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Effects of electron-hole interaction on the dynamic structure factor:
Application to nonresonant inelastic x-ray scattering

J. A. Soininen
Department of Physics, POB 9, FIN-00014, University of Helsinki, Finland

Eric L. Shirley
Optical Technology Division, Physics Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20
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We present a first-principles scheme for calculating the dynamic structure factor for conventional semicon-
ductors and insulators. The dynamic structure factor relates closely to the inelastic x-ray scattering double-
differential cross section for valence electrons, an application that we consider, but it is also probed using other
techniques, such as electron energy-loss spectroscopy. In the present scheme the electron-hole interaction is
taken into account. Theoretical results are compared with nonresonant inelastic x-ray scattering results for LiF,
diamond, and wurtzite GaN. We show the importance of including the electron-hole interaction. Some other
properties of an electron-hole pair in these materials are also studied.
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I. INTRODUCTION

Inelastic x-ray scattering can be used to probe the
namical properties of materials such as the electron exc
tions that are considered in this paper. In order to interp
the inelastic x-ray scattering results, it is important to mo
the scattering event as accurately as possible. The cons
ents of such a model in the case of crystalline materials
the information on its ground state prior to the scatter
event and information about the excited states of the sys
after the x-ray photon has interacted with it. The groun
state properties of materials such as the electron density
band structure are relatively well known and can be qu
well predicted from first-principles calculations. The resu
from mean-field theories, like the local-density approxim
tion ~LDA !,1 for the electron density and other structur
properties have been found to be more than adequate. T
accurate values for band energies more elaborate the
such as theGW ~Refs. 2 and 3! approximation can be used

When an inelastic x-ray scattering event occurs,
electron-hole pair can be created. How the electron and
in such an excited state interact with each other and the
rounding electrons is probed by a scattering experim
There have been several experiments4 highlighting this prop-
erty of inelastic scattering. Also several first-principl
schemes have been previously suggested for calculating
dynamic structure factor.5 The excited electron interacts wit
the hole, the polarization cloud produced by the hole, and
own polarization cloud. All these interactions are accoun
for in this paper. However, we restrict our study to ze
temperature, and the crystal is considered to be static. Es
tially, the method used here is an extension of the one u
for calculating ordinary optical absorption spectra.6 Mean-
while, we note that the theoretical methods used here
also be applied to other techniques in addition to inela
x-ray scattering, such as electron energy-loss spectrosco

The rest of the paper is structured as follows. In the f
lowing section, we describe how to use an effective Ham
tonian to introduce electron-hole interactions into the
PRB 610163-1829/2000/61~24!/16423~7!/$15.00
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scription of inelastic x-ray scattering and the dynam
structure factor. Next we review the properties of the Ham
tonian and some details of the numerical method. The st
of the dynamic structure factor and inelastic x-ray scatter
cross sections for LiF, diamond, and wurtzite GaN follow
Lastly we draw some conclusions.

II. INELASTIC X-RAY SCATTERING

The double differential cross section of inelastic x-r
scattering~IXS! can be written as

d2s

dVdv
5~ds/dV!Th(

F
u^Fu(

i
eiq•r iuI &2d~EF2EI2v!

~1!

5~ds/dV!ThS~q,v!, ~2!

whereq andv are the momentum and energy transfer fro
the photon to the electrons of the system. TheI ~F! andEI
(EF) denote initial ~final! states and energies. W
have used the Thompson cross section, (ds/dV)Th

5r 0
2ue1•e2u2v2 /v1, wherer 0 is the classical electron radius

The polarization of the initial~final! photon ise1 (e2), and
v1 (v2) is the photon energy. By changing the momentu
and energy transfer one can determine the kinds of exc
tions produced in the sample. For solids, the low-moment
and energy-transfer region of the dynamic structure fac
S(q,v) is dominated by valence electron excitations.

In IXS, the photon can be seen as an external perturb
potential. Within linear-response theory, the macroscopic
electric function of the system can be written as

«M~q,v!512
4p

q2
^0ur̂q

1

v2Ĥe f f1 ih
r̂q

†u0&. ~3!

The macroscopic dielectric function«M , involves the re-
sponse of the system to the total macroscopic field.Ĥe f f is
an effective Hamiltonian,u0& is the electronic ground state
16 423 ©2000 The American Physical Society
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16 424 PRB 61J. A. SOININEN AND ERIC L. SHIRLEY
and rq
† is the density-fluctuation operator. The effecti

Hamiltonian is determined from the Bethe-Salpeter equa
and level of approximation used. From the macroscopic
electric function one obtains the dynamic structure factor
the fluctuation dissipation theorem using

S~q,v!5
2q2

4p2n
Im@1/«M~q,v!#.

Heren is the average electron density in the solid.

III. METHOD DETAILS

In principle, calculating«M would require solution of the
equations-of-motion~EOM! for the electron-hole pair opera
tor, with a typical equation being

^Fu@Ĥ,âc
†âv#u0&5E^Fuâc

†âvu0&. ~4!

Here Ĥ is the exact Hamiltonian of the many-body syste
âc

†âv is an electron-hole pair creation operator, anduF& is an
exact excited state with energyE. For computational reasons
one is forced to limit the types of excitations that are allow
in uF&. We choose to expanduF& in terms of singly excited
states, and in the ground state only the valence bands
occupied. This means that we are using the Tamm-Dan
approximation~TDA!.7 Using these approximations we ca
extract an effective HamiltonianHe f f from the EOM. For the
rest of this section we briefly review the computational d
tails of the scheme. A more detailed review can be found
Refs. 6 and 8.

A. Electron-hole pair wave function

Within the TDA an electron-hole pair wave function ca
be expanded in terms of single-particle wave functions:

Cq~re ,rh!5(
vck

Cvckcvk* ~rh!cck1q~re!8(
vck

Cvckuvck&q .

Herere andrh are the electron and hole coordinates, resp
tively. The hole is taken to be in a state with band indexv
and crystal momentumk. The c is the electron state ban
index, and the electron has crystal momentumk1q. Because
we work at the TDA level, the electron states are unoccup
in the ground state and the hole states are occupied. In p
tice this means that we allow only one electron-hole pair
exist at any given time. The single-particle wave functio
c ik(r )5uik(r )exp(ik•r ) were taken from LDA pseudopo
tential9 calculations. The periodic partu of the Bloch func-
tion was calculated using the optimized basis set of Ref.

B. Effective Hamiltonian

The effective Hamiltonian to be used here can be writ
as

He f f5He1Hh1He2h2
4p

q2
r̂q

†r̂q .

There is a single-particle partHe1Hh , and electron-hole
interaction termHe2h . The term (4p/q2) r̂q

†r̂q is subtracted
n
i-
a

,

d

re
ff

-
n

c-

d
c-

o
s

0.

n

because«M involves the response to the total~as opposed to
external! macroscopic field. The electron-hole interactio
contains a direct part (V̂d), with

q^vckuV̂duv8c8k8&q5(
R

E dxdyei (k82k)•(x2y1R)

3uc,k1q* ~x!uv,k~y!W~x1R,y!

3uc8,k81q~x!uv8,k8
* ~y!, ~5!

and an exchange interaction (V̂x), with

q^vckuV̂xuv8c8k8&q5(
R

E dxdye2 iq•(x2y1R)

3uc,k1q* ~x!uv,k~x!V~x1R,y!

3uc8,k81q~y!uv8,k8
* ~y!. ~6!

In these equationsx and y are vectors reduced to their re
spective unit cells of the crystal, andR connects these two
unit cells. The functionV in the exchange interaction is bar
Coulomb interaction. The functionW in the exchange term is
the statically screened Coulomb interaction, so our effec
Hamiltonian is Hermitian.

C. Haydock recursion solution

Inversion of the matrix (v2Ĥe f f1 ih) is computationally
the most challenging part of the calculation of«M . The size
of the matrix is determined by the number of two-partic
states used in the calculations. In solid-state applications
number is large, and iterative methods are best suited for
problem. We use the Haydock recursion method.11 There, a
Hermitian Hamiltonian is reduced to tridiagonal form b
starting from a normalized vectoruv0&:

Huv0&5a0uv0&1b1uv1&, ~7!

Huv1&5b1uv0&1a1uv1&1b2uv2&, ~8!

Huv2&5b2uv1&1a2uv2&1b3uv3&, etc. ~9!

The real coefficients$ai% and$bi% can be chosen so that th
resulting set of vectors$uv i&% are orthonormal. By choosing
the initial vector asuv0&}r̂q

†u0&, we can calculate«M in con-
tinued fraction form~N for normalization!

«M~q,v!

512
4pN

q2
^v0u

1

v2Ĥe f f1 ih
uv0& ~10!

512
4pN

q2
Im S 1

v1 ih2a02b1
2/~v1 ih2a12 . . . !

D .

~11!

We have found the Haydock recursion method to be a co
putationally efficient way of calculating«M . There is no
need to repeat the recursion for each value of energyv. Only
four state vectors at each iteration step are needed, so
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memory requirements of this method are extremely sm
The only requirements are that the Hamiltonian is Hermit
and that one can operate on a state vector.

D. Operating with the Hamiltonian

The single-particle part of the Hamiltonian is diagonal
the uvck&q basis, so operating with it on a particle-hole sta
simply multiplies it by the difference between the band e
ergies of the hole and electron states:

~He1Hh!(
vck

Cvckuvck&q5(
vck

Cvck~ec,k1q
GW 2ev,k

GW!uvck&q .

The band energiesec,k1q
GW and ev,k

GW are corrected to agre
with the calculatedGW band energies when necessary. O
might question the combined use of LDA single-partic
wave functions andGW quasiparticle energies. In the cas
studied here, however, LDA wave functions have been fo
to be close to the ones obtained fromGW calculations.

V̂x introduces ‘‘local-field’’ effects into«M because of
induced microscopic electric fields at the unit-cell scale. S
tracting the term (4p/q2) r̂q

†r̂q exactly cancels an identica

term in V̂x and we denote this@V̂x2(4p/q2) r̂q
†r̂q# interac-

tion by Ṽx . We operate on a state vector withṼx in recipro-
cal space,

Ṽx(
vck

Cvckuvck&q52 (
v8c8k8

H (
GÞ0

4p

Vuq1Gu2
rG~v8c8k8!

3(
vck

CvckrG* ~vck!J uv8c8k8&q , ~12!

whereG is a reciprocal-lattice vector, and we have

rG~vck!5(
G8

uc,k1q* ~G8!uv,k~G82G!.

The termG50 is included inV̂x but not in Ṽx .
The efficient computation of the direct part of th

electron-hole interaction part of the Hamiltonian requir
transformation between different types of representation
the electron-hole pair wave function:

$uvck&q%⇔
ST

$ux,y,k&q% ⇔
FFT

$ux,y,R&q%,

becauseV̂d is most easily handled in the real space, wher
is diagonal

V̂dux,y,R&q52W~x1R,y!ux,y,R&q .

Here two types of transformations are indicated by text o
the arrows. The transformation from single-particle ba
uvck&q to a mixed representationux,y,k&q is a similarity
transformation. To transform from the mixed representat
to a fully real-space representationux,y,R&q , we use fast
Fourier transform techniques~FFT!. Here x and y are hole
and electron coordinates within unit cells, andR is the lattice
vector that connects these two cells.R and k are FFT con-
jugated variables. After operating on a state, returning to
single-particle wave-function representation is done by fi
ll.
n
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e
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-

s
of

it

r
s
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e
t

applying an inverse FFT and then the inverse of
$uvck&q%⇔$ux,y,k&q% transformation. More details abou
how these transformations can be implemented are foun
Ref. 6. TheW(x1R,y) is the screened Coulomb interactio
calculated using the Levine-Louie-Hybertsen12 model for the
solid-state screening. In this model, the solid-state scree
is calculated using the LDA charge density and the mac
scopic dielectric constant«` . The screening is static, and i
principle it should be dynamical with structure around t
plasma frequency. For many solids, static screening has b
found to be adequate.

IV. RESULTS AND DISCUSSION

Because traditional approaches to IXS neglect the di
part of the electron-hole interaction, or it is approximated
introducing ‘‘local-field factor’’ G(q),13 we now note the
effects of the electron-hole interaction for insulating a
semiconducting materials. The direct part of the interact
is generally equal or larger in magnitude than the excha
part Ṽx . The importance of this interaction in the IXS spe
tra can be seen in Fig. 1. In the figure, we show a LiF sp
trum for momentum transfer 0.72GX with and without in-
cluding Ṽx and V̂d . By comparing the full calculation and
the calculation neglecting the exchange interactionṼx , we
see that in comparison toV̂d the exchange interaction mod
fies the spectrum only slightly, which is the typical situatio
for insulators. Neglecting the direct part of the interacti
produces much larger changes in the spectrum. The feat
are shifted by as much as 5 eV to higher energies w
neglectingV̂d . Also, the shapes and relative intensities of t
features are strongly modified. The sharp exciton pe
around 14 eV is absent in calculations without the direct p
of the electron-hole interaction. The relative importance
these interactions depends on the material, and it is impor
that both of these interactions are taken into account in
paper. In particular, the term (4p/q2) r̂q

†r̂q is in effect rein-
troduced when computingS(q,v) and this term leads to the

FIG. 1. Theoretical IXS spectrum for LiF within different ap
proximations. The momentum transfer is 1.12 Å21('0.72GX)

along the Cartesian~100! direction. The result neglectingV̂d is

given by the dotted line, and the dashed line is the result whenṼx is
neglected. The full calculation is given by the solid line.
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16 426 PRB 61J. A. SOININEN AND ERIC L. SHIRLEY
plasmon peak structure that characterizesS(q,v) or
Im@1/«M(q,v)# for many solids. This means that this part
V̂x is present also in the calculation withoutV̂d andṼx . We
also note that Fleszaret al.13 found the direct part of the
interaction to be more important also for aluminum, althou
they usedG(q) to approximate the effect ofV̂d .

We would like to address the numerical accuracy of
results for the cases that we present. The convergenc
results with respect tok-point sampling and the number o
Haydock iterations was analyzed. The estimated rela
standard uncertainty is about 2% because of thek-point
sampling and Haydock recursion iterations specified for e
case. This uncertainty is mostly due to the finite number ok
points. The error due to having a finite number of Haydo
recursion steps was estimated to be less than 0.1%.

For the results presented, the dynamic structure facto
shown up to frequencies larger than the ‘‘plasmon pea
only in LiF. For other systems, we desired to emphasize
near-edge portions of the spectra, which are closely relate
interband transitions and associated transition matrix
ments. In particular, we would contrast the qualitative diff
ences between spectra for diamond and GaN, which h
Wannier-like excitons and give near-edge features that
reasonably well described even within a noninteract
framework, and the spectra for LiF, which has Frenkel ex
tons and gives near-edge features that are dominated b
exciton peak. In addition, it would be desirable to extend
treatment so that it could include negative-frequency
‘‘backwards going’’ electron-hole pair states from the beg
ning of a calculation. At present, their effects are addres
by using the relation,

Im «M~q,2v!52Im «M~q,v! ~13!

but only after computing Im«M(q,v) for v.0, and
Kramers-Kronig analysis to obtain Re«M(q,v). Because of
this, we would suggest that the ‘‘collective-excitation’’ po
tions of our spectra may be on a somewhat less solid foo
than the near-edge portions, and we defer further analys
the former to future work.

A. LiF

We first discuss LiF, which has a rocksalt structure a
the lattice constant was taken to be 4.02 Å. The wave fu
tions were calculated on a 12315315 mesh in the first Bril-
lioun zone.~The results were essentially the same as th
for more symmetric 12312312 mesh. Our finer mesh en
sured numerical convergence.! The band gap of the ban
structure was modified from the LDA value 8.82 eV to t
GWvalue of 14.30 eV. The valence bands were stretched
16% to get theGW bandwidths. The dielectric constant fo
LiF is «`51.92. The broadening parameterh was taken to
be 0.35 eV to mimic the experimental energy resolution
0.7 eV. The number of iterations for the Haydock recurs
was 300.

Figure 2 compares the experimental results14,15 and the
calculated dynamic structure factor for several lengths of
momentum transfer vectorq along the Cartesian~100! direc-
tion. Throughout this paper standard uncertainties are i
cated for experimental results. The exciton peak in
h
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energy-loss spectrum around 14 eV is present in the inter
ing calculation but not in the calculation without th
electron-hole interactionṼx1V̂d . The calculated dispersion
of the exciton peak follows the experimental values qu
accurately. Figure 3 shows the exciton dispersion predic
by our interacting calculation and results from three differe
experiments. We tried to model this dispersion by a pa
bolic function:

FIG. 2. IXS spectra of LiF as a function of momentum trans
along GX. The solid lines are the spectra calculated including
electron-hole interaction, and broken lines without the interacti
Experimental data are given by the circles, and the experime
standard uncertainty is smaller than the symbol size. The spectr
q50.23GX and 0.36GX are multiplied by 3 because of their lowe
intensity.

FIG. 3. The dispersion of the exciton peak position as a funct
of momentum transfer along the Cartesian~100! direction. The
three experimental results are given by diamonds~Ref. 14!, by tri-
angles~Ref. 16!, and by the crosses that indicate our interpretat
of Fig. 3 in Ref. 17. The theoretical result is given by the squar
and the line is only shown to guide the eye.
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vest5v01q2/2M .

Here vest is the estimated energy of the exciton,v0 is a
constant energy shift because of the band gap and the ex
binding energy, andM is the effective mass of the exciton
There is an approximately 0.6 eV discrepancy in the posit
v0 between theory and experiment. We calculated the th
retical exciton energy for several momentum transfers fr
0.05 Å21 up to over 1.0 Å21. The effective mass we ob
tained this way changes depending on the momentum tr
fer points we take into account, which indicates nonpara
licity. For the momentum transfers given in Fig. 2 this val
is as much as eight times the mass of the electron (me) for
both the experiment and the theory. For momentum trans
under 0.4 Å21 we obtain the valueM53.9me which is
closer to the value of 3.3me given in Ref. 16. This would
suggest that the LiF exciton does not follow simple parabo
dispersion. The other features of the spectrum are quite
reproduced by the calculations.

B. Diamond

The single-particle wave functions and the LDA band e
ergies for diamond were calculated using the experime
lattice constant of 3.57 Å. The indirect band gap of diamo
was changed from the LDA value of 3.90 eV to the 5.5
obtained fromGWcalculation. The LDA valence bands we
stretched 7%. The value of«` is 5.5 for diamond. A mesh o
16316316 k points in the first Brillioun was used for ca
culating the single-particle wave functions and 300 Haydo
recursion iterations were used.

The results for diamond can be seen in Fig. 4. Again,
result is given for several values ofq along the~100! Carte-
sian direction. The agreement between experiment14,15 and
theory is poorer in this case than for LiF. The value of t
indirect band gap~around 5.5 eV! is approximately the sam
both in experiment and theory. The indirect band gap is
proximately measured when the momentum transfer exte

FIG. 4. Calculated and experimental IXS spectra for diamo
The data are given near the band gap as a function of momen
transfer along theGX direction. The experiment is given by th
open circles, the IXS spectra including the electron-hole interac
by the solid line, and the theory neglecting electron-hole interac
by the dashed line.
ton

n
o-

s-
-

rs

c
ell

-
al
d

k

e

-
ds

from theG point to the second Brillouin zone (1.35GX) but
not when it is in the first Brillouin zone (0.64GX). We note
that there is a difference between the actual momentum
the minimal band gap (0.75GX or 1.25GX) and the momen-
tum values considered in this work (0.64GX or 1.35GX). We
have considered the latter values, because these mom
were selected in measurements. However, the effects of
ing slightly different momenta are quite minor in this cas
The momenta chosen are near the actual conduction-b
minimum ~CBM!, the conduction bands are quite flat ne
the CBM, and the ‘‘selection rule’’~discussed below! that
renders the gap unobserved in the first Brillouin zone app
equally well along an extended portion of theD line. The
Brillouin-zone ‘‘selection rule’’ can be explained using sym
metry arguments. The principles of these arguments can
correctly applied even in a single-particle picture, in whi
they involve the symmetries of the Bloch states in questi
The valence-band maximum~VBM ! is at the G, and the
CBM is at approximately 0.75GX. The valence-band stat
nearG written as a linear combination of atomic orbitals i

ucnk~VBM !&;u2pa ,t1&2u2pa ,t2&.

The indexa indicates a Cartesian coordinate, andu2s,t& and
u2pa ,t& are atomic states on one of the two sitest in the
unit cell. Near the CBM, the Bloch states have the form

ucnk8~CBM!&;(
t

eik8•t@A~k8!u2s,t&1B~k8!u2pa ,t&],

wherea is the Cartesian direction of theD line parallel toq.
Analogous orbitals on equivalent sites are combined w
opposite signs at VBM and indicated phases at the CB
Combining these equations we can calculate the transi
matrix element

^cnk8~CBM!ueiq• r̂ucnk~VBM !&

;~ei (q2k8)•t12ei (q2k8)•t2!@A~k8!^2sueiq• r̂u2pa&

1B~k8!^2paueiq• r̂u2pa&#, ~14!

where r̂ is the position operator and we have neglected
matrix elements between different sites. Withk'0 andq in
the first Brillouin zone, for which we haveq5k8'0.75X,
the first factor of the matrix element is zero. However, withq
in the second Brillouin zone we haveq5k81G, whereG is
the reciprocal-lattice vector at 2X, and we have constructive
interference between the matrix elements at different ato
sites. In this way the CBM states atk8'20.75X are probed.
Further comparison of results is given in Ref. 15.

In many-body calculations such as the ones we have d
the analysis of the results is much more difficult than in t
case of one-particle calculations. It is possible however to
a spectral decomposition to the system, as was explaine
Ref. 6. The idea is to find the solutionuF(q,v)& to the
equation

~v2He f f1 ih!uF~q,v!&52Aphrq
†u0& ~15!

for a given momentum and energy transfer. Then the ima
nary part of dielectric function«M can be obtained by

.
m

n
n
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Im «M~q,v!51/q2(
vck

uq^vckuF~q,v!&u2. ~16!

Because structure inS(q,v) comes mainly from Im«M this
gives us an opportunity to study more closely what ba
and portions of the first Brillouin zone contribute to an IX
spectrum. To do this, one may plot the projection
uF(q,v)& onto uvck&q states as a function of energyv and
some momentum (k) component while averaging over oth
momentum components and single-particle states (v,c).

Figures 5 and 6 show one way to depict this result. T
figures show, for selected energy transfers, the hole mom
tum distribution averaged over possible electron-hole st
and two Cartesian components of the hole momentum. N
that in Figs. 5 and 6 the average is taken over theyz plane
that is perpendicular to the scattering vector. The analog
result for the average over thexz plane shows that for both
momentum transfer values and all the values of energy tr
fer, the hole momentum is centered aroundky50. By sym-
metry this implies, as expected, that the hole momentum
primarily near thex axis D line (G-X). The position and
shape of the main peak of the distribution depends both
the momentum and the energy transfer. By averaging ins

FIG. 5. The hole momentum density in diamond averaged o
the kykz plane. The magnitude of the momentum transfer

1.13 Å21('0.65GX), and its direction is the Cartesian~100! direc-
tion. The figure shows the momentum density for three differ
values of energy transferv. The dotted line is for (v5)6 eV, the
dashed line is for 7 eV, and the solid line is for 8 eV.

FIG. 6. Same as in Fig. 5, but for momentum trans
2.36 Å21('1.35GX).
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over all the hole momentum components for given electr
hole pair states (c,v) we can conclude that forv58 eV and
q50.65GX the scattering strongly involves excitations fro
the highest valence-band state with crystal moment
'0.22GX to the second lowest conduction band with crys
momentum '0.87GX. For the momentum transferq
51.35GX, the loss function has significant weight atv
'6 eV, and the dominant excitation is from valence-ba
states nearG to the lowest conduction band state arou
1.35GX. This shows that the spectral features around 5.5
are simply measuring transitions across the indirect band
of diamond and that these features are not qualitativ
changed by the electron-hole interaction.

C. Wurtzite GaN

Wurtzite GaN was studied with lattice constants taken
be a53.189 Å andc55.185 Å. The internal parameter wa
set tou50.377. The band gap was taken as theGW 3.5 eV
~the LDA result is 2.3 eV!, and the valence bands wer
stretched by 8%. A grid of 16316316 k points in the first
Brillouin was used for calculating single-particle wave fun
tions. The value for the dielectric constant«` was 5.5 and
number of iterations in Haydock recursion was 300.

FIG. 7. Theoretical and experimental IXS spectra of wurtz
GaN for several different momentum transfers. An experimen
spectrum~Ref. 18! is presented with open circles and the error b
indicate the experimental uncertainty. Theory including t
electron-hole interaction is given by the solid line. The directi
and magnitude of the momentum transfer is indicated.
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In Fig. 7 theoretical spectra are compared w
experimental18 ones for several different values of mome
tum. Agreement between theory and experiment is q
good. Two features for the case with momentum trans
GHG are quite well reproduced both in relative intensity a
position. The other three spectra are also quite well rep
duced. In theq53GA case, there is clear dip around 14 to
eV in the experimental data and this is also present in
theory, although its strength is underestimated. There
plateau from 8 to 10 eV in the experimental data for t
momentum transfer ofGM . Again this feature is much
smoother in the theoretical spectrum.

V. CONCLUSION

We have presented a first-principles scheme for calcu
ing the dynamic structure factorS(q,v) of crystalline insu-
lators and semiconductors. The method was applied to
diamond, and wurtzite GaN for several different moment
transfers. Agreement with experiment was found to be v
za

.
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y

good. The inclusion of the electron-hole interaction in t
description of inelastic scattering was found to be essen
The electron-hole interaction redistributes spectral wei
compared to noninteracting calculations. Without the int
action, many of the features of the spectrum such as exc
peaks would not be present at all.

ACKNOWLEDGMENTS

We would like to acknowledge W. A. Caliebe, C.-C. Ka
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