

NETWARS Model Development Guide

Version 3.0

August 16, 2007

Prepared by: Prepared for:

Defense Information System Agency Defense Contracting Command–
 NETWARS Program Management Office Washington

5600 Columbia Pike, 5200 Army Pentagon
Falls Church, VA 22041-2717 Washington, DC 20310-5200

NETWARS MODEL DEVELOPMENT GUIDE V3.0

 ii

TABLE OF CONTENTS

1 EXECUTIVE OVERVIEW ... 1-1

1.1 PURPOSE OF THIS DOCUMENT... 1-1
1.2 BENEFITS OF MAKING A NETWARS-COMPLIANT MODEL 1-1

1.2.1 Leveraging a Standard Modeling Framework ... 1-1
1.2.2 Use of Full NETWARS Functionality .. 1-2

1.3 MODELING BASICS... 1-2
1.3.1 Defining the Purpose.. 1-3
1.3.2 Determining Model Requirements.. 1-3
1.3.3 Surveying Existing Models... 1-4
1.3.4 Developing the Model .. 1-4

1.4 HOW TO USE THIS DOCUMENT.. 1-5

2 TECHNICAL OVERVIEW ... 2-1

2.1 INTRODUCTION TO NETWARS MODELS... 2-2
2.1.1 Goals of Model Development... 2-2
2.1.2 NETWARS Application Architecture... 2-3
2.1.3 NETWARS/OPNET Model Hierarchy ... 2-8

2.2 MODEL DEVELOPMENT LIFE CYCLE...2-16
2.2.1 Model Development Roles and Responsibilities ..2-16
2.2.2 Model Development Activities ..2-17

3 NETWARS MODEL DEVELOPMENT... 3-1

3.1 TRAFFIC MODEL DEVELOPMENT PROCESS... 3-1
3.1.1 Development Approach.. 3-1
3.1.2 ACE Traffic Model .. 3-2
3.1.3 ACE Whiteboard Traffic Model ... 3-2
3.1.4 ACE and ACE Whiteboard Traffic Model Concerns................................... 3-4
3.1.5 IER Text File ... 3-4
3.1.6 Traffic Model Deployment ... 3-6

3.2 COMMUNICATIONS DEVICE AND PROCESS MODEL DEVELOPMENT PROCESS............ 3-8
3.2.1 Development Approaches... 3-8
3.2.2 Modifying the Existing OPNET Model to Be NETWARS Compatible....... 3-9
3.2.3 Surrogating From the Existing NETWARS Model 3-9
3.2.4 Developing a New Model... 3-9

3.3 MODEL INTEROPERABILITY ISSUES..3-11
3.3.1 Compatibility Issues..3-11
3.3.2 Interfacing Issues ..3-13
3.3.3 Communication Aspects..3-15
3.3.4 Self-Description Issues..3-17
3.3.5 Versioning Issues ..3-18

3.4 NETWARS COMPLIANCE REQUIREMENTS..3-20
3.4.1 Compliance for OE Nodes...3-20
3.4.2 Compliance for Models for Non-Discrete Simulation (Capacity Planning) 3-24

3.5 COMPLIANCE FOR END-SYSTEM DEVICES..3-29
3.5.1 Attributes ..3-29

NETWARS MODEL DEVELOPMENT GUIDE V3.0

 iii

3.5.2 Required Modules ...3-29
3.5.3 End-System Devices Categories ..3-32
3.5.4 Interfaces and Packet Formats ...3-35
3.5.5 Initialization ..3-35
3.5.6 Interfacing with Other Classes...3-35
3.5.7 Creating Custom Transport Protocols for End-Systems3-37
3.5.8 Handling Background IERs...3-38
3.5.9 Handling Failure/Recovery..3-38
3.5.10 Collecting Statistics...3-39
3.5.11 NETWARS Standard SE Models ..3-40
3.5.12 Example: Constructing a Computer Model ..3-41

3.6 COMPLIANCE FOR LAYER 1 NETWORKING EQUIPMENT...3-42
3.6.1 Attributes ..3-42
3.6.2 Required Modules ...3-42
3.6.3 Interfacing with Devices..3-43
3.6.4 Handling Background Traffic ..3-43
3.6.5 Handling Failure/Recovery..3-43
3.6.6 Collecting Statistics...3-44
3.6.7 Example: Constructing an Encryptor Model ..3-44

3.7 COMPLIANCE FOR LAYER 2 NETWORKING EQUIPMENT...3-45
3.7.1 Attributes ..3-45
3.7.2 Required Modules ...3-45
3.7.3 Initialization ..3-46
3.7.4 Interfacing with End-System Devices and Networking Equipment3-47
3.7.5 Supported Protocols ..3-47
3.7.6 Handling Background IERs...3-47
3.7.7 Handling Failure/Recovery..3-48
3.7.8 Collecting Statistics...3-48
3.7.9 Example: Constructing a Multi-Service Switch ...3-48

3.8 COMPLIANCE FOR LAYER 3 NETWORKING EQUIPMENT...3-49
3.8.1 Attributes ..3-49
3.8.2 Required Modules ...3-49
3.8.3 Handling Security Classification ...3-51
3.8.4 Interfacing with End-System Devices and Networking Equipment3-51
3.8.5 Supported Protocols ..3-52
3.8.6 Creating Custom Routing Protocols for IP...3-52
3.8.7 Handling Background IERs...3-54
3.8.8 Handling Failure/Recovery..3-54
3.8.9 Collecting Statistics...3-55

3.9 COMPLIANCE FOR DEVICES WITH CIRCUIT-SWITCHED TECHNOLOGY......................3-56
3.9.1 Attributes ..3-56
3.9.2 Initialization ..3-56
3.9.3 Routing in Circuit-Switched Devices...3-57
3.9.4 Circuit-Switched Links..3-57
3.9.5 Interfacing with Packet-Switched Networks ..3-57
3.9.6 Handling Background IERs...3-59

NETWARS MODEL DEVELOPMENT GUIDE V3.0

 iv

3.9.7 Handling Failure/Recovery..3-59
3.9.8 Collecting Statistics...3-59

3.10 COMPLIANCE FOR WIRELESS INTERFACES..3-60
3.10.1 Attributes ..3-60
3.10.2 Required Modules ...3-62
3.10.3 Initialization ..3-62
3.10.4 Interfacing with Other Classes...3-62
3.10.5 Interfacing with TIREM..3-63
3.10.6 Restrictions in Building Radio Devices ...3-63
3.10.7 Handling Failure/Recovery..3-64
3.10.8 Collecting Statistics...3-64
3.10.9 Building Custom Pipeline Stages...3-64
3.10.10 Satellite Considerations ...3-64
3.10.11 NETWARS Standard Geostationary Satellite Communications System

Models ..3-65
3.10.12 Generic Satellite Device Model (for Bent Pipe Links)3-66
3.10.13 Generic Satellite Ground Terminal Device Model (for Bent Pipe Links)3-66
3.10.14 TSSP Satellite Terminal Device Model..3-66
3.10.15 Broadcast Radio Considerations ..3-66

3.11 COMPLIANCE FOR LINK MODELS ...3-68
3.11.1 Attributes ..3-68
3.11.2 Building Custom Pipeline Stages...3-69
3.11.3 Handling Background Routed Traffic..3-70
3.11.4 Handling Failure/Recovery..3-70
3.11.5 Building Simplex Links, Buses, and Bus Taps...3-70
3.11.6 Collecting Statistics...3-70
3.11.7 Documentation..3-71

3.12 COMPLIANCE FOR UTILITY NODES...3-72
3.12.1 Attributes ..3-72
3.12.2 Required Modules ...3-72
3.12.3 Interfacing with Other Classes...3-72
3.12.4 Interfacing with the Scenario Builder GUI...3-72

4 EXAMPLES ... 4-1

4.1 TRAFFIC MODEL EXAMPLE ... 4-2
4.2 ROUTING PROTOCOL EXAMPLE ... 4-4

4.2.1 High-Level Design ... 4-4
4.2.2 Interfacing with the IP Discussion .. 4-6
4.2.3 Notes...4-12

4.3 WIRED END DEVICE EXAMPLE...4-13
4.3.1 Problem Statement ..4-13
4.3.2 High-Level Design ..4-13
4.3.3 Detailed Design: Event Response Table ..4-14
4.3.4 Implementation .. 4-5

4.4 WIRED END DEVICE EXAMPLE 2..4-12
4.4.1 Overview ..4-12
4.4.2 Steps ...4-12

NETWARS MODEL DEVELOPMENT GUIDE V3.0

 v

4.4.3 Process Model: SE ..4-15
4.4.4 Statistics..4-16

4.5 LAYER 1 DEVICE EXAMPLE: BULK ENCRYPTOR...4-17
4.5.1 Overview ..4-17
4.5.2 Steps ...4-17
4.5.3 Process Model...4-18

4.6 LAYER 2 DEVICE EXAMPLE: MULTI-SERVICE SWITCH ..4-20
4.6.1 Overview ..4-20
4.6.2 Steps ...4-20
4.6.3 Process Models: Voice Dispatch and Voice Over ATM.............................4-21

4.7 LAYER 3 DEVICE EXAMPLE: CUSTOM ROUTER...4-23
4.7.1 Overview ..4-23
4.7.2 Steps ...4-23
4.7.3 Process Model: Custom Routing Protocol..4-26

4.8 CIRCUIT-SWITCHED DEVICE EXAMPLE: END SYSTEM...4-27
4.8.1 Overview ..4-27
4.8.2 Steps ...4-27
4.8.3 Process Model: se..4-28

4.9 WIRELESS DEVICE EXAMPLE ...4-31
4.9.1 Overview ..4-31
4.9.2 Steps ...4-31
4.9.3 SE Process Model ...4-33

4.10 WIRELESS DEVICE EXAMPLE 2 ..4-34
4.10.1 Problem Statement ..4-34
4.10.2 High-Level Design ..4-34
4.10.3 fwd module: Detailed Design ..4-35
4.10.4 mac Module ..4-38
4.10.5 se Module ...4-39
4.10.6 Addressing and Other Issues..4-44
4.10.7 Optimization and Efficiency Considerations..4-44

4.11 SATELLITE TERMINAL GENERIC EXAMPLE ...4-45
4.11.1 Node Model Contents..4-45
4.11.2 Core Self-Description Attributes ...4-45
4.11.3 Additional Attributes...4-45
4.11.4 Antenna Aim Process ..4-47
4.11.5 Key Code Snippets from Antenna Aim Process ...4-47

4.12 SATELLITE TERMINAL WITH TSSP EXAMPLE..4-49
4.12.1 Overview ..4-49
4.12.2 Node Model Contents..4-49
4.12.3 Core Self-Description Attributes ...4-50
4.12.4 Additional Attributes...4-50
4.12.5 Node Model Specific Configuration ..4-51
4.12.6 TSSP Process ..4-55
4.12.7 Key Code Snippets from TSSP Process ...4-57

4.13 SATELLITE GENERIC EXAMPLE ..4-60
4.13.1 Overview ..4-60

NETWARS MODEL DEVELOPMENT GUIDE V3.0

 vi

4.13.2 Node Model Contents..4-60
4.13.3 Additional Attributes...4-60
4.13.4 Satellite Switch Process...4-63

4.14 LINK MODEL EXAMPLE ...4-66
4.14.1 Overview ..4-66
4.14.2 Steps ...4-66
4.14.3 Pipeline Stage: txdel..4-66

4.15 OE NODE EXAMPLE ..4-68
4.15.1 Overview ..4-68
4.15.2 Steps ...4-68
4.15.3 Process Model...4-68

4.16 UTILITY NODE EXAMPLE ...4-71
4.16.1 Overview ..4-71
4.16.2 Details...4-71
4.16.3 Process Model...4-71

4.17 CONVERTING A DEVICE MODEL FROM THE OPNET STANDARD MODEL LIBRARY ...4-73
4.17.1 Overview ..4-73
4.17.2 Details...4-73

4.18 CP MODEL EXAMPLE ...4-77
4.18.1 Overview ..4-77
4.18.2 CP Implementation..4-77

5 VERIFICATION AND VALIDATION........................ ... 5-1

5.1 MODEL FUNCTIONAL V&V .. 5-2
5.1.1 Objectives .. 5-2
5.1.2 Steps .. 5-2

5.2 NETWARS COMPLIANCE V&V... 5-4
5.2.1 NETWARS Model Development Checklist .. 5-4
5.2.2 NETWARS Static Testing.. 5-4
5.2.3 NETWARS Equipment String.. 5-5
5.2.4 Capacity Planner .. 5-6
5.2.5 DoD/Joint VV&A Documentation Tool (DVDT/JVDT)............................5-15

APPENDIX A: ACRONYMS...A-1

APPENDIX B: GLOSSARY...B-1

APPENDIX C: ENUMERATED VALUES ...C-1

APPENDIX D: PACKET FORMATS ...D-1

APPENDIX E: INTERFACES AND PACKET FORMATS..........E-1

APPENDIX F: INTERFACE CONTROL INFORMATION (ICI) FOR MATS................ F-1

APPENDIX G: CONSTANTS... G-1

APPENDIX H: OTHER FILE FORMATS ..H-1

APPENDIX I: MEASURES OF PERFORMANCE IN NETWARS I-1

APPENDIX J: NODE MODEL DOCUMENTATION J-1

NETWARS MODEL DEVELOPMENT GUIDE V3.0

 vii

APPENDIX K: MODEL NAMING CONVENTIONS............... .. K-1

APPENDIX L: NETWARS SIMULATION API AND HELPER FUNCTI ONSL-1

APPENDIX M: ATTRIBUTE TYPE DEFINITIONS............. ...M-1

APPENDIX N: EXAMPLES OF NETWARS MODELS..N-1

APPENDIX O: NETWARS DOCUMENTATION SET .. O-1

APPENDIX P: CREATING MODEL REPOSITORIES IN NETWARS P-1

APPENDIX Q: TROUBLESHOOTING NETW ARS SIMULATION.............................. Q-1

APPENDIX R: FREQUENTLY ASKED QUESTIONS ...R-1

APPENDIX S: MIGRATION FROM EARLIER OPNET VERSIONS.. S-1

APPENDIX T: SUPPORTED CLASSIFICATION VALUES........T-1

APPENDIX U: SELF-DESCRIPTION GUIDELINES............ ...U-1

APPENDIX V: IP AUTO ADDRESSING IN CUSTOM MODELS....V-1

APPENDIX W: REFERENCES..W-1

APPENDIX X: NETWARS MODEL DEVELOPMENT GUIDE CHECKLIS TX-1

NETWARS MODEL DEVELOPMENT GUIDE V3.0

 viii

L IST OF FIGURES

Figure 2-1: Repeatable Process...2-2
Figure 2-2: Model Repeatable Process..2-3
Figure 2-3: NETWARS Architecture..2-4
Figure 2-4: NETWARS Scenario-Network-Level Model ...2-5
Figure 2-5: Editing Device Attributes...2-6
Figure 2-6: Statistics Available in DES ..2-7
Figure 2-7: NETWARS/OPNET Model Hierarchy...2-9
Figure 2-8: Editing NETWARS Cisco 2514 Router Model... 2-11
Figure 2-9: Process Models Within SINCGARS Device Model.................................. 2-12
Figure 2-10: Process Model Editor ... 2-13
Figure 2-11: Editing C Code in Process Model Editor .. 2-14
Figure 2-12: Receive Pipeline Stages ... 2-15
Figure 2-13: NETWARS Model Development Life Cycle.. 2-16
Figure 3-1: ACE Whiteboard Screen Capture...3-3
Figure 3-2: ACE Whiteboard Python Logic..3-3
Figure 3-3: IER Text File Sample...3-4
Figure 3-4: ACE and ACE Whiteboard Traffic Model Deployment GUI......................3-6
Figure 3-5: IER Import Manual ..3-7
Figure 3-6: High-Level Model Development Process ...3-8
Figure 3-7: Protocol Dependency (e.g., Ethernet Computer Model)............................ 3-12
Figure 3-8: Module-Wide Memory (e.g., Ethernet Computer Model)......................... 3-14
Figure 3-9: Default Interrupt Handling ... 3-17
Figure 3-10: Self-Description Port Objects... 3-18
Figure 3-11: CP Layers .. 3-26
Figure 3-12: Ethernet End-System Device-Node Model ... 3-31
Figure 3-13: End-System Device with Frame Relay MAC Technology-Node Model.. 3-32
Figure 3-14: Valid End-System to End-System Connection.. 3-33
Figure 3-15: Circuit-Switched End-System Device-Node Model................................ 3-33
Figure 3-16: Circuit-Switched End-System Device-Voice Applications and IERs 3-34
Figure 3-17: End-System Device Generating Voice and Data Traffic-Node Model..... 3-35
Figure 3-18: Remote Interrupt from OE to SE.. 3-36
Figure 3-19: oe_threads Process Model .. 3-40
Figure 3-20: Layer 1 Networking Equipment-Node Model... 3-42
Figure 3-21: Layer 2 Networking Equipment-Node Model... 3-46
Figure 3-22: Layer 3 Networking Equipment-Node Model... 3-50
Figure 3-23: Networks with Different Security Classification Levels 3-51
Figure 3-24: Circuit-Switched and Packet-Switched Network Intercommunication 3-58
Figure 3-25: Radio End-System Device-Node Model ... 3-62
Figure 3-26: ATM Device Radio Interface ... 3-63
Figure 3-27: Internal Representation of ATM Device and Intermediate Node............. 3-64
Figure 3-28: Channel Table.. 3-67
Figure 4-1: Time Sequence Diagram ..4-2
Figure 4-2: Layer 3 Networking Equipment ...4-5
Figure 4-3: IP Routing Parameters Attribute...4-9

NETWARS MODEL DEVELOPMENT GUIDE V3.0

 ix

Figure 4-4: Interface Information Attribute ..4-9
Figure 4-5: Routing Protocol Attribute Properties... 4-10
Figure 4-6: End-Device Node Model.. 4-14
Figure 4-7: Interfacing Modules of “se” ... 4-15
Figure 4-8: High-Level Functions of “se_tcp” Module ...4-1
Figure 4-9: se_trafgen Process Model...4-5
Figure 4-10: Open Connection State...4-5
Figure 4-11: Receive Traffic State..4-7
Figure 4-12: Process Message State..4-8
Figure 4-13: Failure State... 4-10
Figure 4-14: Ethernet_wkstn_adv-Node Model .. 4-13
Figure 4-15: Computer-Node Model .. 4-14
Figure 4-16: Workflow Diagram for SE Process Model.. 4-15
Figure 4-17: Process Model for SE Module in Computer ... 4-16
Figure 4-18: Code 1-Inform OE of IER Failure, Will Record Statistics 4-16
Figure 4-19: Encryptor-Node Model .. 4-17
Figure 4-20: Data Flow for Encryptor ..4-18
Figure 4-21: Process Model for Encryptor.. 4-19
Figure 4-22: Code 2-Encrypting a Packet ... 4-19
Figure 4-23: Atm_uni_dest_adv Switch-Node Model... 4-20
Figure 4-24: Multi-Service Switch-Node Model... 4-21
Figure 4-25: CS_1005_1s_e_sl_adv Router-Node Model ... 4-24
Figure 4-26: Router with Custom Routing Protocol-Node Model 4-25
Figure 4-27: Process Model for Custom Routing Protocol.. 4-26
Figure 4-28: Phone-Node Model ..4-27
Figure 4-29: Data Flow for Phone .. 4-29
Figure 4-30: Process Model for SE Module.. 4-30
Figure 4-31: wlan_station_adv-Node Model... 4-31
Figure 4-32: Radio SE model-Node Model... 4-32
Figure 4-33. Radio End Device Node Model .. 4-34
Figure 4-34: fwd Module Process Model.. 4-36
Figure 4-35: SE Module Interfaces... 4-39
Figure 4-36: Radio SE Process Model .. 4-40
Figure 4-37: Gen_Call State... 4-41
Figure 4-38: Proc_Pk State... 4-43
Figure 4-39: Generic Satellite Terminal.. 4-45
Figure 4-40: Antenna Aim Process... 4-47
Figure 4-41: TSSP Satellite Terminal ... 4-50
Figure 4-42: Configuration-TSSP Nodal Terminals.. 4-52
Figure 4-43: Each Row Corresponding to deMUX Group .. 4-52
Figure 4-44: Each Row Corresponding to Input Port Group.. 4-53
Figure 4-45: TSSP Process Model.. 4-55
Figure 4-46: Uplink and Downlink Tables.. 4-62
Figure 4-47: Satellite Switch Process Model .. 4-63
Figure 4-48: Code 3-Adding Signaling Overhead to Transmission Delay 4-66
Figure 4-49: Functions of OE Process Model ... 4-69

NETWARS MODEL DEVELOPMENT GUIDE V3.0

 x

Figure 4-50: OE Process Model.. 4-70
Figure 4-51: Promina Configuration Utility Node-Node Model.................................. 4-71
Figure 4-52: Promina Configuration Object-Process Model.. 4-72
Figure 4-53: Promina Configuration Object-Sample Code.. 4-72
Figure 4-54: Sample Node Model...4-73
Figure 4-55: Selecting “Computer” for equipment_type ... 4-74
Figure 4-56: Adding se_tcp and se_udp.. 4-74
Figure 4-57: Adding net_id Extended Attribute.. 4-75
Figure 4-58: Equipment type attribute location... 4-77
Figure 4-59: Interface Class and Machine type attribute locations 4-78
Figure 4-60: Interface Class attribute.. 4-78
Figure 4-61: Machine type attribute.. 4-79
Figure 5-1: M&S Overall Problem Solving Process..5-3
Figure 5-2: Initiate a static test ...5-6
Figure 5-3: Execute a static test for the nw_ethernet_wkstn device...............................5-7
Figure 5-4: Select component class for static test..5-7
Figure 5-5: Select model options for static test ...5-7
Figure 5-6: Select protocols for static test...5-8
Figure 5-7: Select report file name and confirm answers for static test..........................5-8
Figure 5-8: Summary and completion message for static test..5-9
Figure 5-9: Static test report ... 5-10
Figure 5-10: Static test report 2 .. 5-11
Figure 5-11: Static test report 3 .. 5-12
Figure 5-12: Static test report 4 .. 5-13
Figure 5-13: Static test report 5 .. 5-14
Figure D-1: Packet Format Files.. D-1
Figure D-2: Open Packet File .. D-2
Figure D-3: Packet Format Layout .. D-2
Figure D-4: Packet Format Attribute Editing ... D-3
Figure F-1: ICI Format Files ..F-1
Figure F-2: Open ICI Format..F-2
Figure F-3: ICI Format Attributes...F-2
Figure L-1: API Files ...L-1
Figure L-2: Open API File ...L-2
Figure L-3: oe_stat_support API ..L-3
Figure N-1: List of Node Models... N-1
Figure N-2: Open NETWARS Model.. N-2
Figure O-1: NETWARS Documentation Set ... O-1
Figure U-1: Self-Description Port Objects ... U-1
Figure V-1: Node Model Contents .. V-2
Figure V-2: Custom Device Attribute Values in OPFAC Soldier 1.............................. V-2

NETWARS MODEL DEVELOPMENT GUIDE V3.0

 xi

L IST OF TABLES

Table 2-1: Model Types and Descriptions ..2-9
Table 2-2: Model Development Activities .. 2-17
Table 3-1: Attributes for OE Node ... 3-20
Table 3-2: Statistics Collected by OE Node.. 3-24
Table 3-3: Properties to Determine CP Layer ... 3-26
Table 3-4: NETWARS Attributes for End-System Device.. 3-29
Table 3-5: Higher Layer Modules for End-System Device ... 3-30
Table 3-6: Lower Layer Modules for End-System Device .. 3-30
Table 3-7: Interface Modules for End-System Device .. 3-31
Table 3-8: Statistics Information Transferred by End-System Device to OE............... 3-40
Table 3-9: NETWARS Standard SE Process Models.. 3-41
Table 3-10: Attributes for Layer 1 Networking Equipment... 3-42
Table 3-11: Attributes for Layer 2 Networking Equipment... 3-45
Table 3-12: Modules Needed for Various Layer 2 Protocols....................................... 3-45
Table 3-13: Modules Needed by Multi-Service Switch... 3-46
Table 3-14: Attributes for Layer 3 Networking Equipment... 3-49
Table 3-15: Higher Layer Modules for Layer 3 Networking Equipment 3-49
Table 3-16: Required Modules for Various Interface Technologies 3-50
Table 3-17: Interface Modules for Layer 3 Networking Equipment 3-51
Table 3-18: Required Attributes-Circuit-Switched End-System Device 3-56
Table 3-19: Required Attributes-Circuit-Switched Layer 2 Networking Equipment.... 3-56
Table 3-20: Additional Attributes for Radio Devices.. 3-60
Table 3-21: Pipeline Stage Attributes on Radio Transmitter 3-61
Table 3-22: Pipeline Stage Attributes on Radio Receiver.. 3-61
Table 3-23: Restrictions in Building Radio Devices ... 3-63
Table 3-24: Required Satellite Device Attributes for Moving Orbits........................... 3-65
Table 3-25: Radio Transceiver Pipeline Stages... 3-65
Table 3-26: Required Attributes on Link Model ... 3-68
Table 3-27: Required Attributes for Utility Nodes .. 3-72
Table 3-28: Optional Attributes for Utility Nodes... 3-72
Table 4-1: Available IP Common Route Table API Functions.................................... 4-10
Table 4-2: Event Description Table ..4-2
Table 4-3: Event Communication Mechanisms ..4-2
Table 4-4: State Description Table ...4-3
Table 4-5: Event Feasibility Table..4-3
Table 4-6: Event Response Table ...4-4
Table 4-7: End-System-Model Attributes ... 4-14
Table 4-8. Circuit-Switched End-System Device-Model Attributes 4-28
Table 4-9. Radio End-System Device-Model Attributes ... 4-32
Table 4-10: Event Response Table for “fwd” Process... 4-36
Table 4-11: Event Response Table for Radio SE Module ... 4-39
Table 4-12: Event Response Table for Radio SE Module ... 4-53
Table 4-13: Events of TSSP Process Model.. 4-55
Table 4-14: Events of Satellite Switch Process Model .. 4-63

NETWARS MODEL DEVELOPMENT GUIDE V3.0

 xii

Table 4-15: Utility Node-Model Attributes... 4-71
Table C-1: Attributes for Enumerated Data Types ... C-1
Table D-1: Packet Formats.. D-4
Table E-1: Interfaces and Packet Formats.. E-1
Table F-1: Interfaces and Packet Formats...F-3
Table G-1: Constants... G-1
Table G-2: Typed File Attribute .. G-2
Table H-1: Other File Formats .. H-1
Table I-1: MOPs Reported by OE ...I-1
Table I-2: Statistics Groups...I-2
Table I-3: Modules That Write OV Statistics...I-3
Table J-1: Wired Interface Specifications ... J-2
Table J-2: Radio Device Interface Specifications..J-2
Table J-3: Process Models.. J-2
Table J-4: External Files Needed.. J-3
Table L-1: Example of API Function Table..L-4
Table L-2: NETWARS APIs and Locations ...L-4
Table N-1: List of NETWARS Models (Alphabetic) ... N-3
Table R-1: FAQs... R-1
Table U-1: Packet Formats to Interface Types ... U-2
Table U-2: Supporting Technologies per Port Category... U-3
Table X-1: NETWARS Model Development Guide Checklist..................................... X-1

NETWARS MODEL DEVELOPMENT GUIDE V3.0

 1-1

1 EXECUTIVE OVERVIEW

1.1 PURPOSE OF THIS DOCUMENT

The purpose of the NETWARS Model Development Guide is to provide modeling guidelines and
standards for creating communications device and traffic models that are interoperable with the
Network Warfare Simulation (NETWARS) System and model suite. The NETWARS Model
Development Guide provides the standards for creating NETWARS communication device and
traffic models and provides the instructions for modifying existing OPNET commercial off-the-
shelf (COTS) models to adhere to these standards.

This document provides engineers with the information necessary to develop device and traffic
models that interoperate with existing NETWARS and OPNET COTS models within the
NETWARS modeling framework. Any device model written to these standards will integrate
seamlessly with the existing model libraries and will be able to take advantage of the benefits
that the NETWARS modeling environment has to offer.

1.2 BENEFITS OF MAKING A NETWARS-COMPLIANT M ODEL

NETWARS is a communications system simulation tool. Its primary purpose is to evaluate
strategic, operational, and tactical communications networks before they are developed,
deployed, or modified in order to provide early feedback to decision makers. NETWARS
leverages COTS software that models commercial communications networks and adds military-
specific device, protocol, and application models to provide a complete environment for
modeling military communications networks.

The following sections detail the benefits that this common simulation framework provides over
traditional, stovepipe methods.

1.2.1 Leveraging a Standard Modeling Framework

Many modeling efforts throughout the Department of Defense (DoD) have been undertaken in a
standalone manner, with little attempt being made to reuse models or integrate with existing
work. Part of the reason for this is a lack of standardization within the modeling community,
which makes it difficult to reuse existing component parts. The use of a common simulation
framework such as NETWARS imparts some standardization to these modeling efforts and
promotes model reuse.

One of the benefits of a common framework is the guarantee that all models built to that
specification will work together in an integrated fashion. This increases efficiency and drives
down costs in multiple ways:

• Eliminates Redundant Modeling Efforts. Engineers embarking on a new modeling
project are able to reuse existing device models, knowing that they are interoperable with
new models built to the same specification. This reduces or eliminates the need to
produce multiple models of the same devices to work in varying simulation
environments, thus reducing program cost and overall cost to the Government.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

 1-2

• Provides a Baseline for Comparative Analysis. A repeatable set of inputs and
constraints is central to an effective modeling exercise. By using a standardized set of
models, engineers can control the variables that go into a simulation and ensure that any
measured differences in results are due to intentional changes in inputs. This ensures
valid comparisons of devices or other variables, which is especially valuable when
performing comparisons of new technologies from multiple vendors.

1.2.2 Use of Full NETWARS Functionality

Models built according to the guidelines outlined in this NETWARS Model Development Guide
are interoperable not only with other models developed using these standards but also with the
majority of the OPNET COTS device models. In this way, the models are able to take advantage
of many years of commercial development and model testing by leveraging the OPNET COTS
Standard and Specialized model library. This library includes intrinsic capabilities for common
communication modeling issues such as traffic generation, dynamic routing, and connection
establishment. The library also contains a wealth of standard protocol models such as Ethernet,
Asynchronous Transfer Mode (ATM), frame relay, Fiber Distributed Data Interface (FDDI),
token ring, Digital Subscriber Line (DSL), Transmission Control Protocol (TCP)/Internet
Protocol (IP), Routing Information Protocol (RIP), Open Shortest Pathway Forwarding (OSPF),
Extended Interior Gateway Routing Protocol (EIGRP), Interior Gateway Routing Protocol
(IGRP), Border Gateway Protocol (BGP), File Transfer Protocol (FTP), and Hypertext Transport
Protocol (HTTP); a host of wireless protocols such as Wireless Fidelity (WiFi) and Worldwide
Interoperability for Microwave Access (WiMax); and a family of Mobile Ad Hoc Network
(MANET) protocols such as Optimized Link State Routing (OLSR), Ad Hoc On-Demand
Distance Vector (AODV), and Temporally Oriented Routing Algorithm (TORA).

In addition, NETWARS provides access to customized capabilities that do not exist in COTS
products. These capabilities include a large military-specific device library, customized
reporting, and specialized traffic-handling techniques. Some of the available models are shown
in the list below. A full, up-to-date list can be found in Appendix N.

Device models available in NETWARS include but are not limited to the following:

• Prominas (multiple configurations)
• Tactical radio systems (Single-Channel Ground and Airborne Radio System

[SINCGARS], Enhanced Position Location Reporting System [EPLRS], Link-11, Link-
16, etc.)

• Encryptors (KIV and KG-series)
• Satellites and earth terminals (AN/TSC series, Standardized Tactical Entry Point (STEP),

Teleport, Global Broadcast Service (GBS)
• Tactical voice and circuit switches (AN/TTC series, Switch Multiplexer Unit (SMU),

Digital Non-Secure Voice Terminal (DNVT), Secure Telephone Units III (STU-III).

1.3 M ODELING BASICS

NETWARS is a communications system simulation tool made up of two primary simulation
technologies — Discrete Event Simulation (DES) and Capacity Planner (CP). CP is a

NETWARS MODEL DEVELOPMENT GUIDE V3.0

 1-3

customized analytic approach, implemented specifically for NETWARS. By convention, models
developed for the NETWARS environment support both modeling technologies.

DES provides an explicit, packet-by-packet simulation of network traffic for the system being
modeled. It is extremely detailed and can provide results at a high level, such as time-varying
link utilizations, all the way down to very granular measurements such as queue lengths on
individual routers. Additionally, because NETWARS ships with the full source code to both the
COTS and NETWARS model libraries, model developers can extend the models to add their
own statistics or other custom behaviors.

CP provides a broader look into network behavior. It is primarily used to study steady-state
network behavior, and as a result is not suitable for studies such as protocol convergence times.
However, due to the nature of the modeling technology it uses, it can run much more quickly
than DES. For the appropriate analyses, it will provide results similar to those achieved by DES
but at a fraction of the run time.

1.3.1 Defining the Purpose

The first and most critical issue to be addressed when undertaking a modeling project is
identifying the reason(s) behind the use of the model. Any modeling project that begins with the
thought “I will build a model first and figure out what I want to use it for later” is destined to fail.
The best way to determine the purpose of the model is by asking “What specific question(s) do I
want this model to answer for me?” Following are examples of specific, purpose-driven
questions:

• What will be the impact on end-to-end message delays when I replace my existing Media
Access Control (MAC) layer with a new implementation?

• Will the new routing protocol “X” be interoperable with other protocols in use on my
network? Will I be able to redistribute routes between these networks?

Once these questions have been answered, the features of the device/system to be modeled that
are pertinent to the study can be identified. This will then allow the identification of features or
behaviors of the device that need to be built into the model.

1.3.2 Determining Model Requirements

To develop a model of a communications device, system, or application, there must be a working
knowledge of the features that device or system supports. In the case of a communications
device, this includes supported protocols, performance specifications, and any known limitations
about, or criteria for, its interactions with other devices. For example, a radio that needs to be
part of a slot selection mechanism of a network comprised of one or more radios will have
additional interoperability requirements.

Some of this material is readily available in vendor specification sheets or documents issued by
standards bodies such as Institute of Electrical and Electronics Engineers (IEEE). Another useful
source of material is actual performance data from a Testing and Evaluation (T&E) or production
environment. The use of empirical data to validate the behavior of the model can be invaluable.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

 1-4

For example, routing convergence data from a live device can be used to validate a routing
protocol whose model is being developed.

It is equally important, however, that the relevance of these behaviors is known. For example,
many devices send out periodic messaging information (data packets) to communicate with the
rest of the network. This data does not materially impact the device’s behavior, and as such, if
the amount of this traffic is deemed to be small, it may be ignored or “abstracted away” in the
context of the model, simplifying the modeling effort with no significant loss of accuracy.

Similarly, it is often not necessary to know the inner workings of a cryptographic or other
processing algorithm, for example, to build a behavioral model of such a device. If the purpose
of the study is to measure network capacities, then modeling the overhead capacity incurred as a
result of encryption is sufficient. The exact encryption algorithm itself does not need to be
modeled.

1.3.3 Surveying Existing Models

Once the model requirements have been identified, the next task is to determine whether an
existing model possesses some or all of the needed capabilities. Depending on the output of
previous modeling projects, a model may exist that has the necessary functionality and, through
configuration and without code modification, can be made to satisfy the specific requirements.
This is known as model surrogation. Model surrogation is an area where the common modeling
framework and modeling standardization proves its worth. A community-wide library of models
that function in well-defined, interoperable ways can greatly reduce time and costs associated
with model development.

Even when a pre-existing model does not serve all of the needs of a new project, in many cases it
can be used as a starting point for a new model. The NETWARS environment supports model
derivation, which is the process of using an existing model as a baseline set of functionalities and
adding/modifying just those that are new or different from the baseline set. In this way,
improvements to the base (COTS or custom) model will be inherited by the derived model,
reducing configuration management (CM) costs.

Finally, even when model derivation is not an appropriate solution, it is normally advantageous
to use existing models as a starting point. Models of a similar class (e.g., transport devices, end
devices, routers, switches) often provide similar functionality that can be modified through code
enhancements to meet the specified need.

All of these examples of model and code re-use are only possible when a set of standards is
defined and followed. This document defines that set of standards for the NETWARS
environment and helps to determine when each of the above approaches is suitable for a specific
project.

1.3.4 Developing the Model

Sometimes there is no alternative but to develop a new model. In such cases, this NETWARS
Model Development Guide takes on greater importance. There are a number of things that
differentiate NETWARS models from OPNET Standard models. A few of the primary

NETWARS MODEL DEVELOPMENT GUIDE V3.0

 1-5

differences are listed below; the rest of this document is devoted to explanations of how to
ensure that these differences are accounted for and implemented in such a way that the resulting
model is truly interoperable with other models within the NETWARS framework. Full
explanations of these differences, and how to interact with them, are provided in Section 3.

Primary differences between NETWARS models and OPNET Standard models include the
following:

• IER Support. NETWARS provides support for handling Information Exchange
Requirements (IER), the doctrinally approved specification of traffic load for
communications scenarios. Those devices that are planned as sources or sinks of traffic
must be capable of generating and receiving these constructs.

• CP Support. NETWARS models must operate in both the DES and CP environment.
This analytical simulation technology is custom built to handle the NETWARS circuit-
switched modeling construct and to allow capacity planning workflows that include
wireless devices.

• Classification. NETWARS models support the notion of classification, which enables
military network planners to build models of different security enclaves.

• Interaction with NETWARS Model Suites. Newly developed NETWARS models must
also interact smoothly with the existing device models and technology frameworks that
reside within NETWARS. These include Prominas and other circuit-switched devices,
broadcast networks, Satellite Communications (SATCOM) devices and terminals, and
message-based systems such as Link-16.

NETWARS itself does not provide a model-authoring framework. Models for use in NETWARS
are developed using the Modeler development environment, a COTS software package produced
by OPNET. This software is not available through the NETWARS program office; to acquire it
one must contact OPNET. Prior to beginning NETWARS model development, it is important
that the developer is familiar with the following materials:

• OPNET Modeler
• C/C++ development language
• This NETWARS Model Development Guide.

There are many resources available to help learn about OPNET Modeler and C/C++. In
particular, the OPNET Support Center (http://www.opnet.com/support/home1.html) is an
excellent place to obtain a background in using the Modeler framework for model development.
Look especially at the “Methodologies and Case Studies” link for more information.

1.4 HOW TO USE THIS DOCUMENT

The remainder of this document covers various aspects of NETWARS model standards and
interoperability concerns. Code examples are also presented to emphasize the practical
application of the standards described. It may be read as a narrative for an introduction to these
topics or used as a reference guide throughout the design and development process.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

 1-6

The sections and their purposes are listed below:

• Section 1: Executive Overview (this section). This section provides an executive-level
overview of NETWARS model development and the NETWARS Model Development
Guide.

• Section 2: Technical Overview. This section provides an overview of a model
development process, including information for the Technical Manager to oversee a
model development effort.

• Section 3: Model Development. This section provides the technical details of making a
model NETWARS compliant.

• Section 4: Model Development Examples. This section provides additional examples of
model development that go into more detail or cover additional topics.

• Section 5: Model Validation and Verification. This section provides detailed technical
specifications about model verification and validation (V&V) for all types of NETWARS
models.

• Appendices. The appendices provide associated references, such as NETWARS Packet
Formats, Frequently Asked Questions (FAQ), and a Model Checklist to support model
development.

This document should be read by program managers, technical managers, model developers,
subject matter experts (SME), and quality assurance engineers (QAE) involved in a modeling
project. Recommended sections for each of these audiences are listed below:

• Program Managers. Sections 1 and 2

• Technical Managers. Sections 1 and 2 and Subsection 3.1 and 3.2

• Model Developers. Sections 1 and 2, followed by Subsections 3.1, 3.2, 3.3, and 3.4. This
should be followed by Section 5, going back to cover the portions in Sections 3 and 4 that
are relevant to the type of device being developed. Finally the developer should return to
Section 5 to cover the portions that are relevant to the device being developed.

• SMEs/QAEs. Sections 1, 2, and 5 and Subsection 3.2. The purpose of the document is to
allow a SME to help with the design and verification of a model.

This document is based on NETWARS 2006-02

NETWARS MODEL DEVELOPMENT GUIDE V3.0

2-1

2 TECHNICAL OVERVIEW

To understand the details of developing communications device models, one should be familiar
with NETWARS and modeling communications systems.

This section is an overview showing what capabilities exist within a device model and how reuse
is possible in NETWARS model development. It is not meant to substitute as an instruction
manual for OPNET Modeler, which already has significant online documentation and technical
support available through OPNET, nor is the NETWARS Model Development Guide meant to
replace this documentation or to teach modeling in general. Rather, it is intended to provide
additional information and guidance to enable the model developer to create models capable of
proper interaction with the rest of the NETWARS model library. Such models are termed
NETWARS-compliant models.

This section summarizes the following topics:

• The purpose and steps of modeling
• NETWARS software and communications network modeling
• Types of NETWARS models and the OPNET model hierarchy
• Methods for creating NETWARS device models
• The model development process.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

2-2

2.1 INTRODUCTION TO NETWARS MODELS

2.1.1 Goals of Model Development

The entire modeling enterprise is based on one fundamental assumption, which is much like
Newtonian determinism. We must assume that the important processes governing the system to
be modeled are repeatable and, more important, obey the laws of nature. A system has inputs (or
preconditions) and a process that follows some rules and produces outputs (the post conditions).
This high-level view allows engineers to model a system (or process) and predict its performance
(see Figure 2-1).

Figure 2-1: Repeatable Process

The modeling discipline involves capturing the rules of a repeatable process, simulating the
process, and performing experiments on the simulated system. For example, to simulate the
movement of the planets around the Sun, the rules are Newton’s laws of motion and gravity. To
predict the future position of the planets, a study analyst captures the inputs to the system and
runs a simulation. In this case, the inputs are the mass, velocity, and current position of the
planets and the Sun. The simulation will then process the inputs according to the rules and
produce the outputs (see Figure 2-2).

NETWARS MODEL DEVELOPMENT GUIDE V3.0

2-3

Figure 2-2: Model Repeatable Process

Before reliance can be placed on the results of a model, the model must be validated. To validate
a model, the inputs and outputs of the simulation are compared to data collected from real-world
observations. Validation is a scientific experiment testing the hypothesis that the model faithfully
captures the salient characteristics of the real-world system. Among other things, the experiment
measures the accuracy of the model. By measuring the outputs of a real system and comparing
them to the outputs of a simulated system, a model tester can determine whether the model can
answer the questions it was intended to answer and for what range of inputs the model is valid.
Without this validation step, results from a simulation should be interpreted with skepticism.

Modeling and simulation are conceptually simple, but the practice of creating models that
correctly answer real-world questions is difficult. This section provides guidance on building
NETWARS-compliant communications device models. It describes a process to produce and
validate these device models so they can be integrated into the NETWARS simulation
environment.

2.1.2 NETWARS Application Architecture

NETWARS is the DoD Joint Communications Modeling and Simulation tool. The NETWARS
simulation environment is a government off-the-shelf (GOTS) solution based on OPNET
Technologies commercial technology. NETWARS adds five major functions to the OPNET
COTS product:

• Military-specific models (tactical radios, Prominas, SATCOM)
• A simple-to-use capacity planning engine
• A simple-to-use analytic simulation engine
• Usability enhancements (wizards, reports, PowerPoint export)
• Collaborative planning workflow for Joint Command, Control, Communications,

Computers, and Intelligence (C4I) planning.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

2-4

The majority of NETWARS users are analysts. NETWARS provides a drag-and-drop graphical
user interface (GUI) to assemble a scenario. The scenario is then input to a simulation. After
creating a scenario, a NETWARS user can press a button to simulate the scenario. The results of
the simulation can be viewed within NETWARS.

Figure 2-3: NETWARS Architecture

Figure 2-3 illustrates the various NETWARS components and how they fit into the modeling and
simulation paradigm. The major components of the NETWARS architecture include the
following:

• Scenario Builder
• CP
• DES Engine
• NETWARS model library, including:

– Device models
– Process models and other modules
– Pipeline stages
– Traffic models.

2.1.2.1 Scenario Builder

The NETWARS Scenario Builder is the most recognizable part of NETWARS. When most users
think of NETWARS, they think of the Scenario Builder. Within the Scenario Builder interface,
users drag models from the pallet and place them on the workspace. Links are then made

NETWARS MODEL DEVELOPMENT GUIDE V3.0

2-5

between the devices, and finally traffic is added to the scenario. Figure 2-4 depicts a sample
NETWARS scenario.

Figure 2-4: NETWARS Scenario-Network-Level Model

The Scenario Builder interface allows users to create a scenario using existing device models. By
clicking one of the toolbar buttons, the network can be simulated using either the capacity
planner or the DES engine.

This interface also allows editing device attributes. A good example of this is configuring a
router. The behavior of a router is highly dependent on its configuration. Figure 2-5 shows some
of the detail incorporated into one of the standard NETWARS routers. The list of attributes
exposed is defined by the model developer, but the NETWARS user is able to change these
values to configure the device for simulation.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

2-6

Figure 2-5: Editing Device Attributes

2.1.2.2 Capacity Planner

CP is a NETWARS analytic simulation engine. It routes traffic and calculates link and circuit
utilizations. CP is designed to run quickly and be easy to use, and it usually requires little effort
to make models work with CP. CP uses only a handful of device attributes and properties.
Subsection 3.3 describes in detail how to make models work with CP.

2.1.2.3 Discrete Event Simulation

The DES engine is COTS technology available from OPNET. OPNET Modeler and IT Guru use
the same DES engine. DES involves modeling all the individual events in the communications
network. This includes every TCP/IP packet sent, each radio packet sent, and numerous signaling
packets for voice communications. Although the DES engine is highly optimized, DES takes
much longer than CP to simulate the same network. The tradeoff for the longer running times is
that a DES simulation will generate more accurate results.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

2-7

In addition, the results can include low-level measurements, such as end-to-end delay (minimum,
maximum, and average), bit error rate, packets sent for each interface on a router, and number of
packets dropped. Figure 2-6 shows some of the statistics available for a NETWARS router.

Figure 2-6: Statistics Available in DES

With a user-selectable level of statistics granularity, NETWARS can provide answers to very
detailed questions. However, it is important to remember that bad inputs can lead to bad outputs.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

2-8

Users must validate their scenarios and configurations. Model developers are also expected to
validate their own models.

2.1.2.4 NETWARS Model Library

NETWARS is supplied with a wide selection of military and commercial device models. This
includes the full OPNET Model Library of commercial network devices and the NETWARS
military model library. The military models include:

• Tactical radios
• Encryptors (bulk encryptors and Inline Network Encryptors (INE))
• Multiplexers (including Federal Communication Commission (FCC)-100 and Promina)
• Military phone systems
• Satellite terminals
• Models to process DoD Architecture Framework (DoDAF) traffic: IER

These models include network routing behavior, priority preemption, Radio Frequency (RF)
attenuation and propagation effects, and IP quality of service (QoS). Subsection 2.1.3 provides
more information on the composition of a NETWARS model.

2.1.3 NETWARS/OPNET Model Hierarchy

NETWARS is built upon OPNET COTS technology, and the DES engine used by NETWARS is
the highly optimized OPNET COTS DES engine. This DES engine uses models stored in an
OPNET format, and creating new models usually involves using the OPNET Modeler product.

When discussing models in NETWARS, the terminology becomes important because there are
many types of models. This section briefly describes the six basic types of models, shown in
Figure 2-7. These model types are identical to those used in the OPNET Modeler product. For
clarity, some OPNET terminology has been adopted with the exception that NETWARS uses
“device” instead of “node”. Most important, NETWARS employs Operational Facility (OPFAC)
and Organization (Org) military ideas to create network scenarios.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

2-9

Network Model

(OPFAC,

Organizaion)

(Scenario)

Link

Models

Device

Models

Traffic

Models

Process

Models

Pipeline

Stages

Figure 2-7: NETWARS/OPNET Model Hierarchy

This diagram can be read as follows:

• A scenario is built with OPFACs and Org using device models, link models, and traffic
models.

• Device models are built using modules, which include process models, transmitters,
receivers and antennas, and associated pipeline stages.

This hierarchy allows modelers to create building blocks, such as process models, OPFACs, and
Orgs, that can be reused, reducing the cost of model development. A user who has OPNET
Modeler can see the source code for nearly all of OPNET’s COTS models and for all the
NETWARS models. The user can copy and modify this code to make the model development
tasks easier. For more OPFAC and Org information, please see “NETWARS 2006-2 User
Manual”.

Table 2-1: Model Types and Descriptions

Model Description

Scenario A schematic of a network, including devices, links and traffic, terrain, failure scripts,
and trajectories for the movement of mobile devices. Scenarios are built with
NETWARS by NETWARS users, not model developers.

Organization A collection of OPFACs, devices, links, and traffic.
OPFAC A collection of devices, links, and traffic.
Device models Encapsulate the communications behavior of a physical device.
Process models A collection of state machines that often model specific network protocols or layers in

the Open Systems Interconnection (OSI) protocol stack. The behavior of the process
model state machines is implemented in C or C++.

Pipeline stages Model the communications effect of the physical layer. For wired connections this is
usually minor, but for wireless communications the pipeline stages model the effects
of radio propagation.

Link models Model wired connections. These can introduce delay and possess bandwidth
constraints.

Traffic models Model the traffic characteristics/patterns of a use case or scenario.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

2-10

Some of the models from Table 2-1 are described in more detail in the following subsections.

2.1.3.1 Device Models

Device models, along with link models and utility nodes, are the fundamental building blocks for
NETWARS scenarios. Device models embody the conceptual models that emulate real-world
devices. Device models are called node models within OPNET Modeler because they represent a
node in the network. Device models have two major functions:

• Define the external interfaces of the model, specifically how the user and the Scenario
Builder will interact with the model.

• Define the modeling behavior of the device by assembling and connecting appropriate
modules, which include process models, antennas, transmitters, and receivers.

Figure 2-8 shows the node editor. The model open in this editor is NETWARS’ Cisco 2514
router. This router is based on OPNET’s COTS Cisco 2514 model, with minor changes to make
it compliant with NETWARS.

The Cisco 2514 is a simple router with two Ethernet ports and two serial ports. The Ethernet
ports are listed as hub_rx_3_0 (receive) and hub_tx_3_0 (transmit), and hub_rx_2_0 (receive)
and hub_tx_2_0 (transmit). These ports flow into Ethernet MAC process models, mac_3 and
mac_2. Further up in the model there are OPNET standard process models for IP, TCP, UDP,
RIP, OSPF, IGRP, EIGRP, and BGP. These protocols (and many others, including IPv6 and
Multiprotocol Label Switching [MPLS]) come with NETWARS. They do not have to be coded
for each device, but simply laid out and connected in the node editor.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

2-11

Figure 2-8: Editing NETWARS Cisco 2514 Router Model

2.1.3.2 Process Models (.pr.c)

Device models are created from sub-models called modules. The most important of these are
process models, including a special type of process model called a queue model. Several types of
modules are shown in the sample device model in Figure 2-9, which depicts the SINCGARS
device model:

• pt_0 is a point-to-point transmitter.
• pr_0 is a point-to-point receiver.
• Antenna is an antenna.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

2-12

• tx_0 is a radio transmitter.
• rx_0 is a radio receiver.
• The remaining modules are process models.

Not shown are the queue model (which can be found in Figure 2-8, as mac_2 and mac_3), bus
transmitter, bus receiver, and external system module.

Also seen in the diagram are streams, represented by solid arrows, which facilitate
communication between modules; a statistic wire, represented by a broken arrow; and an
association, depicted as a dotted double-headed arrow.

Figure 2-9: Process Models Within SINCGARS Device Model

Process models (including queue models) are created and edited using the OPNET Process
Model Editor, which is a part of OPNET Modeler. Figure 2-10, for example, shows the process
model being edited. The name of the instance in the device model is “mac,” but the name of the
process model itself is “sincgars_mac.”

The highest level view of a process model is the state machine. (It is assumed that readers of this
document are familiar with the concept of a state machine, so this discussion is limited to an
overview of the OPNET framework for state machines.) States are represented by colored disks.
There must be one initial state, which is indicated by a big black arrow. There are two types of
states, forced and unforced. Forced states are transient and are exited immediately after entry.
Once a machine enters an unforced state, it remains there until the next event.

State transitions are represented by black arrows. Solid black arrows indicate unconditional
transitions. Dashed arrows indicate conditional transitions. The condition is shown in
parentheses. In the example, the condition is the name of a C pre-processor macro.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

2-13

Figure 2-10: Process Model Editor

There are three places where executable code can be invoked:

• Upon entry to a state, called the Enter Execs
• Upon exit from a state, called the Exit Execs
• During state transition, set as the executive attribute of the transition

If a state transition executive has been set, then it will be displayed following the transition
condition, preceded by a virgule. There are none shown in Figure 2-10. .

An optional feature of the Process Model Editor is that the number of lines of code in the Enter
Execs and the Exit Execs can be shown beneath each state. The PACKET_TERMINATE state,
for example, contains 49 lines. None of the forced states has an Exit Execs. The WAIT state has
14 lines in the Exit Execs. This is used to query the simulation kernel for information to

NETWARS MODEL DEVELOPMENT GUIDE V3.0

2-14

determine the type of event that woke up the state machine. The Enter Execs and the Exit Execs
can be edited with a text editor, as shown in Figure 2-11.

Figure 2-11: Editing C Code in Process Model Editor

2.1.3.3 Pipeline Stages

The physical layer is modeled by pipeline stages, which emulate physical processes. Link models
and radio models rely on pipeline stages to implement modular computations and make decisions
relating to the transfer of packets between transmitters and receivers. Each pipeline stage is a C
language procedure within one C file with the suffix .ps.c. There may be seven stages (including
the receiver group logic, Stage 0) for a radio transmitter, and for a radio receiver, eight stages.
Refer to OPNETWORK Session 1530, Modeling Custom Wireless Effects (see Figure 2-12).

NETWARS MODEL DEVELOPMENT GUIDE V3.0

2-15

Figure 2-12: Receive Pipeline Stages

This is an illustration from OPNETWORK Session 1530, Modeling Custom Wireless Effects.

2.1.3.4 Link Models

Link models simulate the characteristics of transmission media, such as coaxial cable or fiber-
optic cable. Links are used to wire together the device models in a scenario. Important attributes
are: whether the link is simplex or duplex; the speed (which may be selected by mnemonics such
as OC3 or T1); and the delay (which may be a constant value or based upon speed times
distance). There are currently no additional NETWARS requirements for modeling links.

2.1.3.5 Traffic Models

NETWARS makes use of all the traffic models available in OPNET Modeler. These include
explicit traffic (modeled by OPNET application models), traffic flows (background routed
traffic), captured traffic Application Characterization Environment (ACE), and link loads
(background loads on links). In addition, NETWARS provides an IER model, which can model
the various types of traffic that IERs specify.

Traffic modeling is performed by study analysts, and more information can be found in the
following sections.

Rx Antenna Received

Interference 6 7

8

Start of
reception

End of
reception

0

1

1 1

Error

1

Background

9

Signal-to-
Noise

1

Bit Error

1

Error

1

“Ignore”: delete packet

“Valid”

“Noise” End of
reception

Affects
Inoise,

SNR, BER,
&

NETWARS MODEL DEVELOPMENT GUIDE V3.0

2-16

2.2 M ODEL DEVELOPMENT L IFE CYCLE

Figure 2-13 shows the high-level NETWARS model development life cycle. The life cycle
contains seven key activities: identify the model need, define model requirements, design the
model architecture, implement the model, develop the test plan and test scripts, validate and
verify the model, and document the model. The following sub-sections provide an overview of
activities and associated roles and responsibilities of the involved parties.

Figure 2-13: NETWARS Model Development Life Cycle

2.2.1 Model Development Roles and Responsibilities

A general model development life cycle contains a program manager, a technical manager, a
model developer, SMEs, and a QAE. Their roles and responsibilities are as follows:

• Program Manager. The program manager has financial responsibility and visibility to
concerns outside the development process. The program manager will take input from all
the other individuals, but is responsible for getting the correct model developed at the
correct cost.

• Technical Manager. The technical manager is responsible for the technical decisions,
such as identifying participants, resources, standards, tools, and objectives. The technical
manager also provides technical oversight of the development process, and this
individual’s primary role is to match the requirements and business constraints with the
technical constraints.

• Model Developer. This individual is a technical expert in coding models with
specifications.

• SMEs. There are two SMEs involved with the model development life cycle: an
operational SME who understands how the equipment is used in the field and a technical
SME who understands how the equipment works internally. Both are needed. The SMEs
are heavily involved in specifying requirements and validating the model architecture.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

2-17

• QAE. This individual insures certain steps are properly validated. They are responsible
for developing and executing test scripts from the test plans.

2.2.2 Model Development Activities

Each life-cycle activity in the life-cycle flow depicted in Figure 2-13 is described in terms of
actions, roles, and outputs in the corresponding step in Table 2-2. The Roles column lists the
owner of the activities for each step. The Outputs column lists the applicable outputs of each
step. The list is not meant to be exhaustive; users should tailor their actions and outputs for their
needs.

Table 2-2: Model Development Activities

Step Action Roles Outputs

1. Identify the model need. The program manager
should work with the technical manager to
determine the reasons and the facts needed to
develop the model. He or she must also identify and
allocate resources and responsibilities for
supporting the entire model development life cycle.

• Program
manager

• Technical
manager

• Model need
• Resources

plan

2. Define model requirements. The program manager
should involve relevant parties in the development
life cycle. The program manager and technical
manager should also clearly identify the model
need, the individual responsibilities, and the
expected outcomes to the team. The SMEs and
QAE should provide information to help the team
analyze the model needs and determine the
requirements.

• Program
manager

• Technical
manager

• Model developer
• SMEs
• QAE

• Model
requirements

3. Design the model architecture. The development
team is responsible for designing a model
architecture that can fulfill the requirements.

• Technical
manager

• Model developer
• SMEs

• Model
architecture

4. Implement the model. The model developer should
follow the model architecture to implement the
model.

• Model developer • Model

5. Develop the test plan and test scripts. The QAE
should apply the defined requirements and model
architecture to develop the model test plan and test
scripts.

• QAE • Model test
plan

• Model test
scripts

6. V&V the model. The QAE should work with the
model developer and SMEs to V&V the model. In
addition, the QAE should document the results in
the V&V Report.

• Model developer
• SMEs
• QAE

• V&V Report
• Final model

7. Document the model. The model developer is
responsible for documenting the usage of the model
in the model user guide.

• Model developer • Model user
guide

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-1

3 NETWARS MODEL DEVELOPMENT

This section provides the guidance and requirements for creating traffic and communications
device models compliant with the NETWARS modeling architecture and which can interoperate
with models in the NETWARS standard library. This section is divided into two parts: the first
part will focus on the traffic model development, and will introduce the different types of traffic
models that can be shared in NETWARS environment. The second part will emphasize the
device and process model development, and will discuss the details of developing
communications device and process models. These models can be grouped into three categories:
the first category provides guidance to kick off the development process; the second category
introduces the common NETWARS model development considerations to the developer; and the
third category applies to specific classes of NETWARS model development. Each of these
specific class subsections explains how to build a NETWARS component model, and includes
the following:

• Defines a NETWARS component class model
• Defines minimum attribute compliance
• Identifies required modules for a device of that class
• Identifies device model initialization steps
• Describes component class interoperability with other NETWARS and COTS classes
• Describes the NETWARS and COTS failure and recovery
• Describes device model measures of performance (MOP) and how to collect statistics
• Describes the NETWARS model documentation standards
• Describes the device model construction process

Phase converters and long-haul modems are not covered in this version of the NETWARS Model
Development Guide; however, they can be modeled as link models with appropriate latency.

3.1 TRAFFIC M ODEL DEVELOPMENT PROCESS

Traffic modeling is performed by individual analysts and developers, and can be a very time
consuming effort. It is beneficial, therefore, to be able to share developed traffic models across
the NETWARS community. In general, two major approaches can be utilized to deploy and
share defined traffic models into a NETWARS scenario: IER and ACE traffic models. The
following sections will introduce the differences and highlight the areas of focus for developing
traffic models.

3.1.1 Development Approach

The first step in developing traffic models is to gather supporting information to determine the
best approach to support the objective. Supporting information includes, but is not limited to,
instrumentation data, application design documents, and operational activity logs. In general,
ACE models can be created by directly importing packet capture from sniffer, ethereal,
NETVCR and other instrumentation equipment. Occasionally, the developer can also create IER
text files directly from those captures. The use of IER and ACE can be determined by the
availability of resources including time, funding, and manpower.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-2

The following sub-sections will provide highlights on each of the traffic model types, such as
ACE, ACE whiteboard, and IER. It is important to note that ACE and ACE Whiteboard will
require an external license that can be purchased from OPNET Technology Inc. It is not included
with NETWARS.

3.1.2 ACE Traffic Model

NETWARS provides the same functionality as other OPNET products for utilizing the ACE
traffic model (atc.m) to create traffic profiles and generate traffic load. ACE traffic models are
created directly from captured network packet data through the ACE import function. In
addition, the ACE application provides capabilities to import network packet data from a wide
variety of popular network monitoring and instrumentation tools and software, including:

• OPNET .appcapture
• Network Associates’ Sniffer
• Industry-standard Binary Ethernet format (.enc, .cap)
• Other analyzers (such as NetScout) can also generate .enc files
• Binary Token Ring format (.trc)
• Binary FDDI format (.fdc)
• Free utilities, such as TCPdump and Windump
• Comma Separated Value file (.csv)

For detailed information on the procedures for importing captured data to ACE, please see the
“Introduction to the ACE Editors” and OPNET Modeler ACE Overview online documentation.

NETWARS can deploy the ACE traffic models directly into a network scenario to conduct
simulations and performance analyses, providing a mechanism to share traffic models with other
developers in the community. With the use of ACE to create the traffic models, users can re-use
the same traffic models in different network scenarios to support simulations without additional
effort. Refer to “Introduction to the ACE Editors” for detail procedures on using ACE and ACE
Whiteboard to create the traffic model (atc.m). Note that an external ACE module license is
required to operate ACE to import packet traces and create the corresponding traffic models.

3.1.3 ACE Whiteboard Traffic Model

ACE Whiteboard is another external OPNET module that can be used to create traffic models.
Similar to ACE, NETWARS provides the functionality to deploy ACE Whiteboard traffic
models into a model scenario. ACE Whiteboard provides the ability to modify existing ACE and
ACE Whiteboard models. Furthermore, the primary advantage of using ACE Whiteboard is that
developers can use ACE Whiteboard to create traffic models from scratch.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-3

Figure 3-1: ACE Whiteboard Screen Capture

Figure 3-2: ACE Whiteboard Python Logic

As Figure 3-1 and Figure 3-2 show, a developer is needed to define the associated tiers, required
transactions, transaction size, dependency, user time, and processing time for the traffic model.
Another important feature of ACE Whiteboard is the use of Python to create logic scripts to
model the dynamic behaviors of an application. It should be noted that ACE Whiteboard requires
an additional module license for use in NETWARS. For detailed information on the usage of
ACE Whiteboard, please see the “Introduction to the ACE Editors” and OPNET Modeler ACE
Whiteboard Overview online documentation.

Developers should conduct information gathering to support traffic model development in the
ACE Whiteboard. The information includes, but is not limited to:

• All required tiers or end-devices, such as database servers, web servers, and workstations.
• Required messages and transactions associated to each defined tier.
• Transaction characteristics, such as message size, dependency, processing time, etc.

ACE Whiteboard provides powerful capability and flexibly to create traffic models from scratch,
yet requires the highest level of effort.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-4

3.1.4 ACE and ACE Whiteboard Traffic Model Concerns

In order to integrate and use the ACE traffic models in NETWARS, there are several important
concerns that include:

• Number of tiers – Traffic model developers should make sure the ACE models contain
the correct number of tiers to support the entire application transaction. Tiers refer to
different end-user network devices, such as servers, computers, workstations, and phones.

• NETWARS scenarios – NETWARS scenarios should contain all the associated nodes
corresponding to each individual tier in the planned traffic models.

• Understanding the need of discrete event traffic and background traffic – ACE and
ACE Whiteboard traffic models can be deployed as either discrete or background traffic
load. Developers and users should deploy the traffic models corresponding to their needs.

• Validate and Verify traffic models – Developers should V&V the traffic models before
using them to conduct further simulations. During the V&V process, developers can
make use of the NETWARS built-in functionalities to execute simulations and capture
the packet traces. The capture results are compared against the original packet capture to
V&V the traffic models. In general, the developers can use the following values to
conduct the comparison:

– Transaction dependency
– Number of transactions
– Dependency delay
– Message size.

3.1.5 IER Text File

One of the critical features of NETWARS is the use of IER and thread to define traffic flow.
Traffic models based on IER text files can be created directly by using operational missions and
existing IER databases. In addition, the traffic models can be easily modified and created through
the use of text editors or Microsoft Excel spreadsheets. If an Excel spreadsheet is used, users can
export the IER test file into plain text format with each column delimited by a tab character.

Figure 3-3 shows an example of the IER text file. The file contains the required general attributes
for each IER, and each line represents one IER. The general attributes include:

Figure 3-3: IER Text File Sample

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-5

• IER ID – Identifies an IER in the database. IDs for IERs that are created by a user start
with the prefix USER, as to not conflict with IER IDs in the database. Background IERs
start with the prefix BKGD.

• Producer Functional Name – Identifies OPFAC Producer Functional Name of the IER.

• Consumer Functional Name – Identifies OPFAC consumer of the IER.

• URC – Identifies the relationship between the Producer OPFAC and Consumer OPFAC.
Please see “NETWARS User Manuel” for detailed information.

• Classification – Specifies the security classification of an IER. The security classification
of an IER is one criterion that determines the system element through which the IER is
transmitted.

• Perishability – Specifies the time in seconds during which the IER is alive.

• Priority (Precedence) – Determines the number of transmission retries and the wait time
between successive retries.

• Traffic Type – Specifies the type of IER traffic, such as data and voice.

• Average Size – Indicates the average size of the IER in bytes.

• Equipment – Specifies the system element, such as computer and radio, over which the
IER can be transmitted.

• Distribution Type – Indicates the inter-arrival distribution for the IERs.

• Interarrival (Distribution Mean) – Represents the time, in seconds, between IER
firings.

• Start Time – Identifies the time, in seconds, in which the IER will begin firing after a
simulation begins.

• Stop Time – Identifies the time, in seconds, in which the IER will stop firing after the
simulation begins.

• Producer Device and Consumer Device – Indicates the devices transmitting and
receiving the IER.

• Transport Protocol – Identifies the protocol used for transporting the IER.

Other than the above general attributes, the link-16 IER (J-Series message) needs an additional
attribute for entering the Network Participation Group (NPG) number of the IER. Detailed
information can be found in the “Link-16 Model User Guide.”

The IER Text File should be placed in the “<install drive>:\NETWARS\User_Data\IER_Text_
Files” directory. It is important to note that users may install NETWARS in different folders.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-6

3.1.6 Traffic Model Deployment

The purpose of this section is to highlight the important issues while deploying the traffic models
into NETWARS scenarios, and therefore does not contain step-by-step procedures. The
following sub-sections will provide the information and reference necessary for developers to
deploy the traffic models into NETWARS scenarios.

3.1.6.1 ACE and ACE Whiteboard Traffic Model

Figure 3-4: ACE and ACE Whiteboard Traffic Model Deployment GUI

As shown in Figure 3-4, NETWARS employs the same technology from OPNET Modeler and
IT Guru to import ACE and ACE Whiteboard traffic models into simulation scenarios. The
function bar of NETWARS supports the importation of traffic models to applications as discrete
event or traffic flow formats. After the models have been imported, the users can deploy the
applications to corresponding nodes in the scenarios through the use of the “Deploy Defined
Applications” function. Please see “Introduction to the ACE Editors” for further information.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-7

3.1.6.2 IER Text File

Figure 3-5: IER Import Manual

NETWARS provides a function to import IER directly from text files, as demonstrated in Figure
3-5. By selecting “Import IERs from files,” NETWARS will generate IER traffic from IER text
files during simulations. If “Set Background” is checked, the IER traffic will act as background
traffic during simulations. In order to import the IER from the text files, users need to store the
IER text files in a specific directory (i.e., <Installed NETWARS
Directory>\User_Data\IER_Text_Files). NETWARS will read all the files in this directory, and
the IER with corresponding functional name will be generated during the simulations.
Therefore, users need to make sure the directory only contains the IER text files that will be
required to support the simulations. Other IER text files can be stored in another directory
created by the users. Please read “NETWARS User Guide” and “NETWARS Code of Best
Practice” for further information.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-8

3.2 COMMUNICATIONS DEVICE AND PROCESS M ODEL DEVELOPMENT PROCESS

The development process is the second of three phases in the NETWARS communication device
model life cycle. At this point, the developer has a set of model development requirements that
can be used to define the development approach. Figure 3-6 shows the high-level development
process that consists of three individual development approaches which guide the developer to
kick off the model implementation with appropriate procedures.

Identify class
component

Implement the
changes

Identify the class component
and

determine the
interface requirements

Implement the new models
in OPNET Modeler

N
o

Modify the model
with NETWARS

requirements corresponding
to specific class component

Determine the required changes
to the current NETWARS modelYes

Modify the existing
OPNET model? Yes

N
o

Reuse the similar
NETWARS

model?

Determine the
development case

by using the defined
model requirements

Figure 3-6: High-Level Model Development Process

3.2.1 Development Approaches

In order to determine the most efficient way to implement the model, the developer needs to
match the development effort to appropriate development approaches, such as:

• Modifying the existing OPNET model to be NETWARS compatible
• Surrogating from the existing NETWARS model
• Developing a new model

The following subsections introduce the key considerations of each specific development case.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-9

3.2.2 Modifying the Existing OPNET Model to Be NETWARS Compatible

In this case, the scope is to convert an existing OPNET model into a NETWARS model. The
goal of this subsection is to provide the basic approach and key focuses for the developer to kick
off the modification process. They are as follows:

• Identify the component class of the device and the OPNET version that was used to
implement the model.

• If the model is implemented in an older version, then it must be upgraded and matched to
the version of NETWARS.

• If the device used a COTS traffic model, then it will work as-is in NETWARS using DES
only.

• If the device “wants” to use the NETWARS IER traffic specification infrastructure, then
ensure it has required attributes (specific for each component class).

• If the device is an end device, it needs the addition of the relevant “se” module.
• For interoperability with specific NETWARS component class devices, refer to Section

3, which has a compliance subsection for each component class.
• To get proper device functionality in CP/logical views, make sure the device has the

required attributes (specific for each component class). Scenario Builder may still require
CP routing/logical view code enhancements to support full CP/logical view functionality.

• The link deployment wizard will ONLY work if it has relevant self-description (and a
matching link name in the LinkTypeMap.gdf file).

• If it has complex attribute specification, then Scenario Builder may require a wizard-like
functionality to ease the device deployment.

3.2.3 Surrogating From the Existing NETWARS Model

In this step, the developer re-uses a similar NETWARS model as the foundation to construct the
new model. The key considerations while surrogating from the existing NETWARS model
include the following:

• If surrogating ONLY involves attribute default changes, then NO modification would be
required.

• If surrogating involves new attribute addition or changing the behavior of contained
modules, then it may need device model functionality enhancements.
– In DES, process models/external files/pipeline stages need to be enhanced.
– In CP, CP routing changes need to be determined.

• If surrogating involves changing physical layer characteristics (like changing radio
transceiver frequency, power, etc.), then NO modification would be required.

• If surrogating involves adding new interfaces (ports), then relevant self-descriptions for
the new interfaces (ports) need to be added.

3.2.4 Developing a New Model

In this case, the developer is required to construct a new model from scratch.

• Identify the component class of the device and its interface requirements.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-10

• If the characteristics of the device include protocols and technologies available in the
OPNET COTS offering, then use device creator to create a new model with required
interfaces and technologies.

• If device creator cannot be used, then build the new model in OPNET Modeler according
to device specification (building process models/external files/pipeline stages).

• Perform all the steps in the “Modifying the Existing OPNET Model to Be NETWARS
Compatible” subsection.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-11

3.3 M ODEL INTEROPERABILITY ISSUES

Before development of any device models in the NETWARS environment; the developer needs
to pay attention to the interoperability issues that are associated with the interactions between
different device models. This subsection in particular discusses the interoperability concerns that
users must have before starting the model design/implementation. Based on the objective of the
model development and the final modeling environment in which users will deploy their models,
interoperability can be separated into four main categories:

• Compatibility issues
• Interfacing issues
• Self-description issues
• Versioning issues.

The following provides some of the common concerns and issues among those four categories
that a developer will face. In addition, examples are used to address the detail of those concerns.

3.3.1 Compatibility Issues

Compatibility issues include functionality, protocols, and IP auto-addressing issues. The
following subsections discuss these in detail.

3.3.1.1 Functionality Issues

A particular device model’s intended behavior determines some of its compatibility with respect
to other models. The model developer should give due attention to interoperability, starting at the
high-level design of the device. At this point the developer also needs to give attention to the
high-level function of the models with which it will interface.

For example, when building a radio device model that has the ability to generate IER traffic, the
user needs to know the functions of the operational element (OE) at a high level. (The OE
coordinates sending and receiving IER-based traffic.) This reduces or ideally eliminates work
duplication and code overlap between the radio and the OE. In this example the user should
know the following:1

• The radio does not need to write IER statistics.
• The radio does not need to read the IER information.
• The radio does not need to schedule IERs.
• The availability of the radio for transmission and/or relay will be dependent on the OE

implementation.

This example merely covers, at a high level, interfacing the radio with the OE. During the high-
level design, the developer needs to make a list of devices (per layer) that will interface directly
(wired/wireless connection) or indirectly (using other communication mechanisms). Usually,
model specifications clarify device functions, but this quick check should be performed to
discover any functionality-related overlaps in advance.

1 Assuming that the behavior of the OE is similar to the one present in the NETWARS standard model library.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-12

3.3.1.2 Protocol-Related Issues

In addition to functionality, the developer should make sure that the model under development
interfaces with the correct protocols and/or technologies. For example, the current NETWARS
model nw_ethernet_wkstn.nd.m has two specialized interfaces—one that supports TCP transport
protocol and one that supports User Datagram Protocol (UDP). It has a separate implementation
of the system element (SE) for either of these protocols.

Figure 3-7: Protocol Dependency (e.g., Ethernet Computer Model)

Based on the supporting protocol layer stack, the developer needs to do some custom model
development. Also, in some cases protocols (upper- or lower-layer protocols) have
interdependency upon one another, and the developer must consider this while performing the
high-level design for the device model.

3.3.1.3 IP Auto-Addressing Enhancements

Every IP interface that has a link connected to it needs to have an IP address. If the network is
huge, then assigning addresses manually to every interface becomes cumbersome. To make it
easy for the user, OPNET Standard (COTS) models have a feature called “IP Auto-Addressing.”
By default, device model instances have auto-addressing enabled in a network, and the first IP
process to initiate in the simulation automatically assigns IP addresses to the interfaces that have
their value set to “Auto Assigned.” To accommodate new models developed, model developers
need to enhance this COTS utility, typically (but not only) for Layer 2 custom models. Currently,
support exists for the NETWARS standard models such as Promina, circuit switches, satellite
terminals, and the like.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-13

3.3.2 Interfacing Issues

One of the key steps in development involves taking into account the model integration issues (in
the case of a single model, integration of different modules/processes2). The model developer
needs to realize that not all of the model development progresses in seclusion (i.e., the various
modules of a device model need to interface with each other, even during development).
Recognizing the integration issues sooner rather than later benefits the model integration process.
Initial designs for model development should address this. The various components of this
category are information-sharing and communication aspects.

3.3.2.1 Information Sharing

Through the interfaces, information can be shared between the two process models that belong to
the same module, different modules of the same device model, or two completely different
device models. This can be done in a variety of ways, some of which are discussed in the
following subsections.

3.3.2.2 Process Registry

The OPNET simulation kernel allows any number of OPNET process instances to register
themselves in a global (i.e., accessible to any process in the scenario) process registry. The
processes register themselves with the required attributes only once during simulation (typically
upon creation); however, processes can add new attributes/descriptors whenever required. Other
processes can later access these attributes during the simulation’s execution. Model developers
should consider what information, in the form of process registry attributes, processes should
publish via the process registry upon their creation or modification. It is necessary that the new
processes written realize what information (attributes) published by previous processes could be
of use.

An example of process registry3 use can be seen in the NETWARS satellite models, where the
satellite space segment registers its attributes in the process registry and then the earth terminals
discover (retrieve) this information during their initialization.

3.3.2.3 Module-Wide Memory

Module memory is the most permanent and widely scoped memory provided in OPNET
modeling (except for global variables). A single block of memory can be installed for a module
by any process that is owned by that module. Installation is performed by calling the Kernel
Process (KP) op_pro_modmem_install() and passing the address of the memory block. Any
process owned by the module can then obtain the installed address by calling the KP
op_pro_modmem_access(). The structure and contents of the memory block are entirely the
responsibility of the model developer, as is memory de-allocation of previously installed blocks
when a new installation occurs. Initially the address OPC_NIL is installed to indicate the absence
of any module memory.

2 Processes are instances of a process model. For example, ip_dispatch.pr.m is a process model that can be instantiated a

number of times in a simulation of a network that contains many routers and workstations.
3 Refer to the OPNET Product documentation for details on the process registry and its use.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-14

Again if the developer is adding the new process models to an existing module in the node
model, this would be a place to look for some already initialized information.

Figure 3-8: Module-Wide Memory (e.g., Ethernet Computer Model)

3.3.2.4 State Variables

State variables are analogous to the global file and are associated with each process model. Other
processes can access these variables through the use of the KP op_ima_obj_svar_get().

3.3.2.5 Global Variables

Global variables are the regular global variables declared in the header block of one process and
can be used by other processes. Use of these variables should be minimal. The developer should
declare the variable in the header block of one process and declare the variable as an extern in
the header block of all other process models. Note that declaring a variable in the header block
also makes it global to all instances of the process in which it is declared, as opposed to state
variables where the information remains local to the process instance.

Following is an example of using a global variable:

If the global variable is named foo_var and is of type int, declare the variable in foo.h:
extern int foo_var;

Then define it in foo.ex.c (or alternatively foo.pr.m):
#include <foo.h>

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-15

int foo_var;

Now to access or set it in bar.pr.m:
#include <foo.h>
foo_var = 10;

3.3.3 Communication Aspects

This subsection introduce the key aspects of communication, such as packet formats,
transceivers, process models, link models, the link type map file (i.e., LinkTypeMap.gdf), packet
encapsulation, interrupt types, and interface control information (ICI).

3.3.3.1 Packet Formats

Packets are the units of transfer of information in a data network. In OPNET/NETWARS
terminology, there are two basic types of packets: formatted and unformatted. The formatted
packets are the most commonly used mode of data transfer because formats can easily act as a
constraint on the transmitter and the receiver of the device model. Packet formats define the
internal structure of packets as a set of fields. Refer to Appendix D for a list of packet formats
used in NETWARS standard models. The packet format constraints are placed at transceivers,
process models, link models, and the LinkTypeMap.gdf file. For example, a Promina device and
the associated link that connects two of its Wide Area Network (WAN) ports,
Promina_wan_link. Because the packet format affects multiple model elements, it can be a
significant issue when integrating different device models.

3.3.3.2 Transceivers

Each pair of transceivers in a device node model has a list of packet formats it can support. In the
case of Promina, the packet formats supported by the WAN transmitter and receiver are
pro_cx_pk, pro_hello_pk, and pro_wan_pk, which are packet formats to support the Promina
Cell Express packets, Promina Hello packets, and Promina data packets from neighboring
Prominas.

3.3.3.3 Process Models

This is the place where the packets are actually created, received and/or passed on by the
modules above or below using the stream or forced interrupts. A process model can be said to be
supporting a packet format if the stream interrupt received by this process model with this stream
interrupt is properly handled. In the case of Promina, the process model that handles (processes)
the above-mentioned packet formats is pro_wan_port_controller. The packet format supported
on a pair of transceivers is decided based on the design of the process models.

3.3.3.4 Link Models

Every link also supports a list of packet formats; if trying to connect a link between two devices
and the packet formats supported by the transceivers are not supported by the link model itself,
then the connection between the two devices will be invalid. Continuing with the Promina
example, the promina_wan_link used to connect the two WAN ports supports promina_hello_pk
and promina_wan_pk.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-16

3.3.3.5 Link Type Map File

This is a text file that contains information about the various link types used in the NETWARS
environment that is primarily used by the NETWARS Scenario Builder to determine if an
external link connected between two devices supports the assigned ports (transceivers). Refer to
the NETWARS Interface Control Document for details on this file, including its format and
content.

3.3.3.6 Packet Encapsulation

Additional information, such as header information, is added to the packets as they are forwarded
from one module to the other. One of the common methods is to use packet encapsulation, where
the original packet is wrapped in a new packet format and the relevant packet fields are
populated (the original packet now being a packet field of the new packet). For example, as a
TCP packet goes down the protocol layer stack, it gets encapsulated into an IP datagram, which
then gets encapsulated into the data link layer technology packets (e.g., Ethernet), and so on.
Later, on the receiving end the same packet gets de-capsulated (i.e., the information is stripped),
and the de-capsulated packet is then sent up the protocol stack. The correct encapsulation and de-
capsulation processes are necessary at each layer (OPNET module), and one of the
interoperability concerns that developers should have is handling it appropriately in their models
and forwarding packets of formats as expected by the neighboring modules.

3.3.3.7 Interrupt Types

When a process is invoked by an interrupt, it usually is in a state in which it expects a limited set
of interrupts. The first concern of the process is to determine the type of the incoming interrupt,
so it can tailor subsequent processing appropriately. The KP op_intrpt_type() provides the
process with an integer code that represents the type of the current interrupt.

Apart from the packets (stream interrupts) that can be received by a process from other
processes, there are other interrupts that can affect the behavior of a model. It is imperative that
caution be taken in the handling and scheduling of these interrupts because they are the primary
means of communication in a simulation.

Each interrupt type can have many different purposes. For instance, a single process might
schedule self-interrupts to model various kinds of processing delays and time-out intervals. To
distinguish the purpose of such interrupts, and hence provide the receiving process with context-
sensitive processing ability, an integer code is associated with self-, remote, and multicast
interrupts. The code of the current incoming interrupt is available from the KP op_intrpt_code().

It is important that the process model under development be ready to handle all the interrupts it is
designed to handle. For example, if the process model under question is development of a new
SE that supports both TCP and UDP transport protocol, then the application module (SE)
generates the traffic based on the information received from the OE. In this case, the SE module
should be aware of the communication mechanism that the OE will be using to transfer this
information (e.g., remote/stream/forced interrupt) and should be able to handle that particular
interrupt in a desired fashion (generate the traffic based on this information).

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-17

A less preferred approach is to have a default handling of any interrupts that model is not defined
to handle (using the interrupt steering mechanism). This is done by defining a state transition
with its condition attribute set to “default,” as shown in Figure 3-9. This will apply to interrupts
received at the source state of the transition that the process does not know how to handle.

Figure 3-9: Default Interrupt Handling

3.3.3.8 Interface Control Information

An ICI is a structured collection of data that is transferred between processes, as a form of inter-
process communication. An ICI becomes associated with an interrupt if a process installs the ICI
prior to taking the action that causes the interrupt. Layered protocol interfacing is the main
application of ICIs, but they can also be used to associate information with sophisticated self-
interrupts or peer-to-peer remote interrupts.

Because ICIs are associated with interrupts, handling the information in the ICIs is as important
as handling the interrupts themselves. In case of the current NETWARS standard models, the
communication between the OE and the SE is established via a remote interrupt. There is an ICI
associated with this remote interrupt that has the information about the IER that this SE needs to
generate. The KP op_intrpt_ici() is used to get the ICI associated with the recent interrupt and
op_ici_format() to get the format of the associated ICI.

Another example of the use of ICIs is in the oe_threads process model (of the OE). In this
process model, all the thread instances are scheduled at the start of the simulation, and the ICIs
are associated with self-interrupts. These ICIs contain the actual information regarding the thread
that needs to be fired. Once the process receives these self-interrupts it retrieves the ICI
information and then actually fires the thread segments. The KP op_ici_create() is used to create
an ICI and op_ici_install() to install it with the interrupt.

The most important interfacing issue that can be associated with ICIs is their formats. The
interfacing process needs to know what ICI format to expect and what information is available in
that ICI format (ICI files are stored as *.ic.m). Refer to Appendix E for the list of ICIs currently
used in the NETWARS standard models.

3.3.4 Self-Description Issues

Every model produced in NETWARS holds some information regarding how it can interface
with other model types. NETWARS refers to this part of the model definition as the self-
description. This subsection plays a key role in defining device interoperability and provides
guidelines for how to define the self-description of the custom model.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-18

The self-description information for each model will vary depending on the class component of
the model (e.g., a network layer device versus a datalink layer device), supporting technologies,
and so on. The port information is one of the most common pieces of information that is looked
for within the self-description. Following discussions point out how this information is specified
for the NETWARS models. If the custom models do not support the same packet format
information as NETWARS models, then self-description information based on the developed
models will have to be developed.

3.3.4.1 Port and Port Groups

The NETWARS Link Deployment Wizard depends on the information present in devices’ and
links’ Port Self-Descriptions. The Port Self–Description can be accessed by selecting “Interfaces
| Self-Description” from within OPNET Modeler’s Node Model Editor or Link Model Editor.
For all the NETWARS models, each port category must have a self-description port object. For
example, MRC-142 (NETWARS standard device model) has the following ports:

• Point-to-Point Ports. ptp_pt_0, ptp_pt_1
• Radio Ports. radio_tx_0, radio_tx_1

Two port objects (ptp_pt_<n> and radio_tx_<n>) will be created with a range from 0 to 1 (see
Figure 3-5).

Figure 3-10: Self-Description Port Objects

Each port category needs an “interface type” characteristic defined for it. This interface type
defines the technologies that the set of ports supports. Refer to Appendix V for details.

3.3.5 Versioning Issues

To upgrade the models to a new NETWARS standard model library, users need to force-compile
all their models with the new header files. NETWARS supports backward compatibility. For
example, models developed on Version 11.5 can be applied on Version 12.0, but not vice versa.

3.3.5.1 Force Compilation

This is one of the easiest but very vital steps in development of models that are interoperable. It
is necessary to compile all the models with the correct headers. During the development efforts,
it is possible that the developer may have had to modify or enhance the current headers in either
the NETWARS or OPNET standard model library.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-19

To force-compile the models used in a particular simulation, check the force model
recompilation checkbox under “Execution|Advanced|Compilation.”

To force-compile all the models in directories listed in the mod_dirs attribute of the
Sim_Domain\op_admin\env_dbX.Y file, the user needs to open an OPNET console. Force
compilation can be done from this console as follows:

• set opnet_user_home=<Netwars_Install_Dir>\Scenario_Builder
• op_mko –all >comp_info.txt

This will compile all the models and put the compilation information in the comp_info.txt file.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-20

3.4 NETWARS COMPLIANCE REQUIREMENTS

To develop a NETWARS-compliant model, the OE and CP compliance requirements should be
noted. NETWARS architecture involves the use of both OE and CP, which are the key
differences in using OPNET Modeler. The developer should have a basic knowledge of creating:

• An OE compliance model
• A CP compliance model.

3.4.1 Compliance for OE Nodes

The OE node is the brain behind the OPFAC. It is responsible for traffic generation and node
movement. This subsection explains how to build an OE node.

3.4.1.1 Attributes

Table 3-1 lists the minimum set of attributes an OE node must have.

Table 3-1: Attributes for OE Node

Attribute Name Attribute Type Description

Name String Specifies name of OE—must be “OE”
Model String Specifies name of model
equipment_type Enumerated Identifies device type—must be “OE”
opfacCondition Toggle Specifies current condition of OE node

In standard NETWARS models, the OE parent process (oe_mgr.pr.m) is used to declare external
files that are required in the simulation. The file oe_mgr.pr.m in the process editor must be
opened to find the list of the external files that have been included. The model developer may
choose to declare these files in the OE or any other model. They have been included in the OE
because every simulation has at least a single OE in it. Not including all the required external
files may result in bind errors while running the simulation.

3.4.1.2 Initialization

The OE initializes files for writing the statistics. The “initialize()” function is called in the
NETWARS standard models; refer to Appendix M for more information. It opens the files in
write mode and writes the header row in all the files. The header row has the names of the fields
in the file, separated by tabs. The following are the files that need to be initialized:

• <file_name>.ier_sent
• <file_name>.ier_rcvd
• <file_name>.ier_fail
• <file_name>.ier_block

Following is sample code (see oe_mgr.pr.c / oe_mgr.pr.m process model files and the external
file netwars_support.ex.c for further reference) for opening the <scenario_name>.ier_sent file in
write mode and writing the header row:

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-21

The initialization of the statistic files can be handled by provided NETWARS standard
Applications Programming Interface (API) functions. Refer to Appendix L for more details
about the functions available.

The OE parses an Extended Markup Language (XML) file in the scenario’s folder, titled in the
format <project name>-<scenario name>_traffic.xml, to get the traffic information about its
parent OPFAC. This includes:

• IER Information. The size of the IER, name of the consumer OPFAC, IER ID, IER
start/stop time, etc.

• Threaded IER Information. The thread start/stop time, thread ID, thread segment
information, etc.

The model builder can use a series of NETWARS-provided APIs to gather this information from
the XML file. The parsed IER should be stored locally for access during the simulation, such as
during IER generation. The OE is also responsible for performing initialization procedures for
handling of threaded IERs. The OE is required to build information regarding the threads that the
OPFAC is part of. In the standard NETWARS model, the OE builds the Threaded IER Table,
which contains information regarding the incoming conditions (condition_iers) and associated
outgoing events (reaction_iers). The OE will use this information for every incoming part of a
thread (an IER) and to fire a reaction IER if required.

Additionally, the NETWARS standard OE creates two global tables during initialization: the
global information per thread and the information per thread instance. These tables contain
information regarding the destination list, source OPFAC, and destination reference count. The
destination list contains the list of destination nodes (which have “critical” IERs destined to
them) for the thread (because a thread can have multiple destinations), and the destination
reference count is the total count of these destinations. Threads can have segments (IERs)
marked as critical or non-critical. If all of the IERs marked as critical reach their destinations, the
simulation will mark that thread as successful even though any number of the non-critical IERs
failed to reach their destination.

The NETWARS standard OE also allows IERs to be specified in various “modes”: as being part
of a thread only, being independently fired based on inter-arrival times, or being part of both. For
a standard NETWARS OE, this is determined based on the start time of the IER—if it is set to

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-22

“THREAD,” then the OE fires the IER as part of a reaction to some thread condition; otherwise,
it is scheduled to fire independently (based on the inter-arrival times) and potentially as part of a
reaction.

3.4.1.3 Traffic Generation

IERs can be assigned to OPFACs in the Scenario Builder GUI, including import from the IER
database, import from text files, or manually creating the IERs. Scenario Builder writes these
IERs out to the traffic XML file. The OE parses the traffic XML file and maintains a list of IERs
to send by its containing OPFAC.

When it is time for this OPFAC to send an IER, the OE in the producer OPFAC finds a pair of
devices in the consumer OPFAC and producer OPFAC. It can select these devices at random
according to some definable constraints, or the IER definition can specify them. Then it sends a
forced remote interrupt to the SE modules of the selected device in the producer OPFAC with an
oe_se ICI. The SE module in the chosen producer device uses the information in the ICI to
construct the IER and sends it to the consumer device.

The OE in the producer OPFAC uses the following information to find devices in the producer
and consumer that can generate and accept a certain type of IER:

• IER Classification. The producer and consumer devices must be able to support the level
of security classification required by this IER.

• IER Traffic Type. The producer and consumer devices must be able to support the
required type of IER traffic.

• availability_status. The producer and consumer devices must be able to handle the new
call and must not be in a “failed” state or busy with another call/transmission.

• transport_protocol. Depending on the transport layer specification in the IER, the
producer OE associates the IER to the correct “SE.” For example, if data is to be sent
over TCP from a workstation, the OE will inform the relevant se module (determined by
name se_tcp) to fire this IER.

To handle threaded IERs, the NETWARS standard OE maintains a pending_reaction list. This
list consists of all the IERs that have been received (for a particular thread instance) and for
which a reaction is pending. Upon the receipt of an IER (which belongs to a thread), the thread
ID and associated thread instance are determined by the OE. The IER information is then
inserted into the pending_reaction list.

The OE will match the condition_iers of this thread with the pending_reaction list. If it finds a
match, then the reaction_iers list for this particular thread in the OPFAC is accessed and the
IERs are fired. The steps for the generation (e.g., device selection, blocking) of the reaction IER
are carried out as if the IER were fired independently.

If this OPFAC is one of the destinations for the thread and the incoming IER is critical, then the
destination reference count for this thread instance is decremented. If the count is down to zero,
then the thread is logged as being received.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-23

3.4.1.4 Handling Background IERs

The OE is also responsible for the initialization procedures for background IER firing. Only
IERs that have the traffic type set to “data” can be marked as background IERs. IERs marked as
background have the IER ID starting with “BKGD.” Background IERs may have explicit end
devices specified on the source and destination platforms or may be left as “Auto Assigned.” In
case of the latter, the OE will perform the device selection procedure as it would for explicit
IERs.

After the end devices are established (by one of the two methods stated here) for all background
IERs being fired from this OPFAC, the OE builds what is referred to as “profile” information for
background IERs to fire from all the end devices in the OPFAC. A profile represents values of
packets per second and bits per second versus time. For all periods of constant utilization in the
profile, the OE sends remote interrupts to the IP module in the end device to generate tracer
packets. Further information regarding background traffic in OPNET can be obtained from
“OPNET Online Documentation | Modeling Concepts | Simulation Project Strategies | Scalability
Issues—Working with Background Traffic.”

In the NETWARS standard OE model, the background traffic report file (for the flows created
for the explicit IERs) is produced in the scenario directory. The OE module is required to invoke,
through an API call, the IP module to generate the tracer packet. The API functions for
interfacing with the IP module can be found in app_bgutil_support.h (in the <OPNET
DIR>/<OPNET Version>/models/std/include folder in the standard OPNET installation). In
particular, the function that can be used to invoke the IP module is app_bgutil_traf_gen(). One of
the parameters that this API call accepts is the hold time—that is, the amount of time for which
the specified background load is valid. The standard IP module automatically generates multiple
(according to the simulation attribute, “tracer packets per interval”) tracer packets during this
hold time.

3.4.1.5 Interfacing with End-System Devices

The SE module in the end-system device interacts with the OE to generate the IER traffic.

The producer OE chooses a pair of producer/consumer end-system devices, based on the
equipment type attribute on nodes. The producer OE gets the address of the consumer device and
sends a remote interrupt to the chosen end-system device in the producer OPFAC, with the code
set to OE_SE_IER_SEND. With this remote interrupt, the OE also installs an ICI with format
oe_se. The OE must fill all the fields in this ICI before sending the remote interrupt. The format
of this ICI is specified in Appendix E.

The study analyst specifies movement for OPFACs by assigning them trajectories in the
Scenario Builder of the Scenario Builder GUI. The trajectory information is converted to
bearing, ground speed, and ascent values and written out to the SDF file. The OE reads the
values pertaining to its OPFAC from the Simulation Description File (SDF) file. Whenever there
is a change in these values, the OE changes the bearing, ground speed, and ascent value
attributes of its parent subnet.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-24

Sample code for changing the bearing, ground speed, and ascent value attributes can be found in
the oe_status process model.

3.4.1.6 Collecting Statistics

The OE node records the statistics shown in Table 3-2.

Table 3-2: Statistics Collected by OE Node

File Name When the File Is Updated

<scenario_name>.ier_sent The OE has found a producer device to transmit an IER.

<scenario_name>.ier_block The OE tries to send an IER and cannot find an end-system device in
the OPFAC that can transmit this IER.

<scenario_name>.ier_fail The OE fails to send an IER because of an inability to transmit (e.g.,
out of retries, no SEs of appropriate type, no Decision Table, etc.).

<scenario_name>.ier_rcvd A device receives an IER; the receiving OE records this statistic.

<scenario_name>.th_sent The OE in the source OPFAC has found a producer device to transmit
a threaded IER.

<scenario_name>.th_rcvd All the critical IERs of a thread have been received at the destination
devices.

<scenario_name>.th_fail Some of the critical IERs of a thread have not been received at the
destination devices.

3.4.1.7 Example: Constructing an OE Node

For an example, refer to Section 4, “OE Node Example.”

3.4.2 Compliance for Models for Non-Discrete Simulation (Capacity Planning)

CP in NETWARS applies analytical techniques to rapidly determine the bandwidth requirements
to support specific traffic profiles and patterns. CP graphs are created in layers, and traffic is
applied and performs shortest-hop routing in the order illustrated in Figure 3-6. This subsection
is of interest when:

• Analytical modeling is being performed using the Deployment Editor/CP/Resource
Planner

• Models are required to be built at minimum cost
• A decision regarding the “closest match” to models available in the NETWARS standard

suite needs to be made

3.4.2.1 Factors of Interest during Analytical Modeling in Capacity Planning

The following properties of a model are of interest and significance when a model is used in the
CP:

• How does the device affect routing of messages in the scenario? Does it perform shortest
path routing? Does it treat voice and data messages differently (as far as routing is
concerned)? For example, for a particular device, does it route voice messages differently

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-25

than data? Does it require circuits to be set up? Which layer does it belong to in the CP
routing layer (see Figure 3-6)?

• How does the device affect the size of the message after it processes it? That is, does the
message size differ when it receives on an in-port and sends on an out-port?

• What special connectivity restrictions are there for the device? Are there particular ports
that connect to particular devices/device types? Do particular ports have specific message
type handling capability (e.g., only data, only voice)?

3.4.2.2 Handling CP Routing

CP generates graphs in layers in the order specified in Figure 3-6. Edges belonging to the layer
above are abstracted away in the current layer.

By default, all new device models encountered by the CP will be assumed to perform shortest-
hop routing without the need for circuits. If circuits are required by the device being modeled,
then the use of a surrogate is warranted. Possible surrogates are ATM, Tactical Satellite Signal
Processing (TSSP), Promina, Multiplexer, and frame relay devices. Routing is performed in the
order illustrated in Figure 3-11. For example, TSSP circuits are built and routed prior to Promina
circuits. Properties to determine which layer a device belongs to are listed in Table 3-3.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-26

Figure 3-11: CP Layers

Table 3-3: Properties to Determine CP Layer

Layer Attribute Attribute
Location

Acceptable Value

equipment type on device generic

interface type

machine type

self-
description
self-
description

contains atm:

router or switch

ATM

interface type

equipment_type

self-
description
on device

contains atm:

Promina

equipment type on device generic
TSSP

nodal mode self-
description contains TSSP

ATM

TSSP

Promina

Multiplexer

Frame Relay

IP

Voice

VTC

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-27

Layer Attribute Attribute
Location Acceptable Value

Promina equipment type on device generic or Promina

Multiplexer equipment type on device generic or Promina or Multiplexer

equipment type on device
generic or radio or Joint Tactical
Information Distribution System (JTIDS) or
computer

machine type self-
description

router or workstation or server or Local
Area Network (LAN) or Accelerator 4000
or application proxy

IP

interface class self-
description IP

equipment type on device generic or phone or radio or JTIDS or
Media Gateway

Voice
interface type

equipment type

self-
description

on device

contains circuit_switched:Voice_LAN or
contains circuit_switched:Voice_WAN
is not Promina and is not Encryptor and is
not Multiplexer

equipment type on device generic or VTC Terminal

Video
Teleconfere
ncing (VTC)

interface type

equipment type

self-
description

on device

contains circuit_switched:Voice_LAN or
contains circuit_switched:Voice_WAN
is not Promina and is not Encryptor and is
not Multiplexer

At least one row must be satisfied to place the device in that particular layer. For example, a
device belongs to the ATM layer if it is a generic device; or if its interface type contains “atm:”
and it is a router or a switch; or if its interface type contains “atm:” and it is a Promina device.
Misconfiguration of the attributes in Table 3-3 will cause unroutable demands.

3.4.2.3 Handling Models Modifying Message Sizes

By default, all new device models encountered by the analytical tools will be assumed to have no
effect on message size. If this is not the case, for example, if the device adds a certain amount of
overhead, then the use of a surrogate is warranted. Possible surrogates are KG-84, KG-194, KG-
175, KIV-7, KIV-19, IP_ATM_TACLANE, and NES. Each of the devices has a user-specified
overhead attribute that will increase the message size by a certain percentage. There are different
connectivity restrictions enforced by these devices, so the specific properties of each should be
researched when choosing the “closest match.”

3.4.2.4 Handling Specific Port Selection for Alternate Links Selection in the CP

When suggesting alternate links between devices, the CP will consider the following properties
of the device:

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-28

• Does the device support the demand’s traffic type? This is determined by examining
the device’s packet formats and comparing them to a list of all the voice or data packet
formats. These two packet format lists are built from the set of voice and data packet
formats defined by the link entries in the LinkTypeMap.gdf file. If, for example, an
alternate link is being suggested to help the routing of a data demand and the device does
not support any of the entries in the data packet formats list, then no link will be created
to that device.

• Does the device have a free port? If all of the ports on a device already have links
connected to them, then no new links will be created for that device.

• Is there a link that supports the device’s packet format? Once the two endpoint
devices and ports are chosen, a common packet format supported by the ports on both
devices will be chosen. (If there is no common packet format, then the devices cannot
talk to each other and a new pair will be chosen.) An attempt will then be made to create
a link that supports the common packet format. No link will be created if there is no entry
in the LinkTypeMap.gdf file that supports the common packet format. For example, if the
port on device A supports “ckswpkt” and “custompk” and the port on device B supports
“phone_switch” and “custompk,” an attempt will be made to create a link that supports
“custompk.” If no such link type is defined in the LinkTypeMap.gdf file, no link will be
created.

Any connectivity rules beyond these are handled for a specific set of devices only. These devices
are Mobile Subscriber Equipment (MSE), Promina, Promina Cell Express, and Internet
Controller (INC). In each case, finding free ports with a common packet format is not sufficient
when connecting those devices. Two MSE devices can be connected via their Digital
Transmission Group (DTG) ports only. Promina is a similar case, because two Prominas can be
connected via WAN ports only, not LAN ports. Two Promina Cell Express nodes cannot be
connected directly because they require intermediate ATM devices, and two INCs can be
connected via their ip_dgram_v4 ports only. If the new device has these types of restrictions,
then the use of a surrogate from the above list is warranted.

3.4.2.5 Self-Description Changes

The CP requires self-description information to build various topology graphs. This is
determined based on the interface class and machine type. Also, the packet format information
will no longer be retrieved from the devices node model directly, but from the self-descriptions.

An example of some of the information that the CP will use in 2006-2 is as follows:

• “Radio_Wired:EPLRS INC Interface” interface type on EPLRS ports
• “Radio_Wired:Sincgars INC Interface” interface type on SINCGARS ports
• “atm:*” interface type on ATM ports
• “frame relay:*” interface type on frame relay ports
• “Circuit_Switched:*” interface type on voice-capable ports
• “router” machine type on layer 3 crypto devices and any other IP router
• “IP” interface class on router IP ports

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-29

3.5 COMPLIANCE FOR END-SYSTEM DEVICES

This subsection expects the reader to be familiar with the concepts of circuit switching. For more
details on circuit switching, refer to the Subsection 3.89. End-system devices can act as sources
or sinks for traffic. For IERs, the end-system device does not generate IER traffic on its own; it
relies on the OE for IER generation. When the time comes to send an IER, the OE sends remote
interrupts with the IER information, such as size, consumer OPFAC, etc., to the SE, using the
oe_se ICI. Every end-system device that can send and receive IERs must include an SE module
to act as the source and sink for IER traffic.

Note: A remote interrupt provides a means of inter-process communication in OPNET modeling,
especially useful when two modules are not connected directly. In this case, because OE and SE
modules are not connected directly, remote interrupt is used for communication between their
process models.

The SE module generates packets and forwards them to lower layers. The layers below it
(underneath Layer 7) are responsible for routing the IER. End-system devices can also fire non-
IER (COTS) traffic. The COTS application and tpal modules implement this as the Application
Layer and Transport Layer, respectively.

Note: Although there are devices (multi-homed workstations and servers) that do perform the
dual tasks of serving application traffic and doing routing, these devices are excluded from the
current discussion.

3.5.1 Attributes

Table 3-4 gives the minimum set of attributes that an end-system device must have.

Table 3-4: NETWARS Attributes for End-System Device

Attribute Name Attribute Type Description

name String Specifies name of device
model String Specifies node model (e.g., computer, DNVT)
classification String Specifies security classification for device;

NETWARS ships with a classification.ad.m file
which developers can use for their models.

equipment_type Enumerated Specifies type of equipment
availability_status Toggle Indicates if device is available for communication

3.5.2 Required Modules

The modules needed by devices of certain types are provided in the following tables. If one of
the given protocol types is being modeled, then its corresponding modules are required. In
addition, end-system devices must have at least an SE module and transmitter/receiver modules.
Table 3-5 specifies the higher layer modules for a certain technology, and Table 3-6 specifies the
lower layer modules. A device is built by combining the necessary modules from the two tables
as specified. The SE module must have the name attribute set to “SE.” The OE uses the module
name to identify which module/process receives the IER interrupts.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-30

3.5.2.1 Higher Layer Modules

All end-system devices capable of sending and receiving IER traffic will have an SE module to
generate the IER traffic. In addition, it may have protocol-specific modules such as the OPNET
Standard (COTS) models shown in Table 3-5.

Table 3-5: Higher Layer Modules for End-System Device

Protocol Type Required Modules

TCP tcp (tcp_manager_v3), ip_encap (ip_encap_v4), ip (ip_dispatch, version
7.0: ip_rte_v4)

UDP udp (rip_udp_v3), ip_encap, ip (ip_dispatch, version 7.0: ip_rte_v4)
IP Ip (ip_dispatch, version 7.0: ip_rte_v4), ip_encap

3.5.2.2 Lower Layer Modules

The OPNET Standard (COTS) protocols shown in Table 3-6 can be used as lower layer modules.
The process model in a module is specified in parentheses next to the name of the module.

Table 3-6: Lower Layer Modules for End-System Device

Protocol Type Required Modules

Ethernet arp (ip_arp_v4), mac (ethernet_mac_v2), point-to-point receiver module, point-to-
point transmitter module

ATM

ATM_Call_Control (ams_atm_call_control), ATM_rte (ams_atm_rte), ATM_sig
(ams_atm_signaling), AAL (ams_aal_disp_v3), ATM_Layer (ams_atm_layer_v3),
ATM_trans (ams_atm_trans_v3), ATM_switch (ams_atm_sw_v3), point-to-point
receiver module, point-to-point transmitter module

Frame relay FRAD (frms_frad_mgr_v2), point-to-point receiver module, point-to-point transmitter
module

Circuit switch point-to-point receiver module, point-to-point transmitter module

FDDI arp, mac (fddi_mac_v4), point-to-point receiver module, point-to-point transmitter
module

Token ring arp, mac (tr_mac_op_v2), point-to-point receiver module, point-to-point transmitter
module

Serial Line Internet
Proctocol (SLIP) point-to-point receiver module, point-to-point transmitter module

Devices can be built by combining modules from the higher layer modules table with modules
from the lower layer modules table. For example, an end-system device using TCP/IP over
Ethernet can be built by combining the SE module and modules needed for TCP from Table 3-5
and the modules needed for Ethernet from Table 3-6. The types of transmitters and receivers to
be used depend on the physical layer of the device. Transmitters and receivers can be one of
three types:

• Point-to-point
• Bus
• Radio

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-31

Such an end-system device with TCP/IP over Ethernet point-to-point transceivers would appear
as illustrated in Figure 3-12.

Figure 3-12: Ethernet End-System Device-Node Model

For end-system devices with radio interfaces, refer to Subsection 4.9.

It is possible to create devices with a certain transport protocol and another lower layer
technology. Such an end-system device can be created by combining the modules from Table 3-5
and Table 3-6. When combining modules from the two tables, sometimes it is necessary to
connect them by an interface module, shown in Table 3-7.

Table 3-7: Interface Modules for End-System Device

Higher Layer Protocol
Stack

Lower Layer Protocol
Stack

Interface Module Needed

TCP, UDP, IP ATM IPAL (ams_ipif_v4)

TCP, UDP, IP ATM (with LANE) arp (ip_arp_v4), LANE_IF
(lms_lane_if_v3), LANE (lms_lec_v3)

TCP, UDP, IP Frame relay FRIPIF (frms_fr_ipif_v3)

For example, an end-system device using TCP as the transport protocol can have frame relay as
the MAC technology. Such an end-system device is shown in Figure 3-13.

SE modules

Higher layer
modules

Lower layer
modules

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-32

Figure 3-13: End-System Device with Frame Relay MAC Technology-Node Model

Two end-system devices that talk to each other must have the same type of transport protocol. If
one of the two participating devices does not have a transport protocol, then the other must not
have it either. For example, if one of them uses UDP as the transport protocol, then the other
device must also use UDP as the transport protocol. An example of a valid end-system to end-
system connection is shown in Figure 3-14. The connection shown between the various
transmitters and receivers is logically bi-directional, just a way of representing bi-directional
connection between the involved transmitters and receivers.

3.5.3 End-System Devices Categories

3.5.3.1 Data Traffic Only

If the end-system device supports only data traffic, then it must have the network protocol stack
with the SE module, the Applications module coupled with the Transport Protocol Adaption
Layer (TPAL) and Central Processing Unit (CPU) modules, or both, as explained with examples
above. The SE module should have the name se_tcp or se_udp, depending on to which transport
layer module each connects. For COTS traffic, the TPAL layer should be connected to the TCP
and UDP modules and then to the Application module so that it serves as a go-between for the
Application and transport layer modules.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-33

Figure 3-14: Valid End-System to End-System Connection

3.5.3.2 Circuit-Switched Voice Traffic Only

If the device supports only voice calls, it does not need the network protocol stack. In
NETWARS end-system circuit-switched devices (e.g., phone), it sends out a call-setup packet
(packet format cktswpkt) that may cause intermediate network devices to reserve bandwidth on
the links and intermediate devices for the duration of the call. Refer to Subsection 3.9.

If such a purely circuit-switched device connects to other packet-switched devices, such a
configuration requires use of multi-service switches (see Figure 3-15). Again, refer to Subsection
3.9 for more details.

Figure 3-15: Circuit-Switched End-System Device-Node Model

However, if the voice end-system device can handle the standard voice application instead of just
voice IERs, then it must include also Application, tpal, and CPU modules (see Figure 3-16).

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-34

Figure 3-16: Circuit-Switched End-System Device-Voice Applications and IERs

3.5.3.3 Data and Circuit-Switched Voice Traffic

There are two ways of handling circuit switched end-system devices that handle voice
applications and IERs.

If the device has only packet-switched interfaces, the voice traffic also has to be in the form of
packets. The SE module generates packets at the rate specified by the OE in that OPFAC. For
example, if the OE asks the end-system device to generate a call of 5-second duration every 10
seconds, the SE module in the end-system device requests to reserve the bandwidth (currently 16
Kbps fixed value for the NETWARS models) to the connecting circuit switch. These packets
have to go through the entire network protocol stack like other data packets. Such a device can
only be connected to other packet-switched devices. It is important for the model developer to
understand the implications of developing a new end-system device like this one, including the
device selection process. A new device type has to be introduced for this type of end device.
Only then will the OE be able to match device type and classification and choose the end device
with correct equipment type and classification. If a new end-system device type is not
introduced, then the OE may try to select other devices such as computer/phone as the sink of an
IER originating from this new device.

If the device has both packet-switched and circuit-switched interfaces as in Figure 3-17, one of
the approaches shows that the data SE modules can send data packets over the packet-switched
interfaces and the voice calls over the circuit-switched interfaces. Again, the model developer
will have to introduce a new equipment type for such an end-system device for the reasons stated
in the previous paragraph.

To ensure interoperability, the correct self-description information must be entered. Features
such as GUI auto-addressing and port selection using Edit Ports depend on this information.
Refer to the “Model Interoperability Issues” subsection and Appendix V for more information.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-35

Figure 3-17: End-System Device Generating Voice and Data Traffic-Node Model

3.5.4 Interfaces and Packet Formats

When building a node model with interfaces of certain types, it is important to specify the packet
formats supported on that interface. The packet formats supported by an interface depend on the
MAC technology on that interface. If the created end device is to interface with a NETWARS
standard model, then the developer needs to adhere to the packet formats on the MAC of the
NETWARS standard model. Refer to “Appendix D: Packet Formats” for a list of the packet
formats in the NETWARS standard models. Interfaces can also support custom packet formats
created by a model developer.

3.5.5 Initialization

The developer must obtain handles to the statistics files for later use. This can be done through
function calls documented in Appendix L: NETWARS Simulation API and Helper Functions.

3.5.6 Interfacing with Other Classes

The end-system device interfaces with other device classes as follows:

3.5.6.1 Interfacing with the OE

The SE module is responsible for all interfacing with the OE inside the OPFAC. Upon receipt of
a remote interrupt from the OE with a code of OE_SE_IER_SEND and an ICI of type oe_se (see

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-36

Appendix E: Interfaces and Packet Formats), the SE will retrieve the IER information from the
ICI and create an appropriate packet to send to the lower layers. For details about interrupts, refer
to OPNET Modeler online documentation, Simulation Kernel manual, and the Interrupt Package
chapter.

Figure 3-18 shows how the OE sends a remote interrupt to the SE.

Figure 3-18: Remote Interrupt from OE to SE

3.5.6.2 Interfacing with TPAL

If the end-system device supports standard voice or VTC applications over circuit-switched
environment, then it must interface with TPAL to learn when to generate application calls. Upon
receipt of a remote interrupt from TPAL with a code of TPAL_SE_APP_SEND and an ICI of
type tpal_se (see Appendix E: Interfaces and Packet Formats), the SE will generate a call for the
duration specified in the ICI.

3.5.6.3 Interfacing with Networking Equipment

The end-system device is not responsible for specifying the route taken by the IER. Routing is
taken care of by the networking equipment to which the end-system device is connected. The SE

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-37

module in the end-system device sends the packet down to the network protocol stack, which
may encapsulate the data and sends it out on the output interface.

The data rate attribute on the end-system device’s interfaces is typically set as “unspecified.”
The data rate is determined by the data rate of the link that is connected to this interface. If the
data rate attribute is set on the interfaces, it will require the user to connect a link that has the
same data rate as the value set on the interface for valid link connection. Also, the device on the
other end of the link has to have either an unspecified data rate or the same data rate as specified
on the interface of the first device.

3.5.7 Creating Custom Transport Protocols for End-Systems

The developer can create custom transport protocol models that can be integrated into the end-
systems device model. As shown in Figure 3-17, the transport protocol models require
interfacing with the other models, such as IP_Encap, TPAL, Application, OE, and SE. The
custom transport protocol model can interface with the application model directly. However, it
is recommended to have the transport protocol model interfaces with the application model
through the TPAL model, as the primary objective of the TPAL is to provide a basic, uniform
interface between application and transport layer models. Please see the “TPAL Model User
Guide” for more information.

3.5.7.1 Creating Custom Transport Concerns

In order to creating a custom transport model that can be integrated into NETWARS device
models, there are several concerns that developers should aware of. First, the developers must
modified current SE models or develop a new SE model to interface with the new transport
model. Currently, NETWARS only contains SE_udp and SE_tcp models to interface with
transport protocol models. Second, new packet formats must be defined for the new transport.
Developers must make sure the new formats can be able to interface with other required models.
On the other hand, the new models also need to realize the packet formats that are used by other
models. Lastly, developers should also need to pay attention on the ICI format. Similar to
packet format, the ICI format is the most important medium for the model to communicating
with each other. All newly developed and currently existing ICI format should be able to
support all required models. Please see the “TCP Model User Guide” for more information.

Lastly, the OE is required to be modified to pass the IER to the newly defined transport model.
In NETWARS, each IER is mapped to a corresponding transport protocol, such as TCP and
UDP. The OE uses the information to pass the IER to the corresponding transport model and the
associated SE model. Therefore, the OE should be modified to realize the new transport
protocol.

IMPORTANT: The consequence of modifying the standard OE is serious, so please consult the
NETWARS PMO before modification! Also, it is a good practice to backup the current OE
model before modification.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-38

3.5.8 Handling Background IERs

The OE node in the OPFAC sends a remote interrupt for the generation of the background IER to
the IP module in the end device. Only IERs with “traffic” as “data” may be specified as
background IERs. The IP module in the end node automatically generates multiple tracer packets
(per the “tracer packets per interval” simulation attribute) during a period of constant hold time.

3.5.9 Handling Failure/Recovery

There are two ways of handling failure/recovery interrupts—implicitly and explicitly.

Failure/recovery can be explicitly handled by enabling the failure interrupts and recovery
interrupts process attributes of the SE module’s process model and setting them to “local only.”
By doing this, the SE module will receive failure/recovery interrupts whenever the condition
attribute of the node is changed. The SE module can use these interrupts to update the
availability_status attribute of the end-system device, preventing the OE from trying to use the
failed end-system device to send IERs.

If failure/recovery is implicitly handled, once the condition attribute is set to “disabled,” the
modules in the end-system device can no longer receive interrupts. Because the modules do not
get the failure/recovery interrupts, the availability_status attribute of the end-system device is
not updated, and the OE might try to send IERs using this failed device. In this case, the OE
registers the IERs as sent, and because the end-system device is failed, it does not register these
IERs as failed. If choosing this approach, additional functionality might be necessary to mark the
IERs as being failed. For documentation on setting the model attributes, refer to OPNET
Modeler online documentation, Modeling Concepts manual, “Process Domain” chapter, “Process
Model Attributes” section. For information about handling failure/recovery, refer to Modeling
Concepts manual, “Network Domain” chapter, “Modeling Node and Link Failure/Recovery”
section. During failure of a device, the device flushes any queues and initiates the termination of
any calls set up through it during the time of failure. The device also informs the OE to record
the IER failure statistic for affected IERS during this time. The device is also required to tear
down any connections it might have initiated for transmission of data IERs.

3.5.9.1 Handling Failure of Self

When the SE module in the end-system device receives a failure interrupt, it will:

• Stop transmitting and receiving IERs
• Update the availability_status attribute to “disabled”
• Inform the OE about the failure of the IERs generated by itself

3.5.9.2 Handling Recovery of Self

When the SE module in the end-system device receives a recovery interrupt, it must update the
availability_status attribute to “enabled.”

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-39

3.5.10 Collecting Statistics

IER statistics are written in the Output Vector (OV) format. To enable the OE to do so, the
source OE (OE of the producer OPFAC of IER) will be responsible for reporting all the IER
statistics.

In the pre-2004-1 modeling architecture, the OE of the destination OPFAC (OE of the
destination OPFAC of IER) reports the IER statistics. The OE used to receive a remote interrupt
from either the SE of the receiving OPFAC or the OE of the source OPFAC. To write the
statistics in the OV format, the OE of the source OPFAC needs to know about the reception of
the IER at the destination to report the local IER statistics.

To enable this, the destination OE reports the IER statistics and the source OE is informed with a
remote interrupt about the reception of the IER from the SE. This is true for the failure of an IER
as well. Because the IER can be determined as failed at other locations (e.g., radio pipeline
stages), this remote interrupt is generated at the source OE when an IER is either failed or
received. Various interrupt codes are used (same as prior implementation) to distinguish between
IER reception versus failure.

The SEs that inform their own OE about the reception are updated. For example, the “rcv_pkt”
state of the se_udp process model sends a remote interrupt to its OE (destination OE) as follows:

op_intrpt_force_remote (NWC_INFORM_DEST_OE_RCVD, oe_id);

This was modified to send the interrupt to the source OE, by retrieving the source OE object ID
from the IER parameters (from the source OPFAC ID).

The oe_threads process model (see Figure 3-14) is enhanced to support the threaded IER
paradigm, as well as the new IER statistics architecture. The RCV_IER_INTRPT transition will
occur under the following conditions:

• Interrupt sent by the destination SE (on IER reception).
• Interrupt sent by pipeline stages (on IER failure).

The process_ier state will have the same responsibilities as the current “ier_destn”, but it will not
perform any thread handling. If the IER belongs to a thread, then a remote interrupt to the
destination OE will be sent. This interrupt will be the RCV_RXN_AT_DEST transition, which
will update the thread reception statistics, if needed, and process the received reaction.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-40

Figure 3-19: oe_threads Process Model

Table 3-8: Statistics Information Transferred by End-System Device to OE

File Name When the File Is Updated

<scenario_name>.ier_fail When the end-system device tries to transmit an IER and fails—
• For Voice IERs, when the Acknowledgement (ACK) for a flood

search is not received within a specified time-out period or when
the source is busy when the ACK is received

• For Data IERs, when the connection is aborted by TCP
• When the end-system device fails

<scenario_name>.ier_rcvd When a Data IER over a TCP connection or a Voice IER sent by it is
received—

• When it receives a Data IER over a UDP connection
• When it did not get a teardown message for a voice call during the

duration of the call

3.5.11 NETWARS Standard SE Models

The NETWARS standard models include seven SE models that can be used as a basis for any
required device modeling, shown in Table 3-9. They provide all of the required functionality and
make use of the provided APIs. Development of a new SE process model may not be required.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-41

Table 3-9: NETWARS Standard SE Process Models

Process Model Description

se_trafgen

Generates data packets in response to DATA IERs. Interfaces to TCP as
the transport protocol, relying on TCP connection close messages as an
acknowledgement of successful IER transmission. The parent module of
this process should have the name “se_tcp.”

se_udp
Generates data packets in response to DATA IERs. Interfaces to UDP as
the transport protocol. The parent module of this process should have the
name “se_udp.”

se_sincgars
Generates radio_packet packets in response to both VOICE and DATA
IERs and voice standard applications. The parent module of this process
should have the name “se.”

se_havequick
Generates radio_packet packets in response to VOICE IERs and voice
standard applications. The parent module of this process should have the
name “se.”

dnvt_se
Generates the various circuit-switched signaling packets in response to
VOICE IERs and voice standard applications. The parent module of this
process should have the name “se.”

vtc_se
Generates the various circuit-switched signaling packets in response to
VTC IERs and video-conferencing standard applications. The parent
module of this process should have the name “se.”

se_proc_mod
Generates data packets in response to DATA IERs for the JTIDS radio. The
parent module of this process should have the name “se.”

If a new end-system model is expected to interface with existing NETWARS standard end-
system models, the matching SE process model should be used where possible. If required, a
new SE process model can be developed which provides the same interfaces.

3.5.12 Example: Constructing a Computer Model

Refer to the subsection 4.4. Wired End Device Example 2 for an example.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-42

3.6 COMPLIANCE FOR LAYER 1 NETWORKING EQUIPMENT

Layer 1 networking equipment is physical layer devices used to model repeaters, encryptors, or
simply as delay elements in the network. This subsection explains how to build Layer 1
networking equipment.

There are three different types of networking equipment, depending on their functionality. The
following sections explain how to build Layer 1 networking equipment.

3.6.1 Attributes

Table 3-10 describes the minimum set of attributes that a Layer 1 networking device must have.

Table 3-10: Attributes for Layer 1 Networking Equipment

Attribute Name Attribute
Type Default Value Description

name String -- Inherent -- Specifies name of device
model String -- Inherent -- Specifies device model, for

example, CS_1005_1s_e_fr
availability_status Toggle Enabled Specifies whether the device is

available for communication
classification String Unclassified Specifies security classification

for device; NETWARS ships
with a classification.ad.m file
that developers can use for
their models.

equipment_type Enumerated Switch, router Identifies the device type

3.6.2 Required Modules

Layer 1 networking equipment has a processor module that accepts the packet from the receiver
module, processes the packet (adds a delay, encrypts it, etc.), and sends it to the transmitter of the
output interface. The type of transmitter and receiver modules will depend on the type of
physical medium to which the device will be connected—bus, radio, or point-to-point.

Figure 3-20: Layer 1 Networking Equipment-Node Model

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-43

3.6.3 Interfacing with Devices

Networking equipment accepts data from end-system devices and interfaces with other
networking equipment to transmit it to the destination. Layer 1 networking equipment accepts
packets from a device (an end-system device or other networking equipment), processes them,
and sends them to the device connected on the other side. There is no routing or switching logic
in these devices.

3.6.4 Handling Background Traffic

The OE module in the OPFAC and the Application model of the end workstation invoke the IP
module through an API function call to generate the tracer packets. The tracer packets generated
by IP are routed over the network to the IP layer in the destination SE node. In the intermediate
devices in the network, the nodes may read and interpret the load represented by the tracer
packet before forwarding it further in the network. The traffic represented by the tracer packet is
used to artificially load the device (the queues, for example)—so explicit packets arriving at this
device are processed with the load in consideration. Refer to OPNET Modeler online
documentation (Modeling Concepts � Modeling Network Traffic � Working with Background
Traffic) for further information.

In the NETWARS standard models that have undergone enhancement to interpret the
information carried in the tracer packets, this load from the tracer packet is induced in an input
queue. The input queue delays the explicit packet arriving before forwarding to the output queue.
The model developer may choose to implement a similar approach to handle tracer packet loads,
or to implement in some other variation, for instance, maintaining both loads (due to tracer
packets and the explicit packets) in the same queue. In either way, the objective is to introduce
processing delays for the explicit packets. Physical layer delays, such as transmission and
propagation delays, are accounted for in the standard pipeline stages. The developer may use the
TRC 170 node model as an example of a Layer 1 device capable of handling background traffic.

3.6.5 Handling Failure/Recovery

The model developer has the option of handling failure/recovery explicitly or implicitly.

If failure/recovery is handled implicitly, the OPNET Standard (COTS) failure/recovery node sets
the condition attribute to “disabled” when the Layer 1 networking equipment fails and the device
stops processing any interrupts. How this device failure/recovery is propagated to the other
devices in the network depends on the routing protocols in the network. The model developer
can handle the failure/recovery explicitly. By enabling the failure interrupts and recover
interrupts attributes of the process model and setting them to “local only,” the process model
gets an interrupt when the device fails/recovers. The following are some ways to handle
failure/recovery.

3.6.5.1 Handling Failure of Self

Processing of packets should be stopped. If voice calls are set up through the Layer 1 networking
device, then some cleanup might be necessary. In cases where the concept of logical links is not
used, the Layer 1 networking device can do the cleanup. In cases where the logical links are

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-44

viewed by the network (like in NETWARS), the edge devices (devices at the ends of a logical
link) can do the cleanup. The edge devices, such as MSE or TTC-39 switches, send keep-alive
messages at regular intervals to detect the failure of the logical link. When a process running
inside a device detects failure, that process (or another one that it triggers) terminates the voice
calls (if any) set up over that logical link. For data packets, the process flushes the queues on the
Layer 1 networking equipment.

3.6.5.2 Handling Recovery of Self

The device should re-initialize itself and prepare for processing packets again.

3.6.6 Collecting Statistics

Throughput and channel utilization statistics are written when the Layer 1 networking equipment
sends out a packet. These statistics are to be written to OV using OPNET’s standard Statistic
package. Refer to “Appendix I: Measures of Performance in NETWARS” and “Appendix L:
NETWARS Simulation API and Helper Functions” for some available function calls to write out
these statistics for voice and data. These statistics may be recorded by either the edge devices or
the Layer 1 networking device, depending on whether the concept of logical links is used or not.
In NETWARS the concept of logical links is used, which fits well in cases where explicit
packets are not modeled, for instance, during the duration of a voice call. For such cases, in
NETWARS the edge devices collect these statistics. In cases where explicit packets are sent over
the link through the Layer 1 networking device, for instance, data communication in
NETWARS, it might be more appropriate to record these statistics at the Layer 1 device itself.
For reporting statistics on the links connected (including the load represented due to background
traffic), the OPNET standard pipeline stages may be used (they account for the tracer packet
information received automatically). However, if the links are wireless, then the node (either
edge devices in case of logical links or the Layer 1 device itself, if done otherwise) writes the
statistics and accounts for the background traffic load.

3.6.7 Example: Constructing an Encryptor Model

For an example of building a Layer 1 encryptor model, refer to the “4.5. Layer 1 Device
Example: Bulk Encryptor” subsection.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-45

3.7 COMPLIANCE FOR LAYER 2 NETWORKING EQUIPMENT

Layer 2 networking equipment is devices that run a Layer 2 protocol. Switches and hubs are
classified as Layer 2 networking equipment. This subsection explains how to build Layer 2
networking equipment. There are three different types of networking equipment, depending on
their functionality. The following sections explain how to build Layer 2 networking equipment.

3.7.1 Attributes

Table 3-11 lists the minimum set of attributes that a Layer 2 networking device requires.

Table 3-11: Attributes for Layer 2 Networking Equipment

Attribute Name Attribute Type Default Value Description

name String -- Inherent -- Specifies name of device
model String -- Inherent -- Specifies device model, for example,

CS_1005_1s_e_fr
availability_status Toggle Enabled Specifies if device is available for

communication or not
equipment_type Enumerated Switch, router Identifies device type

3.7.2 Required Modules

Table 3-12 specifies the modules required for building Layer 2 networking equipment with
various interface technologies. The process model in a module is specified in parentheses next to
the name of the module.

Table 3-12: Modules Needed for Various Layer 2 Protocols

Protocol Type Required Modules

Ethernet eth_switch (bridge_dispatch_v2), mac (ethernet_mac_v2), rx, tx

ATM

ATM_Call_Control (ams_atm_call_control), ATM_rte (ams_atm_rte) (not
required for end edge devices such as ATM routers or ATM traffic sources),
ATM_sig (ams_atm_signaling), AAL (ams_aal_disp_v3), ATM_Layer
(ams_atm_layer_v3), ATM_trans (ams_atm_trans_v3), ATM_switch
(ams_atm_sw_v3), rx, tx

Frame relay FR_mgmt (frms_mngmt_v2), FR_trans (frms_trans_v2), FR_switch
(frms_switch_v2), rx, tx

Circuit-switched
(NETWARS) circuit_switch (circuit_switch), rx, tx

FDDI fddi_switch (bridge_dispatch_v2), mac (fddi_mac_v4), rx, tx
Token ring stb_bridge_functions (bridge_dispatch_v2), mac (tr_mac_op_v2), rx, tx

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-46

Figure 3-21: Layer 2 Networking Equipment-Node Model

Multi-service switches that have circuit-switched interfaces and packet-switched interfaces can
be constructed. Table 3-13 specifies the modules needed for such devices. The process model in
a module is specified in parentheses next to the name of the module.

Table 3-13: Modules Needed by Multi-Service Switch

Interface
Technology

Modules Needed for a Switch with Circuit-Switched Interfaces and Packet-
Switched Interfaces with the Specified Interface Technology

SLIP voice_dispatch, voip, udp (rip_udp_v3), ip_encap (ip_encap_v4), ip (ip_dispatch,
version 7.0: ip_rte_v4), SLIP interfaces

Ethernet voice_dispatch, voip, udp, ip_encap, ip, Ethernet interfaces

Frame relay voice_dispatch, voip, udp, ip_encap, ip, FRIPIF (frms_fr_ipif_v3), FRAD
(frms_frad_mgr_v2), frame relay interfaces

ATM

voice_dispatch, voatm, ATM_Call_Control (ams_atm_call_control), ATM_sig
(ams_atm_signaling), AAL (ams_aal_disp_v3), ATM_Layer (ams_atm_layer_v3),
ATM_trans (ams_atm_trans_v3), ATM_switch (ams_atm_sw_v3), circuit-switch
interfaces, ATM interfaces

Token ring voice_dispatch, voip, udp, ip_encap, ip, arp (ip_arp_v4), mac (tr_mac_op_v2), token
ring interfaces

FDDI voice_dispatch, voip, udp, ip_encap, ip, arp, mac (fddi_mac_v4), FDDI interfaces

3.7.3 Initialization

The switch module in the Layer 2 networking equipment will perform the following initialization
steps:

• The switch module will register itself in the process registry with the following attributes:
– Location (string)
– Protocol (string)

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-47

• The switch module must build switch tables with entries corresponding to its neighboring
switches. One way of building such tables is by using spanning trees. The code for
building spanning trees can be re-used from the OPNET Standard (COTS) models.

3.7.4 Interfacing with End-System Devices and Networking Equipment

Networking equipment accepts data from end-system devices and sends the data to the
destination end-system devices. The routing information available to the networking equipment
is local; it includes information only about devices that are connected to it directly and through
other lower layer (Layer 1) networking equipment. If the Layer 2 networking device provides
circuit capabilities, additional attributes will be required. These are documented in Subsection 8.

3.7.5 Supported Protocols

Depending on the MAC layer technology needed by the device, the model builder must use the
corresponding protocol stack. For creating an Ethernet switch, the model builder must have the
OPNET Ethernet protocol stack so that the switch will be interoperable with OPNET Standard
(COTS) Ethernet device models. OPNET provides support for devices running the following
MAC layer protocols:

• Ethernet
• Token ring
• FDDI
• Frame relay
• SLIP
• DSL
• Integrated Services Digital Network (ISDN)
• 802.11 wireless LAN.

3.7.6 Handling Background IERs

The OE node in the end OPFAC invokes the IP layer to generate tracer packets for the
background IERs. The tracer packet is routed over the network to the destination end device. The
intermediate network devices can read information from the tracer packet and load the device for
the explicit packets arriving at the node. The NETWARS standard nodes perform this loading on
an input queue before forwarding the packet to the output queue. It should be noted that
background traffic could be enabled only for IERs with traffic type as data. Examples of Layer 2
devices handling background IERs in the NETWARS standard models are MSE/TTC-39
switches and the Promina switch.

One issue the model developer needs to be aware of is the requirement to appropriately modify
the packets/second information in the tracer packet before performing an en-queue on the
background aware buffer. The reason this may be required is that if the Layer 2 device performs
segmentation and reassembly, then the packets/second information in the tracer packet are to be
appropriately modified, because by default the information carried is the IP datagram packets/
second information.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-48

Additionally, the model developer may be required to modify the bits/second information (for
the processing rate from the buffer). This might be required, for example, if the device is capable
of handling both voice and data—in which case the available bandwidth is dependent on the
number of voice calls in progress. For this, the function oms_buffer_bgutil_modify_average_rate
(…) may be used, which is defined in oms_buffer_bgutil.ex.c.

3.7.7 Handling Failure/Recovery

The manner in which Layer 2 networking equipment handles failure/recovery depends on the
type of protocol it is running. The model developer has the option of handling failure/recovery
explicitly or implicitly.

If failure/recovery is handled implicitly, the failure/recovery utility sets the condition attribute to
“disabled” when the Layer 2 networking equipment fails and the device stops processing any
interrupts. How this device failure/recovery is propagated to the other devices in the network
depends on the routing protocols in the network.

If handled explicitly, by enabling the failure interrupts and recover interrupts attributes of the
process model and setting them to “local only,” the process model gets an interrupt when the
device fails/recovers. The following are some ways to handle failure/recovery.

3.7.7.1 Handling Failure of Self

• Flush the queue modules (if the Layer 2 networking equipment has any).
• Write out failure statistics for the voice IERs (if any).

3.7.7.2 Handling Recovery of Self

• Send update messages to the neighboring Layer 2 networking equipment.
• Rebuild the spanning tree.

3.7.8 Collecting Statistics

Throughput statistics are written when a packet is sent out, and queue size statistics are collected
when a packet arrives or leaves a queue module in Layer 2 networking equipment. The traffic-
dropped statistics are written out every time a packet is dropped from a queue of Layer 2
networking equipment. These statistics are to be written to vector files using OPNET’s standard
Statistic package. Refer to “Appendix L: NETWARS Simulation API and Helper Functions” for
some available function calls to write out data and voice throughput statistics.

3.7.9 Example: Constructing a Multi-Service Switch

For an example, refer to the “4.6. Layer 2 Device Example: Multi-Service Switch” subsection.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-49

3.8 COMPLIANCE FOR LAYER 3 NETWORKING EQUIPMENT

Layer 3 networking equipment is devices that run a network layer protocol. Routers are
classified as Layer 3 networking equipment. Every interface of this device has a different
network address. This subsection explains how to build Layer 3 networking equipment. The
current NETWARS standard device models support only IPv4 as a Layer 3 network protocol. All
of the subsections of this Guide dealing with Layer 3 protocols document the usage of IP.

There are three different types of networking equipment, depending on their functionality. The
following sections explain how to build Layer 3 networking equipment.

3.8.1 Attributes

Table 3-14 lists the minimum set of attributes that Layer 3 networking equipment must have.

Table 3-14: Attributes for Layer 3 Networking Equipment

Attribute Name Attribute Type Default Value Description

name String -- Inherent -- Specifies name of device
model String -- Inherent -- Specifies device model, for

example, CS_1005_1s_e_fr
availability_status Toggle Enabled Describes if equipment is available

or has failed
equipment_type Enumerated Switch, router Describes device type

ip addr index Integer 0

Index used for IP addressing and
dynamic routing. This attribute is set
on the streams into and out from
the IP module.

3.8.2 Required Modules

The only higher layer protocols supported by Layer 3 networking equipment are TCP, UDP,
Resource Reservation Protocol (RSVP), and various routing protocols over IP. But the
networking equipment can have interfaces running different MAC layer technologies. Table 3-15
specifies the higher layer modules required for Layer 3 networking equipment.

Table 3-15: Higher Layer Modules for Layer 3 Networking Equipment

Protocol Type Required Modules

TCP/UDP/routing protocols
tcp (tcp_manager_v3), udp (rip_ud_v3), rip (rip_v3), eigrp (eigrp), igrp
(igrp), bgp (bgp), ospf (ospf_v2), rsvp(rsvp), ip_encap (ip_encap_v4),
ip (ip_dispatch, version 7.0: ip_rte_v4)

All OPNET Standard (COTS) router models support a set of routing protocols—BGP, EIGRP,
IGRP, OSPF, and RIP. It is possible to have different routing protocols running on different
interfaces in the network. To make sure that all the OPNET Standard (COTS) routing protocols
are supported, it is necessary to have all the routing protocol modules in Layer 3 networking
equipment. The required modules specified above are interconnected as shown in Figure 3-22.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-50

Figure 3-22: Layer 3 Networking Equipment-Node Model

Table 3-16 specifies the possible types of interfaces for the networking equipment and the
modules needed for each interface technology. The process model in a module is specified in
parentheses next to the name of the module.

Table 3-16: Required Modules for Various Interface Technologies

Protocol Type Required Modules

Ethernet arp (ip_arp_v4), mac (ethernet_mac_v2), rx, tx

ATM

ATM_Call_Control (ams_atm_call_control), ATM_rte (ams_atm_rte), ATM_sig
(ams_atm_signaling), AAL (ams_aal_disp_v3), ATM_Layer
(ams_atm_layer_v3), ATM_trans (ams_atm_trans_v3), ATM_switch
(ams_atm_sw_v3), rx, tx

Frame relay FRAD (frms_frad_mgr_v2), rx, tx
FDDI arp, mac (fddi_mac_v4), rx, tx
Token ring arp, mac (tr_mac_op_v2), rx, tx
SLIP rx, tx

It is possible to create devices with a certain transport protocol and another lower layer
technology. Such networking equipment can be created by combining the modules from Table
3-15 and Table 3-16. When combining modules from the two tables, sometimes it is necessary to
connect them by an interface module, as shown in Table 3-17.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-51

Table 3-17: Interface Modules for Layer 3 Networking Equipment

Higher Layer Protocol Stack Interface Technology Interface Module Needed

TCP, UDP, IP ATM IPAL (ams_ipif_v4)
TCP, UDP, IP Frame relay FRIPIF (frms_fr_ipif_v3)

3.8.3 Handling Security Classification

When connecting devices with different security classification levels, it is the responsibility of
the study analyst to connect them in such a way that messages traverse only networks with the
proper level of security classification (see Figure 3-23). Another option is to use encryption
devices. For example, when passing classified data over an unclassified network, the message
must be encrypted end to end. Lack of these encryption devices causes the simulation to assume
that the encryption is present implicitly. The advantage of actually modeling the encryption
devices would be increased fidelity for delay and throughput statistics.

Figure 3-23: Networks with Different Security Classification Levels

3.8.4 Interfacing with End-System Devices and Networking Equipment

Networking equipment accepts data from end-system devices and routes the data to the
destination end-system devices. The data rate attribute on the networking equipment’s interfaces
is typically set as “unspecified.” The data rate is determined by the data rate of the link that is
connected to this interface.

Networking equipment builds the routing information from routing updates sent by other
networking equipment in the network that are directly connected to it. If the model developer
uses custom IP routing protocols in the Layer 3 networking equipment, then when the
networking equipment receives routing update messages it must update entries in the IP common
route table using calls to the following functions:

• Ip_Cmn_Rte_Table_Entry_Add ()
• Ip_Cmn_Rte_Table_Entry_Delete ()

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-52

3.8.5 Supported Protocols

Depending on the MAC layer technology needed by the device, the model builder must use the
corresponding protocol stack. For creating an ATM switch, the model builder must have the
OPNET ATM protocol stack so that the switch will interoperate with OPNET Standard (COTS)
ATM device models. OPNET provides support for devices running the following protocols:

• Ethernet
• ATM
• FDDI
• Frame relay
• SLIP
• Token ring
• DSL
• ISDN
• IEEE 802.11 wireless LAN.

The following routing protocols are supported by OPNET Standard (COTS) networking
equipment:

• RIP
• IGRP
• EIGRP
• BGP
• OSPF
• Static routing.

Additional routing protocols can be added; see the following subsection for more information on
this process.

3.8.6 Creating Custom Routing Protocols for IP

This subsection enumerates the required steps for writing custom IP routing protocols and the
issues involved with their use in a network with other routing protocols.

3.8.6.1 Implementing a Custom Routing Protocol

The custom routing protocol must register itself as an IP higher layer protocol with a call to the
function Ip_Higher_Layer_Protocol_Register () using the name of the protocol and an integer
with a value above 500.

During its initialization, the custom routing protocol must also call the function
Ip_Cmn_Rte_Table_Custom_Rte_Protocol_Register (), passing the name of the routing protocol
as a string. This will return a routing protocol ID to be used in subsequent route table function
calls. The protocol ID for a custom routing protocol has a value greater than 100.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-53

The custom routing protocol will receive a remote interrupt with a code
“ IPC_EXT_RTE_REMOTE_INTRPT_CODE” upon initialization of the IP process model. At this
time the interface table and routing table can be accessed via the process registry.

The custom routing protocols access the IP common routing table using calls to the following
functions:

• Ip_Cmn_Rte_Table_Entry_Add()
• Ip_Cmn_Rte_Table_Entry_Delete()
• Ip_Cmn_Rte_Table_Entry_Update()

Entries to the route table will be made through calls to the function
Ip_Cmn_Rte_Table_Entry_Add(), with updates provided through the functions
Ip_Cmn_Rte_Table_Entry_Update () and Ip_Cmn_Rte_Table_Entry_Delete(). The existing
entries can be queried through calls to the Ip_Cmn_Rte_Table_Entry_Exists() and
ip_cmn_rte_table_lookup() functions.

These functions are defined in the external file
<opnet_dir>\<rel_dir>\models\std\ip\ip_cmn_rte_table.ex.c, and the function prototypes are in
<opnet_dir>\<rel_dir>\models\std\include\ip_cmn_rte_table.h, where <opnet_dir> is the folder
where OPNET is installed and <rel_dir> is the release directory (e.g., 12.0.A).

3.8.6.2 Issues with Using Custom Routing Protocols

There are some issues involved with using the custom routing protocols that the model developer
may address in the following suggested manner.

3.8.6.3 Lack of Route Redistribution Capability

Some routing protocols might have a lack of route redistribution capability. This means that
routes determined by these protocols cannot be used by other routing protocols and vice versa.
Route redistribution is the process by which routes determined by all routing protocols running
within a router node can be shared among each other.

This issue can be avoided in two ways:

• Modifying functions in the following files to include this capability:
– Ip_dispatch.pr.m (version 7.0: ip_rte_v4.pr.m)
– ip_rte_v4.h
– ip_cmn_rte_table.ex.c
– ip_cmn_rte_table.h

• Running the custom routing protocol on all interfaces in the network.

3.8.6.4 Lack of Route Table Import/Export Capability

The OPNET Standard (COTS) routing protocols allow the routes to be exported at the end of a
simulation and to be re-imported into the network for subsequent simulations. This reduces the
simulation run time. The model developer can add this functionality to the custom routing
protocol if desired.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-54

3.8.7 Handling Background IERs

Tracer packets (for the background IERs) are generated from the IP module of the end data
systems. Intermediate network devices could read and load the device queues as per the traffic
information specified in the tracer packet. If the Layer 3 device is an IP device, then no
modification to the standard IP process model is required, because the standard IP module is
capable of loading the device as per information represented in the tracer packet.

3.8.8 Handling Failure/Recovery

The manner in which Layer 3 networking equipment handles failure/recovery depends on the
type of routing protocol it is running. The model developer has the option of handling
failure/recovery explicitly or implicitly.

If failure/recovery is handled implicitly, this sets the condition attribute to “disabled” when the
Layer 3 networking equipment fails and the device stops processing any interrupts. How this
device failure/recovery is propagated to the other devices in the network depends on the routing
protocol.

If handled explicitly, by enabling the failure interrupts and recover interrupts attributes of the
relevant modules and setting them to “local only,” the process model gets an interrupt when the
device fails/recovers. The following are some possible ways to handle failure/recovery.

3.8.8.1 Handling Device Failure

If the failure of the device itself is to be handled explicitly, then on receiving the failure interrupt,
the appropriate module may flush the queues.

3.8.8.2 Handling Device Recovery

If the recovery of the device itself is to be handled explicitly, then on receiving the recovery
interrupt, update messages may be sent to the neighboring routers to indicate that this networking
equipment has recovered.

3.8.8.3 Handling Failure of Neighboring Layer 3 Equipment

This failure may be handled implicitly by the routing protocol, which may update the routing
table entries that have routes via this failed router. This can be done by the routing protocol.

3.8.8.4 Handling Recovery of Neighboring Layer 3 Equipment

Similarly, this is also handled implicitly. On receiving update messages from the neighboring
networking equipment that recovered, the networking equipment may recompute routes to all
destinations through the recovered node and update the routing tables if the new route is better
than the existing routes.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-55

3.8.9 Collecting Statistics

Throughput statistics are written when a packet is sent out, and queue size statistics are collected
when a packet arrives or leaves a queue module in Layer 3 networking equipment. The traffic-
dropped statistics are written out every time a packet is dropped from a queue of Layer 3
networking equipment. These statistics are to be written to vector files using OPNET’s standard
Statistic package. Refer to “Appendix L: NETWARS Simulation API and Helper Functions” for
some available function calls to write out data and voice throughput statistics.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-56

3.9 COMPLIANCE FOR DEVICES WITH CIRCUIT -SWITCHED TECHNOLOGY

Circuit-switched voice devices are capable only of generating or handling voice calls. In general,
this Guide offers a great deal of latitude to the model developer wishing to develop circuit-
switched data models. To promote interoperability within the very generic notion of circuit-
switched voice communications, however, the Guide has developed the following standards for
circuit-switched voice components. There are no components that are classified purely as circuit-
switched devices. Circuit-switched devices can be end-system devices, generating and receiving
calls, or they can be networking equipment, switching calls between source and destination.
Depending on whether they are end-system devices or networking equipment, the model
developer must refer to the appropriate subsections, and make sure the device performs the
necessary functions specified in those subsections.

Note that the circuit-switched models employed in the NETWARS standard models contain
additional functionality beyond the OPNET Specialized (COTS) Circuit-Switched model library.
As such, the Specialized Circuit-Switched model cannot be used in NETWARS.

3.9.1 Attributes

Table 3-18 lists the minimum set of attributes that an end-system device capable of generating
circuit-switched calls should have.

Table 3-18: Required Attributes-Circuit-Switched End-System Device

Attribute Name Attribute Type Description

Call bandwidth Double Specifies the call bit rate originating
from this end system

Maximum calls
allowed Integer

Specifies the maximum number of
voice calls the device can support
simultaneously

If Layer 2 networking equipment is to be capable of handling circuit-switched calls, it requires
the attributes listed in Table 3-19.

Table 3-19: Required Attributes-Circuit-Switched Layer 2 Networking Equipment

Attribute Name Attribute Type Description

MSE topology mask String Differentiates a Layer 2 circuit-switched
device from a Layer 3 router

3.9.2 Initialization

The switch model will construct a list of end-system devices connected to it. The switch model
also constructs logical links with its neighboring switches. These logical links are used while
performing voice call routing. Logical links are an abstraction for the path between two
neighboring circuit-switched devices. They do not exist in the real world, but are NETWARS-
specific internal data constructs that keep track of available voice channels and/or available
bandwidth on the entire route between two neighboring circuit-switched devices.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-57

3.9.3 Routing in Circuit-Switched Devices

This subsection describes the NETWARS standard implementation of routing, using a Flood
Search Routing protocol. When a circuit-switched device makes a call to a destination, it initially
sends a query packet to the switch to which it is connected. The switch checks if the destination
device is connected to it. If not, it forwards the query packet to all the connected switches in the
route to the destination. The query packet is forwarded to the next hop until it reaches the switch
to which the destination is connected. A timer is scheduled on the switch to wait for the ACK.

When the query packet arrives at the switch to which the destination is connected, the switch
sends an ACK back to the source end-system device. The path taken by the ACK is the chosen
path. As soon as the source gets the acknowledgment packet, it gets the link where the call ACK
came from. If bandwidth is available on the link, then the switch reserves it, otherwise it bumps a
lower priority call and writes an IER failure statistics. It also schedules an interrupt to free
bandwidth after the call duration and sends a TEARDOWN message. If there is no bandwidth
available or calls to bump, the packet is dropped.

The ACK packet reserves bandwidth on the links from the source to the destination. Once the
call is set up, no other packets are sent for the duration of the call. The call is released and the
reserved bandwidth is freed as the call duration timer expires.

Functions for route structure handling have to be created. These functions allow for route
copying, route destroying, creating pooled memory for route structures, and route reversing. The
external file flood_search_routing.ex.c contains functions for route structure handling, with the
function prototypes included in a header file flood_search_routing.h.

3.9.4 Circuit-Switched Links

NETWARS standard circuit-switched models conceptualize links over Layer 1 transmission
devices as being “logical links.” One of the reasons for doing so is that there are no actual
packets that are sent over the network to model the voice call. These circuit-switched devices
maintain information about the links (which may be either wired or wireless) between the
intermediate Layer 1 devices. This information is built up during initialization by the edge
circuit-switched devices through a topology walk. This information is used when link voice
throughput and channel utilization statistics are written out, as well as during the call setup
process.

3.9.5 Interfacing with Packet-Switched Networks

When a circuit-switched device has to connect to a packet-switched network, it has to go through
an intermediate device that is capable of interfacing with both circuit-switched and packet-
switched networks. Such intermediate devices are called multi-service switches (e.g., media
gateways).

When a multi-service switch receives a request to place a circuit-switched voice call over a
packet-switched network, it performs the following operations to interface with an IP network:

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-58

• These multi-service switches publish their loopback IP address in the process registry;
every other multi-service switch can use this IP address to reach this gateway.

• When doing flood search routing, an ingress multi-service switch looks at all the multi-
service switches in the network and will pick only those that have advertised having a
route to the destination phone, as shown in Figure 3-24. Once it knows the gateways that
have a route to the destination phone, the multi-service switch opens UDP connections to
the loopback IP addresses of these multi-service switches (obtained from the process
registry) and sends the call query packet (encapsulated in an IP packet) to them. It also
records its loopback IP address in the call query packet.

• An egress multi-service switch should record its own loopback IP address, de-capsulate
the IP packet, and flood the query in the circuit-switched network.

• Only the ingress and egress loopback IP addresses are needed; routing in the data
network will be done as usual by IP with routing protocol.

• ACK follows the reverse path.

• “Call estab” follows the recorded path by query packet.

• Once the call is established, bandwidth is reserved and utilization numbers are updated in
the circuit-switched network only (no bandwidth reservation or link utilization update
will happen in IP and ATM networks). Once bandwidth is reserved and link utilization
numbers are updated in the circuit-switched network, the multi-service switch starts
generating voice packets according to the codec information configured to load the IP
network.

• Once the call is completed, multi-service switches in the route are notified to stop
generating voice packets.

In case of call failure/bumping, bandwidth is released and link utilization numbers are updated in
the circuit-switched network, and multi-service switches in the route are notified to stop
generating voice packets.

Figure 3-24: Circuit-Switched and Packet-Switched Network Intercommunication

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-59

3.9.6 Handling Background IERs

Because explicit packets are not generated for a voice call in a circuit-switched network,
background IERs are handled similarly to explicit IERs in a pure circuit-switched network.
However, if a voice IER is going through multi-service switches (through an IP/ATM network),
background IERs are handled differently than explicit IERs. Multi-service switches generate
packets to load the IP/ATM network for voice IERs. For explicit IERs, multi-service switches
generate explicit voice packets. However, for background IERs, multi-service switches generate
tracer packets to load the IP/ATM network (OPNET hybrid simulation model).

3.9.7 Handling Failure/Recovery

To be able to handle failure/recovery, the processor modules in the circuit-switched devices must
have their failure interrupts and recovery interrupts attributes “enabled” and set to “local only.”

3.9.7.1 Handling Failure of a Circuit-Switched Device in the Network

When a circuit-switched device fails, it should clear all the calls and release the channel
(bandwidth) for the call. The IER statistics have to be written out and the IERs have to be
marked as failed. When a NETWARS Layer 2 networking device with circuit-switched
capabilities handling voice calls fails, it informs its neighboring devices, which in turn write out
the IER statistics. For voice calls, in NETWARS a global list of bumped IERs is maintained to
avoid race conditions like multiple switches trying to mark the same IER as failed.

3.9.7.2 Handling Recovery of a Circuit-Switched Device in the Network

The device does not do anything special on receiving this recovery interrupt.

3.9.8 Collecting Statistics

The following statistics are relevant to circuit-switched models:

• Link level
– Link statistics are updated for the voice traffic also

• Channel level
– Voice channel utilization

• Circuit level
– Circuit throughput (also updated for voice)
– Circuit utilization (also updated for voice)

• Circuit-switched node-level statistics
– Bandwidth reserved (bits per second)
– Total calls blocked
– Total calls switched
– Active calls
– Low-priority calls dropped

• End-system node level statistics
– Call setup time (seconds)
– Active calls

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-60

– Total calls connected
– Total calls disconnected
– Total calls generated.

3.10 COMPLIANCE FOR WIRELESS INTERFACES

The end-system or network equipment devices in NETWARS can support both wired and RF
radio interfaces. In addition to the requirements for the class of device being built, radio
interfaces require additional requirements, which are documented in this subsection.

3.10.1 Attributes

A radio device needs the attributes shown in Table 3-20.

Table 3-20: Additional Attributes for Radio Devices

Attribute Name Attribute Type Default Value Description

antenna_pattern Typed file Isotropic Specifies the antenna pattern to be used on the
radio device.

Modulation (per
channel) Typed file —

Specifies the modulation table to be used to
look up the bit error rate as a function of the
signal-to-noise ratio.

Power (per
channel) Double —

Specifies the transmitting power for the radio
transmitter; this attribute will be promoted from
the channel attribute of the transmitter to the
node level.

Processing gain
(per channel) Double —

Specifies the processing gain for the radio
receiver; this attribute will be promoted from the
channel attribute of the receiver to the node
level.

min_frequency
(per channel) Double —

Specifies the base transmitter/receiver
frequency for a channel; this attribute will be
promoted from the channel attribute of the
transmitter/receiver to the node level.

Bandwidth (per
channel) Double —

Specifies the transmitter/receiver bandwidth for
a channel; this attribute will be promoted from
the channel attribute of the transmitter/receiver
to the node level.

data_rate (per
channel) Double — Specifies the data rate on the channel in the

node; this attribute must be promoted.
net_id4 (per
radio tx and rx
module)

Integer –1
When two radios share the same net_id, they
are in the same radio network. This extended
attribute must be promoted.

Spreading code
(per channel)

Double 0 Specifies the frequency hop group to which the
radio belongs.

Apart from these attributes, the pipeline stage5 attributes shown in Table 3-21 and Table 3-22
also must be set on the radio transmitter and receiver modules. The pipeline stage attributes are

4 This attribute is particularly important in radio broadcast networks where all the radios in the same broadcast network will

have the same net_id. Also, radios connected by the Line of Sight link will have the same net_id.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-61

required by OPNET’s radio pipeline stages. Most of the attributes defined in Table 3-20 are
available on the radio transmitters and receivers. They should be promoted to the node level to
use the Scenario Builder features to create radio links and broadcast networks.

3.10.1.1 Transmitter Pipeline Stage Attributes

All of the attributes shown in Table 3-21 are of type Typed File.

Table 3-21: Pipeline Stage Attributes on Radio Transmitter

Pipeline Stage
Attribute Name Default Value Description

txdel model dra_txdel Computes the transmission delay associated with the
transmission of a packet.

rxgroup model dra_rxgroup Determines the possibility of radio interaction between a
transmitter channel and a receiver channel.

chanmatch model dra_chanmatch Characterizes the type of interaction between a
transmitter channel and a receiver channel.

closure model dra_closure Dynamically determines the ability of a transmitter
channel to reach a receiver channel.

tagain model dra_tagain Computes the antenna gain provided by the transmitter’s
antenna module in the direction of a particular receiver.

propdel model dra_propdel Computes the propagation delay associated with the
transmission of a packet.

3.10.1.2 Receiver Pipeline Stage Attributes

All of the attributes shown in Table 3-22 are of type Typed File.

Table 3-22: Pipeline Stage Attributes on Radio Receiver

Pipeline Stage
Attribute Name Default Value Description

ragain model dra_ragain Computes the antenna gain associated with the
receiver’s antenna for an incoming transmission.

power model dra_power Computes the received power for an incoming
transmission.

bkgnoise model dra_bkgnoise Computes background noise affecting the incoming
transmission.

Inoise model dra_inoise Computes interference noise affecting the incoming
transmission.

snr model dra_snr Computes the signal-to-noise ratio for the incoming
transmission.

ber model dra_ber Computes the bit error rate for the incoming
transmission.

error model dra_error Computes the number of bit errors in a segment of the
incoming transmission.

5 OPNET models packet transmission across communications channel using a special mechanism called the Transceiver

Pipeline. For more details on Pipeline stages, refer to OPNET Modeler online documentation, Modeling Concepts Manual,
Chapter 6: Communication Mechanisms, topic Comec.4: Communication Link Models

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-62

Pipeline Stage
Attribute Name Default Value Description

ecc model dra_ecc Determines the acceptability of an incoming
transmission.

3.10.2 Required Modules

A radio device requires a radio transmitter and a radio receiver for transmitting and receiving
data. An antenna module may be used if the modeling engineer wants to specify the antenna
pattern. If an antenna module is not present, the pattern is considered to be “isotropic” by default.

Figure 3-25: Radio End-System Device-Node Model

3.10.3 Initialization

There are no initialization steps specific to a radio device. If this is an end-system device with
radio interfaces, look for the initialization steps under Subsection “3.5. Compliance for End-
System Devices” that deals with building end-system devices.

3.10.4 Interfacing with Other Classes

A radio device can talk to another radio device or a satellite device if the two devices are within
range and have matching frequencies, modulation, and data rates. Closure between the two
devices is computed by the closure pipeline stage.

The OPNET Simulation kernel manages the transfer of packets from the source to the destination
as a series of computations, each of which models particular aspects of the link behavior. These

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-63

computations are performed using pipeline stages. Each radio transmitter and receiver has a set
of pipeline stage attributes that can be changed to modify the behavior of the link.

A model developer building a radio device can specify these pipeline stages on the transmitter
and receiver to model the desired behavior. For more information about the transceiver pipeline
stages, refer to the OPNET Modeler online documentation, Modeling Concepts →
Communication Mechanisms → Communication Link Models section.

3.10.5 Interfacing with TIREM

Terrain Integrated Rough Earth Model (TIREM) is a set of libraries that facilitate modeling radio
interference due to terrain. This feature is enabled through calls from the transceiver pipeline
stages. (Files with the extension .ps.c implement pipeline stages.)

3.10.6 Restrictions in Building Radio Devices

There are some restrictions in building radio devices. Not all point-to-point interface types can
be replaced by radio interfaces. Table 3-23 enumerates the restrictions and changes needed to
build ports of different types with radio interfaces.

Table 3-23: Restrictions in Building Radio Devices

Interface
Technology Restrictions Involved in Building Ports with Radio Interfaces

SLIP No restrictions. The point-to-point interfaces can be replaced by radio interfaces.

Ethernet
The point-to-point interfaces can be replaced by radio interfaces, and the behavior of
the Ethernet MAC module has to be changed. Refer to OPNET’s 802.11 (wireless
LAN) models for more information.

ATM
An ATM port’s point-to-point interfaces cannot be replaced by radio interfaces. A
node with just radio and point-to-point interfaces is created, and the ATM node is
connected by a point-to-point link to this node.

Frame relay This combination is currently not supported.
FDDI This combination is currently not supported.
Token ring This combination is currently not supported.

Figure 3-26: ATM Device Radio Interface

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-64

Figure 3-27: Internal Representation of ATM Device and Intermediate Node

3.10.7 Handling Failure/Recovery

There are no failure/recovery handling procedures specific to radio devices, although, if standard
interface technology is not used, the appropriate module should flush out the queues inside. In
NETWARS models, currently the devices connected to the radio devices perform the IER
cleanup operations in case the radio device fails.

3.10.8 Collecting Statistics

Broadcast network utilization statistics are collected for broadcast radios.

3.10.9 Building Custom Pipeline Stages

When building a radio device, the model developer can use the OPNET Standard (COTS)
pipeline stages on the radio transmitters and receivers. Model developers wishing to customize
them to better suit their needs, may do so by creating custom pipeline stages. Custom pipeline
stages can be built based on the OPNET Standard (COTS) pipeline stages. For more information
about the stages, refer to the OPNET Modeler online documentation, General Models manual,
“Pipeline Stages/Radio Link” chapter.

3.10.10 Satellite Considerations

A satellite device can be modeled as a networking device with radio interfaces, as documented
above. The current NETWARS standard device model library includes geosynchronous

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-65

(geostationary) satellites, together with various ground terminals. A geosynchronous satellite is
modeled using a radio device with an altitude set at 35,786 kilometers.

If the satellite device to be modeled is not geosynchronous but has another type of orbit, it must
be built as an OPNET satellite node. Designating a device as a satellite node type creates an
additional attribute that must be set, as shown in Table 3-24.

Table 3-24: Required Satellite Device Attributes for Moving Orbits

Satellite Device
Attribute Name

Attribute
Type

Default Value Description

Orbit Typed file None The orbit for the satellite device

When an orbit is specified, the node position information is ignored and the position at any point
in time is determined from the orbit.

3.10.11 NETWARS Standard Geostationary Satellite Communications System Models

A satellite communications system can be modeled in two ways, either based on the NETWARS
Standard Geostationary satellite model or built as a new stand-alone satellite communications
system. If a new stand-alone satellite communications system is developed, no additional
requirements beyond those listed above are required.

If satellite communications interoperability is required with the NETWARS Standard
Geostationary satellite models, additional attributes are required. These additional attributes will
provide a mechanism for the configuration of communications through the Scenario Builder
GUI.

A ground terminal device model that can communicate with the NETWARS Standard
Geostationary satellite models.

In addition to the attributes described below, the ground terminal model must have its
equipment_type attribute set to “Satellite terminal” in order for Scenario Builder to discover it
during link deployment and for the CP to recognize it during its runs.

The satellite and satellite terminal models employ the radio transceiver pipeline stages shown in
Table 3-25.

Table 3-25: Radio Transceiver Pipeline Stages

Stage Function Module File

0 Receiver Group Tx dra_rxgroup.ps.c
1 Transmission Delay Tx dra_txdel.ps.c
2 Link Closure Tx dra_closure.ps.c
3 Channel Match Tx dra_chanmatch.ps.c
4 Transmission Antenna Gain Tx dra_tagain.ps.c
5 Propagation Delay Tx dra_propdel.ps.c
6 Receiver Antenna Gain Rx dra_ragain.ps.c

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-66

Stage Function Module File

7 Power Calculation Rx nwra_power_tirem.ps.c
8 Interference Noise Rx dra_bkgnoise.ps.c
9 Background Noise Rx dra_inoise.ps.c
10 Signal to Noise Ratio Rx dra_snr.pr.c
11 Bit Error Rate Rx dra_ber.ps.c
12 Error Allocation Rx dra_error.ps.c
13 Error Correction Rx dra_ecc.ps.c

For an example, refer to subsection 4.11, Satellite Terminal Generic Example.

3.10.12 Generic Satellite Device Model (for Bent Pipe Links)

To learn how to create a device of this type, refer to subsection 4.11, Satellite Terminal Generic
Example.

3.10.13 Generic Satellite Ground Terminal Device Model (for Bent Pipe Links)

To learn how to create a device of this type, refer to subsection 4.11, Satellite Terminal Generic
Example”.

3.10.14 TSSP Satellite Terminal Device Model

To learn how to create a device of this type, refer to subsection 4.12, Satellite Terminal with
TSSP Example.

3.10.15 Broadcast Radio Considerations

Integrating a custom radio with the broadcast network framework involves modifying some files
that define this framework. NETWARS refers to broadcast radios as those that share a medium
access via a protocol, such as a Time Division Multiple Access (TDMA)-based protocol.

The file <NW DIR>\Scenario_Builder\<OPNET Rel>\netwars\rules\net_configs defines the
types of networks supported by the broadcast network. This file must have an entry for the
custom radio technology to identify its—

• Radio type (just a unique string)
• Classification by default
• Data rate by default
• MOP probe status by default
• Supported capacities
• Supported data packet formats
• Supported voice packet formats.

The radio device model must also have properly named ports and port self-description. The port
names should conform to the formats—

“<technology name>_tx_<n>“ (for radio transmitters)

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-67

“<technology name>_rx_<n>“ (for radio receivers)

This will require a port description with the name of—

“<technology name>_tx_<start..n> / <technology_name >_rx_<start..n>“

The port self-description will require its interface type attribute value set to—

“radio_rt:<technology name>“

Lastly, the radio transmitter and receiver channels will need to support the packet formats
specified in the net_configs.

Figure 3-28: Channel Table

Each channel of the device to participate in broadcast networks will need to have the following
attributes promoted to the node level:

• Data rate
• Minimum frequency
• Spreading code
• Power (transmitter only).

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-68

3.11 COMPLIANCE FOR L INK M ODELS

Links connect devices in a network. NETWARS supports two different kinds of links: physical
links that represent actual links that physically connect two devices, and links that only serve as
logical entities that represent a physical connection, such as two radio interfaces configured to
operate over the same frequency.

Both link types, physical and logical, display in the scenario. Although model developers can
develop devices that work with the existing framework of the logical links, such as satellite
terminals and Line of Site (LOS) radios, model developers outside of the NETWARS program,
the target audience of this document, can only create new link models for physical links.
Creating logical links requires access to a layer of NETWARS implementation not exposed as
open source.

This subsection explains generically how to build a link model that represents a physical link
connecting two devices. An important concept to note here is that OPNET models packet
transmission across communication channels using a special mechanism called the transceiver
pipeline. Typically, model developers refer to this in the context of radio transmission, but
OPNET has a set of stages for point-to-point and bus transmission as well. This subsection
explains the use of the point-to-point pipeline.

Note: “Point-to-point,” in the context of the transceiver pipeline, simply means two endpoints of
a link, not necessarily the technology serial or Point-to-Point Protocol (PPP).

For more details on the transceiver pipeline mechanism, refer to OPNET Modeler online
documentation, Modeling Concepts Manual, “Communication Mechanisms” chapter, “Comec.4:
Communication Link Models” subsection.

3.11.1 Attributes

This subsection describes the minimum set of attributes a link must have, as shown in Table
3-26.

Table 3-26: Required Attributes on Link Model

Attribute Name Attribute Type Default Value Description

name String -- Inherent -- Specifies name of link

model String -- Inherent -- Specifies link model, for example,
100BaseT

data rate Double — Specifies combined speed of data
transmission over all channels in link

channel count Integer Specifies number of channels in link

packet formats String All Specifies packet formats supported by
link

closure model Typed file dpt_closure Determines connectivity between
transmitter and receiver

coll model Typed file dpt_coll Used to determine if a collision has
occurred on a link

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-69

Attribute Name Attribute Type Default Value Description

ecc model Typed file dpt_ecc Determines whether a packet can be
accepted

error model Typed file dpt_error Determines number of errors in a
packet

propdel model Typed file dpt_propdel Calculates propagation delay between a
transmitter and a receiver

txdel model Typed file dpt_txdel
Calculates transmission delay
associated with transmission of a
packet. Default value is dpt_txdel.

The attributes closure model, coll model, ecc model, error model, propdel model, and txdel
model correspond to various pipeline stages.

3.11.1.1 Dependencies

• The link model must support all packet formats supported by the transmitters and
receivers in the devices to which it will connect.

• The link model must match the data rate supported by the transmitters and receivers in
the devices to which it will connect.

• Failure to satisfy the above constraints will result in inconsistent links, and traffic cannot
flow over inconsistent links.

• When creating a new link type, the LinkTypeMap.gdf file needs an entry for that new
link type for it to function with NETWARS’ Link Deployment Wizard (LDW). The
LDW uses this file to match links to appropriate ports. NETWARS maintains this file
under <NETWARS DIR>\User_Data\Rules.

Usually the data rates on the transceivers are left as “unspecified,” which means the data rate
taken by the transceivers during the simulation will be the data rate of the link.

3.11.2 Building Custom Pipeline Stages

When building a link model, model developers can use the OPNET Standard (COTS) pipeline
stages. If model developers wish to customize them to better suit their needs, they may do so by
creating custom pipeline stages. Custom pipeline stages can be built based on the OPNET
Standard (COTS) pipeline stages. For more information about the OPNET Standard (COTS)
pipeline stages, refer to the OPNET Modeler online documentation, General Models manual.
Note that if a pipeline stage drops a packet where a non-ACK-based protocol, such as UDP,
serves as the transport protocol, the pipeline stage must write out the failure statistic for the IER.

A link model can have model attributes, and the model developer can write code in the pipeline
stages to deal with these. An example of a model attribute is background utilization, which
allows the user to specify utilization on the link as a percentage of the total link bandwidth. This
is a way of loading the link with traffic in addition to the IER traffic, and it allows the user to
study the link performance under varying loads. The pipeline stage dpt_propdel_bgutil
uses the background utilization attribute. The background utilization attribute can be imported in

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-70

NETWARS using the COTS Traffic import of the Cisco eHealth Traffic. For further details,
refer to the NETWARS User Manual.

3.11.3 Handling Background Routed Traffic

The model developer has to specify pipeline stages on the link models that can handle tracer
packets generated from the end-system IP module. OPNET Standard models have pipeline stages
that can handle the load represented in a tracer packet and accordingly subject explicit packets to
appropriate transmission and propagation delays. These pipeline stages record the statistics on
the links with the appropriate background load specified on them. Refer to the
dpt_propdel_bgutil and dpt_txdel_bgutil pipeline stage models with the OPNET
Standard models as a baseline for creating custom pipeline stages that support background routed
traffic.

3.11.4 Handling Failure/Recovery

A link model does not do anything itself to handle its failure/recovery. The devices to which the
links are connected handle a link’s failure/recovery.

3.11.5 Building Simplex Links, Buses, and Bus Taps

The process of building simplex links, buses, and bus taps is the same as building duplex links.
In the Link Model editor, there is a field called “Link Types.” Depending on what type of link is
needed, one of the available link types is chosen. The possible types of links that can be created
are—

• ptsimp (point-to-point simplex)
• ptdup (point-to-point duplex)
• bus
• bus tap.

The radio links (including the satellite links and broadcast networks) created in the Scenario
Builder do not have an associated link model. They are notional links where the communication
is established using correct settings for the radio device model attributes.

3.11.6 Collecting Statistics

A link model cannot be programmed to collect statistics. In OPNET, strictly speaking, there is no
process model (code) within a link model (lk.m). The simulation kernel collects statistics on the
link model.

Although a user can define statistic handles in a process model and write to them in a link model
(pipeline stage), the pipeline stage needs to get a reference to the handle, and this can be done via
the oms_pr_* kernel procedures. Other ways exist, but most model developers use this
mechanism.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-71

3.11.7 Documentation

To document a link model, the following information must be provided in the Comments section
of the Interfaces option in the Link Model Editor:

• General Description of the Link Model. Provides a brief description of the link model.

• Link Interfaces. Documents the types of devices to which this link connects.

• Data Rate. Specifies the data rate for this link.

• Packet Formats. Specifies the packet formats supported by this link.

• Comments. Gives any additional comments or restrictions on using this link.

The self-description information must be set on the link models. This information, although
currently not used by the Scenario Builder, may be used to get interface type information
(equivalent to packet formats).

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-72

3.12 COMPLIANCE FOR UTILITY NODES

Utility nodes provide a simplified and unified location for information about a network. They do
not represent actual devices in the network; rather, they represent information about a network.

3.12.1 Attributes

Table 3-27 and Table 3-28 give the minimum required and optional attributes for utility nodes.

Table 3-27: Required Attributes for Utility Nodes

Attribute Name Attribute Type Description

name String Specifies name of utility node
model String Specifies device model

Table 3-28: Optional Attributes for Utility Nodes

Attribute Name Attribute Type Description

utility_technologies String A list of packet formats supported by models
using utility node

End node (N)6 String Specifies full hierarchical name of an end
node, where ‘N’ is an integer value (1, 2,
etc.) These attributes are only mandatory if
needed by the utility node. Attributes named
as such can be placed within compound
attributes to build a table.

3.12.2 Required Modules

The required modules depend on the purpose of the model. They should be designed to work
with multiple instances of the same models so a simulation will not be confused by the presence
of several of the same utility modules.

3.12.3 Interfacing with Other Classes

A utility node interfaces with other classes using any OPNET-supported techniques, including
the OPNET process registry, which allows for the publishing of information that is available to
other models, global variables, and structures or directly setting attributes of other objects. The
models using the utility nodes should be designed to work with multiple instances of the utility
node.

3.12.4 Interfacing with the Scenario Builder GUI

The utility_technologies attribute is used for objects that will be setting end node (N) attributes.
The utility_technologies attribute must contain a listing of all supported packet formats that are
used by the end nodes. The Scenario Builder GUI will then use this information to create a pop-

6 For example, if a Promina utility node contains information about one Promina circuit connected between edge devices ed1

and ed2, then it will have attributes end node (1) and end node (2). The values of these attributes will be the full hierarchical
names of ed1 and ed2.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

3-73

up list of devices within the scenario that also support this packet format. This mechanism is for
the convenience of the user. The user can then select from this list to fill in all end node (N)
attributes. A good example of this would be a circuit configuration utility with an attribute called
circuit_config and subattributes called end node (1), end node (2), and bandwidth (bps). With a
utility_technologies attribute set to “cs_special” and the circuit_config attribute promoted, the
NETWARS Scenario Builder user of this model would see pull-down menu options under the
circuit_config attribute for the end node (N) attributes of every device in the NETWARS
Scenario that supports packet format “cs_special.” In this way, the user would have an easy way
to set up “cs_special” circuits.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-1

4 EXAMPLES

This section discusses the approach a model developer should take to build a device model, a
networking protocol, and so forth. Each step in the approach is illustrated using an example
device or protocol. These examples serve as a code reference for the developer to develop other
models and include a detailed discussion at the code level to help developers understand the
underlying concepts and methodology to develop similar, new models.

Please note that this is not a discussion on the use of the OPNET Modeler’s various editors7 and
model hierarchies. The OPNET Modeler development environment is used to develop the
models.

The discussion is based on certain assumptions about the device model or the protocol in hand.
These assumptions are discussed in the “High-Level Design” subsection of the corresponding
code example.

Supplemental files for each of these examples, including the relevant node models, process
models, external C code, and header files are provided separately for reference.

7 Please refer to the OPNET Modeler’s online documentation on the Node Editor and Process Editor in the Editor Reference

section.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-2

4.1 TRAFFIC M ODEL EXAMPLE

The basic ideas behind creating traffic models were discussed in section 3.1. The purpose of this
section is to introduce the major steps that were used to support the Net-Centric Enterprise
Service (NCES) application models development with ACE whiteboard.

NCES applications are based on Service-Oriented Architecture (SOA). In order to model the
dynamic interaction characteristic of NCES applications, the following approach was applied.
First, the developers defined the scope of the model and gathered the corresponding architectural
information and testing data from the application developers and associated programs. Second,
the developers analyzed the collected data and identified all possible dynamic interactions/cases
of the applications. Third, the developers created a time sequence diagram, as shown in Figure
4-1, to document the dynamic interactions.

Figure 4-1: Time Sequence Diagram

The next step was to apply the time sequence diagram to design the traffic model architecture.
The architecture included the following information: number of tiers, tier names, reusable
interactions, message sizes, message interarrival periods, and interaction logics. In the final step,
the developer used the architecture to create the application models in ACE whiteboard and
apply Python scripts to implement interactions logics. Please refer to “ACE Whiteboard
Tutorial: Modeling an Application using Logic Scripts (Advanced)” in OPNET documentation
for more examples.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-3

Please contact Defense Information Systems Agency (DISA) GE34 for detailed NCES Modeling
and Simulation (M&S) information.

Other than SOA applications, ACE Whiteboard can also be used to model the dynamic
interactions of operational scenarios that include logical decisions, such as the following
Communities of Interest (COI) publish and subscribe operational scenario:

1. An intelligence cue of type X arrives at a command center. Data is posted on the X-
Community of Interest (COI) web site.

2. An alert is sent to all members of the X-COI who subscribe to that kind of cue.
3. Some members of the X-COI are available, others are not. (Some are off-shift; some are

already involved in other incidents, perhaps of the same type or perhaps of different
types.) The ones who are available say so (e.g., with messages in the X Chat Group).

4. The available X-COI members download material from the web site.
5. The X-COI has a teleconference.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-4

4.2 ROUTING PROTOCOL EXAMPLE

The following subsection discusses the issues that a developer confronts when interfacing a
custom routing protocol with standard protocol stack.8 A code-level discussion is presented on
the various steps a developer needs to take to create a working device model that includes
custom routing.

4.2.1 High-Level Design

Although a developer can select from a range of algorithms when developing the routing
protocol itself, the following discussion deals with how to make this algorithm interoperate with
other standard technologies such as the IP and transport layers, which are already modeled in the
standard model library that comes with the OPNET Modeler.

The following are the design decisions9 made for the protocol under discussion:

• Protocol Type. The routing protocol is a distance-vector protocol.

• Routing Metric. The routing metric is hop counts.

• Routing Updates. The routing updates are sent at regular intervals and when the network
topology changes. When a router receives a routing update that includes changes to an
entry, it updates its routing table to reflect the new route.

• Timers. Route timers are implemented for this routing protocol, including the Route
Timeout Timer and the Garbage Collection Timer.

• Layer 3 Technology. The Layer 3 technology used here is IP.

The Routing Element10 “RE” represents this custom routing layer for the device under
discussion. This is interfaced with the IP layer. Typical Layer 3 networking equipment is shown
in Figure 4-2.

8 For more information on the OSI layer (protocol stack), please refer to Section 2, Prerequisites for Designing and Building

NETWARS Models of Model Development Guide v.1.4 for the suggested networking references.
9 These design decisions give the reader ideas on what the basic tenets are on which the custom routing protocol under

discussion is based on and may not be included in the following discussion.
10 Routing Element “RE” is just an arbitrary name chosen for discussion here and should not be misinterpreted as being a

routing protocol for NETWARS. Also, the user should not draw any analogy between the NETWARS’ SE or OE.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-5

Figure 4-2: Layer 3 Networking Equipment

In this figure, isis, rip, ospf, igrp, eigrp, and bgp represent the actual routing protocols. The RE
module can be added at the location of the “rip” module because this routing protocol closely
resembles our RE based on the high-level design decisions taken earlier. The intention is to look
closely at the process model inside this module that performs the various interfacing functions in
which we are interested.

• Register the Routing Protocol. This is required because the custom routing protocol
requires a distinctive ID that it will later use when modifying the route entries in the IP
Common Route Table.11

• Make the Routing Protocol Available. The routing protocol should be available to be
configured on the interfaces of the router.

11 IP Common Routing Table refers to the routing table information that the routing device (e.g. router) has. This common

routing table is populated by one or more routing protocols.

This module houses the IP
implementation for the
device. It is referred as
“IP” or “IP module” in the
following discussion.

Module of interest houses
the process model for the
custom routing under
discussion.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-6

• Initialization. The routing protocol must access the IP module of this router and retrieve
the information stored by the IP in the process registry.12 This gives the routing protocol
information regarding the gateway status of the device, interface information, and so
forth. Here, the routing protocol can initialize the routing tables for the first time.

• Routing updates. The IP common route must be updated with the entries that the routing
protocol may want to add or delete.

The following subsections provide detailed discussion on the topics listed above. At the end of
following discussion, the reader should have developed a fair understanding on how interfacing
with the IP is done for a routing (custom) protocol.

4.2.2 Interfacing with the IP Discussion

4.2.2.1 Registering the Protocol

The protocol needs to register itself in the OPNET Model Support (OMS) process registry and
also with IP. Both these steps need to be performed upon receiving the “begin sim” (begsim13)
interrupt.

The function that is used to register the routing protocol with IP is—

int Ip_Cmn_Rte_Table_Custom_Rte_Protocol_Register (char* custom_rte_protocol_label_ptr).

This function returns a unique integer that is used as the routing protocol ID. This unique routing
protocol ID is used for all calls to Ip_Cmn_Rte_Table API14 functions.

4.2.2.2 Initialization of the Routing Protocol

After registering the protocol with the IP as discussed in Subsection 4.2.2.1, the IP sends remote
interrupts to all the routing protocols registered with it.

The remote interrupt received from the IP is as follows:

While registering in the OMS process registry, the attribute named protocol of the process handle
must be set to same string used for registering with IP.15 The following section of the code is an

12 The information stored in the process registry can be retrieved by the other process models. Please refer to the OPNET

Modeler documentation on the Process Registry under General Models | OPNET Model Support package for details on how
to use process registry.

13 Please refer to OPNET Modeler documentation on Event Schedule Simulation under Modeling Concepts | Modeling
Framework for more information on the begsim interrupt.

14 Details on the API are provided in Section 4.2.2.4.
15 Code where IP does the OMS process registry not shown.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-7

example of how to register the routing protocol in the OMS process registry. The start time
attribute in the following code refers to the start time for the routing protocol; this could be an
attribute on the custom routing protocol process model.

To perform some other functions, including the process of finding which interfaces have this
routing protocol enabled, the module needs to get the process registry information of the IP. The
string “ip” needs to be used to discover IP-registered process registries.

The information retrieved above includes gateway/router status of the node, interface
information, IP route table, and so forth. From the IP process registry, the custom routing
protocol can then identify the interfaces on which it is enabled. This is a two-step process:

• Get a pointer to the data structure storing the IP information and retrieve information
such as interface information, IP common route table,16 etc.

16 This ip_route_table pointer is needed every time the routing protocol needs to modify the IP common route tables with its

entries.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-8

• Loop through the list of interfaces maintained by IP. If the routing protocol was enabled
on a particular interface, then its protocol ID is present in the “routing_protocols_lptr” list
of that interface. For each entry access, enter a new route17 (of “0” cost) into the IP
common routing table.

Note that the “IpC_Rte_Custom”constant is used to check whether the interface is using Custom
Routing Protocol. This enumerated value comes from IpT_Rte_Protocol enumeration defined in
the ip_rte_v4.h header file of the OPNET standard model library.

4.2.2.3 Support for Routing Protocol Configuration

All the router devices in OPNET/NETWARS have parameters available for configuration (as
part of the IP Routing Parameters device attribute). To change any of this attribute’s properties,
as is done in this section, open the ip_dispatch.pr.m file in OPNET Modeler and open its model
attributes (Interfaces -> Model Attributes). This particular attribute includes information such as
router ID, loop-back information, interface information, and so on (as shown in Figure 4-3).

17 Please refer to the function rip_rte_new_entry_add() of rip_v3 process model of the OPNET standard model library for

details on how to add a new route entry to the IP Common Route Table. Also refer to Section 4.2.2.4 for details on the APIs
for the IP common route table.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-9

Figure 4-3: IP Routing Parameters Attribute

Certain parameters can be at higher levels of granularity, on an interface basis. This information
includes parameters such as the IP address information, the routing protocol, and the QoS
profile. This is where the user can configure which routing protocol to use for that interface (as
shown in Figure 4-4).

Figure 4-4: Interface Information Attribute

In order to use the custom routing protocol, the IP module’s process model (ip_dispatch) must be
updated. The model attribute “Routing Protocol” must be edited18 to include the custom routing
protocol (IP Routing Parameters | Interface Information | Routing Protocol(s)). A new symbol
map must be added for this attribute19 (as shown in Figure 4-5).

18 Adding a new attribute to the process model does not require the developer to compile the process model.
19 To make this change available during the simulation, the process model must be saved. No recompilation is necessary.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-10

Figure 4-5: Routing Protocol Attribute Properties

The “loop-back interfaces” attribute must also be updated in a similar way to include the custom
routing protocol.

4.2.2.4 IP Common Route Table API Functions

These API functions can be used by the custom routing protocol to interact with the IP common
routing table and modify the entries when the protocol finds a change in the route entry. The
functions shown in Table 4-1 can be used to insert and remove routes into/from the common
route table.

Table 4-1: Available IP Common Route Table API Functions

Route Management API Description

Ip_Cmn_Rte_Table_Custom_Protocol_Register
(char* custom_rte_protocol_label_ptr)

Registers the custom routing protocol with the
common route table. A unique protocol_id is
returned for accessing the route table.

Ip_Cmn_Rte_Table_Entry_Add
(IpT_Cmn_Rte_Table* route_table,
 void* src_obj_ptr,
 IpT_Address dest,
 IpT_Address mask,
 IpT_Address next_hop,
 IpT_Port_Info20 port_info,
 int metric,

Adds a route entry to the common route table.
This function checks for an already existing
entry.

20 The port_info structure tells IP which outgoing interface needs to be used to reach the specified next_hop. This structure

contains two fields: intf_index and intf_name. The intf_index is the index of the interface in the interface table maintained
by IP, and the intf_name is the name of the corresponding interface. This structure can be populated using the
ip_rte_addr_local_network function. Please refer to the “ip_cmn_rte_table.h“ and “ip_rte_support.h“ for the definition of the
structure and the declaration of the function, respectively.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-11

Route Management API Description

 int proto,
 int admin_distance)
Ip_Cmn_Rte_Table_Route_Delete (
 IpT_Cmn_Rte_Table* route_table,
 IpT_Address dest,
 IpT_Address mask,
 int proto)

This function is used to delete an entire
destination entry from the IP Route Table. This
deletes all the route table entries that this
destination may have.

Ip_Cmn_Rte_Table_Entry_Delete
(IpT_Cmn_Rte_Table* route_table,
 IpT_Address dest,
 IpT_Address mask,
 IpT_Address next_hop,
 int proto)

This function is used to delete a next hop from
the entry from the IP Route Table.

Ip_Cmn_Rte_Table_Entry_Exists
(IpT_Cmn_Rte_Table* route_table, IpT_Address
dest, IpT_Address mask, int admin_distance)

This function determines whether a route exists
in the common route table.

Ip_Cmn_Rte_Table_Entry_Update
(IpT_Cmn_Rte_Table* route_table,
 IpT_Address dest,
 IpT_Address mask,
 IpT_Address next_hop,
 int proto,
 int new_metric)

This function is used to change the metric
associated with a current route table entry. The
entry for the given destination is searched for
the next hop given, assuming a matching
protocol ID, and then the metric associated with
the given next hop is changed.

4.2.2.5 Function Arguments:

The arguments for these functions are discussed below:

• route_table. Pointer to the IP common route table

• src_obj_ptr. Pointer to the entry in the source routing protocol; can be set as OPC_NIL
for custom protocols

• dest. IP Address of the destination network

• mask. Subnet mask of the destination network

• next_hop. IP address of the interface that should be used as the next hop for the
destination addressed entered

• port_info. Contains the “addr_index” of the interface used to reach the next hop

• metric. Metric value assigned to this next hop; this is the cost associated with the next
hop21

21 The custom routing protocol may implement its own metric, the way of determining cost (e.g., hop count, link bandwidth).

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-12

• proto. The unique protocol that entered this route22; the protocol ID, obtained from
Ip_Cmn_Rte_Table_Custom_Rte_Protocol_Register, in case of a custom routing
protocol

• admin_distance. The preference associated with this entry.

4.2.3 Notes

Following are some other useful notes that may help the developer of the custom routing
protocol.

4.2.3.1 Simulation Attributes23

• IP Routing Table Export/Import. 24 This attribute can be used to export the routes
developed by the routing protocol; a text file (*.gdf) is generated in the primary
mod_dirs.25 To use the already existing routes, this attribute should be set to “2” (as
opposed to “1,” for the export).

• IP Dynamic Routing Protocol. This simulation attribute can be set if the custom routing
protocol needs to be run over the complete network. This preference set here takes
precedence over the local specification.

22 Because this API is entering the route to the IP common route table where more than one routing protocol may enter a route

to the desired destination, this protocol ID distinguishes the routes added by different routing protocols.
23 Please refer to the OPNET Modeler online documentation (Modeling Concepts → Process Domain) for details on the

simulation attributes.
24 The simulation attribute can be added in the “start_scm” batch file (located at Sim_Domain\bin) where the simrun

executable is called (e.g., IP Routing Table Export/Import 1).
25 This is the mod_dirs attribute for the env_db file of the simulation domain. For details on the mod_dirs preference and

setting environment attributes, please refer to OPNET online documentation (Modeling Concepts → External Interfaces →
System Environment).

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-13

4.3 WIRED END DEVICE EXAMPLE

4.3.1 Problem Statement

The objective is to build26 an end node model that generates and receives data IERs. The
following subsection discusses in length with the help of a code example how the process model
implementation works for such a node model.

4.3.2 High-Level Design

4.3.2.1 Node Model Discussion

In this particular example, the following high-level decisions (assumptions) are made for the end
device.

• Transport Protocol. TCP is the supported protocol for the transport layer. Other options
are UDP or a custom transport protocol.

• Layer 3 Protocol. IP is used as the Layer 3 protocol.

• Routing. Routing is not performed by the end device, therefore, no routing protocol
decisions have to be made.

• Lower Layers. Ethernet is the supported data-link layer technology.

An application layer must be designed to interface with the transport layer. The System Element
“SE” represents the application layer in the NETWARS end-device models.

With this information, the high-level node model representation would be similar to the one
represented in Figure 4-6.

26 Please refer to the Model Development Guide v3.0, Subsection 3, Compliance for End System Devices, on the approach and

methodology for creating an end-device model.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-14

Figure 4-6: End-Device Node Model

The node model in Figure 4-6 is the actual node model of the NETWARS standard node
models; “NW_ethernet_wkstn_adv”27 (NETWARS 2006-2.1).

For details on how to design the node model for an end-device model, please refer to the “3.5.
Compliance for End-System Devices” subsection. The following discussion about the process
model development assumes that the minimum required attributes28 for the end-device are set.

4.3.3 Detailed Design: Event Response Table

The process model is designed to satisfy the functionality of the device node discussed above. A
functional process model diagram is presented at the end of this subsection.

4.3.3.1 Module Context and Functionality

Context:

In almost all cases, process models describe the behavior of a single module within a node
model, consisting of many modules.29 The role of the process model can then generally be
described by the interactions that it has with the other modules in the node model. From the point

27 Please refer to Figure 3-7 (Ethernet_wkstn_adv—Node Model) of the Model Development Guide v3.0.
28 Please refer to Section 3, Compliance with End-System Devices, for the set of minimum attributes required for an end-

device model.
29 Please refer to the NETWARS Model Development Guide, Section 3, “NETWARS Component Classes,” for discussion on

the top level component classes and “interfaces.”

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-15

of view of other modules in the node model, only the external “black-box” behavior of their
process model(s) is of concern, not their internal implementation. It is therefore an important first
step in the development of a process model to identify the other system components (modules)
with which it must interact.

In case of an end-device node model, the “se” module must interact with the following other
modules (refer to Figure 4-7):

• oe (of the OE node model)
• tcp (Transport Layer Protocol of the end device node model).

Figure 4-7: Interfacing Modules of “se”

Functionality:

Because the development of the process model for the se module is discussed in the following
subsections, the functions of a “System Element” are enumerated below so that it can be related
to the event response table developed for the process model. The main function of the se module
is to interact with the OE and the tcp module and perform the following functions:

• End-device selection (OE)
• Traffic generation
• Handling of TCP connections
• Traffic reception
• Handling of failure/recovery.

Operational
Element (oe)

System
Element

(se)

Transport
Protocol ……

End Device Model OE Model

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-1

This high-level functionality is represented in

Figure 4-8:30

Figure 4-8: High-Level Functions of “se_tcp” Module

The “se_tcp” module uses a single process model called “se_trafgen” which is developed in the
following subsections (although it is possible to have multiple process models to perform the
same function). For further details, refer to the OPNET online documentation (see the section
titled “Process Domain” under the Modeling Concepts menu).

4.3.3.2 Events

The Simulation Kernel (e.g., Failure/Recovery interrupts) or another process within the same
process hierarchy may call upon the se_trafgen process model to respond to an interrupt. In both
cases, however, an event must first occur for the se_tcp module that encompasses the process
model. Logical events may be generated from three types of sources:

1. modules outside the node model
2. other process models within the same node model
3. the process model itself

There is no general method for determining the interrupts of a process model; however, the
activities of the encompassing module (in this case se_tcp) as a whole and the interactions of the
module are a good starting point. The first goal of this stage is simply to determine which logical
events this process model must be prepared to receive.

30 Please refer to Figure 4-16: Workflow Diagram for SE Process Model of the Model Development Guide v3.0.

Operational
Element (OE)

System
Element

Transport
Protocol

Receive OE message to
generate traffic

Acknowledge IER was received
Inform OE of IER reception

• Open/close TCP connections
• Send traffic

• Handle TCP signaling messages
• Receive traffic (IERs)

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-2

Table 4-2 lists all the possible events that the se_trafgen process model can receive, their source,
and the communication mechanism.

Table 4-2: Event Description Table

Logical Event Event Name Event Description

Generate traffic OE_INT This event describes the OEs informing the se_tcp to fire
an IER.

IER Acknowledgement IER_ACK This event is the acknowledgement of an IER

Receive traffic INCOMING_PKT This event is the reception of the packet from the lower
layers.

Receive TCP signaling TCP_MESSAGE These are the tcp handshake messages that are sent from
the tcp module.

Device failure FAILURE This is the failure information sent to the se_tcp module
from the simulation kernel.

Device recovery RECOVERY This is the recovery information sent to the se_tcp module
from the simulation kernel.

The following table lists the events identified in the table above, with their source and the
interrupt type used by the source to inform the “se_tcp” of the event.

Table 4-3: Event Communication Mechanisms

Source
Event Name

Node Module
Communication

Mechanism31

OE_INT OE oe Remote Interrupt
IER_ACK Current tcp Stream interrupts
INCOMING_PKT Current tcp Stream Interrupt
TCP_MESSAGE Current tcp Stream interrupt
FAILURE Failure Recovery n/a Failure Interrupt
RECOVERY Failure Recovery n/a Recovery interrupt

4.3.3.3 States

Now, the state decomposition must be performed that forms the basis of a state transition
diagram (STD) that is represented by a process model in OPNET. The goal here is to define a set

31 This is not the only possible way that this communication can be executed; there might be other ways, although they are not

discussed here. For further details, please refer to the OPNET online documentation (i.e., the section titled “Communication
Mechanisms” under the Modeling Concepts menu).

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-3

of discrete states that will later be connected with transitions to form an STD. At this point, only
the states need be identified.

The guidelines are those mentioned in the OPNET online documentation.32 The following table
lists all the states this process model may have and its description. All these states are “Un-
forced” or red states where the process rests. The “Forced” or the green states are incorporated
for convenience and clarity of execution.

Table 4-4: State Description Table

State Name State Type Description

wait Un-forced Waiting for an interrupt from interfacing
module(s) or from simulation kernel.

failed Un-forced Waiting for an interrupt from the
simulation kernel to recover the node.

4.3.3.4 Event Response Table

For most process models, it is only possible for a subset of the logical events to occur while the
process is located in a given state. This is generally because the involvement of the process itself
is required in the interactions that result in the event. For example, in this process, a “recovery”
event in the “wait” state is not possible because the device has not failed as yet. The following
table enumerates which events are possible/desirable in which states.

Table 4-5: Event Feasibility Table

State Name Logical Event Feasibility

Generate traffic Feasible
Receive traffic Feasible
Receive TCP signaling Feasible
Failure Feasible

wait

Recovery Not feasible
Generate traffic Not feasible
Receive traffic Not feasible
Receive TCP signaling Not feasible
Failure Not feasible

failed

Recovery Feasible

In addition to “wait” and “failed,” other forced states will be introduced in this process model to
act as the placeholder for the code, and to handle the se_trafgen’s functionality. These forced
(green) states are:

32 See the subsection titled Process Modeling Methodology in the section titled Process Domain, under the Modeling Concepts

menu.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-4

• open_conn. This state performs the function of opening the TCP connection for every
IER to be sent by the se_tcp.

• rcv_pkt. This state handles the reception of packets from the lower layers.

• process_message. This state handles the TCP handshake packets received from the tcp
module.

• init. This state creates lists to store the client and the server connection handles and also
creates segmentation and reassembly buffers.

In addition to these states, there is a precursor state wait_for_tcp that ensures that the TCP
protocol has been initialized before the code in the init state is executed.

Once the feasible events associated with each state for the process model are determined, the
next step is to develop an event response table that describes the process’ possible courses of
action for each feasible state-event pair. The following table lists every feasible state-event pair
in the two left columns. For each such pair, at least one transition is defined.

Table 4-6: Event Response Table

Current
State

Logical
Event Condition Action Interim State

(Forced State)
Next
State

Generate
traffic

None Open TCP
connection

open_conn wait

Receive
traffic

None Put the packet in
the reassembly
buffer and close
the TCP
connection

rcv_pkt wait

To open a new connection Open a new
server connection

process_messag
e

wait

established Send the packet
and then close
the connection

process_messag
e

wait

close Inform the OE
that the IER is
received
successfully

process_messag
e

wait

Receive
TCP
signaling Informing

the status of
an existing
connection

aborted Inform OE of the
IER failure that
the connection
aborted

process_messag
e

wait

wait

Device
Failure

None Free up the IER
and TCP
connection
related memory.
Set the
availability of the
device as non-
available.

None failed

failed Device None Set the None wait

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-5

Current
State

Logical
Event Condition Action Interim State

(Forced State)
Next
State

Recovery availability status
of the device
available.

The process model based on the previous table should look similar to that in Figure 4-9:

Figure 4-9: se_trafgen Process Model

4.3.4 Implementation

The following sections discuss functions that each state must perform and associated code
snippets. This subsection touches upon the code for all the important functions of this end-
device, but does not include all code that may be written for the end-device model to be
complete.

The code is written for individual states of the process model, the compilation of which produces
the “C” code representation of the process model.

4.3.4.1 Open Connection State Implementation

Figure 4-10: Open Connection State

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-6

The execution should come to this state from the “wait” state, on reception of a stream interrupt
from the tcp module. The transition for this state is “INCOMING_PKT,” which is defined in the
header block (of the OPNET Modeler process editor) as—

In the enter execs of this state, the following functions are performed:

1. Creating a Packet. The information regarding the IER is retrieved from the ICI
associated with the interrupt; after that, a packet with format “data” is created. In this
packet, information related to the IER as well as the current node is set as follows:

2. Registering with TCP API Package.33 When an application registers itself with the API
package, it is returned as a handle that contains relevant data to accomplish all
subsequent interaction with TCP. The registration process, by itself, discovers the TCP
layer to which the application is connected and store the TCP Object ID in the interface
handle. Also registered in the same handle is a pointer to the next available local port on
the TCP layer. This procedure does not facilitate reusing port values but always
increments the next available local port. This is performed by calling the OPNET tcp api
in the following code snippet:

33 Please refer to the OPNET Modeler online documentation, section on Model Library → Standard → TCP Model User

Guide → Model Interfaces → Application Layer Interfacing for details on the use of these APIs.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-7

3. Open a TCP connection. In this state, it opens a TCP connection to the node whose IP
address equals the given remote address on given local and remote ports. TCP
connections must be opened in active34 mode. “Command” passed as an argument to this
function is used to distinguish between the active and passive modes. Because this is a
client connection, it is opened in an active mode. The NW_TCP_PORT is the default
local port on which the connection could be opened; the user can define its value. The
connection id returned is then stored in a list with other connection information. This is
performed in the following code snippet using the TCP API:

4.3.4.2 Receive Traffic State Implementation

Figure 4-11: Receive Traffic State

The execution should come to the rcv_pkt state from the wait state, on reception of a stream
interrupt from the tcp module. The transition for this state is INCOMING_PKT, which the header
block defines as—

The rcv_pkt state performs the following functions:

First, it puts the packet received into the reassembly buffer and then tries to remove a complete
packet from this buffer. If this state cannot reassemble a packet completely, it destroys the
packet. The OE then reports the IER as received after it receives a close connection message.

34 Please refer to the OPNET Modeler online documentation, section on Model Library → Standard → TCP Model User

Guide → TCP Commands and Indications for details.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-8

After this, the server connection is closed, as shown in the code snippet below:

4.3.4.3 Process Message State Implementation

Figure 4-12: Process Message State

The execution should come to the process_message state from the wait state, on reception of a
stream interrupt from the tcp module. The transition35 for this state is TCP_MESSAGE, defined
in the header block as—

The following functions are performed in this state:

1. A new server connection is opened if the associated ICI indicated a new connection to be
opened. It calls a function se_open_server_tcp_conn defined in the function block.

35 We have defined this transition as one in which the interrupt received is a remote interrupt, and the source of this interrupt is

an IER (by checking that the ici type is “ier_ack”).

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-9

This function opens a TCP connection to the node whose IP address equals the given remote
address on given local and remote ports. TCP connections must be opened in passive mode.
“Command” passed as an argument to this function is used to distinguish between these two
modes. Because this is a server connection, it is opened in a passive mode. The connection id
returned is then stored in a list with other connection information. This is performed in the
following code snippet:

Finally, after the connection is open and the transport connection is established, the application
processes are ready to receive messages from peers. This information must be passed on to TCP,
and the following tcp api accomplishes that operation.

2. This state handles the TCP control messages as well. Based on the type of message, it is
switched (using the C switch/case statements) to the appropriate case.

For the tcp message indicating the successful establishment of the connection, the data is sent
and the connection is closed (see below):

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-10

Once the TCP close control message is received, the OE is informed that the IER36 is received,
and related memory for the connection is freed up (see below).

For the connections that are aborted, the OE is informed of the IER failure, and related memory
is freed up.

4.3.4.4 Failure State Implementation

Figure 4-13: Failure State

The execution should come to the failed state from the wait state upon reception of a failure
interrupt from the kernel. The transition for this state is FAILURE, defined in the header block
as—

36 Please refer to “Appendix G: Constants” of the Model Development Guide v3.0 on details on the codes used by the OE to

communicate with SE and vice-versa.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-11

In this state, the first thing that is done is to set the availability status attribute as disabled, as
shown below:

The next important action in this state is to fail the IERs for which the connection is open.
Because the supporting transport protocol is TCP, the IER is said to be “not received” until a
TCP close acknowledgement is received, meaning the IER data may have reached the destination
but may still be marked as failed. The following code fails the IERs with open connections and
frees up any related memory:

The execution goes back to the “wait” state when the recovery interrupt is received in this state.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-12

4.4 WIRED END DEVICE EXAMPLE 2

4.4.1 Overview

This subsection explains the construction of an end-system device using an example. The
example end-system device is a computer that generates data IERs over TCP/IP with Ethernet as
the MAC technology. The computer is built from an existing OPNET Standard (COTS) device—
an ethernet_wkstn_adv model.

4.4.2 Steps

Because this is an end-system device, it needs a module that communicates with the OE to get
the IER information—the SE module. The SE module generates data IERs upon receiving
remote interrupts from the OE in its OPFAC. It generates the IERs and forwards them to the
network protocol stack, where they are sent out on to the network through the Ethernet
interfaces. Because TCP is an acknowledgement-based scheme, the end-system device sending
the IER marks it as received when the connection close request, for the connection over which
IER was sent, is received. The SE module also handles the failure/recovery of the computer.
Because it transmits only data IERs and uses TCP/IP as the underlying protocol, it needs the
TCP/IP protocol stack. It also uses Ethernet as the MAC technology.

Rather than assembling all the modules needed for communication in the OPNET simulation
environment, begin by modifying an OPNET Standard (COTS) model —an ethernet_wkstn_adv
model. Not all components need to be built by modifying an existing model; components can be
built from scratch as well. The ethernet_wkstn_adv node model is shown below:

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-13

Figure 4-14: Ethernet_wkstn_adv-Node Model

Step 1. From the ethernet_wkstn_adv node, the CPU, application, RSVP, UDP, RIP, Dynamic
Host Configuration Protocol (DHCP) and TPAL modules must be removed:

• In a node editor window, open the ethernet_wkstn_adv node model.
• Select the mentioned modules and hit CTRL-X.

Note that the packet streams connected to and from the modules are deleted automatically.

Step 2. Add the SE module on top of the TCP module and connect them to the incoming and
outgoing packet streams:

• Left-click the “create processor” toolbar button.
• Left-click the area above the TCP module. This creates a processor module on top of the

TCP module.
• Right-click the created module and name the module se_tcp by modifying the module

attributes.
• Left-click the “create packet stream” toolbar button.
• Create an incoming packet stream by first left-clicking the tcp module and then the se_tcp

module.
• Create an outgoing packet stream by first left-clicking the se_tcp module and then the tcp

module.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-14

The node model for the computer should look like Figure 4-15.

Figure 4-15: Computer-Node Model

Step 3. The “Model Attributes” for this node must be set as follows:

• Under the “Interfaces” menu, choose the “Model Attributes” option.
• Set the following attributes and their types in the “Model Attributes” table. The

NETWARS program suggests that you use the already existing public37 definitions of
these attributes, which we have named the same as the attribute names themselves.

Table 4-7: End-System-Model Attributes

Attribute Name Attribute Type

classification String
equipment_type Enumerated
availability_status Toggle

Step 4. The SE module now should house the process model created in the following subsection:

• Right-click on the se_tcp module and change the “process model” attribute to be the
name of the process model, se_trafgen, created in the next subsection.

37 Please refer to the OPNET Product documentation, Modeler Documentation → OPNET Editors Reference → Process Editor

section, for further details.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-15

4.4.3 Process Model: SE

Figure 4-16 contains a workflow diagram of a simple SE process model.

Figure 4-16: Workflow Diagram for SE Process Model

During initialization, the process reads in attribute values and creates any necessary structures, as
well as obtaining pointers to the statistic files.

Referring to Figure 4-16, above, when the computer receives an interrupt from the OE to
generate an IER, it transitions to the send state, sends the IER to the protocol stack, and goes
back to the idle state. When it receives a failure interrupt, it transitions to the fail state and stays
there until it receives a recovery interrupt, at which point it transitions to the recover state and
performs the steps needed for recovery. Then it transitions back to the idle state.

The se_tcp module uses the following APIs to interface with the TCP module:

• tcp_connection_open (). To open a TCP connection with the destination

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-16

• tcp_receive_command_send () Used by the receiving SE module to indicate to the
TCP module to forward the IERs to itself

• tcp_data_send (). To send IERs.

Figure 4-17: Process Model for SE Module in Computer

4.4.4 Statistics

The se_tcp process model is responsible for informing the OE of the failed IERs. There could be
several reasons for failure in data communication, such as the TCP socket failure or congestion
in networks. The se_tcp process model informs the OE (using the codes describes in Appendix
F). The IER is “received” only when the source of the traffic (IER) receives a tcp
acknowledgement (connection close indication) and code NWC_INFORM_SRC_OE_RCVD is
used (in the remote interrupt) to inform the OE at the source OPFAC to collect the IER Received
statistics. In the following sample code, the process model records the statistics due to TCP
socket open failure (for a more detailed example, please refer se_trafgen.pr.c / se_trafgen.pr.m
files).

Figure 4-18: Code 1-Inform OE of IER Failure, Will Record Statistics

Interfacing with the statistics, such as writing success and failure statistics, is normally
accomplished through the APIs. Refer to “Appendix L: NETWARS Simulation API and Helper
Functions”

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-17

4.5 LAYER 1 DEVICE EXAMPLE : BULK ENCRYPTOR

4.5.1 Overview

This subsection explains the construction of Layer 1 networking equipment using an example.
The objective is to construct an encryptor device. The example networking equipment is an
encryptor with two ports. It accepts packets from a classified network, encrypts the packet, and
sends it over an unclassified network. When it accepts packets from the unclassified network, it
decrypts the packet and forwards it on to the classified network. It encrypts only the payload of
the packet. The header is left intact. The encryptor model is constructed from scratch.

4.5.2 Steps

Step 1. Two transceiver pairs are created:

• In a new node editor window, using “create point-to-point receiver,” place two point-to-
point receiver and transmitter pairs and “create point-to-point transmitter” toolbar
buttons.

• Once the transceiver modules are in place, create logical connections between them by
using the “create logical tx/rx association” toolbar button.

Step 2. A processor to house the encryptor process model is created and connected to the
transceiver pair:

• Left-click the “create processor” toolbar button.
• Left-click the area above the transceiver modules.
• Right-click the created module and name the module “encryptor” by modifying the

module attributes.
• Left-click the “create packet stream” toolbar button.
• Create incoming packet streams by first left-clicking on the receiver modules and then on

the encryptor module.
• Create outgoing packet streams by first left-clicking on the encryptor module and then on

the transmitter modules.

The resulting encryptor device looks like Figure 4-19.

Figure 4-19: Encryptor-Node Model

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-18

4.5.3 Process Model

Step 1. A workflow diagram of a simple encryptor model is designed.

Figure 4-20: Data Flow for Encryptor

Step 2. The encryptor performs its initialization functions in the init state and transitions to the
idle state, where it waits for a packet. When the packet arrives, it checks the direction from
which the packet is coming. If the packet is from a classified network and going to an
unclassified network, it encrypts the packet and sends it on the appropriate output interface. It
decrypts the packet for a packet going in the opposite direction.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-19

Figure 4-21: Process Model for Encryptor

Figure 4-22 shows a sample code block from the encrypt state:

Figure 4-22: Code 2-Encrypting a Packet

The model developer must write the function get_encrypted_packet () that takes in a
packet and encrypts it. All other functions are OPNET kernel procedures. It is important to note
that the code listed above uses the expression (1 - stream), which only works if all stream
numbers are zero and one, and both the incoming and outgoing stream connected to a particular
rx/tx pair are given the same stream number (i.e., if pr_0 is connected by incoming stream zero,
then pt_0 must be connected by outgoing stream zero). Similarly, pr_1 and pt_1 should both use
stream number one. An example cryptographic device, which performs similar functionality, is
the KG-194 node model; the process model is crypto.pr.m (these cryptographic device models
are available with NETWARS version 3.0).

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-20

4.6 LAYER 2 DEVICE EXAMPLE : M ULTI -SERVICE SWITCH

4.6.1 Overview

The example considered here is a multi-service switch that has circuit-switched and ATM
interfaces. The objective is to explain the construction of Layer 2 networking equipment using an
example. The example networking equipment is a multi-service switch that is used for
interfacing a circuit-switched voice network with an ATM data network. This is a switch with
one ATM and two circuit-switched interfaces. It needs two pairs of circuit-switched transceivers
and one pair of ATM transceiver. It also has the ATM protocol stack. In addition to these
modules, a module for switching is needed. This device needs one ATM port and the ATM
protocol stack. Therefore, this node is built by modifying an OPNET Standard (COTS) model—
atm_uni_dest_adv. The atm_uni_dest_adv node model is shown in Figure 4-23:

Figure 4-23: Atm_uni_dest_adv Switch-Node Model

4.6.2 Steps

Step 1. From the atm_uni_dest_adv node model, the traf_sink module is removed:

• In the node editor window, open the atm_uni_dest_adv model.
• Select the module mentioned above and hit Ctrl-X to remove them from the workspace.

Step 2. This device has two circuit-switched ports. Therefore, two transmitters and receivers are
added:

• Left-click the create point-to-point receiver tool button.
• Left-click in the node editor workspace to create two instances of the point-to-point

receiver.
• In a similar way, create two transmitter objects.
• Associate the transceiver pairs with a transmitter/receiver association object.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-21

Step 3. Two processor modules are created, and the circuit-switched ports are connected to one
of them:

• Place a processor module in the workspace and name it voice_dispatch.
• Connect the transmitters and receivers to the voice_dispatch module.
• Create another processor and call it voatm.

Step 4: Connect the circuit-switched ports to the ATM stack through the voatm and
voice_dispatch modules using packet streams.

The completed node model looks like Figure 4-24.

Figure 4-24: Multi-Service Switch-Node Model

Step 6. Create process models for the voatm and voice_dispatch modules and set the process
model attributes for these two modules appropriately.

Step 7. Add the required NETWARS attributes. Refer to Step 3 under Subsection 4.4.2.

4.6.3 Process Models: Voice Dispatch and Voice Over ATM

• voice_dispatch. Takes the ckswpkt packet and passes it to the appropriate convergent
module. A multi-service switch like this can potentially have additional types of
interfaces like IP and Frame Relay. There are different convergent modules depending on
the protocol stack desired. In the example, there is only one convergent module, the
voatm module. So, the voice_dispatch module forwards call-setup packets to the voatm

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-22

module.

Similarly, when the voice_dispatch module receives packets from the voatm module, it
must determine which one of the circuit-switched interfaces to send the packet on.

• voatm. When the voice_dispatch module forwards the packet to the voatm module, the
voatm module generates ATM cells at a rate that depends on the call generation rate and
forwards the packets to the ATM stack. When the voatm module gets data packets from
the ATM stack destined to one of the circuit-switched interfaces, it destroys the data
packets and sends the appropriate control packets (call-setup, ack) to the voice_dispatch
module.

The voice module is responsible for informing ATM of the circuit setup. The voice call
setup message must be translated to the appropriate ATM call setup message for circuit
reservation. Likewise, on the other end, the ATM device must inform the voatm module
of the call setup message and forward it on. On the “source” side, there needs to be
flooding on the other circuit switch interface.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-23

4.7 LAYER 3 DEVICE EXAMPLE : CUSTOM ROUTER

4.7.1 Overview

This subsection explains the construction of Layer 3 networking equipment using an example.
The example considered is an IP router with one serial port, one Ethernet port, and a custom
routing protocol (called MRP,for Military Routing Protocol) running over TCP. The router is
built from an existing OPNET Standard (COTS) device—a CS_1005_1s_e_sl_adv router model.

4.7.2 Steps

This router has a custom routing protocol, MRP, running on top of TCP. The router has two
ports—one Ethernet port and one SLIP port. The router is constructed from an existing OPNET
Standard (COTS) model—a CS_1005_1s_e_sl_adv router model. Rather than assembling all the
modules needed for communication in the OPNET simulation environment, begin by modifying
an OPNET Standard (COTS) model— a CS_1005_1s_e_sl_adv router model. The
CS_1005_1s_e_sl_adv node model is shown below, in Figure 4-25:

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-24

Figure 4-25: CS_1005_1s_e_sl_adv Router-Node Model

Step 1. The custom routing protocol module is added on top of the TCP module and is connected
to it with an incoming and outgoing packet stream:

• Left-click the create processor toolbar button.
• Left-click the area above the tcp module. This creates a processor module on top of the

tcp module.
• Right-click the created module and name the module “mrp” by modifying the module

attributes.
• Left-click the create packet stream toolbar button.
• Create an incoming packet stream by first left-clicking the tcp module and then the mrp

module.
• Create an outgoing packet stream by first left-clicking the mrp module and then the tcp

module.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-25

After the changes have been made, the node model for the router looks like Figure 4-26.

Figure 4-26: Router with Custom Routing Protocol-Node Model

Step 2. Add the required NETWARS attributes. Refer to Step 3 under Subsection 4.4.2.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-26

4.7.3 Process Model: Custom Routing Protocol

The process model that implements the custom routing protocol looks like Figure 4-27.

Figure 4-27: Process Model for Custom Routing Protocol

In the init state, the custom routing protocol registers itself as an IP higher-layer protocol using a
call to the function Ip_Higher_Layer_Protocol_Register() . It must also register
itself in the IP common routing table with a call to the function
Ip_Cmn_Rte_Table_Custom_Rte_Protocol_Register() .

When the IP process mode has been initialized, the custom routing protocol module receives a
remote interrupt with code IPC_EXT_RTE_REMOTE_INTRPT_CODE. On receiving this
remote interrupt, it transitions to the init_rte_table state, where it can start accessing the routing
table via the process registry. Then it transitions to the wait state.

When the custom routing protocol receives route update messages, it makes or changes entries in
the common routing table using calls to the functions:

• Inet_Cmn_Rte_Table_Entry_Add()
• Inet_Cmn_Rte_Table_Entry_Delete()
• Inet_Cmn_Rte_Table_Entry_Update()

These functions are defined in the external file OPNET\<rel_dir>\models\std\
ip\ip_cmn_rte_table.ex.c and the prototypes for these functions are in OPNET\<rel_dir>\
models\std\include\ip_cmn_rte_table.h, where <rel_dir> is the release directory (e.g., 12.0.A).

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-27

4.8 CIRCUIT -SWITCHED DEVICE EXAMPLE : END SYSTEM

4.8.1 Overview

This subsection explains the construction of a circuit-switched device using an example. The
example used here is a phone (a circuit-switched end-system device) that generates calls based
on its interaction with the OE. This example shows how to build the device from scratch.

4.8.2 Steps

The phone has three modules, as shown in Figure 4-28:

• An SE module that generates calls in response to interrupts from the OE
• A transmitter that supports only packets of type cktswpkt
• A receiver that supports only packets of type cktswpkt.

Figure 4-28: Phone-Node Model

The transmitter and the receiver are connected to the SE module by packet streams, as shown in
Figure 4-28. The transmitter and receiver are logically associated with each other.

Note that in order to generate calls initiated by the standard voice application in addition to voice
IERs, the device would require additional application, TPAL, and CPU modules.

Step 1. A transceiver pair is created:

• In a new node editor window, a point-to-point receiver and transmitter pair is created by
using the “create point-to-point receiver” and “create point-to-point transmitter” options.

• Once the transceiver modules are in place, logical connections between them are created
using the “create logical tx/rx association” option.

Step 2. A processor to house the se process model is created and connected to the transceiver
pair:

• Left-click the “create processor” toolbar button.
• Left-click the area above the transceiver modules.
• Right-click the created module and name the module “se” by modifying the module

attributes.
• Left-click the “create packet stream” toolbar button.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-28

• Create an incoming packet stream by first left-clicking the receiver module and then on
the SE module.

• Create an outgoing packet stream by first left-clicking the SE module and then the
transmitter module.

Step 3. The “Model Attributes” for this node must be set as follows:

• Under the “Interfaces” menu, choose the “Model Attributes” option.
• Set the attributes and their types shown in Table 4-8 in the “Model Attributes” table.

Table 4-8. Circuit-Switched End-System Device-Model Attributes

Attribute Name Attribute Type

equipment_type Enumerated
availability_status Toggle
Call Bandwidth Double
Max Calls Allowed Integer

Step 4. The SE module to house the process model is created in the following subsection:

• Right-click the SE module and change the “process model” attribute to be the name of
the process model created in the following subsection.

4.8.3 Process Model: se

The se module is responsible for interacting with the OE to generate calls.

Step 1. A workflow diagram of a simple SE process model is designed.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-29

Figure 4-29: Data Flow for Phone

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-30

Step 2. The process model for the se module might look like that shown in Figure 4-30.

Figure 4-30: Process Model for SE Module

The initialization steps are performed in the init_1 state. When the phone receives an interrupt
from the OE requesting a call setup, the process model transitions to the call_setup state, gets the
necessary information from the oe_se_ici ICI, creates a call-setup packet, and sends it to the
transmitter module.

When the phone receives a packet, the process model transitions to the packet_arrival state and
processes the packet. This packet could be an ACK packet indicating that the call was
successfully set up, a Negative Acknowledgement (NACK) indicating that the call setup failed,
or a request for a call setup from a remote phone. The packet_arrival state takes the necessary
action, depending on the type of packet.

When the phone receives a failure interrupt, it transitions to the failure state and takes the
necessary steps to handle the interrupt. It recovers when it receives a recovery interrupt.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-31

4.9 WIRELESS DEVICE EXAMPLE

4.9.1 Overview

This subsection explains the construction of a radio device using an example. This end-system
device uses the OPNET standard wireless LAN MAC model to communicate voice or non-IP
data IERs. Start with the OPNET Standard (COTS) model wlan_station_adv node model. The
wlan_station_adv is a simple radio device that sends out a packet to the destination specified in
the wlan_mac_intf module using IEEE 802.11 interface. By adding an SE module to interface to
the OE and setting the destination address to be that of the gateway radio device, we have a
simple radio end-system device. The wlan_station_adv node model is shown below in Figure
4-31.

Figure 4-31: wlan_station_adv-Node Model

4.9.2 Steps

Step 1. The source and sink modules are replaced with an se module:

• In a node editor window, open the wlan_station_adv node model.
• Select the mentioned modules and press CTRL-X.

Note that the packet streams connected to and from the modules is deleted automatically.

Step 2. The SE module is added on top of the wlan_mac_intf module and is connected to it with
an incoming and outgoing packet stream:

• Left-click the create processor toolbar button.
• Left-click the area above the wlan_mac_intf module.
• Right-click the created module and name the module se by modifying the module

attributes.
• Left-click the create packet stream toolbar button.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-32

• Create an incoming packet stream by first left-clicking the wlan_mac_intf module and
then the se module.

• Create an outgoing packet stream by first left-clicking the se module and then the
wlan_mac_intf module.

Step 3. Because this is an end-system device, it has classification, equipment_type, and
availability_status as model attributes. Set the model attributes for this node as follows:

• Under the “Interfaces” menu, choose the “Model Attributes” option.

Set the attributes and their types shown in Table 4-9 in the Model Attributes table.

Table 4-9. Radio End-System Device-Model Attributes

Attribute Name Attribute Type

classification String
equipment_type Enumerated
availability_status Toggle

The node model looks like Figure 4-32.

Figure 4-32: Radio SE model-Node Model

Step 4. The se module now houses the process model created in the following subsection:

• Right-click the se module and change the process model attribute to have the name of the
process model.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-33

4.9.3 SE Process Model

The process model for this device is similar to the for constructing a computer model process
model except that packets are sent to the lower layer directly without using the TCP interface.
Refer to the Process Model section of the example wired end device for more information.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-34

4.10 WIRELESS DEVICE EXAMPLE 2

4.10.1 Problem Statement

The following discussion provides implementation-level guidelines for developing a radio end-
device NETWARS model. Relevant aspects, such as OE-SE interaction, are presented in detail;
however, other aspects of the radio itself—such as the medium access control—are left out
because the details are specific to the type of radio being modeled.

The discussion aims to provide details for an radio end-device that is capable of generating both
voice and data IERs.

4.10.2 High-Level Design

4.10.2.1 Node Model Development

Figure 4-33. Radio End Device Node Model

The node model in Figure 4-33 above is a NETWARS sincgars_rt node model and it shows a
device with two interfaces—a wired interface and a radio interface. The node is also capable of
generating NETWARS IER traffic from the se module.

The se module is responsible for generating the IER and reporting the IER receptions through
interaction with the OE in the OPFAC.

The fwd module is responsible for performing appropriate forwarding decisions—either to and
from the se module or to and from the mac module.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-35

The mac module is responsible for the medium access control to the wireless interface. The
functions of this module depend on the technology a particular device uses. Hence, the
implementation details for this module are not discussed.

4.10.3 fwd module: Detailed Design

4.10.3.1 Module Context and Functionality

This module is responsible for handling the packets that arrive either from the se module (which
generates the traffic) or from the wired interface of this device. The se module is responsible for
generating the traffic. The fwd module is an interfacing module between the mac and the
se/wired_mac module. Based on the packets received from either of these modules, it determines
the destination module and forwards it on. It is necessary to provide any required encapsulation
or decapsulation so that the packet format of the packet is the one supported at the destined
module.

4.10.3.2 Events

There are three different events that can happen at this module. They are:

• Receive packet from SE
• Receive packet from INC (wired interface)
• Receive packet from the MAC (radio mac).

4.10.3.3 States

Based on the packet this module receives, it forwards it to the relevant destination module and
waits for the arrival of the next packet. Thus, the only real state this module can be in is the Wait
state, although there can be a few transitory states this module can go to, where it performs the
forwarding functions.

4.10.3.4 Event Response Table

The detailed design approach followed in this subsection is very similar to that followed in the
wired end device code example (see Subsection 4.3).

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-36

Table 4-10: Event Response Table for “fwd” Process

Current State Logical Event Condition Action Next State

Init Simulation start Perform
initialization
steps, initialize
state variables.

Wait

Packet arrived
from se or
wired_mac

Forward packet
to the mac
module38

Wait

Wait

Packet arrival

Packet arrived
from mac

If packet is
designated to se,
send the packet
to se.
Otherwise,
forward the
packet to the
wired_mac
interface.

Wait

Figure 4-34: fwd Module Process Model

38 Note that this is an example—in this node, packets from the wired interface are just forwarded to the wireless interface.

Equivalently, we could consider forwarding the packets to the “SE” module,or some split in between based on other logic
considerations.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-37

4.10.3.5 Implementation Details

Init State Implementation:

In this state, the radio availability is set to enable if it is not a part of any broadcast network, and
other state variables are also initialized, including the power, fec-comsec, and the module ids like
the mac module id and the se module id.

MAC_PK_RCV State Implementation:

The execution reaches this state when the fwd module receives a packet from the mac layer.

In this state, we are receiving the packet from the mac layer. Depending on the destination of the
packet, the packet is sent to the transmitter or the se.

INC_SE_PK_RCV State Implementation:

The execution reaches this state if the fwd module receives a packet from either the se module or
the INC device connected to the radio.

In this state, packets are received from either the INC or the se module. If the packet is from the
INC, then it is an ip_dgram_v4 format, and needs to be encapsulated and a radio_packet created
to forward to the mac. If the packet is from the se module, then it is already in the radio_packet
format and can be sent to the mac.

Please note that in the following piece of code, the IER parameter structure is reallocated, and
some of the information is populated. This is done to ensure a correct IER statistics update. In
the case of a radio transmission device, the functions of reliable transmission control protocol
(e.g., TCP) are not implemented; therefore, if an IP datagram is lost, it basically means the
failure of the IER. Therefore, if, during the radio transmission, a packet is marked as “noise,”
this means the associated IER has failed and needs to be reported. The memory associated with
IER parameters must be freed at the receiving end or where the IER is marked failed.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-38

4.10.4 mac Module

No specific MAC is detailed here because the medium access control for the broadcast medium
is specific to the type of radio being modeled. Typical schemes might be TDMA or Frequency
Division Multiple Access (FDMA), for example, to provide access to the shared broadcast
medium. The NETWARS model suite has radio models with specific MAC implementations;
please refer to SINCGARS and EPLRS as example radios.

The MAC module should essentially guarantee that the packets arriving from the “fwd” module
(in the example node above) are sent over the wireless broadcast medium using an access control
mechanism.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-39

4.10.5 se Module

4.10.5.1 Module Context and Functionality

The se module is responsible for generating traffic based on the information received from OE.
This module also acts as the traffic destination (or sink). All the traffic destined for a particular
device reaches the se module, which writes the IER statistics.

The two modules with which se interfaces are oe and the forwarding module (shown in Figure
4-35.)

Figure 4-35: SE Module Interfaces

4.10.5.2 Events

Two events can occur at this module:

• Packet arrival from the forwarding module. This packet signifies the reception of the IER
for which this device is destined.

• Reception of information from the OE to start a new IER.

4.10.5.3 States

The only true state this module can be in is the Wait state, in which the module’s process model
executes after processing either of the above-mentioned events. However, there can be two
transitory states where the processes execute to perform the necessary functions based on the
events.

4.10.5.4 Event Response Table

Table 4-11: Event Response Table for Radio SE Module

Current State Logical Event Condition Action Next State

Init Simulation start None Perform initialization. Wait
Remote interrupt None Generate IER, send IER

out to “fwd” module.
Wait Wait

Stream interrupt None Process incoming packet.
Inform OE, which records
the IER statistics.

Wait

Operational
Element (oe)

System
Element
(se)

Forwarding
Module ……

End Device Model OE Model

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-40

4.10.5.5 Radio SE Process Model

Figure 4-36: Radio SE Process Model

4.10.5.6 Implementation Details

Init State Implementation:

In this state, some of the state variables, including the node id, process id, and oe id for the
OPFAC are set.

Transitory
States

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-41

Gen_Call State Implementation:

Figure 4-37: Gen_Call State

The control reaches this state if the se receives a remote interrupt from the OE:

First retrieve the IER parameters from the ICI associated with the remote interrupt. Make sure
that the interrupt code used by the OE is “OE_SE_IER_SEND”. Then determine whether the
IER to be generated is a “voice” or a “data” IER.

If the IER to be generated is of type “voice,” then—

1. Create the packet—set the fields on the packet, such as destination radio ID, flag to
indicate that the IER was generated by a radio device, and so forth.

2. Set the radio as “being busy” for the duration of the call. For the radio, “being busy” can
be set by marking the radio as “not available.”39

3. Send the packet out to the “fwd” module.

39 The “being busy” flag may be reset after the call is complete to signal to the OE that the radio is available for future IER

generation. The reset may be performed, for example, by the “mac” module—after the call is complete. The attribute to be
reset for availability is a node-level attribute—”availability_status.”

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-42

If the IER is of type “data,” then—

1. Create the packet—set the fields on the packet, such as destination radio ID, flag to
indicate that the IER was generated by a radio device, and so forth.

2. Set the size of the packet in bits to the IER size indicated.
3. Send the packet out to the “fwd” module.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-43

Note here that if the IER is to be “multicast” to more than one destination, then the destination
list should be filled when the IER is created.40 This destination list should be checked when
processing the IER at the reception end.

Proc_Pk State Implementation:

Figure 4-38: Proc_Pk State

The execution reaches this state when the radio end device receives an IER (stream interrupt).

The following factors are to be considered:

1. Determine whether this radio is an intended recipient of the IER.
2. Process the received IER, and send interrupt to the OE in the OPFAC about the

received IER. The remote interrupt to the OE should contain the code =
NWC_INFORM_SRC_OE_RCVD. The interrupt should also have an ICI associated
with it (of format “oe_se”) containing information of the IER received.

40 This function is performed by the OE.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-44

4.10.5.7 ICI and Packet Formats

Relevant ICI and packet formats are as follows:

1. “oe_se” ICI is used for interaction between the OE and SE modules.
2. A new packet format for the IER is to be generated by the radio. This packet format

has packet format fields for the IER information, a flag to indicate that the packet is
from a radio SE, and so forth. For example, the SINCGARS radio creates a packet of
format “radio_packet.”

4.10.6 Addressing and Other Issues

For radio devices that have IP devices attached to them (e.g., the wired interface in the radio
above may have an IP device such as a router attached to it), autoaddressing modifications are
necessary. Please refer to the discussion on autoaddressing changes in Appendix W for further
details.

4.10.7 Optimization and Efficiency Considerations

Some high-level efficiency considerations include—

• For the radio model, dynamic receiver groups are an implementation option to modify the
list of potential receivers during the course of a simulation.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-45

4.11 SATELLITE TERMINAL GENERIC EXAMPLE

4.11.1 Node Model Contents

A generic satellite terminal, as it is termed in the context of NETWARS, has only a direct
mapping of a wired input port of a particular index to an uplink and downlink channel pair of the
same index. It does not need to contain any process models that process packets received.

It must have a module to house the antenna aiming process. This plays an important role in
pointing a directionalized antenna at the terminal’s home satellite, and it plays a role in
simulation efficiency. This module should house the process sat_term_antenna_aim .

It must have its radio transmitter receiver pair named “sat_tx/rx_0”, and it must have its wired
input ports named as “uplink_pt/pr_<n>“ where the <n> corresponds to the wired input port
index and the associated uplink and downlink channel pair index.

Figure 4-39: Generic Satellite Terminal

4.11.2 Core Self-Description Attributes

• Nodal Mode should have the value “Generic.”
• Supported Bands should have the value “Ku,X,C,Ka.”

4.11.3 Additional Attributes

• Home Satellite (string). This attribute contains the dotted hierarchical name of the home
satellite node in the scenario for this satellite terminal. It should have the initial value
“Unspecified,” and active attributes should prevent direct user modification.

• Channel <n> Function (integer). This helps the Wired Link Deployment Wizard
determine what types of links to consider during link deployment. For the Nodal Mode

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-46

attribute, it should always have the symbol map value “Non-TSSP.” The <n> of the
attribute name corresponds to a wired port index. A separate instance of this attribute
must exist for each wired input port.

• Port <n> Mapping (compound). This node model must have N instances of this
attribute, where each instance corresponds to a single wired input port. The peer satellite
terminal on the other end of the link has values that mirror those on the local device for
this attribute.
– Input Port (integer). Corresponds to a wired input port index on this satellite

terminal device instance; it should have only one possible value that equals the <n>
of the name of its parent compound attribute.

– Remote Satellite Terminal (string). Identifies the peer satellite terminal to which
this terminal will connect via the channel index by which it connects.

– Remote Input Port (integer). Corresponds to a wired input port index on the peer
satellite terminal. As of version 2006-2, a remote generic terminal can have up to
eight wired input ports, so this attribute must support values “0–7”.
Downlink <n> Bandwidth (double, kHz),
Downlink <n> Data Rate (double, bps),
Downlink <n> Frequency (double, MHz),
Uplink <n> Bandwidth (double, kHz),
Uplink <n> Data Rate (double, bps),
Uplink <n> Frequency (double, MHz),
Uplink <n> Power (double, W)

Together, these attributes define the properties of channel <n>. The node model
should include an instance of each of these attributes for every wired input port
channel. The user should not have the ability to directly modify them in the Scenario
Builder editor. Only the Satellite Link Deployment Wizard should assign these
attribute values. Active attribute definitions should prevent the user from modifying
them directly.

Modulation Downlink (string),
Modulation Uplink (string)

These attributes define the modulation used for all channels of this satellite terminal
in the uplink and downlink directions. The user should not have the ability to directly
modify them in the Scenario Builder editor. Instead, only the Satellite Link
Deployment Wizard should assign these attributes values. Active attribute definitions
should prevent the user from modifying them directly.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-47

4.11.4 Antenna Aim Process

Figure 4-40: Antenna Aim Process

This process serves two purposes. It repoints the satellite terminal’s antenna every time the
satellite moves. It also sets up simulation efficiency for satellite terminals that do not have any
process models besides this one. When running in SATCOM efficiency mode, a simulation-level
attribute defined in the satellite_switch process model, each satellite has the responsibility of
establishing the receiver group of its own channels and those of its home satellite. TSSP satellite
terminals, for example, do this in the tssp process model, but generic satellite terminals do that in
the sat_term_antenna_aim process model.

4.11.5 Key Code Snippets from Antenna Aim Process

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-48

This code executes when the kernel notifies the process of movement on the part of the home
satellite device of the satellite terminal via the OPNET kernel procedure
op_ima_obj_pos_notification_register ().

This code executes at simulation startup if the simulation runs with the SATCOM Efficiency
Mode set to “Enabled.” It configures its uplink channels’ rxgroups and its home satellite’s
downlink transponders channels’ rxgroups.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-49

4.12 SATELLITE TERMINAL WITH TSSP EXAMPLE

4.12.1 Overview

TSSP serves as a multiplexing scheme used in Super High Frequency (SHF) satellite systems. It
performs multiplexing and de-multiplexing at the satellite link endpoints on the terminals. TSSP
employs the concept of a nodal terminal versus a non-nodal terminal. A non-nodal terminal
simply has one uplink channel for its multiplexed traffic for transmission and a single downlink
channel for receiving multiplexed traffic that it decodes and forwards to its wired input ports. A
nodal terminal has one uplink signal that it transmits with all of its multiplexed traffic; however,
it can support multiple downlink channels where each downlink channel can carry a different
multiplexed signal. For more information about TSSP and nodal versus non-nodal, consult
Chairman of the Joint Chiefs of Staff Manual (CJCSM) 6231 and Military Standard (MIL-STD)-
188-168.

4.12.2 Node Model Contents

A non-nodal TSSP satellite terminal has two wired input ports on the landline side, but the model
can accommodate up to eight for those who would like to model it in that manner. Each wired
transmitter/receiver pair must have the naming format “input_pt/pr_<n>” where <n> represents
the port index. It has exactly one radio interface named “sat_tx/rx_0” that has a single uplink and
a single downlink channel. The uplink channel carries the outgoing multiplexed signal, while the
downlink channel receives the incoming multiplexed signal. All the interfaces connect to the
central processing unit, the module named “tssp.” This module performs the multiplexing of the
outgoing bitstream and the demultiplexing of the incoming bitstream. Lastly, it has a module
named “antenna_aim” that aims the device’s directional antenna at the home satellite.

A nodal TSSP satellite has the same properties as its non-nodal counterpart with two exceptions.
It must have exactly eight inputs, no more and no less. It also can support up to four incoming
bitstreams to demultiplex, which means it has four downlink channels rather than just one.

To develop second- and third-generation TSSP models, simply increase the number of wired
input ports to 12, increase the nodal terminal’s number of downlink de-multiplexing channels,
and make the appropriate data rate values supported on the channel attributes. The subsections
below discuss attributes. Their values have a great deal of impact on how the model behaves.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-50

Figure 4-41: TSSP Satellite Terminal

4.12.3 Core Self-Description Attributes

Nodal mode should have the following values under the following conditions:

• “Non-Nodal TSSP” for first-generation non-nodal terminals
• “Nodal TSSP” for first-generation nodal terminals
• “Non-Nodal ETSSP” for second-generation (enhanced) terminals
• “Nodal ETSSP” for second-generation (enhanced) terminals
• “Non-Nodal ETSSP G3” for third-generation non-nodal terminals
• “Nodal ETSSP G3” for third-generation nodal terminals.

Supported bands should have the value “Ku,X,C,Ka”.

4.12.4 Additional Attributes

The TSSP module contains several attributes, but how you set the values of some affects which
others the model reads during simulation.

• Nodal Mode. This attribute plays a pivotal role in how the process reads other attributes.
This attribute should have the same value as specified in the Nodal Mode Core Self.

• Description attribute. The node should always have this attribute promoted, set, and
hidden. It should have these values under the following circumstances.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-51

– “Non-Nodal TSSP” for first-generation non-nodal terminals
– “Nodal TSSP” for first-generation nodal terminals
– “Non-Nodal ETSSP” for second-generation (enhanced) terminals
– “Nodal ETSSP” for second-generation (enhanced) terminals
– “Non-Nodal ETSSP G3” for third-generation non-nodal terminals
– “Nodal ETSSP G3” for third-generation nodal terminals.

• Home Satellite (string). This attribute contains the dotted hierarchical name of the home

satellite node in the scenario for this satellite terminal. It should have the initial value
“Unspecified,” and active attributes should prevent direct user modification.

• Modulation Downlink (string),
Modulation Uplink (string)

These attributes define the modulation used for all channels of this satellite terminal in
the uplink and downlink directions. The user should not have the ability to directly
modify them in the Scenario Builder editor. Instead, only the Satellite Link Deployment
Wizard should assign these attributes values. Active attribute definitions should prevent
the user from modifying them directly.

4.12.5 Node Model Specific Configuration

4.12.5.1 General

Each node model that represents a particular generation and nodal or non-nodal implementation
requires some attribute characterization. This subsection describes that for each type of terminal.

Each TSSP node model additionally has two compound attributes that must be uniquely
configured for each type of TSSP satellite terminal: Channel Config and Groups Memberships.
Channel Config has the attributes that characterize a channel, and Group Memberships has the
attributes that define TSSP group configurations, also referred to as TSSP circuits.

Make these modifications in OPNET Modeler’s or ODK’s Node Model editor. The default
attributes’ symbol maps must have the value “Unset.” Scenario Builder’s Satellite Link
Deployment Wizard expects to find these attributes set to the symbol map value “Unset”
initially. It also expects these attributes to have the correct number of rows. Each row
corresponds to the index of an aggregate side radio channel or an input side wired port.

Refer to the Figure 4-42 below for an example of how to configure these attributes of a nodal
TSSP satellite terminal.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-52

Figure 4-42: Configuration-TSSP Nodal Terminals

Example Configuration: TSSP Nodal Terminals
Channel Config | Downlink (compound)

This should have exactly four rows. Each row corresponds to a deMUX group.

Figure 4-43: Each Row Corresponding to deMUX Group

1

2

3

5

6

4

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-53

Group Configuration (compound)

This should have exactly eight rows. Each row corresponds to an input port group.

Figure 4-44: Each Row Corresponding to Input Port Group.

Table 4-12: Event Response Table for Radio SE Module

Configuration Attribute Settings

TSSP Nodal Terminals Channel Config | Downlink (compound)
This should have exactly four rows.
Each row corresponds to a deMUX group.
Group Configuration (compound)
This should have exactly eight rows.
Each row corresponds to an input port group.

TSSP Non-Nodal Terminals (8
Inputs)

Channel Config | Downlink (compound)
This should have exactly one row.
The row corresponds to the single available deMUX group.
Group Configuration (compound)
This should have exactly eight rows.
Each row corresponds to an input port group.

ETSSP Nodal Terminals Channel Config | Downlink (compound)
This should have exactly six rows.
Each row corresponds to a deMUX group.
Group Configuration (compound)
This should have exactly twelve rows.
Each row corresponds to an input port group.

ETSSP Non-Nodal Terminals w/ 8
Inputs

Channel Config | Downlink (compound)
This should have exactly one row.
The row corresponds to the single available deMUX group.
Group Configuration (compound)
This should have exactly 12 rows.
Each row corresponds to an input port group.

7

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-54

Configuration Attribute Settings

ETSSP 3G Nodal Terminals Channel Config | Downlink (compound)
This should have exactly six rows.
Each row corresponds to a deMUX group.
Group Configuration (compound)
This should have exactly 12 rows.
Each row corresponds to an input port group.

ETSSP 3G Non-Nodal Terminals
w/ 8 Inputs

Channel Config | Downlink (compound)
This should have exactly one row.
The row corresponds to the single available deMUX group.
Group Configuration (compound)
This should have exactly 12 rows.
Each row corresponds to an input port group.

All Non-Nodal Terminals w/ 2
Inputs

Channel Config | Downlink (compound)
This should have exactly one row.
The row corresponds to the single available deMUX group.
Group Configuration (compound)
This should have exactly two rows.
Each row corresponds to an input port group.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-55

4.12.6 TSSP Process

Figure 4-45: TSSP Process Model

Table 4-13: Events of TSSP Process Model

Current State Event Condition Action Next
State

Init Simulation
start

None Perform initialization Idle

Idle Self
Interrupt

Interrupt code =
TsspC_Intrpt_SatEf
f

Set rxgroups of terminal
and satellite channels

SatEff

SatEff None None Idle

Idle Stream
Interrupt

Interrupt stream
from an input port

Place incoming packet in
correct transmission
queue

Queue

Queue None None Idle

Idle Self
Interrupt

Interrupt code =
TsspC_Intrpt_Send
Frame

Construct frame with
payload of transmission
queues and send

Xmt

Xmt None None Idle

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-56

Current State Event Condition Action Next
State

Idle Stream
Interrupt

Interrupt stream
from an radio
(satellite) port

Deconstruct the
incoming frame, extract
payload, and forward it
to appropriate inputs

deMUX

deMUX None None Idle

Idle Fail
Interrupt

None Flush queues, cancel all
scheduled frame
transmissions

Failed

Failed Recover
Interrupt

None Schedule next frame
transmission

Idle

Failed Stream
Interrupt

None Destroy incoming packet Failed

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-57

4.12.7 Key Code Snippets from TSSP Process

Xmt Enter Execs:

This code snippet shows how the TSSP process constructs its frames in efficiency mode. It
places data from each input port into a slot index reserved for only one input port. In efficiency
mode, each frame slot holds all the data of a TSSP frame with respect to one input port. In

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-58

regular mode, the TSSP frame has many slots of smaller size spread out across the entire frame
for each input.

deMUX Enter Execs:

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-59

This code snippet shows how the TSSP process deconstructs a TSSP frame when running with
the global simulation attribute TSSP Efficiency Mode set to “Enabled.” Notice how particular
parts of the frame apply to different individual landline input ports, also called group members.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-60

4.13 SATELLITE GENERIC EXAMPLE

4.13.1 Overview

This subsection provides an example of how to create a satellite that can support the deployment
of bent-pipe links running through it. Creating a satellite node in NETWARS requires following
some basic conventions. Before reading this subsection, be sure to read the subsection “Building
Wireless Interfaces” in Section 3, Building NETWARS Models.

The following subsection details what a satellite model must have implemented if it is to
function with Scenario Builder’s functionality, such as its Link Deployment Wizard, and is to
interoperate with other device models of the NETWARS Standard Model Library.

4.13.2 Node Model Contents

A satellite device model must have one or more uplink and downlink transponders, each with
some number of channels. Each transponder must connect to its own antenna module. Uplink
transponders (radio receiver modules) should follow the naming convention
uplink_transponder_rx_<n> where <n> is an integer that identifies each uplink
transponder with a unique index. Similarly, the downlink transponders should follow the naming
convention downlink_transponder_tx_<n>. Each transponder’s antenna should follow the
naming convention antenna_tx/rx_<n>.

The satellite model must have its equipment_type attribute set to “Satellite.” It can discover the
possible ground terminals by checking for devices with an equipment_type set to “Satellite
terminal.”

4.13.3 Additional Attributes

At its most fundamental level, b a satellite model must have some basic attributes that define that
model as a satellite node in NETWARS. These attributes further characterize how the satellite
device handles the traffic that passes through it.

• Channel Config (compound). This compound attribute defines the properties of each
channel on the satellite device. Each row of the compound attribute applies to one
channel.
– Transponder (string). Identifies the transponder on which this channel resides; it

should have a locked value via active attributes that the user cannot modify in
Scenario Builder.

– Channel (integer). Identifies the index of this channel on the transponder; it should
have a locked value via active attributes that the user cannot modify in Scenario
Builder. Together, the Transponder and Channel attributes provide a unique way to
identify any channel of the satellite.

– Frequency (double). Minimum frequency value assigned to this channel (MHz).
– Bandwidth (double). Bandwidth value assigned to this channel (kHz).
– Data Rate (double). Data rate value assigned to this channel (bps).
– Power (double). Transmission power assigned to this channel (W); only applicable to

downlink channels.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-61

• Switching Table (compound). This compound attribute defines how the device forwards
traffic received on uplink channels to downlink channels. Each row represents a mapping
of an uplink channel to a downlink channel.
– Uplink Transponder (index with symbol map). Identifies the transponder of the

uplink channel to map to some other downlink transponder; it should have a locked
value via active attributes that the user cannot modify in Scenario Builder.

– Uplink Chnl Idx (integer). Identifies the channel index of the uplink channel to map
to some other downlink transponder; it should have a locked value via active
attributes that the user cannot modify in Scenario Builder.

– -- maps to --> (string). Serves no purpose beyond visualization.
– Downlink Transponder (index with symbol map). Identifies the transponder of the

downlink channel to which the satellite forwards all traffic from the uplink channel
identified by Uplink Transponder and Uplink Chnl Idx.

– Downlink Chnl Idx (integer). Identifies the channel index of the downlink channel
to which the satellite forwards all traffic from the uplink channel identified by Uplink
Transponder and Uplink Chnl Idx.

• Current Number of Links (integer). This integer value represents the current number of
links deployed through this satellite. This attribute should always have a value of “0”
upon instantiation of this model and an active attribute handler to prevent its direct
modification by a user.

Only Scenario Builder should update this value upon the creation and removal of satellite
links running through the satellite.

• Uplink Modulation (compound),
Downlink Modulation (compound)

The satellite process reads these attributes to determine what modulation to use for each
of the uplink and downlink transponders. The satellite switch module maintains these two
attributes as extended attributes defined on the module itself.

Both of these compound attributes have a Transponder Index (integer) and a Modulation
Scheme (string) subattributes. The number of rows in the Uplink Modulation and
Downlink Modulation compound attributes should equal the number of uplink and
downlink transponders, respectively.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-62

Figure 4-46: Uplink and Downlink Tables

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-63

4.13.4 Satellite Switch Process

Figure 4-47: Satellite Switch Process Model

Table 4-14: Events of Satellite Switch Process Model

Current State Logical
Event

Condition Action Next State

Init Simulation
start

None Perform initialization. Idle

Idle Stream
Interrupt

None None Switch

Idle Failure
Interrupt

None Flush transmission and receiver
queues

Failed

Idle Self
Interrupt

None None Xmt

Switch N/A None Transmit immediately or
En queue the packet in the service
queue, which depends on the
packet switching rate having
INFINITE for its value

Idle

Xmt Self
Interrupt

None Transmit next packet in transmit
queue

Idle

Failed Recover
Interrupt

None None Idle

Failed Stream
Interrupt

None Destroy incoming packet Failed

Failed Fail
Interrupt

None None Failed

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-64

Key Code Snippets from Satellite Switch Process

Init Enter Execs:

This code from the Init state reads the Switching Table attribute to determine how an uplink
channel maps to a downlink channel. A two-dimensional array defines the switching table in
such a manner that any packet received on any single uplink frequency has a predetermined
downlink frequency on which the satellite transmits it.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-65

Switch Enter Execs:

In the packet arrival state, the process reads the switching table to determine to which downlink
stream to forward the received uplink packet. This snippet shows the process set to an infinite
switching speed, whereby it sends the packet immediately upon receiving it rather than storing it
in a queue and sending it at a specified rate. The infinite switching speed setting defines a more
realistic scenario because bent pipe links typically have circuits running through them, which
means it never needs to store and forward bits; it just sends them without waiting to detect the
trailing edge of a packet. Also, note how the interrupt stream value and the first dimension
indexes of the switching table correspond.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-66

4.14 L INK M ODEL EXAMPLE

4.14.1 Overview

This subsection explains the construction of a link model using an example. The example link
considered is a duplex link with two channels, each at 1 Mbps. The link also has an additional
signaling overhead. The delay due to the signaling overhead is specified as a model attribute.

4.14.2 Steps

Step 1: Because this is a duplex link, in the Link Types field, set ptdup as the supported link
type. In a new link editor window, set the link type option ptdup as “yes” and leave the other
options as “no.”

Step 2: In the Attributes field, specify channel count as 2. There are two channels supporting
data rates of 1 Mbps each. Therefore, set the data rate as 2,000,000.

Step 3: On the Link menu, choose Model Attributes. In the New Attribute field, enter “signaling
overhead” and click Add. The type for this attribute is specified as “double.”

Step 4: Save the link model.

4.14.3 Pipeline Stage: txdel

The newly created link has a model attribute called signaling overhead. The signaling overhead
for a packet causes a delay in the packet transmission. To account for this, the transmission delay
pipeline stage must be customized.

Sample code for this customization is provided below (this code is derived from
dpt_txdel.ps.c):

Figure 4-48: Code 3-Adding Signaling Overhead to Transmission Delay

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-67

Please refer to the pipeline stage dpt_txdel.ps.c in the OPNET\<rel_dir>\models\ std\links folder
for more information. FIN/FOUT/FRET (FIN and FOUT are used in the sample code above) are
macros representing Function-IN, Function-OUT, and Function-RETurn. OPNET recommends
that developers incorporate these macros in their code. This is useful while generating stack
traces and function profiling. Further information on this can be found in the OPNET Online
Documentation � Programmers Reference � Discrete Event Simulation � Introduction �
Kernel Procedure Names.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-68

4.15 OE NODE EXAMPLE

4.15.1 Overview

This subsection explains how to build an OE model using an example. The OE node does not
have to be connected to other devices via links. Thus, it does not need to have any physical
interfaces. It contains one module that performs all the necessary functions. The SDF file is
parsed and the IER, movement, and failure/recovery information pertaining to this OPFAC are
obtained in the init state. Depending on what the next event is, the process model transitions to
the appropriate state—movement or IER transmission.

Important: a justified change to the OE Node is rare and should be examined closely, due to its
effects on the entire OPFAC. Be advised, before modifying the OE Node it is highly suggested
that you contact the NETWARS Office to determine if there is a better method of accomplishing
your objective. After talking with the NETWARS Office, if it is still appropriate to modify the
OE Node, then be careful to make backups and have a plan in place to rollback any changes you
are about to make.

The OE node model requires a single module in the node.

4.15.2 Steps

Step 1.

• In the node editor, click the “create processor” button.
• Click the workspace to place the processor module.

Step 2.

• Left-click the module and right-click to edit the attributes.
• Choose the “process module” attribute and change it to the process model name as

created below.
• Choose the “name” attribute and name the module as “oe.”

4.15.3 Process Model

Step 1. The functions of the OE are defined using a data flow diagram.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-69

Figure 4-49: Functions of OE Process Model

Step 2. The process model must be built.

The OE process model consists of the states shown in Figure 4-50. The init state parses the SDF
file to obtain the IER and movement information. Then the process model transitions to the idle
state. If the OE is required to send an IER, it transitions to the Device Find state. If the device is
found, it generates the IER in the Tx IER state.

If the OE is required to move, it transitions to the movement state and sets the new bearing and
ground speed values for the OPFAC.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-70

The process model for the OE looks like Figure 4-50.

Figure 4-50: OE Process Model

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-71

4.16 UTILITY NODE EXAMPLE

4.16.1 Overview

This subsection explains the construction of a Utility Node using an example. The example
utility model is the Promina Configuration Utility Node, which is used to define circuits between
Promina nodes in a network. Only a high-level overview is given below. For further details,
consult the NETWARS Standard model called pro_portmap_utility.nd.m and its process model
pro_portmap_process.pr.m.

4.16.2 Details

Because Utility Nodes are highly specific, begin with a new node model. Because the object will
be a repository of information, a single processor module is all that is needed. This processor
requires a custom process model that performs the following functions:

• Read in attribute values
• Parse information
• Publish information.

Once the node model is created and a processor module added, the node model looks like Figure
4-51 below.

Figure 4-51: Promina Configuration Utility Node-Node Model

The model attributes for the node model must contain the attribute below. The other detailed
configuration attributes can be part of the processor itself.

Table 4-15: Utility Node-Model Attributes

Attribute Name Attribute Type

utility_technologies String

4.16.3 Process Model

The Utility Node reads in attributes, parses them, and then publishes them, making the
information available to other models. The Promina Configuration utility does all of this using a
single BEGSIM interrupt.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-72

Figure 4-52: Promina Configuration Object-Process Model

The “DONE” state is used to ensure errors are not incurred if this device sees an event. The code
in the Enter Executives of the “PARSE” state perform all of the actions of this object, as seen in
the following code sample:

Figure 4-53: Promina Configuration Object-Sample Code

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-73

4.17 CONVERTING A DEVICE M ODEL FROM THE OPNET STANDARD M ODEL L IBRARY

4.17.1 Overview

The OPNET Standard Model Library contains the node model wlan_server_adv. The following
example demonstrates how to make this model function in OPNET COTS products such that it is
compliant with this guide.

Figure 4-54: Sample Node Model

4.17.2 Details

Step 1. Determine which subsections of Section 3 apply to this device model.

This has the application layer, so it has the characteristics of an end system. It has a radio
transmitter and receiver pair, so it also has the characteristic of wireless interfaces.

Step 2. Add required attributes classification, equipment_type, and availability_status. Use
public attribute definitions for each. Because it is an end-system with the full stack, select
“Computer” for equpment_type.

[End-System Compliance]

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-74

Figure 4-55: Selecting “Computer” for equipment_type

Step 3. Give it the functionality of firing TCP and UDP IERs by adding se modules to generate
traffic via TCP and another to generate traffic via UDP (se_tcp and se_udp).

[End-System Compliance]

Figure 4-56: Adding se_tcp and se_udp

Step 4. Promote the radio channel properties on the transmitter and receiver and add the net_id
extended attribute so that the broadcast network object can interface with it.

[Wireless Interface Compliance]

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-75

Figure 4-57: Adding net_id Extended Attribute

Step 5. Remove the lines of code that set the channel frequency. This now happens via the
broadcast network object.

[Wireless Interface Compliance]

wlan_mac Function Block

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-76

wlan_mac_hcf Function Block

Step 6. Add a line to the net_configs file to have a Wireless Local Area Network (WLAN) entry.

WLAN;Unclassified;11000;2401;”Include”;
5000,3000,2000,1000;wlan_control, wlan_mac;wlan_con trol,wlan_mac

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-77

4.18 CP MODEL EXAMPLE

4.18.1 Overview

This subsection provides an example on the implementation of a CP compliance model. As
mentioned, NETWARS applies analytical techniques to rapidly determine the bandwidth
requirements to support specific traffic profiles and patterns. NETWARS will require three basic
attributes from the model to determine the CP layer of a specific device: equipment type,
interface class, and machine type. These attributes occur in specific locations within the model.

4.18.2 CP Implementation

In order to use the CP function in NETWARS, model developers do not have to insert or modify
any code within the node model. It is vital, however, to add the three required attributes into the
device model to their associated location. The following subsections will describe the location
by using the SINCGARS INC radio model in NETWARS.

4.18.2.1 Equipment Type Attribute

First, the equipment type attribute is used to define the type of the device, such as radio,
computer, and router. Figure 4-58 shows the location of the attribute and a list of available
types. Model developers should define the equipment_type attribute in the model attributes
windows as show in the Figure 4-58.

Figure 4-58: Equipment type attribute location

4.18.2.2 Interface Class and Machine Type Attributes

The interface class and machine type attributes are both located in the self-description section of
the device model as shown in the Figure 4-59.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-78

Figure 4-59: Interface Class and Machine type attribute locations

The interface class is defined within the ports description as shown in the following Figure 4-60.
In this example, the interface class of the SINCGARS INC device model is IP.

Figure 4-60: Interface Class attribute

NETWARS MODEL DEVELOPMENT GUIDE V3.0

4-79

Finally, the Machine type attribute is defined within the core section of the self-description. The
following Figure 4-61 shows the example of the machine type that is assigned to the SINCGARS
INC device model, and the value is router.

Figure 4-61: Machine type attribute

NETWARS MODEL DEVELOPMENT GUIDE V3.0

5-1

5 VERIFICATION AND VALIDATION

Verification and Validation (V&V) is important to the creditability of a model that is being used
to solve a real world problem. Without that credability, it is extremely difficult to gain buy-in on
simulation results.

The importance of V&V is recognized by the Department of Defense in DoD Directive (DoDD)
5000.59 and DoD Instruction (DoDI) 5000.61. These policies describe Verification, Validation,
and Accreditation (VV&A) from the standpoint of Policy, Roles, Responsibilities, Processes and
Procedures. DoDI 5000.61 established the Defense Modeling Simulation Office (DMSO) as the
“DoD VV&A focal point” and the central source of DoD VV&A information. Most of the
information from DMSO is addressed in it’s VV&A Recommended Practices Guide (RPG),
Build 3.0 dated September 2006. There is also a DoD VV&A Documentation Tool that is being
developed to assist Model Developers. These references can be found at:

• DoDD 5000.59 – DoD Modeling and Simulation (M&S) Management
http://www.dtic.mil/whs/directives/corres/html/500059.htm

• DoDI 5000.61 – DoD Modeling and Simulation (M&S) Verification, Validation, and
Accreditation (VV&A) http://www.dtic.mil/whs/directives/corres/html/500061.htm

• VV&A Recommended Practices Guide – Build 3.0 / September 2006 http://vva.dmso.mil/

The accreditation portion may or may not be significant for the NETWARS Model Developer.
According to the DoD Policy, all models should go through V&V, however, not all models need
to be accredited. DoDD 5000.59 discusses two primary instances where accreditation is
required; when the model is going to be reused by an external organization, or results will be
used in the acquisition process. In addition, all DoD Components should have their own set of
policies and procedures that a Model Developer should adhere to in their development process.

The RPG provides guidance on VV&A for general purpose M&S. VV&A is about establishing
the relationship between the problem and the model being used to solve that problem. There are
not any definitive steps that apply to V&V, since V&V needs to be tailored to match the nature
of the problem that is being addressed by the M&S application. Some of the factors involved in
tailoring V&V to a general purpose M&S application are:

• Situations being simulated
• Types of decisions driving the employment of the simulation
• Nature of the simulation
• Level of risk
• Technical or resource limitations

The scope of the following discussion within the Model Development Guide (MDG) will limit
itself to V&V of NETWARS-compliant models within the NETWARS product environment.
The focus is to provide high level guidance for V&V of the design and functions of a model and
for ensuring the newly developed model will integrate into NETWARS. Since accreditation may
or may not be required, dependent on the specific DoD Component policies, the MDG will not
discuss accreditation any further.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

5-2

The following sub-sections are grouped into two primary V&V objectives: first is to V&V the
functionality of the models, and second is to V&V the model that can be integrated to
NETWARS.

5.1 M ODEL FUNCTIONAL V&V

This section will focus on introducing the basic V&V steps and references to test and examine
the basic required functionalities and accuracies of the model.

5.1.1 Objectives

The primary objective for V&V on models is to provide credibility and believability to the
results that those models generate, so that the results may be used in solving real world problems.
It is also important to note that the data used to drive the model should be evaluated together
with the model, as the model depends on the data to provide realistic simulation. Data V&V is
well documented in the DMSO RPG.

The definitions for verification and validation are often confused:

• Verification - The process of determining that a model implementation and its associated
data accurately represent the developer's conceptual description and specifications.

• Validation - The process of determining the degree to which a model and its associated
data provide an accurate representation of the real world from the perspective of the
intended uses of the model.

Verification seeks to answer the question, “Did I build the thing right?” while validation seeks to
answer the question “Did I build the right thing?” Answering these questions positively with
sufficient explanation will create believability in the results generated or the validity of the
model for those seeking to reuse it.

5.1.2 Steps

The Model Developer should follow the applicable DoD Component’s policies and procedures in
accordance with DoD Directives and Instructions. The RPG has very detailed guidelines
regarding V&V for new models, modification of models (legacy), and federated models by the
different types of user views. The following RPG Problem Solving Process demonstrates the
standpoint that VV&A is an integral part of the M&S development process. The focus in the
MDG will be on the box entitled “Perform V&V Activities appropriate for M&S Category”.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

5-3

Figure 5-1: M&S Overall Problem Solving Process

The steps to augment the Model Developer’s DoD Component’s policies and procedures specific
to NETWARS Compliance V&V are included in Appendix X: NETWARS Model Development
Guide Checklist. The steps that will be discussed in further detail in the next section are:

• Following the NETWARS Model Development Guide Checklist
• Static Testing
• Equipment String
• Capacity Planner

An important reference regarding V&V is the “NETWARS Communications Model Verification
and Validation Plan.” This document defines the NETWARS structured, repeatable process for
ensuring that all communications device models included in NETWARS are reasonable
representations of the intended actual systems. This includes constraints on how those modules
should be employed. The document describes several phases, of which the final phase focuses
on model integration into NETWARS.

Another document that can be referenced is the DoD VV&A Documentation Tool developed by
Space & Naval Warfare Systems Command (SPAWAR).

NETWARS MODEL DEVELOPMENT GUIDE V3.0

5-4

It is a good practice to add a brief validation time stamp and the model development Point of
Contact information in the self-description of the model so that users can contact the model
developers or corresponding individual to resolve any issues.

5.2 NETWARS COMPLIANCE V&V

The primary objective of this NETWARS MDG is to ensure that newly developed models can be
integrated to NETWARS and shared with the NETWARS community. The NETWARS
compliance V&V is important, therefore, to both the model developers and the model users.
This section will introduce the resources that can be utilized by the developer to perform
NETWARS compliance V&V. These resources include the NETWARS Model Development
Checklist, NETWARS Static Testing, NETWARS Equipment String, and Capacity Planner
Attributes.

5.2.1 NETWARS Model Development Checklist

The NETWARS Model Development Guide Checklist is the first tool to ensure that newly
developed models can be integrated to the NETWARS standard model library. The Checklist
can be found in Appendix X. The checklist is used to provide a basic development check for the
developers to ensure NETWARS compliance; however, the checklist cannot provide full
coverage to ensure the compliance.

The checklist can be used for new development or modification of existing OPNET COTS
models for NETWARS Compliance, and covers the following areas:

• General Questions regarding the model goals and attributes
• Traffic-generation mechanisms
• Static Testing
• Equipment Strings
• Capacity Planner
• Model Documentation
• Model interfaces to the NETWARS standard pallet of devices
• Model node modules and port conventions
• Model modules included for end systems
• Model attributes for radio broadcast and point-to-point operations
• Model custom links

If the user submits a model for development, the developer should leave contact information
inside the self description, such that other organizations may contact them for more information
about the model they have developed.

5.2.2 NETWARS Static Testing

The NETWARS Static Testing Tool comes with NETWARS. Static Testing will perform checks
of the syntax of a model. The Static Testing documentation should be consulted for further
detail on its functionality. Some of the items that will be checked by Static Testing include:

• Minimum Attributes Test

NETWARS MODEL DEVELOPMENT GUIDE V3.0

5-5

• Check for Tx/Rx naming conventions
• Check for the presence of required modules
• Check for supported packet formats
• Check for interface capability with other equipment
• Check for handling of failure and recovery
• Check for pipeline stage transmitter attributes
• Check for pipeline stage receiver attributes

If a model fails Static Testing, then those points of failure should raise flags. It is important that
those flags be addressed even though they do not necessarily by themselves indicate that a model
is not NETWARS compliant. The important questions to answer are; “Does the Model
Developer care about the raised flag?” and “What are the consequences of the raised flag?” It is
possible that mitigation of a raised flag might have to do with different attributes for different
equipment types.

Refer to the “NETWARS 2006-2 Communications Device Model Validation and Verification
Plan” for further information.

5.2.3 NETWARS Equipment String

In order to ensure that new models are NETWARS-compliant, they should be tested using some
basic equipment strings that are relevant to the model that was developed. NETWARS Program
Management Office (DISA GE344) has a “NETWARS Equipment Strings Version 1.1, June
2006” document. This living document contains valid equipment strings that involve
NETWARS models. This document breaks the equipment strings down into the following
categories:

• Transmission Network
– Pure Transmission Devices
– Prominas
– Other Multiplexers

• Routers – devices that can go over any of the transmission network devices
• Circuit Switched Voice – voice circuits that go over all the transmission network

devices and can flow over IP or ATM network
• Layer-1 Encryptors – paired up on either WAN or LAN side, if follows a router, then

decryption must occur before the next router
• Tactical Radios – include havequick, jtids, sincgars and eplrs
• Invalid Equipment Strings – illogical and unsupported

Another important reference is the “NETWARS 2006-2 Equipment Strings Final Test Plan,
OPNET 3.4.4, delivered August 25, 2006.” This document provides tests for NETWARS model
feature requirements. Some examples of test procedures provided are; SATCOM device
equipment strings, Terrestrial Radio equipment strings, Promina to Promina equipment strings,
etc.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

5-6

Most important, developers should determine the equipment strings associated with their models
and develop corresponding testing of the strings with the models in the NETWARS standard
library.

5.2.4 Capacity Planner

The NETWARS network analytical engine is important for providing network capacity planning
support to the network planner. It has the ability to generate shortest-hop routing, calculations of
link and circuit utilization, and bandwidth requirements for support of specific traffic profiles
and patterns. CP is a NETWARS-specific capacity, therefore models developed for OPNET
Modeler and IT-Guru cannot be applied in CP. In order to ensure models are NETWARS-
compliant with regards to CP and routing, device attributes and properties should be correctly
developed. They include:

• Equipment Type
• Self Description

The static test software is a good tool for verifying that all attributes used by CP are available in
the model for the specific model type under the minimum attributes test in the static test
software.

The static test may be run from the NETWARS Console. In order to open the NETWARS
Console; Go to “Start” → “All Programs” → “NETWARS” → “NETWARS Console”.
Once the NETWARS Console is opened, from the “C:\>” prompt, type in “mdgtest”

Figure 5-2: Initiate a static test

NETWARS MODEL DEVELOPMENT GUIDE V3.0

5-7

After providing some helpful text, the “mdgtest” program will stop and wait for the name of the
device model that should be validated. In the example, “nw_ethernet_wkstn” was typed in
following the prompt for “Model name: ”.

Figure 5-3: Execute a static test for the nw_ethernet_wkstn device

The “mdgtest” program will stop and wait for the component class name. In the example, “4”
was typed in following the prompt for “Component Class: ” indicated the “End System”.

Figure 5-4: Select component class for static test

The “mdgtest” program will stop and wait for the model options. In the example, the <Enter>
key was hit for N/A.

Figure 5-5: Select model options for static test

NETWARS MODEL DEVELOPMENT GUIDE V3.0

5-8

The “mdgtest” program will stop and wait for the protocols. In the example, “1, 2, 4” was typed
in following the prompt for “Protocols: ” indicating the TCP, UDP, and Ethernet protocols are to
be used.

Figure 5-6: Select protocols for static test

The “mdgtest” program will stop and wait for the name of the report file. In the example,
“C:\test.txt” was typed in following the prompt for “Report File: ” indicating that is where the
output from the static test will be placed. After entering the report file name, the question to
confirm the answers is asked. If the answers are correct and you want to continue, then a “c”
may be typed in.

Figure 5-7: Select report file name and confirm answers for static test

NETWARS MODEL DEVELOPMENT GUIDE V3.0

5-9

The “mdgtest” program will finish with a summary and a completion message.

Figure 5-8: Summary and completion message for static test

NETWARS MODEL DEVELOPMENT GUIDE V3.0

5-10

In order to see the static test report generated from this example, type in “notepad C:\test.txt” at
the “C:\>” prompt. The “notepad” program will display the static test report generated by the
“mdgtest” program.

Figure 5-9: Static test report

NETWARS MODEL DEVELOPMENT GUIDE V3.0

5-11

Figure 5-10: Static test report 2

NETWARS MODEL DEVELOPMENT GUIDE V3.0

5-12

Figure 5-11: Static test report 3

NETWARS MODEL DEVELOPMENT GUIDE V3.0

5-13

Figure 5-12: Static test report 4

NETWARS MODEL DEVELOPMENT GUIDE V3.0

5-14

Figure 5-13: Static test report 5

The preceding was an example of how to perform a static test, both the input for the static test
and the output that can be expected from running the static test.

The developer should test their models in CP to ensure the required model attributes and CP
APIs are implemented into their models. For further information, please see the individual
sections on model development that relate to CP in this document.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

5-15

5.2.5 DoD/Joint VV&A Documentation Tool (DVDT/JVDT)

DVDT/JVDT is a tool that assists the user in creating and maintaining four major documents
required in the VV&A process:

• Accreditation Plan
• VV&A Plan
• VV&A Report
• Accreditation Report.

This tool is not part of OPNET, nor is it part of NETWARS, however, it is being presented here
as a reference to assist in MDG Developers task of VV&A.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

5-16

REFERENCES:

1. DoD Standard Practice: Documentation of Verification, Validation and Accreditation
(VV&A) for Models and Simulations. (MIL-STD-XXX002, Draft of 5 December 2006).
It is headed by this caveat:

NOTE: This draft, dated 5 December 2006, prepared by the Defense Modeling
and Simulation Coordination Office, has not been approved and is subject to
modification. DO NOT USE PRIOR TO APPROVAL (Project MSSM-2005-002)

NETWARS MODEL DEVELOPMENT GUIDE V3.0

A-1

APPENDIX A: ACRONYMS

Acronym Definition

ACE Applications Characterization Environment
ACK ACK
AEHF Advanced Extremely High Frequency
ALE Automatic Link Establishment
AODV Ad Hoc on Demand Distance Vector
API Application Programming Interface
ATM Asynchronous Transfer Mode
BER Bit Error Rate
BGP Border Gateway Protocol
C4I Joint Command, Control, Communications, Computers and Intelligence
CJCSM Chairman of the Joint Chiefs of Staff Manual
CLEO Cisco Router Low Earth Orbit
CM Configuration Management
CNR Combat Network Radio
COE Common Operating Environment
COI Community of Interest
COTS Commercial Off-the-Shelf
CP Capacity Planner
CPC Communications Planning Coordinator
CPU Central Processing Unit
CSV Comma Separated Value
DAMA Demand-Assigned Multiple Access
DE Deployment Editor
DES Discrete Event Simulation
DHCP Dynamic Host Configuration Protocol
DISA Defense Information Systems Agency
DMSO Defense Modeling Simulation Office
DNVT Digital Non-Secure Voice Terminal
DoD Department of Defense
DoDAF DoD Architecture Framework
DoDD DoD Directive
DoDI DoD Instruction
DSL Digital Subscriber Line
DSR Dynamic Source Routing
DTED Digital Terrain Elevation Data
DTG Digital Transmission Group
DVDT DoD VV&A Documentation Tool
ECC Error Correction Calculation
EIGRP Extended Interior Gateway Routing Protocol
EMA External Model Access
EPLRS Enhanced Position Location Reporting System
ETSSP Enhanced TSSP
FAQ Frequently Asked Questions

NETWARS MODEL DEVELOPMENT GUIDE V3.0

A-2

Acronym Definition

FCC Federal Communication Commission
FDDI Fiber Distributed Data Interface
FDMA Frequency Division Mutiple Access
FR Frame Relay
FTP File Transfer Protocol
GBS Global Broadcast Service
GOE Generic Organization Editor
GOTS Government Off-the-Shelf
GUI Graphical User Interface
HDR High Data Rate
HF High Frequency
HLA High-Level Architecture (IEEE Standard 1516)
HTTP Hypertext Transport Protocol
ICI Interface Control Information
IEEE Institute of Electrical and Electronics Engineers
IER Information Exchange Requirement
IGRP Interior Gateway Routing Protocol
IMEP Internet MANET Encapsulation Protocol
INC Internet Controller
INE Inline Network Encryptor
IP Internet Protocol
ISDN Integrated Services Digital Network
JTIDS Joint Tactical Information Distribution System
JVDT Joint VV&V Documentation Tool
KP Kernel Process
LAN Local Area Network
LDR Low Data Rate
LDW Link Deployment Wizard
LOS Line of Site
M&S Modeling and Simulation
MAC Medium Access Control
MANET Mobile Ad Hoc Network
MDG Model Development Guide
MILSAR Military Strategic, Tactical and Relay
MIL-STD Military Standard
MOP Measure of Performance
MPLS Multiprotocol Label Switching
MSE Mobile Subscriber Equipment
NACK Negative Acknowledgment
NCES Net-Centric Enterprise Service
NCS Network Control Center
NETWARS Network Warfare Simulation
NPG Network Participation Group
OE Operational Element
OLSR Optimized Link State Routing

NETWARS MODEL DEVELOPMENT GUIDE V3.0

A-3

Acronym Definition

OMS OPNET Model Support
OPFAC Operational Facility
OPSIT Operational Scenario in Time
Org Organization
OSI Open Systems Interconnect
OSPF Open Shortest Path Forwarding
OV Output Vector
PNNI Private Network-to-Network Interface
POTS Plain Old Telephone Service
PPP Point-to-Point Protocol
QAE Quality Assurance Engineer
QDR Quadrennial Defense Review
QoS Quality of Service
RF Radio Frequency
RIP Routing Information Protocol
RP Resource Planner
RPG Recommended Practices Guide
RSVP Resource Reservation Protocol
SATCOM Satellite Communications
SB Scenario Builder
SCM Scenario Conversion Module
SDF Simulation Description File
SE System Element
SHF Super High Frequency
SINCGARS Single-Channel Ground and Airborne Radio System
SLIP Serial Line Internet Protocol
SME Subject Matter Expert
SMU Switch Multiplexer Unit
SNR Signal-to-Noise Ratio
SOA Service-Oriented Architecture
SPAWAR Space & Naval Warfare Systems Command
STD State Transition Diagram
STEP Standardized Tactical Entry Point
STU-III Secure Telephone Units III
T&E Testing and Evaluation
TACSIT Tactical Situation
TCP Transmission Control Protocol
TDMA Time Division Multiple Access
TIREM Terrain Integrated Rough Earth Model
TMM Terrain Modeling Module
TORA Temporally Oriented Routing Algorithm
TPAL Transport Protocol Adaptation Layer
TRC Transmission Release Code
Troposcatter Tropospheric Scatter
TSSP Tactical Satellite Signal Processing

NETWARS MODEL DEVELOPMENT GUIDE V3.0

A-4

Acronym Definition

UDP User Datagram Protocol
UHF Ultra High Frequency
UML Unified Modeling Language
USGS DEM United States Geological Survey Digital Elevation Model
V&V Validation and Verification
VHF Very High Frequency
VOACAP Voice of America Communications, Analysis, and Prediction
VTC Video Teleconferencing
VV&A Verification, Validation, and Accreditation
WAN Wide Area Network
WiFi Wireless Fidelity
WiMAX Worldwide Interoperability for Microwave Access
WLAN Wireless Local Area Network
XML Extended Markup Language

NETWARS MODEL DEVELOPMENT GUIDE V3.0

B-1

APPENDIX B: GLOSSARY

Deployment Editor: A tool used by the study analyst to deploy organizations in scenario and
run simulations. This has been replaced by what is now called Scenario Builder in NETWARS.

Generic organization: This is a hierarchical collection of OPFACs, organizations, and
communications infrastructure. It can be thought of as a template organization that can be
instantiated in a scenario. For example, the study analyst can create a generic organization called
“Platoon” and use this in another organization called “Company” or in a scenario.

Kernel procedure: An OPNET-provided function that supports the development of protocols
and algorithms. All kernel procedures start with op_.

mod_dirs: An environment attribute that tells OPNET in which folders to look for locating files.
The mod_dirs attribute is found under Edit->Preferences.

Online documentation: An Adobe Acrobat manual that has information about the OPNET
models, kernel procedures, modeling concepts, etc. The manual can be launched from Modeler
by choosing the Online Documentation option under the Help menu.

Process registry: This is a model-wide registry where any process mode can register itself and
any process model can obtain information about other process models that are registered. For a
list of kernel procedures available for using the process registry, refer to the OPNET Modeler
online documentation, General Models manual, “OPNET Model Support” chapter, and “Process
Registry” section.

Scenario: This is a collection of organizations and communications infrastructure. The
organizations in a scenario have trajectories and positions assigned to them. After a scenario has
been created, the study analyst can run simulations on it.

Scenario Builder: A tool used by the study analyst to deploy organizations in a scenario and run
simulations.

Scenario Builder GUI: This provides a means of creating libraries of OPFACs and
organization, importing from these libraries, and importing IERs from the IER database.

Simulation domain: This consists of the Simulation Engine and the Scenario Conversion
Module.

Simulation Engine: The COTS OPNET Modeler tool. It takes the scenario representation
produced by the Scenario Conversion Module, processes the simulation events, and provides the
output to the Results Analyzer.

Unified Modeling Language: UML is an industry standard set of graphical notations to describe
a system from an object-oriented approach. Diagrams include a set of static notations (class
diagrams and use case diagrams) and a set of dynamic notations (state diagrams and sequence
diagrams). UML does not require a specific design process and does not require implementation

NETWARS MODEL DEVELOPMENT GUIDE V3.0

B-2

with any specific object-oriented languages or tools. The state diagrams, for example, are
consistent with OPNET Modeler’s process model notation.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

C-1

APPENDIX C: ENUMERATED VALUES

The enumerated data types in Table C-1 are provided in NETWARS as public attribute
definitions. This provides a mechanism for sharing any changes (additions) to enumerated values
that are used as attributes.

Table C-1: Attributes for Enumerated Data Types

Attribute Values

equipment_type

Computer
Radio
Phone
JTIDS
Switch, router
Satellite
LOS radio
Promina
Satellite terminal
OE
CellXpress
Encryptor
Multiplexer
Patch Panel
Layer 1Radio
Layer 1 Satellite
Accelerator
Generic Device
VTC Terminal
Media Gateway

traffic type
Voice
Data
VTC

transport protocol

TCP
UDP
AAL5
None (if no transport protocol is used)
Other (user specified)

NETWARS MODEL DEVELOPMENT GUIDE V3.0

D-1

APPENDIX D: PACKET FORMATS

Table D-1 lists the packet formats used by the NETWARS Standard models. These packet
formats may be required for interoperability with the NETWARS Standard models and
protocols.

In order to examine the contents of the packet format, you will need to open the *.pk.m files
using OPNET Modeler. It is easy to perform a search on the directory structure for NETWARS
to locate the Packet Format files. However, if you open these files up using a text editor like
Wordpad or Notepad, you will quickly discover that they contain binary information that will
make it difficult to read.

Figure D-1: Packet Format Files

NETWARS MODEL DEVELOPMENT GUIDE V3.0

D-2

A better way to look at these files is through OPNET Modeler. Select File and then Open to get
to the Open Dialog box. Set the “Files of type:” field to “Packet Format Files (*.pk.m).” The
example below shows the Open Dialog box for the NETWARS folder of “eplrs”.

Figure D-2: Open Packet File

Select “eplrs_packet_0.” A dialog box is displayed with the format.

Figure D-3: Packet Format Layout

NETWARS MODEL DEVELOPMENT GUIDE V3.0

D-3

By right clicking on the field and selecting “Edit Attributes,” you can list out the attributes for
the particular field, as is the case below for “encap_pkt.”

Figure D-4: Packet Format Attribute Editing

Appendix E: Interfaces and Packet Formats contains a list of MAC technologies currently
supported by OPNET Modeler and the corresponding packet formats. Use Appendix E to
supplement the information found here in Appendix D.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

D-4

Table D-1: Packet Formats

Packet Format Description
abort_sim Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla
absolute_move Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla
ale_word_data Netwars\Sim_Domain\op_models\netwars_std_models\radio\sincgars
ale_word_lqa Netwars\Sim_Domain\op_models\netwars_std_models\radio\sincgars
ale_word_std Netwars\Sim_Domain\op_models\netwars_std_models\radio\sincgars
ckswpkt Netwars\Sim_Domain\op_models\netwars_std_models\mse
data Netwars\Sim_Domain\op_models\netwars_std_models\nwstd
dummy_multiplexer_pk Netwars\Sim_Domain\op_models\netwars_std_models\promina
dummy_voice_pk Netwars\Sim_Domain\op_models\netwars_std_models\mse
eplrs_eot_packet Netwars\Sim_Domain\op_models\netwars_std_models\radio\eplrs
eplrs_inc_packet Netwars\Sim_Domain\op_models\netwars_std_models\radio\sincgars
eplrs_packet_0 Netwars\Sim_Domain\op_models\netwars_std_models\radio\eplrs
eplrs_packet_1 Netwars\Sim_Domain\op_models\netwars_std_models\radio\eplrs
eplrs_packet_2 Netwars\Sim_Domain\op_models\netwars_std_models\radio\eplrs
eplrs_packet_3 Netwars\Sim_Domain\op_models\netwars_std_models\radio\eplrs
eplrs_packet_4 Netwars\Sim_Domain\op_models\netwars_std_models\radio\eplrs
eplrs_packet_5 Netwars\Sim_Domain\op_models\netwars_std_models\radio\eplrs
eplrs_packet_6 Netwars\Sim_Domain\op_models\netwars_std_models\radio\eplrs
eplrs_packet_7 Netwars\Sim_Domain\op_models\netwars_std_models\radio\eplrs
eplrs_routing_pk Netwars\Sim_Domain\op_models\netwars_std_models\radio\eplrs
eplrs_xmt_unit Netwars\Sim_Domain\op_models\netwars_std_models\radio\eplrs
gen_sim_info Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla
havequick_packet Netwars\Sim_Domain\op_models\netwars_std_models\radio\havequick
ier_description Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla
IER_Fire Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla
ier_info Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla
ip_dgram_v4 Netwars\Sim_Domain\op_models\modified_opnet_std_models\ip
isdn_packet Netwars\Sim_Domain\op_models\netwars_std_models\vtc
JREAP_application_free_text_encoded Netwars\Sim_Domain\op_models\contributed_models\link_16_models
JREAP_application_free_text_uncoded Netwars\Sim_Domain\op_models\contributed_models\link_16_models
JREAP_application_header Netwars\Sim_Domain\op_models\contributed_models\link_16_models
JREAP_application_J_series Netwars\Sim_Domain\op_models\contributed_models\link_16_models
JREAP_full_stack_message_group Netwars\Sim_Domain\op_models\contributed_models\link_16_models
JREAP_full_stack_transmission_block Netwars\Sim_Domain\op_models\contributed_models\link_16_models
JREAP_mgmt_message Netwars\Sim_Domain\op_models\contributed_models\link_16_models
JTIDS_packed_frame Netwars\Sim_Domain\op_models\contributed_models\link_16_models
jtids_pk Netwars\Sim_Domain\op_models\netwars_std_models\radio\jtids
KG194_19 Netwars\Sim_Domain\op_models\netwars_std_models\crypto
KG84_7 Netwars\Sim_Domain\op_models\netwars_std_models\crypto
layer_1_circuit_data Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
Link_16_free_text_message Netwars\Sim_Domain\op_models\contributed_models\link_16_models
Link_16_J_series_message Netwars\Sim_Domain\op_models\contributed_models\link_16_models
link_info Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla
link11_data Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
MIL_STD_1553_packet Netwars\Sim_Domain\op_models\contributed_models\link_16_models
mop_data Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla
mop_info Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla
move_opfac_by Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla
move_opfac_by_bearing Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla
move_opfac_to Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla
mse_data_packet Netwars\Sim_Domain\op_models\netwars_std_models\mse
mse_hello_packet Netwars\Sim_Domain\op_models\netwars_std_models\mse
new_ier_description Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla
NIMA Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
nw_voatm_hello_pkt Netwars\Sim_Domain\op_models\netwars_std_models\media_gateway
nw_voip_hello_pkt Netwars\Sim_Domain\op_models\netwars_std_models\media_gateway

NETWARS MODEL DEVELOPMENT GUIDE V3.0

D-5

opfac_damage Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla
opfac_init Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla
opfac_repair Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla
phone_switch Netwars\Sim_Domain\op_models\netwars_std_models\mse
positional_move Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla
pro_cx_pk Netwars\Sim_Domain\op_models\netwars_std_models\promina
pro_hello_pk Netwars\Sim_Domain\op_models\netwars_std_models\promina
pro_wan_pk Netwars\Sim_Domain\op_models\netwars_std_models\promina
radio_packet Netwars\Sim_Domain\op_models\netwars_std_models\radio\sincgars
satellite_pk Netwars\Sim_Domain\op_models\netwars_std_models\satellite
sincgars_inc_packet Netwars\Sim_Domain\op_models\netwars_std_models\radio\sincgars
SRAP_application Netwars\Sim_Domain\op_models\netwars_std_models\satellite
SRAP_application_v2 Netwars\Sim_Domain\op_models\netwars_std_models\satellite
trigger_ier Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla
trigger_new_ier Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla
tssp_frame Netwars\Sim_Domain\op_models\netwars_std_models\satellite
UHF_SATCOM_Sat_Packet Netwars\Sim_Domain\op_models\netwars_std_models\satellite
USMTF Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
vector_move Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla
vtc_packet Netwars\Sim_Domain\op_models\netwars_std_models\vtc

NETWARS MODEL DEVELOPMENT GUIDE V3.0

E-1

APPENDIX E: INTERFACES AND PACKET FORMATS

This section provides a list of MAC technologies currently supported by OPNET Modeler and
the corresponding packet formats (see Table E-1). This is merely a list of OPNET Standard
(COTS) MAC-level packet formats. Users can, and should, use their own packet formats for
implementing other interface technologies.

Please refer to Appendix D: Packet Formats for more details regarding the Supported Packet
Formats listed below.

Table E-1: Interfaces and Packet Formats

Interface Technology Supported Packet Formats

Ethernet ethernet_v2
ATM ams_atm_cell
FDDI fddi_llc_fr, fddi_mac_fr, fddi_mac_tk
SLIP (DSL, ISDN) ip_dgram_v4
Frame Relay frms_admin_frame, frms_frame_fmt, frms_tpal_setup_frame
Token Ring tk_llc_fr, tk_mac_fr, tk_mac_tk
Wireless LAN wlan_control, wlan_mac

NETWARS MODEL DEVELOPMENT GUIDE V3.0

F-1

APPENDIX F: INTERFACE CONTROL INFORMATION (ICI) FOR MATS

The ICI Format Files work in a similar fashion to the Packet Format Files. In order to examine
the contents of the ICI format you will need to open the *.ic.m files using OPNET Modeler. It is
easy to perform a search on the directory structure for NETWARS to locate the ICI Format files.
However, if you open these files up using a text editor like Wordpad or Notepad, you will
quickly discover that they contain binary information that will make it difficult to read.

Figure F-1: ICI Format Files

NETWARS MODEL DEVELOPMENT GUIDE V3.0

F-2

A better way to look at these files is through OPNET Modeler. Select File and then Open to get
to the Open Dialog box. Set the “Files of type:” field to “ICI Format Files (*.ic.m).” The
example below shows the Open Dialog box for the NETWARS folder of “nwstd.”

Figure F-2: Open ICI Format

Select “oe_se.ic.m” file, to display a dialog box with the ICI format Attribute Names, Type,
Default Value, and Description (if any).

Figure F-3: ICI Format Attributes

NETWARS MODEL DEVELOPMENT GUIDE V3.0

F-3

Table F-1: Interfaces and Packet Formats

ICI Format Location

call_established Netwars\Sim_Domain\op_models\netwars_std_models\nwstd

data_switch_info Netwars\Sim_Domain\op_models\netwars_std_models\mse

earth_tdm_bgutil Netwars\Sim_Domain\op_models\netwars_std_models\satellite

end_call_ici Netwars\Sim_Domain\op_models\netwars_std_models\media_gateway

epuu_to_eplrs Netwars\Sim_Domain\op_models\netwars_std_models\radio\eplrs

fail_rec Netwars\Sim_Domain\op_models\netwars_std_models\mse

from_data_switch Netwars\Sim_Domain\op_models\netwars_std_models\mse

fsr_initiate Netwars\Sim_Domain\op_models\netwars_std_models\mse

gss_inport_ici Netwars\Sim_Domain\op_models\netwars_std_models\deprecated

gss_packet_ici Netwars\Sim_Domain\op_models\netwars_std_models\deprecated

ier_ack Netwars\Sim_Domain\op_models\netwars_std_models\nwstd

ier_pkt_info Netwars\Sim_Domain\op_models\netwars_std_models\nwstd

il_oe Netwars\Sim_Domain\op_models\netwars_std_models\nwstd

inform_data_switch Netwars\Sim_Domain\op_models\netwars_std_models\mse

inform_mux Netwars\Sim_Domain\op_models\netwars_std_models\mse

JRE_mgr Netwars\Sim_Domain\op_models\contributed_models\link_16_models

link_stat_ici Netwars\Sim_Domain\op_models\netwars_std_models\nwstd

mse_ici Netwars\Sim_Domain\op_models\netwars_std_models\mse

NW_HLA_ABSOLUTE Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla

NW_HLA_IER_FIRE Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla

NW_HLA_NEW_IER_FIRE Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla

NW_HLA_POSITIONAL Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla

NW_HLA_VECTOR Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla

nw_voatm Netwars\Sim_Domain\op_models\netwars_std_models\media_gateway

oe_se Netwars\Sim_Domain\op_models\netwars_std_models\nwstd

oe_thread_ier Netwars\Sim_Domain\op_models\netwars_std_models\nwstd

oe_thread_start Netwars\Sim_Domain\op_models\netwars_std_models\nwstd

pro_perm_bgutil Netwars\Sim_Domain\op_models\netwars_std_models\promina

release_bandwidth Netwars\Sim_Domain\op_models\netwars_std_models\nwstd

reserve_bandwidth_failure Netwars\Sim_Domain\op_models\netwars_std_models\nwstd

tpal_req Netwars\Sim_Domain\op_models\modified_opnet_std_models\tpal

tpal_se Netwars\Sim_Domain\op_models\netwars_std_models\nwstd

UHF_SATCOM_DAMA_Info Netwars\Sim_Domain\op_models\netwars_std_models\satellite

UHF_SATCOM_Entity_Config Netwars\Sim_Domain\op_models\netwars_std_models\satellite

UHF_SATCOM_Entity_Registration Netwars\Sim_Domain\op_models\netwars_std_models\satellite

UHF_SATCOM_Hello Netwars\Sim_Domain\op_models\netwars_std_models\satellite

UHF_SATCOM_Terminal_Rev_Info Netwars\Sim_Domain\op_models\netwars_std_models\satellite

UHF_SATCOM_Token_Passing Netwars\Sim_Domain\op_models\netwars_std_models\satellite

voice_pkt Netwars\Sim_Domain\op_models\netwars_std_models\radio\sincgars

NETWARS MODEL DEVELOPMENT GUIDE V3.0

G-1

APPENDIX G: CONSTANTS

Table G-1 outlines constants, values, and accompanying remarks.

In cases where a constant is available, great care should be used to make sure the Constant Name
is used and not the Constant Value. While either would work, using the Constant Name provides
for cross referencing work and simplifying changes.

Table G-1: Constants

Constant Name Constant Value Remarks

File Name: oe_se.h

OE_SE_IER_SEND 0x7FFFFFE0 This is an interrupt code used by the OE to
inform the SE to fire an IER.

SE_OE_IER_RECEIVED 0x7FFFFFD0

No longer used in NETWARS models. Model
developer is strongly recommended to not use
this any more because it will not be compatible
with the latest OE models.

OE_SE_MOVED 0x7FFFFFE1 This is an interrupt code used by the OE to
inform an OPFAC SE(s) about a movement.

INTER_PLATFORM_WIRE 0x7F7F7F7F Obsolete. No longer used in NETWARS
models.

File Name: oe_threads

NWC_FIRE_IER -444

The OE uses this interrupt code for
communicating between “oe_threads” and
“oe_iers” process models when an IER is to be
fired.

NWC_OE_SE -555

The OE uses this interrupt code for
communicating between “oe_threads” and
“oe_iers” process models when an IER is
received.

NWC_INFORM_DEST_OE_FAIL -112
This is an interrupt code used by the “se” of an
IER destination end device to inform its OE of
an IER failure.

NWC_INFORM_DEST_OE_RCVD -111
This is an interrupt code used by the “se” of an
IER destination end device to inform its OE of
an IER reception.

NWC_INFORM_SRC_OE_RCVD -113
This is an interrupt code used by the “se” of an
IER source end device to inform its OE of an
IER reception.

NWC_INFORM_SRC_OE_FAIL -114
This is an interrupt code used by the “se” of an
IER source end device to inform its OE of an
IER failure.

NWC_TIME_TO_FIRE_RXN -115
This is an interrupt code used by the OE to
inform itself that it is time to fire a reaction IER
for a particular thread segment.

NWC_THID_LENGTH 13
This defines the size of the thread ID of an IER,
which belongs to a thread as opposed to normal
traffic.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

G-2

Constant Name Constant Value Remarks

NWC_THID_CONDITION_START “Start”

This is a string value used by the OE to
distinguish the condition of a thread segment
from the segments that have conditions as other
segments.

File name: netwars_support.hpp

TPAL_SE_APP_SEND 1111 This is an interrupt code used by TPAL to inform
the SE to fire an application call.

Typed Files

The typed file attribute is used to specify file names for intrinsic file types recognized inside the
OPNET environment. Table G-2 lists typed file functions.

Table G-2: Typed File Attribute

File Suffix File Function

.trj trajectory for a mobile node or subnet

.orb orbit for a satellite node

.pr.m process model for a module

.nd.m node model

.nd.d derived node model

.pk.m packet format

.ic.m ICI format

.lk.m link model

.lk.d derived link model

.nt.m
Network model file. The scenarios, organizations, and OPFACs created by
the study analyst using the Scenario Builder GUI are stored on disk as .nt.m
files.

.gdf Generic data file

.ex.o External object file (created from .ex.c or .ex.cpp)

NETWARS MODEL DEVELOPMENT GUIDE V3.0

H-1

APPENDIX H: OTHER FILE FORMATS

Table H-1 lists other file formats and functions.

Table H-1: Other File Formats

File Suffix File Function

.pdef
Platform definition file. Provides the device specification for an OPFAC. This
is a text file representation of an OPFAC, which is used by the NETWARS
Scenario Builder.

.sdf Simulation description file

.ex.c ANSI C external code file

.ex.cpp ANSI CPP external code file

.h C/CPP header file

.xsd XML Schema Document

.xml XML data file

NETWARS MODEL DEVELOPMENT GUIDE V3.0

I-1

APPENDIX I: MEASURES OF PERFORMANCE IN NETWARS

Table I-1 lists the measures of performance reported by OE in a NETWARS scenario. All MOPs
are reported for the source OE. These statistics are reported in the OV format and can be
collected locally, globally, or both.

Table I-1: MOPs Reported by OE

No. Statistics Name Method of Calculation Scope

1 Call Completion
Rate

Percentage of voice IERs sent that were
successfully completed

Local and Global

2 Grade of Service Percentage of IERs received at the destination
within the perishability duration

Local and Global

3 IERs Sent Count Number of IERs sent Local and Global
4 IERs Received

Count
Number of IERs received Local and Global

5 Message
Completion Rate

Percentage of data IERs sent that were
successfully received

Local and Global

6 Message Error
Rate

Percentage of the data IERs sent that failed Local and Global

7 Perishability for
the rcvd IERs

A cumulative count of IERs that are received
for which the delay (IER received time—IER
start time) is greater than the IER perishability
duration

Local and Global

8 Speed of Service
(in sec) for the
rcvd IERs

The delay (IER received time—IER start time)
value collected for each IER

Local and Global

9 End-to-End Delay The latency (IER received time—IER sent time)
value for each IER

Local and Global

10 Connection
Latency

The time difference between the IER sent time
and IER start time (or Speed of Service—End-
to-End Delay)

Local and Global

11 Blocking
Probability

The ratio of the IERs that were blocked at least
once to the number that were sent

Local and Global

12 Number of Blocks
for each IER Sent

Number of times an IER is blocked Local and Global

NETWARS MODEL DEVELOPMENT GUIDE V3.0

I-2

Table I-2 details the various statistics groups collected for the statistics listed above. The Local
scope means that this statistic is relevant only to the particular OE, whereas the Global scope
means that the simulation (DES) writes this statistic for the complete network as opposed to an
individual network entity.

Table I-2: Statistics Groups

No. Statistics Name Statistics Groups Scope

1 IER Sent IER Statistics
Total Traffic Sent
Total Routine Traffic
Total Priority Traffic
Total Immediate Traffic
Total Flash Traffic
Total Flash Override
Total Data Traffic
Total Voice Traffic

Local
Global
Global
Global
Global
Global
Global
Global
Global

Note: These statistics are also written per IER basis, giving a complete analysis for individual
IERs in addition to the groups/categories discussed above.

Device-Level MOPs

The ability to collect device-level MOPs in NETWARS allows the model developer and user to
collect any OPNET node-level statistic in a NETWARS simulation. Any statistic promoted to the
node level will appear when the user chooses statistics on an OPFAC in the Scenario Builder
editor. These statistics are written out to an OV file by OPNET simulation kernel, which are then
converted to the corresponding VEC files during simulation post-processing. The results can
subsequently be viewed using the Results Analyzer in NETWARS.

All the networking and end devices support device-level MOPs.

Device-level MOPs include protocol (ATM, IP, Ethernet, TCP, OSPF, IGMP, EIGRP, BGP)-
specific statistics such as IP.Traffic Sent (packets/sec), IP.Traffic Received (packets/sec),
TCP.Active Connection Count, and OSPF.Traffic Sent (packets/sec) and low-level statistics such
as transmitter throughput and queuing delay. For models that support standard voice and video
applications over circuit switch, the device-level MOPs should include “Application Calls
Generated” and “Application Calls Succeeded” statistics. There are a large number of other
statistics, including the custom statistics that can also be collected.

MOPs for Links

The following MOPs are recorded for links in NETWARS:

• Voice throughput
• Data throughput (recorded in both forward and reverse directions separately for wireline

links)
• Link utilization (recorded in both forward and reverse directions separately for wireline

links)

NETWARS MODEL DEVELOPMENT GUIDE V3.0

I-3

• Channel utilization.

MOPs for Broadcast Radio Networks

The following MOP is recorded for radio broadcast network:

• Broadcast network utilization

Table I-3 lists the modules that write the OV-based statistics (please refer to the notes above on
Generic Statistics for other nodes that can be set up to collect statistics).

Table I-3: Modules That Write OV Statistics

Statistic Component Module

Voice Throughput (in bits/sec.) Layer 2 Networking Device
connected to the link

circuit_switch

Channel Utilization (percent) Layer 2 Networking Device
connected to the link

circuit_switch

Broadcast Network Utilization Radio Device mac

Note that a link probe set up on the link for wireline links records the data_throughput and
utilization statistics for the External link. Wireless point-to-point links must record this statistic
themselves.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

J-1

APPENDIX J: NODE MODEL DOCUMENTATION

A node model, such as end-system devices, networking devices, and OE and Utility Nodes, is
documented by providing the following information in the Comments section of the Node
Interfaces option in the Node Editor.

General Description of the Device

For an end-system device, the functions and its security classification are documented in this
section.

For networking equipment, the functions of the networking equipment are documented in this
section.

Notes to the Military Analyst

This section includes two- to three-sentence descriptions on the usage of the device itself. This
will also include any special behavior or exceptions that this device model may have.

Notes to the Model Developer

This section documents the technical details that may be of interest to a model developer.
Technical details to be covered in the specific sections below should not be reiterated here.

Last Edit

Version Number, Date, Author

Supported Traffic Types

Specifies the types of traffic the networking equipment handles. The traffic type can be voice,
data, or both.

Supported Protocols

The list of protocols supported by this networking device.

Interface Specification

Table J-1 contains sample data. The Interface # column specifies the numeric index of the
interface. The Interface Type column specifies the type of interface, such as Ethernet, ATM, or
FR. The Number of Channels column specifies the number of channels supported by this
interface. The Data Rate and Packet Formats columns list the data rate and packet formats
supported by the individual channels on this interface.

For every interface, there are as many rows under the Data Rate and Packet Formats columns as
there are number of channels in that interface.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

J-2

Table J-1: Wired Interface Specifications

Interface

Interface
Type

Number of
Channels Data Rate (bps) Packet Formats

0 ATM 1 155,520,000 ams_atm_cell
1 ATM 1 155,520,000 ams_atm_cell

The example networking equipment in Table J-1 has two ATM interfaces, each with one channel
and operating at a data rate of 155.52 Mbps. The interface supports packets of type
ams_atm_cell.

For radio devices the interfaces are documented differently, as shown in Table J-2.

Table J-2: Radio Device Interface Specifications

Intf

Modulation
Number

of
Channels

Data
Rate

Packet
Formats Minimum

Frequency
Bandwidth Spreading

Code

Power

1,024 wlan_mac,
wlan_control

30 MHz 10 KHz disabled 100W 0 Bpsk 2

2,048 wlan_mac,
wlan_control

30 MHz 10 KHz disabled 100W

The table specifies sample data for a transmitter. This transmitter has two channels, one with a
data rate of 1Mbps and the other with a data rate of 2 Mbps. Both channels support packet
formats of type wlan_mac and wlan_control. The channels have a minimum frequency of 30
MHz with a bandwidth of 10 KHz and transmitting power of 100 W.

Process Models

All the process models that are invoked within the context of this node are documented in the
following format. Table J-3 contains sample data.

Table J-3: Process Models

Name Location Description

dnvt_se dnvt Generates the various circuit-switch signaling packets in
response to VOICE IERs.

The Name column refers to the name of the process model; the Location column to the node
model within which the process model resides or is invoked. A brief description of what this
process model does is provided in the Description column.

External Files Needed

All external files (header files, C files) needed by the process models in this node are
documented in this section. Table J-4 contains sample data.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

J-3

Table J-4: External Files Needed

Name of Process Model List of Files Used

se_computer netwars_support.ex.c, netwars_nato.ex.c
Ip opnet.h, ip_addr_v4.h, ip_auto_address.ex.c

Handling Failure/Recovery

This section documents which modules in this node handle failure/recovery interrupts explicitly
and how the interrupts are handled.

Pipeline Stages Used (Radio/Satellite Only)

This section documents the transceiver pipeline stages for radio/satellite devices. This section is
not required for wired devices.

Orbit Specification (Satellite Only)

This section documents the orbit file used by the satellite device.

Comments

This section must be used to document any additional requirements or restrictions in using this
device.

Full Edit History

Version Number, Date, Author

External Documentation

Author, Date, Title, Optional Comments

NETWARS MODEL DEVELOPMENT GUIDE V3.0

K-1

APPENDIX K: MODEL NAMING CONVENTIONS

The following is a proposed naming convention to promote clarity and reduce the chances of
naming conflicts. The naming convention for NETWARS uses the communications system name
as the base prefix. For example, all MSE models and related files should begin their names mse_.
This name should be unique and distinct from existing NETWARS Standard models:

• Node Models: Node models should use a two-part name consisting of the
communications prefix and a device type separated by underscores. If the same base
model will be used for multiple derived device models, a generic function type should
replace the device type.

• Derived Node Models: If a generic base model was developed to allow multiple specific
devices to be modeled with the same model, it should be named using the above standard,
that is, prefix followed by device type (replacing the generic function).

• Process Models: The process model should be named using the convention of the prefix
of device name or device classification followed by the process function, all separated by
underscores. Some of the process models perform a generic function that is common to
more than one device. These process models can be named starting with a prefix
signifying their technology, followed again by their function. Some of the typical
examples of process model naming are discussed below:
– pro_portmap_utility: Here the pro part signifies the category of the device (Promina)

and portmap_utility signifies its function of handling port map configurations.
– ams_atm_call_control: Here the ams_atm signifies the ATM technology, whereas the

call_control signifies the ATM call control functions performed by the process
model.

• External Files: External files are named with the prefix followed by the device (or

function), if applicable, followed by descriptive name, terminated with the extension .c or
.cpp. For example: netwars_satellite_support.ex.c

• Header Files: Header files are used to declare externally callable functions, shared type
definitions, defines, and simulation-wide global variables. Those header files declaring
functions should use the same file name as the external (C/C++) file but with extension
.h. If the header file does not contain declarations of externally callable functions, it
should be given a name descriptive of the communications system in which it is used,
optionally a function of that communications system and the extension .h. For example:
netwars_stat_support.h

• Link Models: Link models should be named using the protocol and, optionally, the link
speed. For example: wire_ptp

• Derived Link Models: Derived link models should be named using the same convention
as link models.

• Transmitters and Receivers: The transmitter and the receiver should be named with a
substring “tx_index” and “rx_index” included in the name. The index should start from
an integer value of 0 and be numbered sequentially. Examples of transmitter names

NETWARS MODEL DEVELOPMENT GUIDE V3.0

K-2

include tx_1, inc_tx_2, and atm_tx_3_0. Receivers could be named as rx_1, inc_rx_2,
atm_tx_3_0, and so on. Note that the name should not include any more tx or rx
substrings. Names that are not acceptable, for example, are mtx_tx_0 and rtx_tx_5.

• Externally Callable Functions: Externally callable functions should be named using an
abbreviation for the external file in which it resides followed by a short phrase describing
the function.

For example: nw_sdf_sup_init() function in netwars_sdf_support.ex.c file

NETWARS MODEL DEVELOPMENT GUIDE V3.0

L-1

APPENDIX L: NETWARS SIMULATION API AND HELPER FUNCTI ONS

Table L-1 lists an example of an API and some of the functions with input parameters that are
available in NETWARS. The following discussion will demonstrate how to locate the APIs and
determine what functions are available to be called within that particular API, as well as provide
an example of how the Table L-1 was started. Finally, Table L-2 will provide a list of all the
APIs available and their location within the directory structure.

The APIs are the External Files, which end in either “.ex.c” for C source code files or “.ex.cpp”
for C++ source code files work in a similar fashion to the Packet Format Files. Unlike the files
ending in “.m” (e.g., Packet Formats and ICI Formats), these are text files and can be viewed
using a text editor such as Notepad or Wordpad. The APIs can easily be found by searching the
NETWARS model files looking for those files that end in “.ex.c*”, which would include both C
and C++ APIs.

Figure L-1: API Files

NETWARS MODEL DEVELOPMENT GUIDE V3.0

L-2

A preferred method of looking at these files is through OPNET Modeler, since its editor will
color-code portions of code and make certain things stand out, in particular, the API function
names will be of interest. Select File and then Open to get the Open Dialog box. Set the “Files of
type:” field to either “External Source (C code) Files (*.ex.c)” or “External Source (C++ code)
Files (*.ex.cpp).” Currently, none of the NETWARS APIs are coded in C++, but there are
OPNET APIs that are coded in C++. Specifically with version 12.0.A, 62 C++ files were located
out of 414 total External Source Files. The example below shows the Open Dialog box for the
NETWARS folder of “nwstd.”

Figure L-2: Open API File

NETWARS MODEL DEVELOPMENT GUIDE V3.0

L-3

Select “oe_stat_support.ex.c” file to have the OPNET Modeler Editor display the file, as seen
below.

Figure L-3: oe_stat_support API

The functions in the oe_stat_support API that can be called are in the source code. The first is
“nw_oe_sent_stat_write.” While there may not be a comment to describe all the functions

NETWARS MODEL DEVELOPMENT GUIDE V3.0

L-4

within an API, this particular one has a purpose that is straight to the point; “Function meant to
update the sent statistics for IER”. If you need to update the sent statistics for an IER, this would
be the function to call and the API to include. The following table is an example of how a list of
API Functions can be developed using this information.

Table L-1: Example of API Function Table

API API Functions Purpose Parameters
nw_oe_sent_stat_write Update the sent

statistics for IER
ierparms
opfac_ier_stathandle
opfac_ier_statistics_values
ind_ier_stat_hash_table_ptr
ind_ier_stat_value_hash_table_ptr
action_str

nw_oe_opfac_and_indv_ier_sent_stat_write Update the Global,
OPFAC and Individual
IER stats

ierparms
opfac_ier_stathandle
opfac_ier_statistics_values
ind_ier_stat_hash_table_ptr
ind_ier_stat_value_hash_table_ptr
action_str

oe_stat_support

(continued) (continued) (continued)

There are currently 44 NETWARS APIs, and that list is expected to grow. It would be difficult
at best to develop Table L-1 for all of the functions within these APIs, but included below in
Table L-2 is a list of the APIs and their locations.

Table L-2: NETWARS APIs and Locations

API List Location
crypto_support Netwars\Sim_Domain\op_models\netwars_std_models\crypto
flood_search_routing Netwars\Sim_Domain\op_models\netwars_std_models\mse
gna_sup_conn_support Netwars\Sim_Domain\op_models\modified_opnet_std_models\applications
gna_sup_lib Netwars\Sim_Domain\op_models\modified_opnet_std_models\applications
il_oe Netwars\Sim_Domain\op_models\netwars_std_models\nwstd
ip_auto_addr_sup_v4 Netwars\Sim_Domain\op_models\modified_opnet_std_models\ip
ip_rte_support Netwars\Sim_Domain\op_models\modified_opnet_std_models\ip
Link_16 Netwars\Sim_Domain\op_models\contributed_models\link_16_models
netwars_cktsw_support Netwars\Sim_Domain\op_models\netwars_std_models\nwstd
netwars_logical_link_support Netwars\Sim_Domain\op_models\netwars_std_models\nwstd
netwars_satellite_support Netwars\Sim_Domain\op_models\netwars_std_models\satellite
netwars_sdf_support Netwars\Sim_Domain\op_models\netwars_std_models\nwstd
netwars_stat_support Netwars\Sim_Domain\op_models\netwars_std_models\nwstd
netwars_support Netwars\Sim_Domain\op_models\netwars_std_models\nwstd
nw_accelerator_sup Netwars\Sim_Domain\op_models\netwars_std_models\router
nw_circuit_stat Netwars\Sim_Domain\op_models\netwars_std_models\nwstd
nw_custom_ip_auto_addr Netwars\Sim_Domain\op_models\netwars_std_models\misc\cots_support
nw_ip_modification_support Netwars\Sim_Domain\op_models\netwars_std_models\misc\cots_support
nw_model_modification_support Netwars\Sim_Domain\op_models\netwars_std_models\misc\cots_support
nw_tracer_pkt_support Netwars\Sim_Domain\op_models\netwars_std_models\nwstd
oe_stat_support Netwars\Sim_Domain\op_models\netwars_std_models\nwstd
oms_buffer_bgutil Netwars\Sim_Domain\op_models\modified_opnet_std_models\oms
pep_app_support Netwars\Sim_Domain\op_models\netwars_std_models\pep
promina_rte Netwars\Sim_Domain\op_models\netwars_std_models\promina

NETWARS MODEL DEVELOPMENT GUIDE V3.0

L-5

promina_support Netwars\Sim_Domain\op_models\netwars_std_models\promina
promina_support_alt Netwars\Sim_Domain\op_models\netwars_std_models\promina
promina_topo Netwars\Sim_Domain\op_models\netwars_std_models\promina
promina_voice_support Netwars\Sim_Domain\op_models\netwars_std_models\promina
rtp_support Netwars\Sim_Domain\op_models\modified_opnet_std_models\rtp
sincgars\radio_support Netwars\Sim_Domain\op_models\netwars_std_models\radio
tcp_api Netwars\Sim_Domain\op_models\modified_opnet_std_models\tcp
tirem_support Netwars\Sim_Domain\op_models\netwars_std_models\misc\tirem
tpal_api Netwars\Sim_Domain\op_models\modified_opnet_std_models\tpal
tpal_app_support Netwars\Sim_Domain\op_models\modified_opnet_std_models\applications
trace_support Netwars\Sim_Domain\op_models\netwars_std_models\nwstd
UHF_SATCOM_CPS_Entity Netwars\Sim_Domain\op_models\netwars_std_models\satellite
UHF_SATCOM_CPS_ServicePlan_Parser Netwars\Sim_Domain\op_models\netwars_std_models\satellite
UHF_SATCOM_CPS_TextManipulation Netwars\Sim_Domain\op_models\netwars_std_models\satellite
UHF_SATCOM_Noise_Area Netwars\Sim_Domain\op_models\netwars_std_models\satellite
UHF_SATCOM_Orderwires Netwars\Sim_Domain\op_models\netwars_std_models\satellite
UHF_SATCOM_Platform Netwars\Sim_Domain\op_models\netwars_std_models\satellite
UHF_SATCOM_Platform_Utilization Netwars\Sim_Domain\op_models\netwars_std_models\satellite
UHF_SATCOM_Port_Map Netwars\Sim_Domain\op_models\netwars_std_models\satellite
USN_ckt_supp Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models

Note: The NETWARS XML Schema defines the official input and output file for NETWARS
Scenario Builder. The SDF file format is now obsolete. A traffic XML file has replaced it, which
contains the IER and threaded IER information for the scenario.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

M-1

APPENDIX M: ATTRIBUTE TYPE DEFINITIONS

This appendix describes the various attribute types used in NETWARS. For more information,
refer to OPNET Modeler Online documentation, Modeling Concepts Manual, “Modeling
Framework” chapter, “Fram.3.3, Attributes” section.

Toggle

When a variable takes Boolean values such as On/Off or Included/Not Included, it is defined as a
Toggle variable. An example of a Toggle variable is availability_status of a node, which is “1”
to indicate that it is available for communication or “0” to indicate that it is not available.

Integer

When a variable takes whole-number values, it is defined as an integer variable. An example of
an integer variable is max_active_calls for a phone, which cannot be defined in fractions of the
number of supported calls.

Double

When a variable needs to represent a precise numerical quantity, it is defined as a double
variable. An example of a double variable is x position of a node, which could take a value such
as “38.324.”

String

When a variable is used to hold a set of characters, it is defined as a string variable. An example
of a string variable is the name attribute of a node.

Enumerated

When a variable takes only a set of pre-defined values, it is represented as an enumerated
variable. The value for an enumerated variable is represented as a string during specification and
as an integer during simulation.

An example of an enumerated value is the classification attribute of a node. This variable takes a
certain number of pre-defined values such as “classified,” “unclassified,” or “secret.” These are
typically loaded as public attribute definition files and can be shared across models, for example,
the classification.ad.m file.

The NETWARS Standard enumerated types have been defined as public attributes, and these are
defined in Appendix C.

Compound

When a variable cannot be represented by one of the simple data types described above, it is
represented by a compound data type. A compound data type is a collection of simple data types
and other complex data types. A compound data type can have arbitrary levels of nesting.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

M-2

An example of a compound variable is the channel attribute of a transmitter module. The
channel attribute is a combination of two simple data types—an integer called data rate and an
enumerated field called packet format.

Typed file

This is a character string that represents the name of a file. A typed file could be a trajectory file
for a mobile node, an orbit file for a satellite node, or any of the other supported file formats. For
a full listing of the supported typed files, refer to Appendix G.

Structure

This is similar to the compound attribute type. While the compound attribute type is used in the
node model attributes, the structure attribute is used in packet format attributes.

Information

The information attribute type is used in packet fields. These fields cannot contain any actual
value, and they are used only as padding for the packets, so that the packet can have a certain
number of bits.

Objid

An object ID is used to uniquely identify a simulation object. Nodes, modules inside of nodes,
and compound attributes are all examples of simulation objects. The data type Objid is used to
declare these identifiers. This value is not modifiable.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

N-1

APPENDIX N: EXAMPLES OF NETWARS MODELS

This appendix will go through an example of locating a NETWARS Model and the information
relevant to the model. Table N-1 provides a list of all the NETWARS Models in alphabetic
order to use as a reference in locating a specific model.

Node Models end in “.nd.m.” While it is easy to get a list of the files in Microsoft Windows
Explorer, the files contain binary data and will not be able to be opened and easily read with a
text editor, e.g., Notepad or Wordpad. The Node Models can easily be found by searching the
NETWARS model files looking for those files that end in “.nd.m,” as shown in Figure N-1

Figure N-1: List of Node Models

NETWARS MODEL DEVELOPMENT GUIDE V3.0

N-2

These files can be examined through OPNET Modeler by opening them as shown in Figure N-2.
Once the Node Model is displayed, then you can examine items such as Model Attributes, Node
Interfaces, Node Statistics, Self Description and all associated Process Models that pertain to all
the modules within the NETWARS Models.

Figure N-2: Open NETWARS Model

A valuable section within the Node Interfaces is the Comments. The comments may follow a
template that contains information such as;

1. Section One – General Information
a. Model Name
b. Communications Device Model Description
c. Interface List
d. Routing and Transport
e. Supported Multi-access schemes
f. Supported multiplexing schemes
g. Configurable attributes
h. Supported traffic

2. Section Two - Failure recovery support
3. Section Three - Developer notes.

a. ICI Formats
b. External Files
c. Header Files
d. Process Models
e. Pipeline Stages

NETWARS MODEL DEVELOPMENT GUIDE V3.0

N-3

4. Section Four - Model Fidelity
5. Section Five – Military Analyst Nodes

a. Model Usage
b. Exceptions and Elaborations
c. Military Analyst Comments

6. Section Six - Comments
a. Full Edit History
b. External Documentation
c. References and Specifications Used

The following table is a complete list of the NETWARS Models in alphabetical order.

Table N-1: List of NETWARS Models (Alphabetic)

NETWARS Models Location
Accelerator4000 Netwars\Sim_Domain\op_models\netwars_std_models\router
Alcatel7270_adv Netwars\Sim_Domain\op_models\netwars_std_models\usfk_models
Alcatel7470_adv Netwars\Sim_Domain\op_models\netwars_std_models\router
Alcatel7750SR1_adv Netwars\Sim_Domain\op_models\netwars_std_models\router
Alcatel7750SR12_adv Netwars\Sim_Domain\op_models\netwars_std_models\router
Alcatel7750SR7_adv Netwars\Sim_Domain\op_models\netwars_std_models\router
ale_config Netwars\Sim_Domain\op_models\netwars_std_models\radio\sincgars
AN_FCC_100_V Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
AN_URC_131_V_BB_Transmitter Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
AN_URC_131_V_NB_Transmitter Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
AN_URC_131_V_Receiver Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
AN_URC_139_V Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
AN_USC_38_MDR Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
AN_WSC_3_V11 Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
AN_WSC_3_V14 Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
AN_WSC_3_V15 Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
AN_WSC_3_V17 Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
AN_WSC_3_V18 Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
AN_WSC_3_V2 Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
AN_WSC_3_V3 Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
AN_WSC_3_V6 Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
AN_WSC_3_V7 Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
AN_WSC_3_V9 Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
AN_WSC_5_V Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
AN_WSC_6_V2 Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
AN_WSC_6_V4 Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
AN_WSC_6_V5 Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
AN_WSC_6_V7 Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
AN_WSC_6_V9_C Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
AN_WSC_6_V9_X Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
AN_WSC_8_V1 Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
AN_WSC_8_V2 Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
CA_Satellite Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
CB_SS_2200 Netwars\Sim_Domain\op_models\netwars_std_models\router
CB_SS_6000 Netwars\Sim_Domain\op_models\netwars_std_models\router
CB_SS_9000_adv Netwars\Sim_Domain\op_models\netwars_std_models\router
CDS Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
CellXpress_PVC_Config Netwars\Sim_Domain\op_models\netwars_std_models\promina
CISCO 2505 Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 2507 Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 2509 Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 2511 Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 2512 Netwars\Sim_Domain\op_models\netwars_std_models\router

NETWARS MODEL DEVELOPMENT GUIDE V3.0

N-4

CISCO 2514 Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
CISCO 2516 Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 2524 Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 2621 Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 2916 Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 2924 Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 2950G 24 EI Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 2950G 24 EI_adv Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 3000 Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 3620 Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 3640 Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 3660 Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 3725_adv Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 3745 Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 3745_adv Netwars\Sim_Domain\op_models\netwars_std_models\router
Cisco 3750_adv Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 4006 Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 4500-M Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 4700-M Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 7010 Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 7206 Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 7505 Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
CISCO 7507 Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 7513 Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
Cisco_LS_1010 Netwars\Sim_Domain\op_models\netwars_std_models\switches
cisco2514_adv Netwars\Sim_Domain\op_models\netwars_std_models\router
cisco4500_adv Netwars\Sim_Domain\op_models\netwars_std_models\router
cisco7505_adv Netwars\Sim_Domain\op_models\netwars_std_models\router
Cisco7513_adv Netwars\Sim_Domain\op_models\netwars_std_models\router
computer_adv Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
computer_ethernet_adv Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
computer_TCP_adv Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
computer_TCP_ethernet_adv Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
Definity Prologic Netwars\Sim_Domain\op_models\netwars_std_models\mse
dnvt Netwars\Sim_Domain\op_models\netwars_std_models\mse
DPA Netwars\Sim_Domain\op_models\netwars_std_models\mse
DPM Netwars\Sim_Domain\op_models\netwars_std_models\mse
DSCS SLEP Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
DSCS_III_Satellite Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
DSS-1 Netwars\Sim_Domain\op_models\netwars_std_models\mse
DSS-2 Netwars\Sim_Domain\op_models\netwars_std_models\mse
DSS-3 Netwars\Sim_Domain\op_models\netwars_std_models\mse
DTA Netwars\Sim_Domain\op_models\netwars_std_models\mse
DVS-G Bridge Netwars\Sim_Domain\op_models\netwars_std_models\vtc

Testing_Module
Netwars\Sim_Domain\op_models\netwars_std_models\misc\dynamic_testing_softw
are

EPLRS Netwars\Sim_Domain\op_models\netwars_std_models\radio\eplrs
Falcon_II Netwars\Sim_Domain\op_models\netwars_std_models\radio\sincgars
FCC-100 V7 Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
FCC-100 V9 Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
FCC-100V9 Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
Firewall_2NIC Netwars\Sim_Domain\op_models\netwars_std_models\router
Firewall_3NIC Netwars\Sim_Domain\op_models\netwars_std_models\router
Firewall_4Slot Netwars\Sim_Domain\op_models\netwars_std_models\router
FLBCST Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
FoundryFastIron1500Switch_adv Netwars\Sim_Domain\op_models\netwars_std_models\usfk_models
FoundryFastIron2402Switch_adv Netwars\Sim_Domain\op_models\netwars_std_models\usfk_models
FoundryFastIron400Switch_adv Netwars\Sim_Domain\op_models\netwars_std_models\usfk_models
FoundryFastIron4802Switch_adv Netwars\Sim_Domain\op_models\netwars_std_models\usfk_models
FoundryFastIron800Switch_adv Netwars\Sim_Domain\op_models\netwars_std_models\usfk_models
FoundryFastIron9604Switch_adv Netwars\Sim_Domain\op_models\netwars_std_models\usfk_models
FoundryNetIron1500Router_adv Netwars\Sim_Domain\op_models\netwars_std_models\usfk_models

NETWARS MODEL DEVELOPMENT GUIDE V3.0

N-5

FoundryNetIron400Router_adv Netwars\Sim_Domain\op_models\netwars_std_models\usfk_models
FoundryNetIron800Router_adv Netwars\Sim_Domain\op_models\netwars_std_models\usfk_models
FSC-78 Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
gen_sat_earth_term Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
Generic ATM Switch Netwars\Sim_Domain\op_models\netwars_std_models\router
Generic C Band Trml Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
Generic Ckt Switch Netwars\Sim_Domain\op_models\netwars_std_models\mse
Generic H 320 Bridge Netwars\Sim_Domain\op_models\netwars_std_models\vtc
Generic Hub Netwars\Sim_Domain\op_models\netwars_std_models\switches
Generic IDS Netwars\Sim_Domain\op_models\netwars_std_models\trafgen
Generic IP Data Switch_adv Netwars\Sim_Domain\op_models\netwars_std_models\router
Generic Ku Band Trml Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
Generic Layer 2 Switch_adv Netwars\Sim_Domain\op_models\netwars_std_models\switches
Generic Layer 3 Switch_adv Netwars\Sim_Domain\op_models\netwars_std_models\router
Generic MW LOS Netwars\Sim_Domain\op_models\netwars_std_models\radio\trc170
Generic Router Netwars\Sim_Domain\op_models\netwars_std_models\router
Generic Server Netwars\Sim_Domain\op_models\netwars_std_models\trafgen
Generic Smart Mux Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
Generic TDM Mux Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
Generic Telephone Netwars\Sim_Domain\op_models\netwars_std_models\mse
Generic UFO Netwars\Sim_Domain\op_models\netwars_std_models\satellite
Generic VTC Trml Netwars\Sim_Domain\op_models\netwars_std_models\vtc
generic_broadcast_satellite Netwars\Sim_Domain\op_models\netwars_std_models\satellite
generic_space_segment Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
GSC-39 Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
GSC-52 Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
Harris_6010_adv Netwars\Sim_Domain\op_models\netwars_std_models\radio\sincgars
Harris_Megastar_155 Netwars\Sim_Domain\op_models\netwars_std_models\usfk_models
havequick_rt Netwars\Sim_Domain\op_models\netwars_std_models\radio\havequick
hf_rt Netwars\Sim_Domain\op_models\netwars_std_models\radio\sincgars
IDNX-20 Netwars\Sim_Domain\op_models\netwars_std_models\promina
IDNX-90 Netwars\Sim_Domain\op_models\netwars_std_models\promina
ier_loader Netwars\Sim_Domain\op_models\netwars_std_models\nwstd
INMARSAT_B_HSD Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
INMARSAT_B_Satellite Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
Intelsat Netwars\Sim_Domain\op_models\netwars_std_models\satellite
IP_ATM_TACLANE Netwars\Sim_Domain\op_models\netwars_std_models\crypto
ISDN_MCU Netwars\Sim_Domain\op_models\netwars_std_models\vtc
ISDN_VTC_Trml Netwars\Sim_Domain\op_models\netwars_std_models\vtc
JRE Gateway Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
JRE Gateway_adv Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
JRE_Gateway Netwars\Sim_Domain\op_models\contributed_models\link_16_models
jtids Netwars\Sim_Domain\op_models\netwars_std_models\radio\jtids
JTIDS_Terminal Netwars\Sim_Domain\op_models\contributed_models\link_16_models
KG_194 Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
KG_84 Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
KG-175 ATM Netwars\Sim_Domain\op_models\netwars_std_models\crypto
KG-175 E-100 Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
KG-175 IP Netwars\Sim_Domain\op_models\netwars_std_models\crypto
KG175-E_10 Netwars\Sim_Domain\op_models\netwars_std_models\crypto
KG175-E10 Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
KG175-E100 Netwars\Sim_Domain\op_models\netwars_std_models\crypto
KG194_crypto_base Netwars\Sim_Domain\op_models\netwars_std_models\crypto
KG-235 Netwars\Sim_Domain\op_models\netwars_std_models\crypto
KG-250 Netwars\Sim_Domain\op_models\netwars_std_models\crypto
KG84_crypto_base Netwars\Sim_Domain\op_models\netwars_std_models\crypto
KIV7_crypto_base Netwars\Sim_Domain\op_models\netwars_std_models\crypto
KY68 Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
LAN WAN IP network_adv Netwars\Sim_Domain\op_models\netwars_std_models\trafgen
layer_1_crypto_base Netwars\Sim_Domain\op_models\netwars_std_models\crypto
len Netwars\Sim_Domain\op_models\netwars_std_models\mse
Link_11 Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models

NETWARS MODEL DEVELOPMENT GUIDE V3.0

N-6

Link_16_Config Netwars\Sim_Domain\op_models\contributed_models\link_16_models
Link_16_Host_Processor Netwars\Sim_Domain\op_models\contributed_models\link_16_models
Live PCS-100 Netwars\Sim_Domain\op_models\netwars_std_models\vtc
Marconi_ASX1000 Netwars\Sim_Domain\op_models\netwars_std_models\router
Marconi_ASX1200 Netwars\Sim_Domain\op_models\netwars_std_models\router
Marconi_ASX200BX Netwars\Sim_Domain\op_models\netwars_std_models\router
Marconi_PH6000_adv Netwars\Sim_Domain\op_models\netwars_std_models\router
Marconi_PH7000_adv Netwars\Sim_Domain\op_models\netwars_std_models\router
Marconi_PH8000_adv Netwars\Sim_Domain\op_models\netwars_std_models\router
Marconi_TNX1100 Netwars\Sim_Domain\op_models\netwars_std_models\router
MC-6000 Netwars\Sim_Domain\op_models\netwars_std_models\vtc
media_gateway Netwars\Sim_Domain\op_models\netwars_std_models\media_gateway
MilStar_2_Satellite Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
MMT Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
Motorola NES Netwars\Sim_Domain\op_models\netwars_std_models\crypto
MRC-142 Netwars\Sim_Domain\op_models\netwars_std_models\radio\trc170
MSE_Switch_a6_e25_sl38 Netwars\Sim_Domain\op_models\netwars_std_models\mse
multiplexer_utility Netwars\Sim_Domain\op_models\netwars_std_models\misc\utility
mux_12inputs Netwars\Sim_Domain\op_models\netwars_std_models\mux
mux_16inputs Netwars\Sim_Domain\op_models\netwars_std_models\mux
mux_2inputs Netwars\Sim_Domain\op_models\netwars_std_models\mux
mux_4inputs Netwars\Sim_Domain\op_models\netwars_std_models\mux
mux_8inputs Netwars\Sim_Domain\op_models\netwars_std_models\mux
mux_etssp_nodal Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
NAVMACS Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
ncs Netwars\Sim_Domain\op_models\netwars_std_models\mse
NES Netwars\Sim_Domain\op_models\netwars_std_models\crypto
NIMA Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
nw_eth_switched_lan_adv Netwars\Sim_Domain\op_models\netwars_std_models\trafgen
nw_ethernet_server Netwars\Sim_Domain\op_models\netwars_std_models\trafgen
nw_ethernet_wkstn Netwars\Sim_Domain\op_models\netwars_std_models\trafgen
nw_generic_device Netwars\Sim_Domain\op_models\netwars_std_models\nwstd
nw_hla_interaction Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla
nw_jam_pulsed Netwars\Sim_Domain\op_models\netwars_std_models\radio\jammers
nw_jam_sb Netwars\Sim_Domain\op_models\netwars_std_models\radio\jammers
nw_jam_swept Netwars\Sim_Domain\op_models\netwars_std_models\radio\jammers
NW_KG-194 Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
NW_KG-84 Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
NW_KIV-7 Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
nw_multihommed_server Netwars\Sim_Domain\op_models\netwars_std_models\trafgen
nw_multihommed_wkstn Netwars\Sim_Domain\op_models\netwars_std_models\trafgen
nw_ppp_server Netwars\Sim_Domain\op_models\netwars_std_models\trafgen
nw_ppp_wkstn Netwars\Sim_Domain\op_models\netwars_std_models\trafgen
Nw_QoS_Attribute_Config Netwars\Sim_Domain\op_models\netwars_std_models\misc\utility
Nw_Sink Netwars\Sim_Domain\op_models\netwars_std_models\misc\utility
oe Netwars\Sim_Domain\op_models\netwars_std_models\nwstd
Omni Switch 3WX Netwars\Sim_Domain\op_models\netwars_std_models\switches
Omni Switch 5WX Netwars\Sim_Domain\op_models\netwars_std_models\switches
Omni Switch 9WX Netwars\Sim_Domain\op_models\netwars_std_models\switches
Patch_Panel_48 Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
Patch_Panel_96 Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
pro_cell_express_adv Netwars\Sim_Domain\op_models\netwars_std_models\promina
pro_portmap_utility Netwars\Sim_Domain\op_models\netwars_std_models\promina
Promina Netwars\Sim_Domain\op_models\netwars_std_models\promina
PROMINA 200 Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
PROMINA 400 Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
PROMINA 800 Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
Promina_10l_5w_2eth_2sclx_2cx_adv Netwars\Sim_Domain\op_models\netwars_std_models\promina
Promina-100 Netwars\Sim_Domain\op_models\netwars_std_models\promina
Promina-200 Netwars\Sim_Domain\op_models\netwars_std_models\promina
Promina-400 Netwars\Sim_Domain\op_models\netwars_std_models\promina
Promina400_e180_sl180 Netwars\Sim_Domain\op_models\netwars_std_models\promina

NETWARS MODEL DEVELOPMENT GUIDE V3.0

N-7

Promina-800 Netwars\Sim_Domain\op_models\netwars_std_models\promina
Proteon CNX 500 Netwars\Sim_Domain\op_models\netwars_std_models\router
Proteon CNX 600 Netwars\Sim_Domain\op_models\netwars_std_models\router
RadVision Bridge Netwars\Sim_Domain\op_models\netwars_std_models\vtc
RadVision VTC Suite Netwars\Sim_Domain\op_models\netwars_std_models\vtc
REDCOM HDX Netwars\Sim_Domain\op_models\netwars_std_models\mse
REDCOM IGX 1 Shelf Netwars\Sim_Domain\op_models\netwars_std_models\mse
REDCOM IGX 10 Shelf Netwars\Sim_Domain\op_models\netwars_std_models\mse
REDCOM IGX 16 Shelf Netwars\Sim_Domain\op_models\netwars_std_models\mse
REDCOM IGX 2 Shelf Netwars\Sim_Domain\op_models\netwars_std_models\mse
REDCOM IGX 3 Shelf Netwars\Sim_Domain\op_models\netwars_std_models\mse
REDCOM IGX 4 Shelf Netwars\Sim_Domain\op_models\netwars_std_models\mse
REDCOM IGX 5 Shelf Netwars\Sim_Domain\op_models\netwars_std_models\mse
REDCOM IGX 6 Shelf Netwars\Sim_Domain\op_models\netwars_std_models\mse
REDCOM IGX 7 Shelf Netwars\Sim_Domain\op_models\netwars_std_models\mse
REDCOM IGX 8 Shelf Netwars\Sim_Domain\op_models\netwars_std_models\mse
RedEagle_INE-100 Netwars\Sim_Domain\op_models\netwars_std_models\crypto
sat_term_basic Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
sat_term_etssp_nodal Netwars\Sim_Domain\op_models\netwars_std_models\satellite
sat_term_etssp_non_nodal Netwars\Sim_Domain\op_models\netwars_std_models\satellite
sat_term_etsspG3_nodal Netwars\Sim_Domain\op_models\netwars_std_models\satellite
sat_term_etsspG3_non_nodal Netwars\Sim_Domain\op_models\netwars_std_models\satellite
sat_term_generic_1port Netwars\Sim_Domain\op_models\netwars_std_models\satellite
sat_term_generic_8port Netwars\Sim_Domain\op_models\netwars_std_models\satellite
sat_term_tssp_nodal Netwars\Sim_Domain\op_models\netwars_std_models\satellite
sat_term_tssp_non_nodal Netwars\Sim_Domain\op_models\netwars_std_models\satellite
satellite_generic Netwars\Sim_Domain\op_models\netwars_std_models\satellite
SB-3865 1 Stack Netwars\Sim_Domain\op_models\netwars_std_models\mse
SB-3865 2 Stack Netwars\Sim_Domain\op_models\netwars_std_models\mse
SB-3865 3 Stack Netwars\Sim_Domain\op_models\netwars_std_models\mse
sen Netwars\Sim_Domain\op_models\netwars_std_models\mse
Server_4Slot Netwars\Sim_Domain\op_models\netwars_std_models\trafgen
SHM-1337 Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
sincgars_inc_adv Netwars\Sim_Domain\op_models\netwars_std_models\radio\sincgars
sincgars_rt Netwars\Sim_Domain\op_models\netwars_std_models\radio\sincgars
SMU Netwars\Sim_Domain\op_models\netwars_std_models\mse
SRAP_application_v2 Netwars\Sim_Domain\op_models\netwars_std_models\satellite
SRC-57 Netwars\Sim_Domain\op_models\netwars_std_models\radio\trc170
STU-III Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
TACINTEL Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
TCDL_Radio Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
tcp_pep_adv Netwars\Sim_Domain\op_models\netwars_std_models\pep
TD1271 Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
Thales_SONET_Datacryptor Netwars\Sim_Domain\op_models\netwars_std_models\usfk_models
Timeplex_CX-1500 Netwars\Sim_Domain\op_models\netwars_std_models\switches
Timeplex_Link_100 Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
Timeplex_Link_2 Netwars\Sim_Domain\op_models\contributed_models\navy_spawar_models
trc-170 Netwars\Sim_Domain\op_models\netwars_std_models\radio\trc170
TRC-170 V2 Netwars\Sim_Domain\op_models\netwars_std_models\radio\trc170
TRC-170 V3 Netwars\Sim_Domain\op_models\netwars_std_models\radio\trc170
TRC-170 V5 Netwars\Sim_Domain\op_models\netwars_std_models\radio\trc170
TRC-173B Netwars\Sim_Domain\op_models\netwars_std_models\radio\trc170
trpak_gen Netwars\Sim_Domain\op_models\netwars_std_models\misc\utility
TSC-100A Netwars\Sim_Domain\op_models\netwars_std_models\satellite
TSC-152 w ETSSP Netwars\Sim_Domain\op_models\netwars_std_models\satellite
TSC-152 w TSSP Netwars\Sim_Domain\op_models\netwars_std_models\satellite
TSC-152 wo TSSP Netwars\Sim_Domain\op_models\netwars_std_models\satellite
TSC-152_C_Band Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
TSC-152_Ku_Band Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
TSC-152_X_Band Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
TSC-154 Netwars\Sim_Domain\op_models\netwars_std_models\satellite
TSC-161_C_Band Netwars\Sim_Domain\op_models\netwars_std_models\deprecated

NETWARS MODEL DEVELOPMENT GUIDE V3.0

N-8

TSC-161_Ka_Band Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
TSC-161_Ku_Band Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
TSC-161_X_Band Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
TSC-85B Netwars\Sim_Domain\op_models\netwars_std_models\satellite
TSC-85C Netwars\Sim_Domain\op_models\netwars_std_models\satellite
TSC-85C w ETSSP Netwars\Sim_Domain\op_models\netwars_std_models\satellite
TSC-93B Netwars\Sim_Domain\op_models\netwars_std_models\satellite
TSC-93C Netwars\Sim_Domain\op_models\netwars_std_models\satellite
TSC-93C w ETSSP Netwars\Sim_Domain\op_models\netwars_std_models\satellite
tsc-94 Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
TSC-94A Netwars\Sim_Domain\op_models\netwars_std_models\satellite
TSQ-190 Netwars\Sim_Domain\op_models\netwars_std_models\satellite
ttc-39 Netwars\Sim_Domain\op_models\netwars_std_models\mse
TTC-39A V3 Netwars\Sim_Domain\op_models\netwars_std_models\mse
TTC-39A V4 Netwars\Sim_Domain\op_models\netwars_std_models\mse
TTC-39D Netwars\Sim_Domain\op_models\netwars_std_models\mse
TTC-39E Netwars\Sim_Domain\op_models\netwars_std_models\mse
TTC-42 Netwars\Sim_Domain\op_models\netwars_std_models\mse
TTC-46 LEN Netwars\Sim_Domain\op_models\netwars_std_models\mse
TTC-48 SEN Netwars\Sim_Domain\op_models\netwars_std_models\mse
TTC-56 Netwars\Sim_Domain\op_models\netwars_std_models\mse
udp_comp_adv Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
udp_comp_ethernet_adv Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
uhf_rt Netwars\Sim_Domain\op_models\netwars_std_models\radio\sincgars
UHF_SATCOM_CPS Netwars\Sim_Domain\op_models\netwars_std_models\satellite
UHF_SATCOM_NCS_Platform Netwars\Sim_Domain\op_models\netwars_std_models\satellite
UHF_SATCOM_Satellite_FLTSATCO
M Netwars\Sim_Domain\op_models\netwars_std_models\satellite
UHF_SATCOM_Satellite_UFO Netwars\Sim_Domain\op_models\netwars_std_models\satellite
UHF_SATCOM_Terminal_Platform Netwars\Sim_Domain\op_models\netwars_std_models\satellite
USC-59 w ETSSP Netwars\Sim_Domain\op_models\netwars_std_models\satellite
USC-59 w TSSP Netwars\Sim_Domain\op_models\netwars_std_models\satellite
USC-59 wo TSSP Netwars\Sim_Domain\op_models\netwars_std_models\satellite
USC-60A w ETSSP Netwars\Sim_Domain\op_models\netwars_std_models\satellite
USC-60A w TSSP Netwars\Sim_Domain\op_models\netwars_std_models\satellite
USC-60A wo TSSP Netwars\Sim_Domain\op_models\netwars_std_models\satellite
USC-60A_C_Band Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
USC-60A_Ku_Band Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
USC-60A_X_Band Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
USC-65_V1_C_Band Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
USC-65_V1_Ku_Band Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
USC-65_V1_X_Band Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
USC-65_V2_C_Band Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
USC-65_V2_Ku_Band Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
USC-65_V2_X_Band Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
Venue 2000 Netwars\Sim_Domain\op_models\netwars_std_models\vtc
vhf_rt Netwars\Sim_Domain\op_models\netwars_std_models\radio\sincgars
VIXS Bridge Netwars\Sim_Domain\op_models\netwars_std_models\vtc
voice_config Netwars\Sim_Domain\op_models\netwars_std_models\media_gateway
voip_phone Netwars\Sim_Domain\op_models\netwars_std_models\media_gateway
Wireless_Configuration Netwars\Sim_Domain\op_models\netwars_std_models\misc\utility
WSC-6 V5 Netwars\Sim_Domain\op_models\netwars_std_models\satellite
WSC-6 V6 Netwars\Sim_Domain\op_models\netwars_std_models\satellite
WSC-6 V7 Netwars\Sim_Domain\op_models\netwars_std_models\satellite
WSC-6 V9 C Band Netwars\Sim_Domain\op_models\netwars_std_models\satellite
WSC-6 V9 X Band Netwars\Sim_Domain\op_models\netwars_std_models\satellite
WSC-8 Netwars\Sim_Domain\op_models\netwars_std_models\satellite
Zydacron Netwars\Sim_Domain\op_models\netwars_std_models\vtc

NETWARS MODEL DEVELOPMENT GUIDE V3.0

O-1

APPENDIX O: NETWARS DOCUMENTATION SET

Figure O-1 illustrates a NETWARS documentation set.

Figure O-1: NETWARS Documentation Set

NETWARS MODEL DEVELOPMENT GUIDE V3.0

P-1

APPENDIX P: CREATING MODEL REPOSITORIES IN NETWARS

The repositories are the shared object files that represent a set of models (model library). Using
the repositories precludes the necessity for dynamic binding of simulation. DES in NETWARS
supports dynamic binding of simulations implicitly in the sense that execution of a simulation
can automatically trigger the binding process. The underlying utility that automates this process
is called op_runsim. This utility can be used to execute simulations from a NETWARS console
on the host computer just as Scenario Builder launches it from the Configure/Run Discrete Event
Simulation dialog. op_runsim is essentially the starting point for all dynamically bound
simulation programs. It determines which component files a simulation needs; it then uses the
host computer’s linker to load all the components and bind them together. Finally, it begins
executing the simulation.

To avoid the dynamic binding process of user-defined components during simulation runtime,
use the op_mkso utility to bind the user-defined components (such as process models, pipeline
stages, and external files) into a single larger object called a repository. Then use this repository
during simulation startup. From the linker’s point of view, a repository exists as a shared object
file.

Building a Repository

On the OPNET Console (Start/Program/OPNET Modeler 8.1/OPNET Console), type the
following command:

For building a development repository:

op_mkso -env_db
“<drive_letter>\Netwars..\Sim_Domain\op_admin\env_d b8.1” -type repos -
m NAME_OF_REPOSITORY -pr_files ALL -ps_files ALL -ex_files ALL -
comp_trace_info TRUE -kernel_type development -c
For building a optimized repository:

op_mkso -env_db
“<drive_letter>\Netwars..\Sim_Domain\op_admin\env_d b8.1” -type repos -
m NAME_OF_REPOSITORY -pr_files ALL -ps_files ALL -ex_files ALL -
comp_trace_info TRUE -kernel_type optimized –c

Using a Repository

• Make sure that repository file NAME_OF_REPOSITORY.i0.sid.so (development) or
NAME_OF_REPOSITORY.i0.sio.so (optimized) is in one of the directories listed in the
mod_dirs preference of your env_db file (located in
“<drive_letter>\Netwars..\Sim_Domain\op_admin” folder)

• Put this environment variable in the env_db file (located in
“<drive_letter>\Netwars..\Sim_Domain\op_admin” folder)
repositories : NAME_OF_REPOSITORY

NETWARS MODEL DEVELOPMENT GUIDE V3.0

Q-1

APPENDIX Q: TROUBLESHOOTING NETW ARS SIMULATION

Refer to OPNET COTS documentation for troubleshooting a DES in the “General Tutorials |
Troubleshooting Modeler Tutorials” section.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

R-1

APPENDIX R: FREQUENTLY ASKED QUESTIONS

Table R-1 outlines the solution to several frequently asked questions (FAQ).

Table R-1: FAQs

Question/Problem Solution

How should I set the mod_dirs
environment variable for the
various env_db files for custom
model development?

There are two environment database files that the developer needs to be
aware of when doing any development. One env_db file, which is used by
NETWARS, is located under the Scenario_Builder\op_admin folder of the
NETWARS installation. The other env_db file is the OPNET Modeler
env_db file. This file is located in the op_admin folder of the
opnet_user_home, and these environment settings are used when the
OPNET Modeler software is used. All the new models developed are
saved in the primary mod_dirs (first entry of the mod_dirs environment
variable). To use the custom models in the NETWARS environment the
user needs to include this mod_dirs entry in the NETWARS env_db files.
Please note that if the custom models are modified NETWARS or OPNET
Standard models, they must be placed before the NETWARS and
OPNET Standard model directories in both the env_db files.

How do I enable the debug mode
in my simulation? How can I
enable OPNET debugger in my
NETWARS simulation?

To enable the OPNET debugger (odb) for NETWARS simulation, check
the “Use OPNET Simulation Debugger” checkbox under Execution |
OPNET Debugger in the Configure/Run dialog box before running the
simulation.

I want to specify simulation
attributes. Where can I do that?

This can be done in the Configure/Run dialog box before running the
simulation. The simulation attribute can be defined under Inputs| Global
Attributes.

I want to see the routing tables
generated during the simulation.
How can I do that?

Simulation attribute “IP Routing Table Export/Import” under Inputs | Global
Attributes needs to be set in the Configure/Run dialog box. The integer
value 1 is used for this attribute to export the routes; 2 (import) and 0 are
not to be used.

I have the TIREM data files on
my system but still the TIREM is
not enabled. Why?

To enable TIREM in the simulation, please make sure that:
• The files are WOTL format data files.
• These files are located in the primary mod_dirs.
• The “TIREM” checkbox is turned on. This checkbox is available in the

“Advanced Simulation Configuration” dialog box.
No traffic flows through the
network even though there are
IERs specified in the text files?

There are two things that need to be checked:
• Make sure that the “Import IERS from Text Files” option is checked in

the General Description block.
• If the IER text files are changed with the scenario open in the editor,

make sure that the IER text files are refreshed from the File menu.
All my data IERs are failed or
reported miscellaneous. What
could be the reason?

There could be many reasons why the data IERs may not go through the
network, including the following:
• Routes were not determined: For some reason if the routes were not

determined by the routing protocol either because of configuration
issues or convergence problems the packets get dropped and hence
the IER is not received at the destination.

• Circuits were not set up: For Promina or Multiplexers if the circuits are
not set up correctly the traffic (IER) cannot flow.

• Large IERs: IERs of very large size can be dropped because of
several reasons (refer to the following question for details).

• Other protocol issues: These issues are logged in a simulation log file
per scenario. This file can be accessed via Results-> Simulation Log.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

R-2

Question/Problem Solution

I have large data IERs (greater
than 20 Mb) and none of the
IERs go through? Why?

IERs of very large sizes can be dropped because of various reasons
including the following:
• Reassembly timeouts: If the time taken by the complete IER to reach

the destination is more than the reassembly time, the queue is
flushed.

• Buffer overflows: For IERs of such large sizes the queues at various
interfaces may overflow causing packet drops.

• Low processing speeds: If the IP processing speeds are low, the
servicing of the IP datagrams may be slower, causing reassembly
timeouts on the destination host.

• Transport layer: If the transport layer protocol is not reliable (e.g.,
UDP) or has a limit on the size of the application layer packets it can
handle, this may also be responsible for the drops at the transport
layer. In the case of the application layer in NETWARS, the size
limitation of the transport layer is handled by segmenting the
application layer packets.

What are Miscellaneous IERs?
How are they calculated?

The IERs are reported as Miscellaneous when they do not make it to the
destination before the simulation completes.
Miscellaneous IERs = IERs Sent – (IERs Received + IERs failed)

I see some of the IERs reported
as Miscellaneous. Where did
they go?

The IERs are reported as Miscellaneous when they do not make it to the
destination before the simulation completes. There can variety of reasons
for this including the following:
• Lossy networks: The packets are dropped in the network without

intimation to the host.
• Transport layer: If the transport layer is not reliable, the packets

dropped in the network are never retransmitted, and the IERs are
counted as miscellaneous.

• Delays: Higher delays in the network may cause the simulation to be
completed before some of the IERs can reach the destination. The
IER stop times can be changed so that the IER has ample time to
reach the destination before the simulation ends.

What are the Perished IERs? These are the IERs that reached the destination after the perishability
time defined in the IER/Demand definition.

I see the IERs to be received at
the destination, but when I look
at the grade of service statistics I
see that it reports a lesser
percentage of IERs received.
Why?

The grade of service is the percentage of IERs sent that were received
within the perishability time limit. If an IER received takes more time than
the perishability value specified for it, it will not be counted for the grade of
service calculation.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

S-1

APPENDIX S: MIGRATION FROM EARLIER OPNET VERSIONS

This Appendix will discuss the most important issues regarding enhancements to the OPNET
product as they pertain to NETWARS Model Development. For a comprehensive list of
enhancements, consult the Release Notes for the Product Release of interest. The following need
to be noted when upgrading models that were built using earlier versions of OPNET:

1) Modeler Release 12.141

a) Functional Enhancements

i) Model Comparison

Model Comparison allows comparison of different versions of models to see what
differences exist between versions. For example, a comparison between a new
version of a standard model with a customized copy of the previous version to
estimate the work required to carry the customization forward in the new version.

Compare the following types of Models:

(1) Protocol Models (standard, specialized, and custom)
(2) Process Models
(3) Node, link, path, demand, and wireless domain models (base and derived)
(4) Packet formats
(5) ICIs
(6) Text files (e.g., .ef, .ets, .ex.c, and .gdf)

b) For additional enhancements, please see release notes

2) Modeler Release 12.0.PL542 and Modeler Release 12.0 PL342

a) For enhancements, please see release notes

3) Modeler Release 12.0.PL0 and PL142

a) Application Model Enhancements

i) Application Delay Tracking

This feature will identify the largest sources of application delay during a discrete
event simulation.

The Standard Models’ GNA application models have been updated to support this
feature. To use this feature with custom-developed application models, you will need
to modify your process models.

41 For additional information see the OPNET Modeler Suite Release Notes for Product Release 12.1
42 For additional information see the OPNET Modeler Suite Release Notes for Product Release 12.0

NETWARS MODEL DEVELOPMENT GUIDE V3.0

S-2

Application Delay Tracking can answer the questions:

(1) What are my slowest applications?
(2) Did my application spend more time processing at the application layer or in the

network?
(3) What intermediate nodes or links were the largest bottlenecks
(4) Where were application packets dropped?

b) BGP Model Enhancements

i) Attribute Organization

The BGP Attribute structure has been significantly reorganized. Support was added
for neighbor groups, address family groups, and session groups. For more
information see the BGP Model User Guide.

ii) IPv6 Support

(1) The BGP model now supports advertising of IPv6 routing information in discrete
event simulations. All BGP features that are supported for IPv4 are now also
supported for IPv6.

These features include:

(a) BGP route selection process
(b) Communities
(c) Policies
(d) Route reflectors
(e) Confederations

(2) Note: MPLS-BGP VPNs are NOT supported for IPv6.

c) IP Model Enhancements

i) Implementation Change for IP Fragmentation

The IP model suite now uses the Segmentation and Reassembly (SAR) package (one
of the DES kernel APIs) in its implementation of IP fragmentation. Fragmentation
was already modeled in the previous release and if you are using the standard IP
model without modifications, this enhancement will not affect the way you configure
the model or the simulation results you get in this release. If you have added custom
code to the IP model, you might need to modify your models to account for the new
fragmentation architecture.

d) For additional enhancements, please see OPNET Modeler 12.0 release notes

NETWARS MODEL DEVELOPMENT GUIDE V3.0

T-1

APPENDIX T: SUPPORTED CLASSIFICATION VALUES

Current public attribute definition of the classification attribute (string) has the following values:

• Unclassified
• Classified
• Confidential
• Secret
• Top Secret.

Models can support additional custom, user-defined classifications.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

U-1

APPENDIX U: SELF-DESCRIPTION GUIDELINES

The self-description information for each model varies depending on factors such as the category
to which the model belongs (e.g., a network layer device versus a datalink layer device) and the
technologies it can support. Among the most common information that is looked for is the
information on the ports. The following discussion points out how this information is specified
for the NETWARS models. If the custom models do not support the same packet format
information as the NETWARS models, the developer will have to develop self-description
information based on the models developed.

The capacity planning feature uses the self-description information. Refer to the Section 3,
“Compliance for Non-Discrete Event Simulation (Capacity Planning)” subsection for details.

Port and Port Groups

For all the NETWARS models, each port category must have a self-description port object. For
example, MRC-142 (NETWARS Standard device model) has the following ports:

• Point-to-point ports: ptp_pt_0, ptp_pt_1
• Radio ports: radio_tx_0, radio_tx_1

Two port objects will be created, ptp_pt_<n> and radio_tx_<n>, with a range from 0 to 1 (see
Figure U-1).

Figure U-1: Self-Description Port Objects

Each port category needs an “interface type” characteristic defined for it. This interface type
defines the technologies that the set of ports support. In Table U-1 technologies are defined
based on the packet formats for each port category. Then, based on this definition, in Table U-2
interface types are defined for each port category depending on what packet formats they support
(see for details).

NETWARS MODEL DEVELOPMENT GUIDE V3.0

U-2

Table U-1: Packet Formats to Interface Types

Packet Formats Suggested Technologies (Interface Type)

ams_atm_cell atm:OC1,atm:OC3,atm:OC12,atm:OC24,atm:OC48
Ckswpkt Circuit_Switched:Voice WAN
ethernet_v2 ethernet:10BaseT, ethernet:100BaseT, ethernet:1000BaseX

ip_dgram_v4

serial:DS0,serial:DS1,serial:DS3,serial:T1,serial:T3,serial:OC
3,
serial:OC12,serial:OC36,serial:OC48,serial:OC192

KG194_19 Encryptor:KG194_KIV19
KG84_7 Encryptor:KG84_KIV7
mse_data_packet Circuit_Switched:Data_WAN
phone_switch Circuit_Switched:Voice_LAN
pro_cx_pk Multiplexer:CellXpress
pro_hello_pk, pro_wan_pk Multiplexer:WAN
satellite_pk Radio:Satellite
havequick_packet Radio_Wired:Sincgars INC Interface
sincgars_inc_packet Radio_Wired:EPLRS INC Interface
eplrs_inc_packet Radio_RF:Sincgars
radio_packet Radio_RF:EPLRS Routing
eplrs_packet_0,eplrs_packet_1,
eplrs_packet_2, eplrs_packet_3,
eplrs_packet_4, eplrs_packet_5,
eplrs_packet_6,
eplrs_packet_7,eplrs_eot_packet,
eplrs_routing_packet Radio_RF:EPLRS Broadcast1
ale_word_data, ale_word_lqa,
ale_word_std Radio_RF:EPLRS Broadcast2
Packet Formats Radio_RF:EPLRS Broadcast3
ams_atm_cell Radio_RF:EPLRS Broadcast4
Ckswpkt Radio_RF:EPLRS Broadcast5
ethernet_v2 Radio_RF:EPLRS Broadcast6
ip_dgram_v4 Radio_RF:EPLRS Broadcast7
KG194_19 Radio_RF:EPLRS Broadcast8

N
E

T
W

A
R

S
 M

O
D

E
L

D
E

V
E

LO
P

M
E

N
T

 G
U

ID
E

 V
3.

0

U
-3

T
ab

le
 U

-2
: S

up
po

rt
in

g
T

ec
hn

ol
og

ie
s

pe
r

P
or

t C
at

eg
or

y

P
or

t T
yp

e
S

up
po

rt
in

g
P

ac
ke

t F
or

m
at

s
S

up
po

rt
ed

 T
ec

hn
ol

og
ie

s

d
tg

ip
_

d
gr

a
m

_
v4

,
K

G
1

9
4

_
1

9
,

K
G

_
8

4
_

7
,m

se
_

d
at

a_
p

a
ck

et
,c

ks
w

p
kt

se
ri

al
:D

S
0

,s
er

ia
l:D

S
1

,s
er

ia
l:D

S
3

,s
er

ia
l:T

1
,s

er
ia

l:T
3

,s
er

ia
l:O

C
3

,s
e

ria
l:O

C
1

2
,s

er
ia

l:O
C

3
6

,s
e

ria
l:

O
C

4
8

,s
er

ia
l:O

C
1

9
2

,e
nc

ry
p

to
r:

K
G

1
9

4
_

K
IV

1
9

,e
nc

ry
p

to
r:

K
G

8
4

_
K

IV
7

,c
irc

ui
t_

sw
itc

he
d

:D
a

ta
_

W
A

N
,c

irc
ui

t_
sw

itc
he

d
:V

o
ic

e
_

W
A

N
ck

t
p

h
o

ne
_

sw
itc

h
ci

rc
u

it_
sw

itc
h

ed
:V

o
ic

e_
LA

N

d
at

ip
_

d
gr

a
m

_
v4

,
K

G
1

9
4

_
1

9
,

K
G

_
8

4
_

7
se

ri
al

:D
S

0
,s

er
ia

l:D
S

1
,s

er
ia

l:D
S

3
,s

er
ia

l:T
1

,s
er

ia
l:T

3
,s

er
ia

l:O
C

3
,s

e
ria

l:O
C

1
2

,s
er

ia
l:O

C
3

6
,s

e
ria

l:
O

C
4

8
,s

er
ia

l:O
C

1
9

2
,e

nc
ry

p
to

r:
K

G
1

9
4

_
K

IV
1

9
,e

nc
ry

p
to

r:
K

G
8

4
_

K
IV

7

la
n

ip
_

d
gr

a
m

_
v4

,
K

G
1

9
4

_
1

9
,

K
G

_
8

4
_

7
,

ck
sw

p
kt

se
ri

al
:D

S
0

,s
er

ia
l:D

S
1

,s
er

ia
l:D

S
3

,s
er

ia
l:T

1
,s

er
ia

l:T
3

,s
er

ia
l:O

C
3

,s
e

ria
l:O

C
1

2
,s

er
ia

l:O
C

3
6

,s
e

ria
l:

O
C

4
8

,s
er

ia
l:O

C
1

9
2

,e
nc

ry
p

to
r:

K
G

1
9

4
_

K
IV

1
9

,e
nc

ry
p

to
r:

K
G

8
4

_
K

IV
7

,
ci

rc
u

it_
sw

itc
h

ed
:V

o
ic

e_
W

A
N

w
an

p
ro

_
cx

_
p

k,
 p

ro
_

he
llo

_
p

k,
 p

ro
_

w
a

n_
p

k
m

u
lti

p
le

xe
r:

C
e

llX
p

re
ss

,m
u

lti
p

le
xe

r:
W

A
N

in
tf

(K
G

 1
9

4
)

a
m

s_
a

tm
_

ce
ll,

 c
ks

w
p

kt
,

et
he

rn
e

t_
v2

,
ip

_
d

gr
a

m
_

v4
,

K
G

_
1

9
4

_
1

9
,

kg
8

4
_

7
,

m
se

_
d

a
ta

_
p

ac
ke

t,
 m

se
_

h
el

lo
_

p
a

ck
et

,
p

h
o

ne
_

sw
itc

h
,

p
ro

_
he

llo
_

p
k,

p

ro
_

w
a

n_
p

k

at
m

:O
C

1
,a

tm
:O

C
3

,a
tm

:O
C

1
2

,a
tm

:O
C

2
4

,a
tm

:O
C

4
8

,c
ir

cu
it_

sw
itc

h
ed

:V
o

ic
e_

W
A

N
,e

th
e

rn
e

t:1
0

B
as

e
T

,
et

he
rn

e
t:1

0
0

B
as

e
T

,e
th

er
n

et
:1

0
0

0
B

a
se

X
,s

er
ia

l:D
S

0
,s

er
ia

l:D
S

1
,s

er
ia

l:D
S

3
,s

er
ia

l:T
1

,s
er

ia
l:T

3
,s

e
ria

l:O
C

3
,s

er
ia

l:O
C

1
2

,s
e

ria
l:O

C
3

6
,s

er
ia

l:O
C

4
8

,s
e

ria
l

:O
C

1
9

2
,e

n
cr

yp
to

r:
K

G
1

9
4

_
K

N
E

T
W

A
R

S
 M

O
D

E
L

D
E

V
E

LO
P

M
E

N
T

 G
U

ID
E

 V
3.

0

U
-4

e
n

c
(K

G
 1

9
4

)
K

G
1

9
4

_
1

9
,

p
h

o
n

e
_

sw
itc

h
,

ck
sw

p
kt

e
n

cr
yp

to
r:

K
G

1
9

4
_

K
IV

1
9

,c
ir

cu
it_

sw
itc

h
e

d
:V

o
ic

e
_

L
A

N
,c

ir
cu

it_
swi

tc
h

e
d

:V
o

ic
e

_
W

A
N

in
tf

 (
K

G
 8

4
)

a
m

s_
a

tm
_

ce
ll,

 c
ks

w
p

kt
,

e
th

e
rn

e
t_

v2
,

ip
_

d
g

ra
m

_
v4

,
K

G
_

1
9

4
_

1
9

,
kg

8
4

_
7

,
m

se
_

d
a

ta
_

p
a

ck
e

t,
 m

se
_

h
e

llo
_

p
a

ck
e

t,

p
h

o
n

e
_

sw
itc

h
,

p
ro

_
h

e
llo

_
p

k,
 p

ro
_

w
a

n
_

p
ka

tm
:O

C
1

,a
tm

:O
C

3
,a

tm
:O

C
1

2
,a

tm
:O

C
2

4
,a

tm
:O

C
4

8
,c

ir
cu

it_
sw

itc
h

e
d

:V
o

ic
e

_
W

A
N

,e
th

e
rn

e
t:

1
0

B
a

se
T

,e
th

e
rn

e
t:

1
0

0
B

a
se

T
,e

th
e

rn
e

t:
1

0
0

0
B

a
se

X
,s

e
ri

a
l:

D
S

0
,s

e
ri

a
l:D

S
1

,s
e

ri
a

l:D
S

3
,s

e
ri

a
l:T

1
,s

e
ri

a
l:T

3
,s

e
ri

a
l:O

C
3

,s
e

ri
a

l:O
C

1
2

,s
e

ri
a

l:O
C

3
6

,s
e

ri
a

l:OC
4

8
,s

e
ri

a
l:O

C
1

9
2

,
e

n
cr

yp
to

r:
K

G
1

9
4

_
K

e
n

c
(K

G
 8

4
)

K
G

8
7

_
7

,
p

h
o

n
e

_
sw

itc
h

,
ck

sw
p

kt
e

n
cr

yp
to

r:
K

G
8

4
_

K
IV

7
,c

ir
cu

it_
sw

itc
h

e
d

:V
o

ic
e

_
L

A
N

,
ci

rc
u

it_
sw

itc
he
d

:V
o

ic
e

_
W

A
N

sa
te

lli
te

 t
e

rm
in

a
l

ck
sw

p
kt

,
ip

_
d

g
ra

m
_

v4
,

K
G

_
1

9
4

_
1

9
,

K
G

8
4

_
7

,
m

se
_

d
a

ta
_

p
a

ck
e

t,
 p

ro
_

h
e

llo
_

p
k,

p

ro
_

w
a

n
_

p
k

ci
rc

u
it_

sw
itc

h
e

d
:V

o
ic

e
_

W
A

N
,s

e
ri

a
l:D

S
0

,s
e

ri
a

l:D
S

1
,s

e
ri

a
l:D

S
3

,s
e

ri
a

l:T
1

,s
e

ri
a

l:T
3

,s
e

ri
a

l:O
C

3
,s

e
ri

a
l:O

C
1

2
,s

e
ri

a
l:O

C
3

6
,s

e
ri

a
l:O

C
4

8
,

se
ri

a
l:O

C
1

9
2

,e
n

cr
yp

to
r:

K
G

1
9

4
_

K
IV

1
9

,
e

n
cr

yp
to

r:
K

G
8

4
_

K
IV

7
,c

ir
cu

it_
sw

itc
h

e
d

:D
a

ta
_

W
A

N
,

m
u

lt
ip

le
xe

r:
W

A
N

sa
te

lli
te

s
sa

te
lli

te
_

p
k

ra
d

io
:S

a
te

lli
te

ra
d

io
 s

in
cg

a
rs

 in
c

in
te

rf
a

ce
si

n
cg

a
rs

_
in

c_
p

a
ck

e
t

ra
d

io
_

w
ir

e
d

:S
in

cg
a

rs
_

IN
C

_
In

te
rf

a
ce

ra
d

io
 e

p
lr

s
in

c
in

te
rf

a
ce

e
p

lr
s_

in
c_

p
a

ck
e

t
ra

d
io

_
w

ir
e

d
:E

P
L

R
S

_
IN

C
_

In
te

rf
a

ce
ra

d
io

 s
in

cg
a

rs
 R

F
ra

d
io

_
p

a
ck

e
t

ra
d

io
_

rf
:S

in
cg

a
rs

ra
d

io
 E

P
L

R
S

 p
tp

R

F
ip

_
d

g
ra

m
_

v4
se

ri
a

l:D
S

0
,s

e
ri

a
l:D

S
1

,s
e

ri
a

l:D
S

3
,s

e
ri

a
l:T

1
,s

e
ri

a
l:T

3
,

se
ri

a
l:O

C
3

,s
e

ri
a

l:O
C

1
2

,s
e

ri
a

l:O
C

3
6

,s
e

ri
a

l:O
C

4
8

,
se

r
ia

l:O
C

1
9

2

ra
d

io
 E

P
L

R
S

 b
n

 R
Fe

p
lr

s_
p

a
ck

e
t_

0
,e

p
lr

s_
p

a
ck

e
t_

1
,

e
p

lr
s_

p
a

ck
e

t_
2

,
e

p
lr

s_
p

a
ck

e
t_

3
,

e
p

lr
s_

p
a

ck
e

t_
4

,
e

p
lr

s_
p

a
ck

e
t_

5
,

e
p

lr
s_

p
a

ck
e

t_
6

,
e

p
lr

s_
p

a
ck

e
t_

7
,e

p
lr

s_
e

o
t_

p
a

ck
e

t,

e
p

lr
s_

ro
u

tin
g

_
p

a
ck

e
t

ra
d

io
_

rf
:E

P
L

R
S

_
B

ro
a

d
ca

st

NETWARS MODEL DEVELOPMENT GUIDE V3.0

V-1

APPENDIX V: IP AUTO ADDRESSING IN CUSTOM MODELS

Custom Node with Port Mappings Attribute

Overview

For nodes that have a direct mapping from one port to another, such as a multiplexer device,
custom model developers can define a particular compound attribute to facilitate IP auto
addressing in DES and in Scenario Builder.

Details

Define a compound model attribute at the node attribute level called Custom Port Mappings.
This attribute must have the following sub-attributes:

• Local Port (string). This serves as a string representation of the port on the local device
that can connect to an IP device.

• Remote Ports (compound):
– Remote Device (string). This serves as a string representation of the remote device’s

hierarchical name, that is, the device to which the local device will connect either
directly or indirectly.

– Remote Port (string). This serves as a string representation of the port on the remote
device that can connect to an IP device.

It must also have a row for each port on the local device that can connect to an IP device, so each
port name (based on the transmitter module’s name) should appear exactly once in the “Custom
Port Mappings” table under the “Local Port” column.

The file IP auto-addressing functionality of the NETWARS Standard model library has code that
will make use of these attributes on any device on which it finds them.

Example

In this example a model developer has built a custom device that has two LAN-side ports, two
WAN-side ports, and one radio port. The device can connect its LAN-side ports to IP devices, so
IP auto addressing needs a way to topowalk from the LAN-side port on one device to the
associated LAN-side ports on other devices. The Custom Port Mappings attributes across all the
instances of the custom device map those LAN-side ports to each other (see Figure V-1 and
Figure V-2).

NETWARS MODEL DEVELOPMENT GUIDE V3.0

V-2

Figure V-1: Node Model Contents

Figure V-2: Custom Device Attribute Values in OPFAC Soldier 1

NETWARS MODEL DEVELOPMENT GUIDE V3.0

V-3

lan_pt_0
on each
device in
each
OPFAC

NETWARS MODEL DEVELOPMENT GUIDE V3.0

V-4

Custom IP Auto Addressing Implementation

Overview

For some cases, the makeup of a node model may not permit the use of either framework
described above. In those cases, model developers will need to write custom code in a file
reserved only for custom models.

Details

Add a node model attribute Custom IP Auto Address ID (integer) to the node model for which
custom IP auto addressing implementation is wanted. The device type must have a unique
attribute with respect to all other implementations that already exist. Examine the file
nw_custom_ip_auto_addr.h for a list of const int declarations that define a unique ID for
device types that already exist. Add a new declaration for the new type to this file and assign that
value to the Custom IP Auto Address ID attribute defined for the custom device.

Next, add the code needed to support the custom device model. Modify the file
nw_custom_ip_auto_addr.ex.c. That file contains a function void
nw_custom_ip_traverse () that primarily serves to call the correct routine that
implements custom IP auto addressing. It takes these parameters:

• ipaa_id. The IP auto addressing ID assigned to the node attribute; it will use this to
determine which routine to call to perform the topology walk over custom devices.

• local_node_objid. Objid of the node of the current iteration of the IP graphwalk.

• local_link_objid. Objid of the link of the current iteration of the IP graphwalk.

• neighbor_node_link_objids_lptr. List of ports (identified by node/link Objid pairs) that
have an IP graph connection to the passed port (identified by the passed local node and
link objids). This function must add entries to this list prior to returning.

An entry needs to be added to the switch statement of nw_custom_ip_traverse () to
call the custom routine, and of course it will need to be added to the custom routine. This can be
considered an entry point of program flow into the custom code.

Example

In this example, a model developer has added custom IP auto addressing code to support a
custom device model called “Custom_Device_C” where custom IP auto addressing code already
exists to support “Custom_Device_A” and “Custom_Device_B”.

Step 1: Add a Custom IP Auto Address ID attribute to the node model.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

V-5

Step 2: Add a custom IP auto address ID constant and a function prototype for the custom IP
auto addressing function to the nw_custom_ip_auto_addr.h header file.

Step 3: Add an entry to the switch statement of nw_custom_ip_traverse () and add a
custom function to the file nw_custom_ip_auto_addr.ex.c.

NETWARS MODEL DEVELOPMENT GUIDE V3.0

V-6

NETWARS MODEL DEVELOPMENT GUIDE V3.0

W-1

APPENDIX W: REFERENCES

• OPNET Modeler Online Documentation
• NETWARS Verification and Validation Testing Plan
• Introduction to the ACE Editors
• NETWARS Interface Control Document
• NETWARS User Manual.
• ACE Whiteboard Tutorial
• DoDD 5000.59 – DoD Modeling and Simulation (M&S) Management

http://www.dtic.mil/whs/directives/corres/html/500059.htm
• DoDI 5000.61 – DoD Modeling and Simulation (M&S) Verification, Validation, and

Accreditation (VV&A) http://www.dtic.mil/whs/directives/corres/html/500061.htm
• VV&A Recommended Practices Guide – Build 3.0 / September 2006 http://vva.dmso.mil/
• NETWARS Communications Model Verification and Validation Plan
• DoD VV&A Documentation Tool
• NETWARS 2006-2 Communications Device Model Validation and Verification Plan
• NETWARS Equipment Strings Version 1.1, June 2006
• NETWARS 2006-2 Equipment Strings Final Test Plan, OPNET 3.4.4, Delivered August

25, 2006
• DoD Standard Practice: Documentation of Verification, Validation and Accreditation

(VV&A) for Models and Simulations. (MIL-STD-XXX002, Draft of 5 December 2006)

NETWARS MODEL DEVELOPMENT GUIDE V3.0

X-1

APPENDIX X: NETWARS MODEL DEVELOPMENT GUIDE CHECKLIS T

The purpose of the checklist in Table X-1 is to help the developer and program managers
determine levels of effort to develop new NETWARS Standard models or integrate existing
models to NETWARS.

Table X-1: NETWARS Model Development Guide Checklist

NETWARS Model Development Guide Checklist

Model Compliance Yes/No Comments

Does the model contain all the NETWARS required attributes? Please
refer to the NETWARS Model Development Guide to identify the
required device attributes associated with the model.
Does the model work in capacity planner?
Does the model support logical view?
Does the model work in discrete event simulation?
Does the model support IP auto addressing?
Does the model work in the correct OPNET version that corresponds to
the most recent NETWARS version?
Does the model work with the following traffic-generation mechanisms?
1. Standard Application Models
2. IER
3. Flows
4. ACE or ACE Whiteboard
Was the model evaluated using the Static Testing Tools?
1. Was anything flagged?
2. Were all flags addressed and successfully mitigated?
Was the model evaluated using various equipment strings?
1. Transmission Networks (Pure Transmission Devices, Prominas,
Other Multiplexors)
2. Routers
3. Circuit Switched Voice
4. Layer-1 Encryptors
5. Tactical Radios
Was the model evaluated using Capacity Planner to obtain reasonable
and expected results within specifications?
1. Shortest-hop routing
2. Link and circuit utilizations
3. Bandwidth requirements
Does the model contain the following model documentations?
1. Embedded Documentation (BNF)
2. User Documentation
3. Test Plan
4. Static Testing Results (including parameters used to get the results)

NETWARS MODEL DEVELOPMENT GUIDE V3.0

X-2

NETWARS Model Development Guide Checklist

Model Compliance Yes/No Comments

5. Node Self-Description, such as:
Portgroup—Interface Type
Portgroup—Max Port Data Rate (optional)
Coregroup—Machine Type
Does the model interface to appropriate devices in NETWARS Standard
Pallet? What devices?
1. End System
2. Layer 1 device
3. Layer 2 device
4. Layer 3 device
5. Circuit-switched device
6. Wireless device
Do the model’s node modules use the correct port conventions? These
include:
1. Wired Ports Transmitter Names (end with <technology>_pt_<n>)
2. Wired Ports Receiver Names (end with <technology>_pr_<n>)
3. Wireless Ports Transmitter Names (end with _tx_<n>)
4. Wireless Ports Receiver Names (end with _rx_<n>)
Does the model include the following modules? Applies only for end-
system models:
1. IER Traffic source node contains SE module
2. Traffic sink node contains SE module
3. Traffic source node contains application module
4. Traffic sink node contains application module
Does the model promote and add the following attributes? These are
only for models that support radio broadcast and point-to-point
operations:
1. Are the transmitter and receiver named in a pair?
2. Promote rx and tx (data rate)
3. Promote rx and tx (min frequency)
4. Promote rx and tx (bandwidth)
5. Promote rx and tx (spreading code)
6. Add extended Net ID attribute to tx and rx
7. Promote rx and tx (Net ID)
Does the model work with custom links? If yes, please answer the
following question:
Are the custom links added to the Linktypemap.gdf file and
documentation?

