at that step. For average job flow time,
MC1x1 was best, followed by MM, and then greedy. We did not run MM+Inc
in this simulation. HilbertBF was much worse than all three of the algorithms
mentioned in part due to difficulties using it on a nonsquare mesh.

Thus, the online problem in an iterated scenario is the most interesting open
problem. We believe that a natural attack may be to consider online packing of
rectangular shapes of given area. We plan to pursue this in future work.

Acknowledgments

We thank Jens Mache for informative discussions on processor allocation. Michael
Bender was partially supported by Sandia and NSF Grants EIA-0112849 and
CCR-0208670. David Bunde was partially supported by Sandia and NSF grant
CCR 0093348. Sándor Fekete was partially supported by DFG grants FE 407/7
and FE 407/8. Henk Meijer was partially supported by NSERC. Sandia is a
multipurpose laboratory operated by Sandia Corporation, a Lockheed-Martin
Company, for the United States Department of Energy under contract DE-AC04-
94AL85000.

References

1. A. Ahmadinia, C.Bobda, S. Fekete, J.Teich, and J. der Veen. Optimal routing-
conscious dynamic placement for reconfigurable computing. In International Con-
ference on Field-Programmable Logic and its applications, volume 3203 of LNCS,
pages 847–851. Springer, 2004.

2. Y. Bartal, M. Charikar, and D. Raz. Approximating min-sum k-clustering in metric
spaces. In Proc. 33rd Symp. on Theory of Computation, pages 11–20, 2001.

3. S. Baylor, C. Benveniste, and Y. Hsu. Performance evaluation of a massively paralel
I/O subsystem. In R. Jain, J. Werth, and J. Browne, editors, Input/Output in
parallel and distributed computer systems, volume 362 of The Kluwer International
Series in Engineering and Computer Science, chapter 13, pages 293–311. Kluwer
Academic Publishers, 1996.

4. C. M. Bender, M. A. Bender, E. D. Demaine, and S. P. Fekete. What is the optimal
shape of a city? J. Physics A: Mathematical and General, 37:147–159, 2004.

5. M. A. Bender, D. P. Bunde, E. D. Demaine, S. P. Fekete, V. J. Leung, H. Mei-
jer, and C. A. Phillips. Communication-aware processor allocation for super-
computers. Technical Report cs.DS/0407058, Computing Research Repository,
http://arxiv.org/abs/cs.DS/0407058, 2004.

180 M.A. Bender et al.

6. S. Bhattacharya and W.-T. Tsai. Lookahead processor allocation in mesh-
connected massively parallel computers. In Proc. 8th International Parallel Pro-
cessing Symposium, pages 868–875, 1994.

7. R. Brightwell, L. A. Fisk, D. S. Greenberg, T. Hudson, M. Levenhagen, A. B. Mac-
cabe, and R. Riesen. Massively parallel computing using commodity components.
Parallel Computing, 26(2-3):243–266, 2000.

8. C. Chang and P. Mohapatra. Improving performance of mesh connected multicom-
puters by reducing fragmentation. Journal of Parallel and Distributed Computing,
52(1):40–68, 1998.

9. P.-J. Chuang and N.-F. Tzeng. An efficient submesh allocation strategy for mesh
computer systems. In Proc. Int. Conf. Dist. Comp. Systems, pages 256–263, 1991.

10. D. Feitelson. The parallel workloads archive. http://www.cs.huji.ac.il/labs/
parallel/workload/index.html.

11. S. P. Fekete and H. Meijer. Maximum dispersion and geometric maximum weight
cliques. Algorithmica, 38:501–511, 2004.

12. N. Guttmann-Beck and R. Hassin. Approximation algorithms for minimum sum
p-clustering. Disc. Appl. Math., 89:125–142, 1998.

13. P. Indyk. A sublinear time approximation scheme for clustering in metric spaces.
In Proc. 40th Ann. IEEE Symp. Found. Comp. Sci. (FOCS), pages 154–159, 1999.

14. R. M. Karp, A. C. McKellar, and C. K. Wong. Near-optimal solutions to a 2-
dimensional placement problem. SIAM Journal on Computing, 4:271–286, 1975.

15. P. Krueger, T.-H. Lai, and V. Dixit-Radiya. Job scheduling is more important
than processor allocation for hypercube computers. IEEE Trans. on Parallel and
Distributed Systems, 5(5):488–497, 1994.

16. S. Krumke, M. Marathe, H. Noltemeier, V. Radhakrishnan, S. Ravi, and
D. Rosenkrantz. Compact location problems. Th. Comp. Sci., 181:379–404, 1997.

17. V. Leung, E. Arkin, M. Bender, D. Bunde, J. Johnston, A. Lal, J. Mitchell,
C. Phillips, and S. Seiden. Processor allocation on Cplant: achieving general pro-
cessor locality using one-dimensional allocation strategies. In Proc. 4th IEEE In-
ternational Conference on Cluster Computing, pages 296–304, 2002.

18. K. Li and K.-H. Cheng. A two-dimensional buddy system for dynamic resource
allocation in a partitionable mesh connected system. Journal of Parallel and Dis-
tributed Computing, 12:79–83, 1991.

19. V. Lo, K. Windisch, W. Liu, and B. Nitzberg. Non-contiguous processor allocation
algorithms for mesh-connected multicomputers. IEEE Transactions on Parallel
and Distributed Computing, 8(7), 1997.

20. J. Mache and V. Lo. Dispersal metrics for non-contiguous processor allocation.
Technical Report CIS-TR-96-13, University of Oregon, 1996.

21. J. Mache and V. Lo. The effects of dispersal on message-passing contention in
processor allocation strategies. In Proc. Third Joint Conf. on Information Sciences,
Sessions on Parallel and Distributed Processing, volume 3, pages 223–226, 1997.

22. J. Mache, V. Lo, and K. Windisch. Minimizing message-passing contention in
fragmentation-free processor allocation. In Proc. 10th Intern. Conf. Parallel and
Distributed Computing Systems, pages 120–124, 1997.

23. S. Moore and L. Ni. The effects of network contention on processor allocation
strategies. In Proc. 10th Int. Par. Proc. Symp., pages 268–274, 1996.

24. S. Sahni and T. Gonzalez. p-complete approximation problems. JACM, 23(3):
555–565, 1976.

25. Sandia National Laboratories. The Computational Plant Project.
http://www.cs .sandia.gov/cplant.

Communication-Aware Processor Allocation for Supercomputers 181

26. V. Subramani, R. Kettimuthu, S. Srinivasan, J. Johnson, and P. Sadayappan. Se-
lective buddy allocation for scheduling parallel jobs on clusters. In Proc. 4th IEEE
International Conference on Cluster Computing, 2002.

27. University of Oregon Resource Allocation Group. Procsimity. http://www.cs.

uoregon.edu/research/DistributedComputing/ProcSimity.html\%.
28. K. Windisch, J. Miller, and V. Lo. Procsimity: An experimental tool for processor

allocation and scheduling in highly parallel systems. In Proc. Fifth Symp. on the
Frontiers of Massively Parallel Computation, pages 414–421, 1995.

29. Y. Zhu. Efficient processor allocation strategies for mesh-connected parallel com-
puters. J. Parallel and Distributed Computing, 16:328–337, 1992.

http://www.cs.
uoregon.edu/research/DistributedComputing/ProcSimity.html%

	CPAAppendix2.pdf
	Introduction
	Manhattan Median Algorithm for Two-Dimensional Point Sets
	Median-Based Algorithms
	Analysis of the Algorithm

	PTAS for Two Dimensions
	Higher-Dimensional Spaces
	(2-12d) -Approximation
	PTAS for General Dimensions

	Experiments
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

