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Optimal estimation of suspended-sediment
concentrations in streams

David J. Holtschlag*
US Geological Survey, Water Resources Division, 6520 Mercantile Way, Suite 5, Lansing, MI 48911, USA

Abstract:

Optimal estimators are developed for computation of suspended-sediment concentrations in streams. The estimators
are a function of parameters, computed by use of generalized least squares, which simultaneously account for effects
of streamflow, seasonal variations in average sediment concentrations, a dynamic error component, and the uncertainty
in concentration measurements. The parameters are used in a Kalman filter for on-line estimation and an associated
smoother for off-line estimation of suspended-sediment concentrations. The accuracies of the optimal estimators are
compared with alternative time-averaging interpolators and flow-weighting regression estimators by use of long-term
daily-mean suspended-sediment concentration and streamflow data from 10 sites within the United States. For sampling
intervals from 3 to 48 days, the standard errors of on-line and off-line optimal estimators ranged from 52Ð7 to 107%, and
from 39Ð5 to 93Ð0%, respectively. The corresponding standard errors of linear and cubic-spline interpolators ranged
from 48Ð8 to 158%, and from 50Ð6 to 176%, respectively. The standard errors of simple and multiple regression
estimators, which did not vary with the sampling interval, were 124 and 105%, respectively. Thus, the optimal off-line
estimator (Kalman smoother) had the lowest error characteristics of those evaluated. Because suspended-sediment
concentrations are typically measured at less than 3-day intervals, use of optimal estimators will likely result in
significant improvements in the accuracy of continuous suspended-sediment concentration records. Additional research
on the integration of direct suspended-sediment concentration measurements and optimal estimators applied at hourly
or shorter intervals is needed.

KEY WORDS suspended sediments; optimal estimation; Kalman filtering; computation; flux; loads

INTRODUCTION

Since 1995, the National Stream Quality Accounting Network (NASQAN) of the US Geological Survey
(USGS) has monitored water quality at 40 stations on four of the nation’s largest basins, including the
Columbia, the Colorado, the Mississippi, and the Rio Grande. Monitored constituents include sediment
concentrations, major ions, trace elements, nutrients, pesticides, carbon, and support variables including
streamflow, dissolved oxygen, temperature, pH, and conductivity. To ensure that these data are used as
effectively as possible, the NASQAN programme, through the USGS Office of Water Quality, has supported
the development of optimal estimators of suspended-sediment concentrations. The general form of these
estimators may also be applicable to other constituents.

Sediment in streams results from erosion in the basin and transport by flowing water (Guy, 1970).
Either process can limit the occurrence of sediment in streams. Total sediment discharge includes a bed-
load component and a suspended-sediment component. Bed load refers to sediment particles rolling, sliding,
or tumbling along the streambed. Suspended sediment represents that component of sediment that stays in
suspension for an appreciable length of time and represents a dynamic equilibrium between the upward forces
of turbulence holding particles in suspension against the downward force of gravity. Turbulent forces are
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directly related to streamflow rate, and the effectiveness of gravitational forces is related to particle sizes and
densities. In most natural rivers, sediments are transported mainly as suspended sediment (Yang, 1996).

Estimation of average sediment concentrations and flux rates requires the integration of continuous data on
streamflow with discrete measurements of sediment concentration. This integration is commonly carried out
by interpolating discrete measurements by use of time-averaging or flow-weighting methods. Phillips et al.,
(1999) compared 20 existing and two proposed methods for computing loads and found that a time-averaging
method produced the most precise estimates for two stations analysed. The precision of this method decreases
significantly, however, as the sampling interval increases (Phillips et al., 1999). Furthermore, Bukaveckas
et al. (1998) conclude that time-averaging methods may produce biased estimates of flux during periods of
variable discharge.

A sediment-rating curve approach (Helsel and Hirsch, 1992) is a common method of flow weighting.
This type of rating curve generally describes the relation between the logs [where log refers to the
common (base 10) logarithm function] of suspended-sediment concentration and the logs of streamflow.
This rating-curve approach, however, has been found to underestimate river loads (Ferguson, 1986). In
addition, Bukaveckas et al. (1998) indicate that flow-weighting methods may produce biased estimates if the
concentration–streamflow relation is affected by antecedent conditions or has seasonal variability. Seasonal
rating curves are used to reduce the scatter and to eliminate this bias at some sites (Yang, 1996). Although
beyond the scope of this study, Richards and Holloway (1987) evaluate the accuracy and precision of tributary
load estimates as affected by both sampling frequency and pattern.

The concentrations of suspended sediments are measured at stream-gauging stations throughout the United
States because of the environmental and economic significance of the effect of sediment on receiving waters.
The USGS operates many of these stations, which are funded through several cooperative and federal
programmes. Daily-mean concentrations of suspended sediment are determined for sites where sufficient direct
measurements of suspended-sediment concentration and continuous streamflow data are available (Randy
Parker, US Geological Survey, written communication, 1999). Because of the uniform data-collection methods
(Guy and Norman, 1973) and computational procedures (Porterfield, 1972; Glysson, 1987) used by the USGS,
these data provide the best available information on suspended-sediment flux in the nation’s rivers. In addition,
the USGS maintains a nationwide database of suspended-sediment concentration, streamflow, and ancillary
data (Randy Parker, written communication, 1999). The database contains daily values for 1593 stations in
the United States that have an average period of record of 5Ð3 years. This database was used for the analysis
reported in this paper and is accessible from the Internet at http://webserver.cr.usgs.gov/sediment/

Purpose and scope

This paper develops optimal on-line and off-line estimators of suspended-sediment concentrations for
streams on the basis of daily values of computed suspended-sediment concentration and streamflow infor-
mation. Data from 10 sites are used to compare the accuracy of the optimal estimators with interpolation
and regression estimators (Koltun et al., 1994) that are commonly used to compute suspended-sediment
concentration records. The estimators were restricted to those that could be readily implemented with
data that are generally available at gauging stations. The choice of daily-value rather than unit-value
(hourly or less) computational intervals, however, was based on the greater accessibility of daily-value
data. The optimal estimators developed in this paper are intended for eventual application at unit-value
intervals.

Site selection

Ten USGS gauging stations (Figure 1, Table I) were selected to develop the estimators and assess their
accuracy. The sites represent a broad range of basin sizes, suspended-sediment concentration characteristics,
and streamflow characteristics. Basin drainage areas range from 1610 to 116 000 km2. Median suspended-
sediment concentrations (Figure 2) range from 8 to 3040 mg/l. Median streamflow (Figure 3) ranged from
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OPTIMAL ESTIMATION OF SUSPENDED-SEDIMENT CONCENTRATIONS 1135

Figure 1. Locations of selected US Geological Survey sediment gauging stations in the United States

0Ð34 to 241 m3/s. Available suspended-sediment particle-size distribution data indicates that the percentage
of suspended sediment finer than 0Ð125 mm ranged from 70 to 95% (Figure 4) among sites.

ESTIMATORS OF SUSPENDED-SEDIMENT CONCENTRATIONS

Previous estimators for computing records of suspended-sediment concentrations (Koltun et al., 1994) include
both time-averaging and flow-weighting procedures. In this paper, time-averaging procedures refer to linear or
cubic-spline interpolators between direct suspended-sediment concentration measurements, typically obtained
at unequal time intervals. These estimators have no rigorous mechanism for quantifying the uncertainty of the
values produced, but provide estimates that are consistent with data at the times of direct measurements.
Flow-weighting procedures include linear regressions, which condition estimates of suspended-sediment
concentrations on streamflow (and sometimes other explanatory variables). The regression estimators account
for a primary source of variability between measurements of sediment concentration and provide a measure
of uncertainty. Regression estimators, however, do not converge appropriately to measured values at times
of direct measurement. Optimal estimators combine the benefits of both time-averaging and flow-weighting
procedures in a formal mathematical model that also describes the statistical uncertainty in the estimates.

Both suspended-sediment concentrations and streamflow tend to be highly skewed to the right. Logarithmic
(log) transformation, however, creates a more symmetrical distribution (Figure 5). The linearity between
percent frequency, on a normal probability scale, and both suspended-sediment concentrations (Figure 2)
and streamflow (Figure 3), on the log scale, supports the common assumption that suspended-sediment
concentrations and streamflow are approximately log-normally distributed. The log transformation improves
linearity between the sediment concentrations and streamflow (Figure 6) and reduces heteroscedasticity
(nonconstant variance that may be a function of magnitude) in the model errors. Thus, interpolation and
regression methods generally apply a log transformation prior to method application. In addition, some
estimators provide an adjustment for the seasonal variations (Figure 7) in average sediment concentrations.
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OPTIMAL ESTIMATION OF SUSPENDED-SEDIMENT CONCENTRATIONS 1137

Figure 2. Distribution of daily mean concentrations of suspended sediment at selected gauging stations

Interpolators

Interpolation provides a mechanism for time-averaging direct measurements. Both linear and nonlinear
interpolation is used to compute daily suspended-sediment concentrations from unequally-spaced measure-
ments (Koltun et al., 1994). Interpolation provides estimates that match direct measurements of concentration
exactly at the time of measurement. Linear interpolation approximates concentrations between times of
direct measurements as straight-line segments connecting log-transformed concentrations on linear time
scales. Nonlinear interpolation is based on a cubic-spline function between log-transformed values on a
linear time scale. This interpolation produces a continuously differentiable arc that approximates a manu-
ally drawn curve. Estimates of concentrations from interpolations are obtained by inverse log transformation
(exponentiation).

Regression estimators

Regression models can be used to flow-weight estimates of suspended-sediment concentration. These
models describe a static statistical relation between suspended-sediment concentrations and the corre-
sponding set of explanatory variables. Explanatory variables are selected based on their correlation with
suspended-sediment concentrations and their general availability. Once developed, regression equations
are used to estimate suspended-sediment concentrations during periods when direct measurements are
unavailable.

Published in 2001 by John Wiley & Sons, Ltd. Hydrol. Process. 15, 1133–1155 (2001)
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Figure 3. Distribution of daily mean streamflow rates at selected sediment gauging stations

The general form of a regression equation is:

yk D uk·b C εk �1	

where yk is the log of the suspended-sediment concentration at time k. Suspended sediment concentrations,
Yk , are commonly measured in milligrams per litre; uk is a (p C 1)-dimensional row vector of explanatory
variables at time k, where p is the number of explanatory variables, with 1 added to provide an intercept
term; b is a (p C 1)-dimensional column vector of parameters; and εk is the regression residual at time k. The
set of residuals from regression equations is generally assumed to be independent and normally distributed
with a mean of zero and a variance of �2, commonly written as ε ¾ NI�0, �2	.

In ordinary least-squares regression, the estimate of b, denoted bols, is computed as:

bols D �UT·U	�1UTy �2	

where the n ð �p C 1	 matrix U is formed by horizontally concatenating n rows (observations) of the uk
vectors. The superscript T indicates a matrix transpose and the superscript �1 indicates a matrix inversion.
Finally, the regression estimate of suspended-sediment concentration for time indexed by k is computed as:

y[ols]k D uk·bols �3	

Published in 2001 by John Wiley & Sons, Ltd. Hydrol. Process. 15, 1133–1155 (2001)
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Figure 4. Distribution of suspended-sediment particle diameters at selected sediment gauging stations

The development of simple and multiple linear regression equations for estimating suspended-sediment
concentrations is described in the following sections.

Simple linear regression

In this paper, a simple linear regression [slr] estimator refers to an equation for computing the log of
suspended-sediment concentration on the basis of its variation with the log of streamflow. The estimator has
the form:

y[slr]k D [ uk,0 uk,1 ]·b[ols] �4	

where y[slr]k is the simple linear regression estimate at time indexed by k; uk,0 D 1 for all k; uk,1 D
log[streamflow] at time k; and b[ols] is a column vector containing the elements ˇ[ols]0 and ˇ[ols]1 of
corresponding least-squares estimates.

Simple linear regression equations for computing the log of suspended-sediment concentrations for the 10
selected sites are summarized in Table II. Results indicate that the logs of suspended-sediment concentrations
consistently were related positively to the logs of streamflow. The accuracy of the regression equations,
however, varied widely among sites. Interpreting the coefficient of determination, r2, as the fraction of
variability explained by the regression, the slr estimator described a minimum of 1Ð1% of the variability in
logs of suspended-sediment concentrations at Edisto River near Givhans, SC, and a maximum of 51Ð4% of the

Published in 2001 by John Wiley & Sons, Ltd. Hydrol. Process. 15, 1133–1155 (2001)
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Figure 5. Distribution of suspended-sediment concentrations and streamflow at Potomac River at Point of Rocks, MD

Figure 6. Relation between streamflow and suspended-sediment concentration at Juniata River at Newport, PA

Published in 2001 by John Wiley & Sons, Ltd. Hydrol. Process. 15, 1133–1155 (2001)
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Figure 7. Monthly variation in suspended-sediment concentrations at Potomac River at Point of Rocks, MD

variability in logs of suspended-sediment concentrations at Paria River at Lees Ferry, AZ. Residuals of all slr
equations were highly autocorrelated as indicated by Durbin–Watson d-statistic values less than 2 (Table II),
thus violating the assumption of independent residuals associated with ordinary least-squares regression.

Multiple linear regression

Relative to the simple linear regressions, multiple linear regression [mlr] equations increase the number of
explanatory variables to improve the estimation accuracy. The form of this equation is:

y[mlr]k D [ uk,0 uk,1 uk,2 uk,3 uk,4 ]·b[ols] �5	

where uk,0 and uk,1 are as defined previously; uk,2 D sin[2�·jk/366], where jk is the day number of the year
such that, in a leap year, j1 D 1 corresponds to January 1 and j366 D 366 corresponds to December 31;
uk,3 D cos[2�·jk/366]; and uk,4 D �uk,1 � uk�1,1	/�tk � tk�1	, where tk is the time indexed by k. Together the
numerator and denominator provide an Euler approximation to the change in streamflow at time k. Again
b[ols] is a column vector of corresponding ordinary least-squares parameter estimates.

The parameter estimates ˇ[ols]2 and ˇ[ols]3 describe a sinusoid of amplitude A and phase ϕ to approximate
the seasonal variability of log-transformed suspended-sediment concentrations. In particular, the amplitude
and phase parameters are computed as:

A D
√
ˇ2

[ols]2
C ˇ2

[ols]3
�6	

ϕ D tan�1
[
ˇ[ols]3

ˇ[ols]2

]
�7	

and the resulting seasonal component can be written:

Sk D A sin
[

2�·jk
366

C ϕ

]
�8	

In the mlr equations (Table II), logs of streamflow were again positively associated with logs of suspended-
sediment concentrations. In addition, with the exception of Paria River at Lees Ferry, AZ, positive changes
in daily streamflow were associated with increasing suspended-sediment concentrations. Finally, a seasonal
component in logs of sediment concentrations was consistently detected at all sites. Conditioned on streamflow,
the day of lowest average suspended-sediment concentrations was February 15 and the corresponding day
of highest average concentrations was August 17. The amplitude of the seasonal component varied from

Published in 2001 by John Wiley & Sons, Ltd. Hydrol. Process. 15, 1133–1155 (2001)
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1144 D. J. HOLTSCHLAG

a maximum of 1Ð0463 (in log of milligram per litre units) at Potomac River at Point of Rocks, MD, to a
minimum of 0Ð2467 at Pee Dee River at Peedee, SC. Similar to the slr results, significant autocorrelation was
present in the residuals of mlr estimates.

State-space estimators

State-space models provide a basis for optimal estimation, that is minimizing the error of the estimate of
the state, by utilizing knowledge of system and measurement dynamics, assumed statistics of system noises
and measurement errors, and initial condition information (Gelb, 1974). State-space models disaggregate
a dynamic system such as suspended-sediment concentrations into process and measurement components.
The process component describes the evolution of the system dynamics and their associated uncertainty.
The measurement component describes the static effects of explanatory variables and the uncertainty in the
measurement process. Together, these components form an estimator that continually accounts for the effects
of known inputs (such as streamflow) and optimally adjusts model estimates for periodic direct measurements
that contain some uncertainty.

The process of adjusting for direct measurements is described as predicting, filtering, or smoothing,
depending on the set of direct measurements used in estimation. Predicting uses only measurements prior
to the time of estimation; filtering uses only measurements up to and including the time of estimation; and
smoothing uses measurements before and after the time of estimation. Predicted and filtered estimates provide
on-line data, that is, information that can be continuously updated to the present (real time). Smoothed
estimates provide off-line data only, that is, estimates are delayed until subsequent direct measurements
become available. The accuracy of off-line estimates, however, is generally greater than that of corresponding
on-line values. The length of the delay is determined by measurement frequency. Both on-line and off-lines
estimators will be developed and analysed in this paper, although the off-line estimators are of primary interest
for publication of suspended-sediment concentrations. In this paper, the state-space models are developed in
discrete, rather than continuous, time based on average values that are reported (sampled) at a time step
of 1 day. Thus, the state-space models are in the form of difference rather than differential equations.
This implies that there is no information available about the distribution of sediment concentrations at
shorter (unit) time intervals. Although this reporting interval limits the dynamic characterization of sediment
concentrations, the characterization based on the 1-day sampling interval can be applied to shorter time
intervals if appropriate adjustments are applied. Applications to daily values are discussed in the following
sections and modifications needed for estimation at shorter time intervals are discussed in a subsequent
section.

A generalized least-squares regression equation is used as a transition between regression models and
state-space models. In this paper, the generalized least-squares [gls] model is of the form:

yk D [ uk,0 uk,1 . . . uk,p ]·b C �k

�k D ��k�1 C εk
�9	

which is similar to the multiple-regression equation developed previously, with the addition of a second
equation containing the parameter � describing the error component as a first-order autoregressive process.
The parameters of this model, [b[gls] �[gls]], were estimated iteratively by specification of the maximum
likelihood option in the SAS/ETS AUTOREG procedure (SAS Institute, 1988).1 Although only series without
missing data were used in this paper, the maximum likelihood estimation technique is applicable to series
with missing values.

Results of estimation for selected sites (Table II) indicate that the significance of b[gls] is maintained when
the �[gls] parameter is added. The root mean square error (RMSE) of residuals from predicting logs of

1 Use of trade names in this paper is for identification only and does not constitute endorsement by the US Geological Survey.
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suspended-sediment concentration 1 day in advance of the current time step is significantly lower than for the
residuals from the corresponding multiple-regression equations. The total r2 of the full model, including both
static and dynamic components, improved significantly, while the autocorrelation of the residuals diminished
greatly. The r2 value associated with the static component, uk·b[gls], however, averaged slightly less than the
comparable multiple-regression component, uk·b[ols] (Table II).

To complete the transition from the gls regression model to the state-space model, the error component is
disaggregated into a process noise component, wk , and a measurement noise component, vk , as:

εk D wk C vk �10	

where the wk and vk are normally distributed sequences with expected values of zero, E[wk] D E[vk] D 0; the
covariance of the process error is uncorrelated and has magnitude Qk , E[wkwT

j ] D Qkυkj; 2 measurement errors
are uncorrelated with covariance Rk , E[vkvT

j ] D Rkυkj, and process and measurement errors are assumed to be
uncorrelated at all times, E[wkv

T
j ] D 0 for j and k. Because of this last assumption, a delay can be introduced

in process error without consequence, so that the model can be written in standard state-space form as:

�k D �[gls]·�k�1 C wk�1

yk D �k C uk·b[gls] C vk
�11	

where the upper equation is referred to as the state equation and the corresponding autoregressive error
component is considered to be the state variable. The lower equation is referred to as the measurement
equation. For this analysis, the measurement equation was simplified by subtracting the static component
uk·b[gls] as:

�k D �[gls]�k�1 C wk�1

Qyk D �k C vk
�12	

On-line estimation

Given initial estimates of the state �0 (the autoregressive error), and an associated state error covariance
P0, the state-space model can be revised continuously to estimate the magnitude and uncertainty of the state
by use of the Kalman filtering algorithm. In this algorithm, the revision takes place in two parts: a temporal
projection, determined by the system dynamics having an error covariance Qk , and a measurement update,
determined by the accuracy of measurements having an error covariance Rk . In this paper, the estimate
��

[F]k refers to the temporal projection of the state at time k, based on information available at k � 1. In
contrast, �C

[F]k refers to the estimate of the state at time step k, formed by updating the temporal projection
with measurement information available at time k. Similar notation is used to designate corresponding
state error covariances P�

[F]k and PC
[F]k . The subscript [F] denotes a filtered or on-line estimate of the

state.
Details of the algebra of the Kalman filtering algorithm are described in the following. A projection of the

state error covariance at time k, just prior to a measurement, is computed as:

P�
[F]k D �[gls]·PC

[F]k�1·�T
[gls] C Qk�1 �13	

Then, the Kalman gain, which optimally weights the reliability of the model estimate with the reliability of
measurement data at time k, is computed as:

Kk D P�
[F]k[P

�
[F]k C Rk]

�1 �14	

2 The Kronecker delta function is defined as υkj D 1 for k D j and 0 otherwise.
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1146 D. J. HOLTSCHLAG

If a measurement is available at time k, a measurement update is computed for the state and the state error
covariance at time k, just after the measurement, as:

�C
[F]k D ��

[F]k C Kk[ Qyk � ��
[F]k] �15	

PC
[F]k D [1 � Kk]P

�
[F]k �16	

If no measurement is available, the updated state and state error covariances are the same as the temporal
estimates. Finally, the index for k is incremented and a state prediction is computed as:

��
[F]k D �·�C

[F]k�1 �17	

The process is repeated as additional data become available.
In practice, highly reliable estimates of Qk , Rk , �

�
[F]0, and PC

[F]0 are seldom available. Useful estimates,
however, can be obtained readily. Specifically, both Qk and Rk are variances and therefore take on positive
values. An estimate of Rk can be computed for each direct measurement by use of methods described by
Burkham (1985), if sufficient information is available. Alternatively, temporal estimates have a low sensitivity
to Rk so an average value, R, may be adequate. If Qk is assumed constant for a given time step of size k,
Qk , then an initial estimate can be computed as �2 � Rk , where �2 is estimated as the mean square error of
the generalized least-squares equation. The final estimate of Qk can be selected as the value that generates
P�

[F], such that:

1 � ˛ D Pr
[
��

[F] � z˛/2

√
P�

[F] < Qy < x�
[F] C z˛/2

√
P�

[F]

]
�18	

is satisfied (Siouris, 1996), where z˛/2 is the standard normal quantile corresponding to a probability of
1 � ˛/2, and Pr indicates the probability. Finally, ��

[F]0 is typically set equal to its expected value of zero
and PC

[F]0 is set somewhat larger than Q plus R. In this paper, suspended-sediment concentration data were
available as daily averages rather than direct measurements. Estimates of Qk (Table 1) were determined
to satisfy Equation (18) based on R D 0Ð04, corresponding to measurement error of about 20%. A value of
PC

[F]0 D 1 was used for all selected stations.
To complete the estimation process, the temporal estimate of the state is added to the static component to

predict the log of suspended-sediment concentration at time k as:

y�
[F]k D uk·b[gls] C ��

[F]k �19	

The corresponding 100�1 � ˛	% confidence interval for yk based on the prediction information is:

y�
[F]k š z˛/2

√
P�

[F]k �20	

Similarly, the measurement update of the state is added to the static component to compute a filtered estimate
of the log of suspended-sediment concentration at time k as:

yC
[F]k D uk·b[gls] C �C

[F]k �21	

The 100�1 � ˛	% confidence interval for yk based on the filtered information is:

yC
[F]k š z˛/2

√
PC

[F]k �22	

Off-line estimation

In this paper, a smoother is a mathematical procedure that combines a forward running filter estimate with
a backward running filter estimate. Thus, all data before and after the time for which the estimate is computed
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are used to determine an optimal value. Smoothers are based on more data than forward running filters and
are generally more accurate. Smoothing is considered an off-line estimation procedure because estimates are
delayed until measurements at the end of the estimation intervals become available.

There are three types of smoothers in general use. First, a fixed-interval smoother is an estimator
that provides optimal values of all states within an estimation interval defined by beginning and ending
measurements. Second, a fixed-point smoother is an estimator that provides an optimal value for a fixed
point in time (such as an initial condition). And third, a fixed-lag smoother is an estimator that provides an
optimal value of the state at a fixed time interval after the most recent measurement. For this application,
a fixed-interval smoother algorithm referred to as the Rauch–Tung–Striebel (RTS) smoother (Gelb, 1974;
Grewal and Andrews, 1993) is used.

To implement the smoother, the Kalman filter is run up to the measurement ending the estimation interval.
All state and covariance elements computed by the filter are utilized. The initial condition for the smoother,
denoted by a subscript [S], is the filter estimate formed by the measurement update at the end of the estimation
interval as:

�[S]N D �C
[F]N �23	

Then, starting at the end of the period, the smoother gain is computed as:

Ak D PC
[F]k·�T

[gls][P
�
[F]kC1]�1 �24	

and moving backward in time through the estimation interval, the smoother estimate is updated as:

�[S]k D �[F]k C Ak��[S]kC1 � ��
[F]kC1	 �25	

The state error covariance of the smoother is:

P[S]k D PC
[F]k C Ak[P[S]kC1 � P�

[F]kC1]AT
k �26	

The time index is decremented and the above procedure is repeated until the beginning of the estimation
interval to complete the computation of the smoothed estimate of the state and state error covariance.

Again, to complete the estimation process, the smoothed state estimate is added to the static component to
estimate the log of suspended-sediment concentration at time k as:

y[S]k D uk·b[gls] C �[S]k �27	

Finally, a 100�1 � ˛	% confidence interval for yk based on the smoothed information is:

y[S]k±z˛/2

√
P[S]k �28	

COMPARISON OF ESTIMATORS

Techniques for estimation of suspended-sediment concentrations described in this paper include interpolation,
regression, and optimal estimators. Figure 8 provides a basis for graphical comparison of some of these
estimators for the hypothetical situation in which only one of 12 daily values is available to estimate
the complete record. Results for the interpolation techniques, which are represented here by cubic-spline
interpolation, indicate that interpolation fits the selected (direct) measurements, but fails to account for
streamflow influences and often results in a poor match between the estimates and suspended-sediment
concentrations not used in the estimation. Similarly, simple linear regression may result in poor estimates
because it fails to adequately account for the concentration measurements used in estimation, even though
the estimates are all conditioned on streamflow. Optimal estimators, represented by the off-line [Smooth]
estimator, effectively account for streamflow (and seasonal) influences, and for information provided by (direct)
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1148 D. J. HOLTSCHLAG

Figure 8. Suspended-sediment concentration and streamflow at Juniata River at Newport, PA (US Geological Survey gauging station
01567000)

measurements used in the estimation. In addition, the optimal estimators provide a measure of uncertainty of
the estimated record (Figure 9).

In addition to graphical methods, summary statistics were computed to facilitate numerical comparison of
the accuracies of the alternative estimators. Specifically, the accuracies of simulated sampling intervals of 3,
6, 12, 24, and 48 days, separated by corresponding estimation intervals of 2, 5, 11, 23, and 47 consecutive
unsampled days, were investigated. The interpolators, filters, and smoothers were updated using data from the
sampled days, and the accuracy of the estimators was assessed on the basis of RMSE of log concentration
estimates on unsampled days (thus the effective sample size increased with the length of the sampling interval).
Results indicate that the off-line [S] estimator was the most accurate (Table III, Figure 10). Although the
accuracy of the interpolators was high at shorter sampling intervals, this accuracy decreased rapidly with
increasing sampling interval. The accuracy of regression estimators did not improve locally in response to
direct measurements of suspended-sediment concentrations.

The RMSE can be expressed either in log units (as above) or as a standard error in percent. The RMSE in
percent reflects the coefficient of variation of the estimator as:

RMSEpercent D 100

∣∣∣∣ �y%y
D 100

∣∣∣∣
√

e�
2
y � 1 �29	

Results from this analysis indicate that the average standard error for the slr estimator is 124% and that the
average standard error for the mlr estimator is 105%. The average standard error of the linear interpolator
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Figure 9. Estimates and uncertainties of suspended-sediment concentrations at Juniata River at Newport, PA (US Geological Survey gauging
station 01567000)

ranged from 48Ð4% for 3-day sampling intervals to 159% for 48-day sampling intervals. The average standard
error of the cubic-spline interpolator ranged from 50Ð6% for 3-day sampling intervals to 176% for 48-day
sampling intervals. The average standard error for the on-line [F] estimator ranged from 52Ð7% for a 3-day
sampling interval to 107% for a 48-day sampling interval. The average standard error for the off-line [S]
estimator ranged from 39Ð9% for a 3-day sampling interval to 93Ð0% for a 48-day sampling interval. Thus,
the off-line [S] estimator has the lowest standard error, especially at the shorter sampling intervals that are
needed to compute continuous records of suspended-sediment concentrations.

Possible sources of systematic variation in estimation errors among sites were investigated. In particular,
off-line root mean square errors showed a slight tendency to decrease with increasing median discharges.
Although the number of sites analysed is thought to be too small to provide conclusive results, the finding is
consistent with results by Phillips et al. (1999), who indicated that the accuracy and precision of the estimators
that they evaluated declined with a reduction in drainage area. No relation between model errors and sediment
characteristics was detected.

APPLICATION TO SEDIMENT COMPUTATION

Bias transformation adjustment

Exponentiation provides a simple transformation back to the original metric for estimates computed using
a log transformation. The mean of the exponentiated values, however, estimates the median of the original
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Table III. Estimation error characteristics at selected sites for specified sampling intervals (slr indicates simple linear
regression, mlr indicates multiple linear regression, LinInt indicates linear interpolation, and CubSpl indicates cubio-spline

interpolation). The average root mean square error (mg/l) is given for days without measurements

Station name Estimator Simulated measurement interval (days)

3 6 12 24 48

Juniata River at Newport, PA slr 0Ð8868 0Ð8875 0Ð8877 0Ð8880 0Ð8875
mlr 0Ð8231 0Ð8229 0Ð8240 0Ð8242 0Ð8235

LinInt 0Ð4372 0Ð6430 0Ð8287 0Ð9930 1Ð1791
CubSpl 0Ð4488 0Ð6762 0Ð8768 1Ð0455 1Ð2450
On-line 0Ð4495 0Ð5555 0Ð6600 0Ð7483 0Ð8063
Off-line 0Ð3339 0Ð4339 0Ð5272 0Ð6297 0Ð7297

Sample size 9050 11 310 12 441 12 995 13 254
Potomac River at Point of Rocks, MD slr 0Ð9388 0Ð9365 0Ð9380 0Ð9387 0Ð9387

mlr 0Ð7686 0Ð7653 0Ð7664 0Ð7674 0Ð7675
LinInt 0Ð3878 0Ð5780 0Ð7669 0Ð9514 1Ð0680

CubSpl 0Ð3893 0Ð6068 0Ð8124 1Ð0193 1Ð1509
On-line 0Ð4049 0Ð5044 0Ð5945 0Ð6859 0Ð7532
Off-line 0Ð3054 0Ð3840 0Ð4746 0Ð5723 0Ð6869

Sample size 5896 7370 8107 8464 8648
Rappahannock River at Remington, VA slr 0Ð9598 0Ð9567 0Ð9596 0Ð9584 0Ð9590

mlr 0Ð8812 0Ð8806 0Ð8834 0Ð8834 0Ð8845
LinInt 0Ð6725 0Ð8823 1Ð0172 1Ð1663 1Ð2800

CubSpl 0Ð6989 0Ð9368 1Ð0705 1Ð2338 1Ð3480
On-line 0Ð6018 0Ð6878 0Ð7793 0Ð8449 0Ð8795
Off-line 0Ð4888 0Ð5791 0Ð6698 0Ð7756 0Ð8458

Sample size 6872 8590 9449 9867 10 058
Yadkin River at Yadkin College, NC slr 0Ð7984 0Ð8007 0Ð8004 0Ð7983 0Ð7985

mlr 0Ð6541 0Ð6553 0Ð6540 0Ð6526 0Ð6525
LinInt 0Ð4908 0Ð6929 0Ð8979 1Ð0140 1Ð1103

CubSpl 0Ð5086 0Ð7407 0Ð9604 1Ð0810 1Ð1814
On-line 0Ð4406 0Ð5164 0Ð5766 0Ð6150 0Ð6360
Off-line 0Ð3529 0Ð4353 0Ð5141 0Ð5712 0Ð6136

Sample size 9432 11 790 12 969 13 547 13 818
Pee Dee River at Peedee, SC slr 0Ð4162 0Ð4174 0Ð4167 0Ð4167 0Ð4197

mlr 0Ð3678 0Ð3706 0Ð3694 0Ð3705 0Ð3715
LinInt 0Ð3400 0Ð4133 0Ð4440 0Ð4830 0Ð5024

CubSpl 0Ð3583 0Ð4388 0Ð4688 0Ð5098 0Ð5544
On-line 0Ð3176 0Ð3434 0Ð3627 0Ð3706 0Ð3721
Off-line 0Ð2834 0Ð3189 0Ð3489 0Ð3628 0Ð3673

Sample size 976 1220 1342 1403 1410
Edisto River near Givhans, SC slr 0Ð5580 0Ð5557 0Ð5555 0Ð5536 0Ð5529

mlr 0Ð5235 0Ð5220 0Ð5212 0Ð5186 0Ð5191
LinInt 0Ð4272 0Ð4526 0Ð4622 0Ð4918 0Ð5215

CubSpl 0Ð4604 0Ð4794 0Ð4893 0Ð5277 0Ð5407
On-line 0Ð4543 0Ð4822 0Ð5038 0Ð5109 0Ð5160
Off-line 0Ð4129 0Ð4481 0Ð4849 0Ð5009 0Ð5124

Sample size 1342 1675 1837 1909 1927
Colorado River near Cisco, UT slr 1Ð2530 1Ð2580 1Ð2573 1Ð2584 1Ð2560

mlr 1Ð1054 1Ð1097 1Ð1083 1Ð1097 1Ð1068
LinInt 0Ð4056 0Ð5936 0Ð7888 0Ð9177 1Ð0585

CubSpl 0Ð4226 0Ð6222 0Ð8369 0Ð9609 1Ð1271
On-line 0Ð5147 0Ð6913 0Ð8617 1Ð0281 1Ð1851
Off-line 0Ð3704 0Ð5062 0Ð6617 0Ð7788 0Ð9226

Sample size 3996 4995 5489 5727 5828
(continued on next page)
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Table III. (continued )

Station name Estimator Simulated measurement interval (days)

3 6 12 24 48

San Juan River near Bluff, UT slr 0Ð9616 0Ð9570 0Ð9597 0Ð9588 0Ð9590
mlr 0Ð8823 0Ð8776 0Ð8802 0Ð8797 0Ð8790

LinInt 0Ð3148 0Ð4306 0Ð5876 0Ð7411 0Ð8683
CubSpl 0Ð3183 0Ð4506 0Ð6245 0Ð7836 0Ð9230
On-line 0Ð4383 0Ð5384 0Ð6557 0Ð7403 0Ð8449
Off-line 0Ð3079 0Ð4020 0Ð5340 0Ð6460 0Ð7550

Sample size 3922 4900 5390 5635 5734
Green River at Green River, UT slr 0Ð9730 0Ð9757 0Ð9770 0Ð9775 0Ð9775

mlr 0Ð9536 0Ð9563 0Ð9552 0Ð9562 0Ð9562
LinInt 0Ð3500 0Ð5145 0Ð7679 0Ð9256 1Ð1197
CubSpl 0Ð3619 0Ð5357 0Ð8225 0Ð9588 1Ð1775
On-line 0Ð4164 0Ð5627 0Ð6966 0Ð8291 0Ð9546
Off-line 0Ð3041 0Ð4018 0Ð5354 0Ð6558 0Ð8054

Sample size 1694 2115 2321 2415 2444
Paria River at Lees Ferry, AZ slr 1Ð9171 1Ð9195 1Ð9209 1Ð9191 1Ð9187

mlr 1Ð666 1Ð6712 1Ð6731 1Ð6729 1Ð6722
LinInt 0Ð7965 1Ð1408 1Ð5457 2Ð0766 2Ð5059
CubSpl 0Ð8090 1Ð1846 1Ð6546 2Ð2199 2Ð6274
On-line 0Ð9152 1Ð2240 1Ð4594 1Ð6589 1Ð8124
Off-line 0Ð6450 0Ð8960 1Ð1448 1Ð4237 1Ð6553

Sample size 6816 8520 9372 9798 10 011

Figure 10. Average root mean square error of selected estimators for specified sampling intervals

Published in 2001 by John Wiley & Sons, Ltd. Hydrol. Process. 15, 1133–1155 (2001)



1152 D. J. HOLTSCHLAG

population rather than the mean. For log-normally distributed populations, the median is less than the mean.
Thus, the mean of the exponentiated estimates generally is thought to underestimate the mean suspended-
sediment concentration. In contradiction, Walling and Webb (1988) show that exponentiated estimates that
are adjusted for this possible bias are significantly less accurate and less precise than estimates that are
not adjusted, based on load calculations derived from rating curves. If adjustment is desired, however,
the ‘smearing’ approach (Helsel and Hirsch, 1992) provides a nonparametric bias correction factor (BCF)
applicable to optimal estimates of suspended-sediment concentrations. For off-line [S] estimates, the BCF is
computed as the mean of the exponentiated residuals:

BCF D
n∑
iD1

exp[yi � y[S]i]

n
�30	

The residuals, which may follow any distribution, are only assumed to be independent and homoscedastic. For
application, the BCF is multiplied by the exponentiation smoothed estimates to compute the mean suspended-
sediment concentrations.

Unit value computation

Because of the nonlinear relation (in arithmetic space rather than log space) between streamflow
and suspended-sediment concentrations and occasionally large daily ranges in streamflow, daily average
suspended-sediment concentrations are typically computed based on unit (less than daily) values rather than
daily average streamflow values. It is anticipated that future applications of the estimators will be based on
a development from unit values and direct measurement data. If the unit value data are difficult to obtain,
however, the dynamics determined from analysis of daily values data can be applied to shorter intervals, with
adjustments described in the following section.

The state-space model contains static components, associated with the effects of streamflow and seasonality,
and dynamic components, associated with the error characteristics. The explanatory variable associated with
the static effect of changes in streamflow rate, uk,4, on sediment concentrations must be recomputed for the
size of the unit time step. The parameters associated with the static effects, however, may still be applicable.
In contrast, values of � and Qk characterize the dynamic error in sediment concentrations at a time step of 1
day. The following section describes how to adjust daily estimates of � and Qk for computation at unit time
intervals.

The discrete time (difference) equation for the state equation was developed with a time index k having a
constant size k equal to 1 day and was expressed as:

�k D �·�k�1 C wk�1 �31	

To convert this equation for use with an alternate size of time step, Equation (31) is first converted to a
continuous time (differential) equation of the form:

P�t D F�t C wt �32	

which indicates that the rate of change in the state variable is proportional to its present state. This
proportionality factor is simply computed as:

F D log[�] �33	

For application at a new sampling interval k1, equal to say 1/24 day, and indexed by k1, � and the state
equation are revised as:

�1 D eF·k1

�k1 D �1·�k1�1 C wk1�1

�34	
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with a result that �1 > � for unit time intervals shorter than 1 day. Converting Qk to an alternate time step
is an extension of this procedure. First, the discrete process variance determined at k D 1 is related to the
continuous process variance Q) as:

Qk D eFk
{∫ k

0
e�F)Q) e�FT

) d)
}

eF
T
k �35	

(Grewal and Andrews, 1993). Solving Equation (35) for Q) results in:

Q) D 2F·Qk

�1 C e2F·k �36	

The corresponding discrete time covariance for discrete time interval k1 can then be computed as:

Qk1 D Q) e2Fk1

[ �1

2 e2F·k1F
C 1

2F

]
�37	

Finally, the magnitude of the measurement covariance, Rk , may be decreased because the direct (instantaneous)
measurements of suspended-sediment concentrations contain smaller time-sampling errors than those present
in daily average values. Methods described by Burkham (1985) may be helpful in revising the estimate of
Rk . Once the values of �, Qk , Rk , and uk,4 are revised, the previously developed Kalman filter and smoother
equations may be applied.

Implication for sampling design

The analyses described in this paper were based on long-term suspended-sediment concentration records,
which had an average length of 6901 daily observations without missing values. Although application to shorter
record length with missing data was not assessed, the following observations may provide a useful preliminary
guide to these types of situations. The SAS AUTOREG procedure was used to estimate model parameters.
The documentation for this procedure suggests that the maximum likelihood estimation method be used if
missing values are ‘plentiful’ (SAS Institute, 1988, p. 177). Although ‘plentiful’ is not explicitly defined,
it is assumed to be related to both the length of record and the percentage of missing values. Should data
characteristics limit the number of parameters that can be estimated or found statistically significant by use of
this method, a simpler model structure might be used initially, perhaps eliminating terms for the streamflow
derivative or seasonal component. Additionally, systematic sampling at a fixed interval limits information
available on the covariance structure, which is used in filtering and smoothing operations, to multiples of
the fixed interval. Then, covariance information at shorter intervals must be projected from multiples of the
sampling interval. For example, if systematic sampling occurs at 15-day intervals, the covariance structure
is empirically defined only for 15, 30, 45-day intervals and so on, and must be extrapolated to 1-day or
unit intervals for record computation. This type of extrapolation introduces additional uncertainty in the
estimation process, and might be avoided by varying the sampling interval while maintaining the same total
number of samples. Additional analyses are needed to more fully investigate the implications for sampling
design.

SUMMARY

This paper develops optimal estimators for on-line and off-line computation of suspended-sediment con-
centrations in streams and compares the accuracies of the optimal estimators with results produced by
time-averaging interpolators and flow-weighting regression estimators. The analysis uses long-term daily-
mean suspended-sediment concentration and streamflow data from 10 sites within the United States to compare
accuracies of the estimators. A log transformation was applied to both suspended-sediment concentration and
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streamflow values prior to development of the estimates. Standard techniques are described for removing
the possible bias in estimates of the mean computed form exponentiated values of sediment concentra-
tion computed in log units and for approximating instantaneous or unit dynamics on the basis of daily
samples.

The optimal estimators are based on a Kalman filter and an associated smoother to produce the on-line
and off-line estimates, respectively. The optimal estimators included site-specific parameters, which were
estimated by generalized least squares, to account for influences associated with ancillary variables, including
streamflow and annual seasonality, on suspended-sediment concentrations. In addition, the optimal estimators
account for autoregressive error components and uncertainties in the accuracy of direct measurements in
computing continuous records of suspended-sediment concentrations. Results were compared with estimates
produced by both linear and cubic-spline interpolators, which do not account for ancillary variables, and
with simple and multiple-regression estimators, which do not locally account for direct measurements of
suspended-sediment concentration.

The average standard error of simple and multiple regression estimates was 124 and 105%, respectively.
The accuracies of interpolators, and on-line and off-line estimators are related to measurement frequency,
and were compared at simulated measurement intervals of 3, 6, 12, 24, and 48 days. The average standard
error of the linear interpolator ranged from 48Ð4% for 3-day sampling intervals to 159% for 48-day sampling
intervals. The average standard error of the cubic-spline interpolator ranged from 50Ð6% for 3-day sampling
intervals to 176% for 48-day sampling intervals. The average standard error for the on-line estimator ranged
from 52Ð7% for a 3-day sampling interval to 107% for a 48-day sampling interval. The average standard error
for the off-line estimator ranged from 39Ð9% for a 3-day sampling interval to 93Ð0% for a 48-day sampling
interval. Thus, the off-line estimator had the lowest standard error, especially at the shorter sampling intervals
that are needed to compute continuous records of suspended-sediment concentrations.

The use of the optimal estimators rather than interpolators or regression estimators will improve the accuracy
and quantify the uncertainty of records computed on the basis of suspended-sediment concentrations measured
at intervals less than 48 days. Although in this paper, parameters for the estimators were developed on the
basis of daily values data, it is anticipated that in typical applications the estimators will be developed on the
basis of unit-value data and direct measurement information.
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