

United States

Soil Sensieevation

Annual Technical Report

Americus Plant Materials Center

Americus, Georgia

PREFIX

Information about the Americus Plant Materials Center, such as purpose, history, climate data, MLRA's served, problems and priorities can be found in the 1992/1993 Annual Report.

The United States Department of Agriculture (USDA) prohibits discrimination in its programs on the basis of race, color, national origin, sex, religion, age, disability, political beliefs and marital or familial status. (Not all prohibited bases apply to all programs). Persons with disabilities who require alternative means for communication of program information (braille, large print, audiotape, etc.) should contact the USDA, Office of Communications at (202) 720-5881 (voice) or (202) 720-7808 (TED).

To file a complaint, write the Secretary of Agriculture, U.S. Department of Agriculture, Washington, D.C., 20250, or call (202) 720-7327 (voice) or (202) 720-1127 (TDD). USDA is an equal employment opportunity employer.

AMERICUS PLANT MATERIALS CENTER

AMERICUS, GEORGIA

Annual Technical Report 1993

TABLE OF CONTENTS

TOPIC	PAGE
Project 13A114R - Determination of Forage Quality and Quantity of Selected Indiangrass	1-8
Project 13I128R - Assembly and Evaluation of Big Bluestem Andropogon gerardii	9
Project 13I131R - Assembly and Evaluation of Switchgrass <u>Panicum virgatum</u>	10-12
Project 13A132M - Screening of Caley Pea Germplasm for Conservation Tillage	13-21
Project 13A137M - Development and Comparative Testing of Early Blooming Hairy Vetch Cultivar for Conservation Tillage	22-28
Project 13A142R - Hay and Grazing Management of Eastern Gammagrass	29
Release of New Cultivars in 1993	30
Seed and Plant Production in 1993	31
List of Publications in 1993	32

PROJECT 13A114R - DETERMINATION OF FORAGE QUALITY AND QUANTITY OF SELECTED INDIANGRASS

INTRODUCTION

Indiangrass (Sorghastrum nutans) is a native warm season perennial grass. It has been utilized in the Midwestern United States as a forage for many decades. However, no Southeastern United States cultivar is available. This project attempts to compare a composite of four southeastern ecotypes (Americus PMC) to several standard indiangrass cultivars.

MATERIALS AND METHODS

The test compared the Americus PMC cultivar to widely used indiangrass cultivars called 'Lometa' and 'Rumsey'. Pensacola bahiagrass was included in the test as a check.

The test was established at the Americus PMC in May 1990. All treatments were hand seeded at 10# PLS/AC to six replications in RCB design.

Plots were harvested in July and at heading. Dry matter production and percent ground coverage of each treatment were measured. IVDMD determination was conducted on some samples. Each spring and fall stem counts were recorded.

Similar tests were conducted in Athens, Georgia on low and high fertility sites by University of Georgia Professor Dr. Joe Bouton.

RESULTS AND DISCUSSION

The low fertility test at Athens indicates that the APMC cultivar produced significantly more dry matter (Kg/ha) than Rumsey in (1989-1991). The Apmc cultivar also produced a significantly higher IVDMD value than Rumsey in 1989-1990. The same data indicates that the APMC produced more dry matter than Lometa in 1989-1991 but not at a significant level.. However, the APMC did produce a significantly higher IVDMD value than Lometa in 1989-1990. The low fertility site also indicates that the indiangrass entries, especially the APMC cultivar, increased dry matter production each year from 1989-1991. (Tables 3-7)

The high fertility test at Athens indicates that over two years (1990-1991) the July clipping of APMC cultivar produced significantly more yield (Kg/ha) than Rumsey. It also produced a higher yield than Lometa but not at a significant level. The clipping yield at heading shows that APMC produced significantly higher yield than Rumsey. However, Lometa produces significantly higher yield than APMC at heading. The total yield data (July and heading clippings) indicates that the APMC produced a higher yield than Rumsey. The APMC entry produced a higher yield than Lometa also, but not at a significantly higher level. (Tables 8-10)

The Americus PMC test indicates that in the 1991 July and heading clippings, the APMC entry produced more yield (Kg/ha) than Rumsey and Lometa, but not at a significant level (LSD 5%). The total yield data (July and heading clipping) indicates that APMC produced significantly (LSD 10%) more yield than Rumsey. APMC also produced more yield than Lometa but not at a significant level. (Table 11)

In 1992 at Americus the total dry matter yield was highest for Lometa. However there was no significant difference between APMC and Lometa. Also there was no significant difference between Rumsey and Americus. (Table 12)

In 1993 at Americus it appears that dry matter yield is highest for Lometa July and heading. (Table 13) This appears to be supported by a lower stem count and percent coverage of APMC compared to Lometa. (Table 1 & 2)

It appears that APMC cultivar shows a greater potential in the Athens, Georgia tests than in the Americus, Georgia tests. This would be especially true in the low fertility tests at Athens.

TABU 1 AMERICUS PMC STEM COUNT DATA (1990–1993)

Cultivar		Stem	Count	5			Mean <u>Stem Count</u>	Stem Count <u>1' x 1</u> '
				• •				
APMC	19	55	44	20	39	19	33	0 10 00
Pen. Bahia	50	45	60	45	55	45	50	9-13-90
Rumsey	19	40	12	19	15	2	18	
Lometa	52	42	46	39	48	24	42	
APMC	43	88	97	98	64	65	76	
Pen. Bahia	50	60	60	64	47	60	57	5/17/91
Rumsev	38	55	24	35	54	47	42	
Lometa	82	78	80	71	57	140	85	
APMC	39	54	46	25	79	69	52	
Pen. Bahia	121	78	138	96	105	121	110	9/30/91
Rumsey	38	81	80	56	61	51	61	
Lometa	45	78	81	73	77	20	62	
APMC	42	36	56	28	41	54	43	
Pen. Bahia	67	39	46	58	61	89	60	5/21/92
Rumsev	40	47	18	36	55	49	41	
Lometa	53	59	51	65	48	21	50	
APMC	24	29	30	28	36	49	33	
Pen. Bahia	51	59	38	62	38	66	52	10/6/92
Rumsev	25	27	15	22	50	21	27	
Lometa	28	30	27	41	46	32	34	

TABLE 1 (Continued)

<u>Cultivar</u>		Ste	em Cou	int			Mean Stem Count	Stem Count
APMC	39	32	33	62	24	26	36	
Pen. Bahia	36	43	39	29	48	37	39	5/10/93
Rumsey	51	26	43	21	41	28	35	0,40,00
Lometa	37	29	24	38	62	49	40	
APMC	40	40	36	52	19	24	35	
Pen. Bahia	67	46	40	66	47	46	52	9/15/93
Rumsey	53	28	39	26	32	30	35	0, . 0, 0 0
Lometa	46	40	22	40	74	69	49	

TABLE 2 AMERICUS PMC % GROUND COVERAGE DATA (1991-1993)

<u>Cultivar</u>		3	Grou	und Co	overag	je	Mean	-
APMC	90	95	95	95	90	85	92	7/15/91
Pen. Bahia	95	95	95	95	90	95	94	
Rumsey	75	95	75	80	90	75	82	
Lometa	80	80	85	90	80	90	84	
APMC	70	60	70	50	80	70	67	9 /30/91
Pen. Bahia	75	80	80	75	80	80	78	
Rumsey	50	45	45	45	70	50	51	
Lometa	65	75	80	75	85	45	71	
APMC	70	65	70	65	80	70	70	7/15/92
Pen. Bahia	70	70	75	75	75	80	74	
Rumsey	60	60	60	60	70	60	62	
Lometa	75	70	80	70	85	70	75	
APMC	45	50	60	60	55	45	53	9/17/92
Pen. Bahia	75	75	80	80	75	85	78	
Rumsey	45	45	45	45	50	40	45	
Lometa	70	70	75	80	75	60	72	
APMC	75	65	70	70	55	65	67	7/14/93
Pen. Bahia	60	80	50	80	70	75	69	
Rumsey	75	75	45	60	60	65	63	
Lometa	70	85	70	80	80	80	77	
APMC	70	65	75	60	40	55	61	9/15/93
Pen. Bahia	80	85	75	85	75	75	79	
Rumsey	70	55	35	45	45	50	50	
Lometa	80	85	80	80	80	75	80	

Summary and analysis of data (1989-1993) taken from Athens and Americus, Georgia for forage yield and quality determination.

TABLE3 LOW FERTILITY SITE YIELD & IVDMD DATA TAKEN AT READING ATHENS, GEORGIA TEST (1989)

APMC 1110 479.66	
Pen. Bahia 364.5 502.96	
Rumsey 276.66 435.08	
Lometa 911.66 475.36	
LSD (5%) 297.5 31.1	

TABLE 4LOW FERTILITY SITE YIELD & IVDMD DATA TAKEN AT HEADING

ATHENS, GEORGIA TEST (1990)

<u>Cultivar</u>	Mean D.M. Yield(Kg/Ha)	Mean IVDMD Value
APMC	4599.66	522.26
Pen. Bahia	2025.16	442.15
Rumsey	3351.83	414.73
Lometa	4143.66	440.55
LSD (5%)	1104.5	46.2

TABLE 5LOW FERTILITY SITE YIELD DATA TAKEN AT READING
ATHENS, GEORGIA TEST (1991)

<u>Cultivar</u>	Mean D.M.	Yield(Kg/Ha)
APMC	5	471.5
Pen. Bahia	2	636.83
Rumsey	3	585
Lometa	4	677.33
LSD (5%)	1	032.9

3

TABLE 6LOW FERTILITY SITE YIELD & IVDMD DATA TAKEN AT HEADINGATHENS GEORGIA TEST (1989-1990)

<u>Cultivar</u>	Mean D.M. Yield(Kg/Ha)	<u>Mean IVDMD Value</u>
APMC	2854.83	500.96
Pen. Bahia	1194.83	472.55
Rumsey	1814.25	424.90
Lometa	2527.66	457.95
LSD (5%)	548.1	26.7

TABLE 7 LOW FERTILITY SITE YIELD DATA TAKEN AT HEADING

ATHENS, GEORGIA TEST (1989–1991)

<u>Cultivar</u>	<u>Mean D.M. Yield(Kg/Ha)</u>	
APMC	3727.05	
Pen. Bahia	1675.50	
Rumsey	2404.50	
Lometa	3244.22	
LSD (5%)	1005.9	
TABLE 8	HIGH FERTILITY SITE YIEI	D & TVDMD DATA
	ATHENS, GEORGIA TEST	· (1990)
Cultivar	Mean D.M. Yield(Kg/Ha)	Mean TVDMD Value
	Taken in July	From July Clipping
APMC	3217.00	499.78
Pen. Bahia	2220.66	519.10
Rumsey	1750.66	550.25
Lometa	2574.33	469.93
LSD (5%)	865.1	48.2
	Mean D.M. Yield(Kg/Ha)	Mean IVDMD Value
	<u>Taken at Heading</u>	From Heading Clipping
APMC	3905.83	468.81
Pen. Bahia	2658.33	528.35
Rumsey	2583.83	511.06
Lometa	4748.50	464.30
LSD (5%)	1117.3	394
	Total Mean D.M. Yield(Kg	<u>/Ha)</u>
	From July and Heading Cl	ipping
APMC	7122.83	
Pen. Bahia	4879.00	
Rumsey	4334.50	
Lometa	7322.83	
LSD (5%)	1660.2	

TABLE 9 HIGH FERTILITY SITE YIELD DATA							
ATHENS, GEORGIA TEST (1991)							
<u>Cultivar</u>	Mean D.M. <u>Yield(Kg/Ha)</u> Taken in July						
APMC Pen. Bahia Rumsey Lometa LSD (5%)	8929.16 4157.50 5218.83 7374.16 2097.3						
	Mean D.M. <u>Yield(Kg/Ha)</u> Taken at Heading						
APMC Pen. Bahia Rumsey Lometa LSD (5%)	3206.66 2678.33 2328.50 3791.83 828.9						
	Total Mean D.M. <u>Yield(Kg/Ha)</u> from July and Heading Clipping						
APMC Pen. Bahia Rumsey Lometa LSD (5%)	12,135.83 6,836.33 7,547.33 11,166.00 2,652.7						
TABLE 10	HIGH FERTILITY SITE YIELD DATA ATHENS, GEORGIA TEST (1990-1991)	-					
<u>Cultivar</u>	Mean D.M. Tield (Kg/Ha) Taken in July						
APMC Pen. Bahia Rumsey Lometa LSD (5%)	6073.08 3189.08 3484,75 4974.25 2373.8						
	Mean D.M. Vield(Kg/Ha) Taken at Heading						
APMC Pen. Bahia Rumsey Lometa LSD (5%)	3556.25 2668.58 2456.16 4270.16 666.5						
	Total Mean D.M. Yield(K_g/Ha) from July and Heading Clipping						
APMC Pen. Bahia Rumsey Lometa LSD (5%)	9,629.33 5,857.66 5,940.91 9,244.41 1.499.4						

TABLE 11	AMERICUS PMC YIELD DATA TEST (1991)
<u>Cultivar</u>	Mean D.M. Yield(Kg/Ha) Taken in July
APMC Pen. Bahia Rumsey Lometa LSD (5%)	4233,33a 2040.00b 2936.66b 3476.66ab 1583.5
<u>Cultivar</u>	Mean DM Yield(Kg/Ha) Taken at Heading
APMC Pen. Bahia Rumsey Lometa LSD (5%)	1516.66 1683.33 1136.66 1320.00 411.9
<u>Cultivar</u>	Total Mean DM. Yield(Kg/Ha) from July & Heading Clipping
APMC Pen. Bahia Rumsey Lometa LSD (10%)	5750.00 a 3723.33 b 4073.33 ab 4796.66 ab 1435.5
TABLE 12	AMERICUS PMC YIELD DATA TEST (1992)
<u>Cultivar</u>	<u>Mean D.M. Yield(Kg/Ha) Taken in July</u>
APMC Pen. Bahia Rumsey Lometa LSD (5%)	926,67a 406,67b 916,67a 1236,67a 355
<u>Cultivar</u>	Mean D.M. Yield(Kg/Ha) Taken at Heading
APMC Pen. Bahia Rumsey Lometa LSD (5%)	690.00 593.33 425.00 663.33 N.S.
<u>Cultivar</u>	Total Mean D.M. Yield(Kg/Ha) from July & Heading Clipping
APMC Pen. Bahia Rumsey	1616,67ab 1 000.ooc 1341,67bc

.

TABLE 13 AMERICUS PMC YIELD DATA TEST (1993)

<u>Cultivar</u>	<u>Dry</u>	Matter	Produ	ction ((Kg/Ha	2	Mean	Date
APMC	960	820	480	400	560	620	640	
Pen. Bahia	440	520	100	180	220	320	297	7/14/93
Rumsey	1040	1080	280	340	620	600	660	
Lometa	800	1700	440	500	840	680	827	
APMC	620	760	620	660	340	360	560	
Pen. Bahia	440	840	420	460	480	460	517	9/15/93
Rumsey	640	460	280	280	220	440	387	(Heading)
Lometa	660	900	760	880	680	680	760	

PROJECT 13I128R - ASSEMBLY ANUJ EVALUATION OF BIG BLUESTEM ANDROPOGON GERARDII

INTRODUCTION

Big bluestem (<u>Andropogon gerardii</u>) is a perennial, warm season grass. It is cross-pollinated and has several ploidy levels X = 20, 40, 60. Big bluestem is photoperiod sensitive. It is widely distributed in the United States. It occurs in tall grass prairies of the midwest as well as in forested areas of the southeast. It has been utilized for forage and hay production.

MATERIALS AND METHODS

In 1989/1990 the Americus PMC assembled 750 vegetative ecotypes of southeastern big bluestem. These ecotypes were placed into an initial evaluation block. Each entry was planted to 10 foot rows with one foot between clones. All entries were separated by three foot middles. Each entry was replicated twice.

In 1990/1991 the evaluation process began. The following were the evaluation criteria: 1) vigor, 2) stem color, 3) inflorescence color, 4) foliage amount, 5) foliage height (cm), 6) foliage color, 7) forage potential, 8) disease/insect resistance, 9) boot date, bloom date, maturity date, percent germ, 10) seed amount, 11) uniformity, 12) leaves height on stem, 13) total height, 14) stem size, 15) tillering, 16) steminess, 17) basal foliage, 18) lodging, 19) late maturity.

In spring 1992, Dr. Edzard van Santen (Auburn University) began a cooperative big bluestem study with the Americus PMC. The following criteria were added to the existing evaluation process: percent stand, forage mass, greening up date, biomass at flowering (green weight and dry weight), surface area of plot, and morphological data.

In June 1993, four pairs of cow/calf units were allowed to graze the big bluestem evaluation area. Cattle were removed and Dr. van Santen evaluated the preference of cattle for specific ecotypes. After regrowth, cattle were again allowed to graze the vegetation down to 8" stubble residues. Dr. van Santen's data is being processed and will help determine which ecotypes will be selected for a crossing block in 1994. This block should produce germplasm for forage comparison testing against a standard big bluestem cultivar.

PROJECT 13I131R - ASSEMBLY AND EVALUATION OF SWITCHGRASS PANICUM VIRGATUM

INTRODUCTION

Switchgrass (<u>Panicum virgatum</u>) is a perennial, warm season grass. It is cross-pollinated and has several ploidy levels X = 18, 36, 54, 72, 90 and 108. Switchgrass is photoperiod sensitive. It is widely distributed in the United States. It occurs in tall grass prairies of the midwest as well as in forested areas of the southeast. It has been utilized for forage and hay production.

MATERIALS AND METHODS

In 1990-1992 the Americus PMC assembled 1098 vegetative ecotypes of southeastern switchgrass. These ecotypes were placed into an initial evaluation block. Each entry was planted to 13 foot rows with three plants per row. All entries were separated by three foot middles. Each entry was replicated twice.

IN 1993 the evaluation process began. The following are the evaluation criteria: 1) greenup date, 2) forage mass, 3) vigor, 4) stand, 5) leafiness, 6) disease/insect resistance, 7) foliage height, 8) stem size, 9) boot date, 10) leaf texture, 11) leaf size, 12) leaf/stem ratio (steminess), 13) bloom date, 14) foliage color, 15) maturity date and 16) seed amount.

Panicum virgatum - Switchgrass

State <u>Collected</u>	County	
Georgia	Baker	
	Brooks	
	Calhoun	
	Chattahoochee	
	Colquitt	
	Coweta	
	Crisp	
	Decatur	
	Early	
	Emanuel	
	Grady	
	Greene	
	Harris	
	Heard	
	Jasper	
	Jenkins	
	Lee	
	Lowndes	
	Marion	
	Meriwether	
	Miller	
	Mitchell	
	Monroe	
	Morgan	
	Muscogee	
	Putnam	
	Randolph	
	Seminole	
	Schley	
	Stewart	
	Sumter	
	Taylor	
	Telfair	
	Terrell	
	Thomas	
	Troup	
	Upson	
	Webster	
	Wilcox	

Panicum virgatum - Switchgrass

State			
COTTected	County		
Alabama	Autauga Bullock Chambers Cherokee Chilton Cleburne Dallis DeKalb Elmore Greene Hale Jackson Lawrence Lee Macon Morgan Perry Pickens Russell Sumter Tuscaloosa		
Arkansas	Lafayette Prairie Union		
Mississippi	Calhoun Yalobusha		
		Alamo	l - Standard
		Trailblazer	1 - Standard

Trailblazer	1 - Standard
Cave In Rock	l - Standard
Blackwell	1 - Standard
Pangburn	1 - Standard
Kanlow	1 - Standard

PROJECT - 13A132M - SCREWING OF CALEY PEA GERMPLASM FOR CONSERVATION TILLAGE

INTRODUCTION

Caley pea (Lathyrus hirsutus L.) is an introduced cool season legume from the Mediterranean region. In the Southeastern United States, caley pea has been utilized as a cattle forage as well as a cool season cover crop. Caley pea is mostly grown on wet clays of the lower Mississippi Delta area and on calcareous clays of the Alabama and Mississippi Black Belt. Currently there are no caley pea cultivars available and most commercial seed is a mixture of caley pea and hairy vetch.

The objective of this work was to make an evaluation of the variability within a selected group of caley pea entries for several agronomic traits with the purpose of developing a caley pea cultivar.

MATERIALS AND METHODS

In 1983, the Soil Conservation Service, Plant Materials Center, at Americus, Georgia planted caley pea seeds from 150 ecotypes collected from fields and roadsides in central and north Alabama and four foreign entries. This collection was grown in Americus, Georgia where they were screened for adaptation, growth, winter hardiness, reseeding ability and seed production.

In 1989, testing of 19 selected caley pea ecotypes was conducted in Georgia (Americus PMC) and Alabama (Winfield, Belle Mina, Marion Junction, Tallassee, and Monroeville). All entries were not evaluated in all locations because of limitations in the amount of available seed. The experimental design was a randomized complete block with four replications in each location. Fertilizers were applied according to soil test recommendations.

The plots were harvested individually when 75% of the plants were blooming. At that time, flowering date, canopy height measured at three places in the plot, and biomass fresh and dry yields were measured. Analyses of variance were performed to measure the response of the entries at each location. Maturity was measured as number of days to flowering date starting from April 1. (Refer to 1991 ATR)

In October 1991 similar testing of 23 caley pea ecotypes was begun at the Americus PMC in Georgia and the Tallassee, Winfield, Belle Mina, Marion Junction and Monroeville Experiment Stations in Alabama. The Americus work was conducted by the Soil Conservation Service, the Alabama sites and analysis was conducted by Dr. Jorge Mosjidis (Auburn University). (Refer to 1992 ATR)

In October 1992 ecotypes 9054235, 9048915 and 9039828 were dropped from the test. These ecotypes were replaced by the following combinations: (C1) 9052102 & 9052088, (C2) 9052101 & 9053012, (C3) 9052101, 9053012, 9054221 (lines with highest mean yield at six locations), 9052102 and 9052088 (among 20% top lines at three locations).

RESULTS AND DISCUSSION

Table one indicates that the mean yield of caley pea lines for 1992/1993 at six locations (Tallassee, Americus, Winfield, Belle Mina, Marion Junction, and Monroeville) contains no significant difference between lines tested. Tables two - six show no real difference exists between the canopy height, bloom date and crude protein data. Also all lines appear to be susceptible to various nematode infestations. (Table 7)

After data analysis it was decided to attempt a cooperative release between Auburn University and Soil Conservation Service. A caley pea composite of 9052101, 9053012, 9054221, 9052102 and 9052088 will be the germplasm for release. An increase field of this material was planted in October 1993 at the Americus PMC.

Accession	1992	1993
	g m ⁻²	
c3	*	329.9
48912	292.3	313.5
c2		328.2
52084	283.2	306.5
52085	305.6	327.6
52086	315.1	371.1
52088	313.2	364.5
52097	301.5	336.9
52099	295.2	369.7
52101		333.8
52102	326.4	351.8
52658	294.9	330.9
52660	302.4	428.4
52969	306.0	334.9
52970	320.2	314.7
53011	317.2	321.0
53012	353.4	336.8
54213	311.8	343.6
54214	295.2	358.9
54223	299.9	338.7
54221	332.7	381.6
C1		326.4
54241	294.5	330.7
Hairy V.	419.7	317.7
54235	279 - 4	*
48915	270.7	
39828	261.1	
₩SD	ns	ns
Not teste	ed	

Table ¹ Mean yield of caley pea accessions and hairy vetch at six locations in **1992** and **1993**.

Accession	Tallassee	Americus	Winfield	Belle Mina	Marion Junction	Monroeville	Mean
				cm -			
53012	72.8	68.4	73.7	74.9	73.4	73.7	63.0
52085	60.1	73.2	67.3	69.9	73.5	76.2	70.0
53011	66.5	77.5	62.2	69.2	69.4	74.9	70.0
Hairy v.	64.6	73.0	70.3	87.6	63.5	57.2	69.3
52969	66.3	72.8	60.3	71.1	66.3	73.7	68.4
52088	57.4	69.4	70.5	72.4	73.4	67.3	68.4
52101	63.3	63.3	67.8	73.7	64.3	71.1	66.7
54235	64.1	66.7	65.4	67.3	69.7	66.0	66.4
52102	55.5	70.5	61.0	69.4	70.9	69.8	66.3
52086	57.2	62.4	65.4	74.9	64.3	73.0	66.2
54221	63.5	72.2	55.9	68.6	65.4	71.1	66.1
52097	55.6	68.4	57.2	73.0	67.5	69.2	65.6
54213	55.5	65.8	59.7	73.7	69.0	68.6	73.3
54214	58.8	64.6	61.0	67.3	68.6	70.5	65.1
52084	47.6	65.2	66.0	78.1	67.7	66.0	65.1
52970	61.0	65.8	54.0	68.6	66.9	71.1	64.6
52099	51.2	56.3	67.3	72.4	65.6	74.3	64.5
54241	58.2	66.9	56.5	71.1	66.7	66.0	64.2
39828	48.5	66.5	64.8	62.2	67.3	71.1	63.4
52658	59.5	68.2	51.4	68.6	66.5	66.0	63.4
54223	46.4	68.4	62.2	64.8	67.9	68.6	63.0
48912	50.8	61.2	66.7	68.6	66.0	64.8	63.0
52660	60.3	68.2	57.2	71.1	60.1	52.1	61.5
48915	55.6	56.9	51.4	63.5	53.8	67.3	54.8
NSD (.05)	11.8	ns	10.2	9.4	11.8	12.6	

Table 2-Canopy height of caley pea accessions and hairy vetch at six locations in 1992.

Accession	'Tallassee	Americus	Winfield	Belle Mína	Marion Junction	Honroeville	Mean
				Cm		10 600 605 gy ⁰⁰ 600 606 666 gyp gap g ⁰⁰ 607 606 600 600 600 60	
C3	87.2	63.9	93.3	86.4	38.5	76.2	74.3
48912	87.8	52.3	73.7	73.7	29.8	82.6	66.6
C2	99.1	63.7	88.3	83.8	$\frac{1}{33}$ 4	82.6	75.1
52084	92.7	64.3	88.9	80.6	33.9	82.6	73.8
52085	91.7	68.8	87.0	84.5	40.0	74.9	74.5
52086	85.1	49.5	85.1	78.1	38.7	85.1	70.3
52088	89.7	51.0	85.7	92.1	35.6	73.7	72.9
52097	72.2	62.2	85.1	87.0	37.7	80.0	70.7
52099	86.4	63.1	85.1	73.7	35.1	69.9	68.9
52101	80.9	63.7	88.3	84.5	35.8	71.1	70.7
52102	93.8	41.9	91.4	84.5	36.0	80.0	71.3
52658	90.6	53.3	90.2	87.0	44.2	82.6	74.6
52660	83.4	53.3	72.4	79.4	42.8	76.2	67.9
52969	81.3	62.9	80.0	81.9	40.0	72.4	69.7
52970	92.3	47.0	76.8	75.6	37.3	78.7	67.9
53011	96.7	57.8	83.2	81.3	38.7	80.0	73.0
53012	112.4	60.3	87.0	85.7	34.7	82.6	77.1
54213	87.4	67.3	76.8	84.5	34.5	72.4	70.5
54214	99.1	58.2	81.9	91.4	39.6	92.7	77.2
54223	82.6	63.5	83.8	85.7	37.0	73.7	71.0
54221	84.9	57.2	77.5	83.2	45.5	73.0	70.2
C1	88.7	50.8	80.6	80.0	36.4	76.2	68.8
54241	78.7	56.9	85.1	79.4	33.0	80.0	68.9
Hairy V.	61.4	56.3	50.2	68.6	46.1	61.0	57.3
MSD (.05)	12.0	20.6	15.6	15 5	76	117	

.

Table 3- Canopy height of caley pea accessions and hairy vetch at six locations in 1993.

Accession	Tallassee	Americus	Winfield	Belle	Marion	Monroeville	Mean
				Mina	Junction		
				d			
52660	35.0	37.0	44.0	41.3	37.0	28.3	37.1
53011	33.5	35.5	44.0	38.5	36.8	27.5	36.0
52658	33.3	37.0	44.0	41.0	30.0	28.0	35.5
48915	35.0	32.8	44.0	35.0	31.3	27.3	34.2
52970	27.0	34.8	44.0	38.8	32.8	25.0	33.7
Hairy v.	31.5	37.0	31.0	35.5	37.0	27.0	33.3
52969	29.8	33.5	39.0	38.3	32.0	26.0	33.1
52085	31.5	35.3	36.5	35.5	28.5	27.0	32.4
52102	26.8	32.3	44.0	35.0	31.0	24.8	32.3
54221	26.8	32.3	41.5	38.3	30.8	23.5	32.2
54241	26.0	34.0	41.5	34.5	29.0	22.8	31.3
54235	26.0	33.5	34.0	36.5	31.3	24.8	31.0
52099	29.8	30.3	39.0	35.5	26.5	24.8	31.0
52086	25.0	30.5	39.0	34.5	31.0	23.3	30.5
52101	25.0	31.8	34.0	35.5	29.0	26.5	30.3
54214	26.0	32.3	39.0	35.0	27.3	21.5	30.2
52088	24.3	32.3	39.0	34.8	27.8	21.3	29.8
54213	27.0	27.3	39.0	35.0	27.8	21.8	29.6
53012	23.0	31.5	36.5	34.5	24.0	24.3	29.0
54223	22.0	31.0	35.8	34.5	25.5	21.5	28.4
52084	23.0	27.3	33.0	34.5	29.0	21.3	27.8
52097	16.7	29.0	34.0	35.5	27.3	21.0	27.7
48912	20.0	27.0	31.8	34.0	25.3	17.3	25.9
39828	22.0	24.5	32.5	34.0	26.8	14.8	25.8
MSD (.05)	ns	ns	2.0	1.9	2.9	2.7	

Table 4-Number of days to 75% bloom (counted from April 1) of caley pea accessions and hairy vetch at six locations in 1992.

Table	5-	Number	of	days	to	75%	bloom	(counted	from	April	1)	of	caley	pea
access	sion	ns and	hairy	vetc	h at	: siz	k locat	ions in 1	993.					
			-											**

Accession	Tallassee	Americus	Winfield	Belle	Marion	Monroeville	rican
				Mina	Junction		
				d			
c3	41.5	35.0	47.5	47.0	35.5	28.5	39.2
48912	41.5	34.8	40.8	47.0	28.5	26.0	36.4
c2	41.0	34.0	52.3	47.0	34.5	29.5	39.7
52084	41.0	34.5	47.5	47.0	30.8	26.8	37.9
52085	41.0	35.3	46.8	47.0	36.0	29.5	39.3
52086	41.0	34.0	46.8	47.0	41.0	28.3	39.7
52088	41.5	34.0	46.3	47.0	34.3	31.0	39.2
52097	41.5	34.5	46.8	47.0	42.5	30.8	40.5
52099	41.0	34.8	47.5	47.0	31.3	29.0	38.4
52101	41.0	35.0	49.5	47.0	32.0	31.0	39.3
52102	41.0	35.0	55.0	47.0	42.5	32.0	42.4
52658	42.0	34.8	44.0	49.3	41.0	35.0	41.0
52660	41.0	33.5	52.3	47.0	41.0	33.5	41.4
52969	41.5	33.5	47.5	47.0	37.0	32.5	39.8
52970	41.5	34.8	46.8	48.5	42.0	31.5	40.8
53011	41.5	35.5	44.8	47.0	40.5	33.5	40.5
53012	41.0	34.8	49.5	47.0	35.5	29.5	39.5
54213	41.0	35.3	49.3	47.0	42.5	27.8	40.5
54214	41.5	35.3	49.5	47.0	31.8	29.5	39.1
54223	41.0	33.0	46.5	47.0	42.0	28.5	39.7
54221	41.0	35.0	47.5	47.0	41.5	31.5	40.6
C1	41.0	35.5	44.0	47.0	31.5	31.0	38.3
54241	41.5	35.3	52.3	47.0	36.5	29.3	40.3
Hairy V.	41.0	38.5	36.0	47.0	40.0	28.0	38.4
MSD 1.05)	ns	1.2	ns	0.7	1.3	2.0	

·

Accession	Content	Production
	26	g m ⁻²
52101	21.6	29.7
Hairy v.	25.1	60.9
53012	21.2	86.4
54221	21.1	30.9
52102	20.4	26.9
52970	20.3	27.4
53011	19.4	26.5
52086	21.1	28.5
52088	19.9	31.0
54213	22.0	34.4
52969	20.3	28.0
52085	20.0	28.3
52660	19.8	36.5
52097	20.0	25.8
54223	22.4	24.1
52099	20.0	21.9
54214	21.6	29.6
52658	20.4	25.7
54241	21.8	33.6
48912	21.0	26.1
52084	21.4	23.3
54235	22.4	33.3
48915	18.9	20.1
39828	21.6	23.5
MSD (.05)	2.6	ns

.

Table 6-Crude protein content and production at Tallassee, Alabama, in 1992.

	Overall plant growth				<u>H. glycines</u>		
Entry	Shoot weight (g)	Root weight (g)	Root condition ^x (1-5)	Gall rating ^y (0-10)	Galls per gram of root	Juveniles per gram of root	cysts per gram of root
Davis soybean	,60²	.85 ^z	3.6'	4.3	65	3 599	59
Commercial hairy vetch	.11 ^z	.15 ^z	4.8'	6.6	298	4 472	0
Caley pea							
Т 39828	.18	.21	4.0	5.4	203	203	0
Т 48912	.20	.18	4.4	5.9	148	73	0
T 48915	.18	.13	3.8	3.4	123	196	0
т 52084	.15	.16	4.4	6.0	186	67	0
T 52085	.15	.12	4.6	7.3	131	69	0
Т 52086	.12	.07	4.9	8.1	191	102	0
T 52088	.13	.09	4.9	7.8	145	565	0
Т 52097	.17	.12	4.0	5.5	109	101	0
Т 52099	.10	.54	4.8	6.8	236	559	0
T 52101	.11	.07	4.8	7.3	178	124	0
T 52102	.13	.12	4.3	6.7	151	264	0
T 52658	.11	.09	4.2	6.7	182	132	0
T 52660	.16	.13	4.8	7.2	161	1 220	0
т 52969	.15	. 11	4.3	5.7	137	265	0
т 52970	.15	.14	4.3	6.5	122	217	0
T 53011	.16	.14	4.5	7.3	162	291	0
Т 53012	.15	. 11	4.5	6.6	120	312	0
Т 54213	.12	.09	4.4	6.5	119	288	0
T 54214	.19	.13	4.1	4.7	88	113	0
T 54221	.15	.11	4.6	6.7	167	243	0
т 54223	.26	.09	4.5	6.3	141	70	0
Т 54235	.18	.10	4.6	5.0	113	118	0
T 54241	.15	.07	4.0	3.6	98	369	0
LSD (0.05)	.06	.05	0.6	1.6	70	728	

Table 7-Parametere of resistence to <u>Meloidogyne arenaria</u> race 2 and <u>peterodera alvcines</u> race 4 measured for 21 caley pea entries and 'Davis' soybean (experimental control) in an 8-week greenhouse experiment.

Root condition scale: 1 = best, 5 = worst.
 ^y Gall rate scale: 0 = no galls, 10 = maximum galling.
 ^z Data not included in the analysis.

PROJECT 13A137M - DEVELOPMENT AND COMPARATIVE TESTING OF EARLY BLOOMING HAIRY VEICH CULTIVAR FOR CONSERVATION TILLAGE

INTRODUCTION

Hairy vetch (<u>Vicia villosa</u> Roth.) is a cool season annual legume. It naturalized to the United States from Europe and Asia. It has been utilized as a cover crop for generations. An early blooming hairy vetch could provide for flexibility in future conservation tillage systems.

MATERIALS AND METHODS

In 1983 the Americus PMC began to collect and evaluate cool season legumes. One goal was to select and develop a new early blooming hairy vetch. In 1987, an early blooming hairy vetch, accession 9053961 was observed growing in the Americus PMC initial evaluation block. Seed from this accession was entered into a replicated breeding evaluation block. In 1990, seed from line 8, line 12 and line 26 was selected and harvested for further testing.

The first test measured the dry matter and canopy height of the three hairy vetch lines plus a commercial hairy vetch and PI-383803. The test was planted to a RCB design with four replications at Americus PMC and five Alabama sites (Dr. Mosjidis, Auburn University). Each plot in the test was clipped during the first week in April.

The second test measured the reseeding ability of lines 8,12 and 25 and commercial hairy vetch and PI-383803. These plots were sprayed with herbicide and disced, then measurements of ground cover, forage yield, bloom date and foliage height will be taken. These measurements will give a quantitative reading for reseeding ability. This test was planted in a RCB design with four replications at Americus PMC and five Alabama sites (Dr. Mosjidis, Auburn University).

The third test measured the dry matter, canopy height and blooming time of the three hairy vetch lines plus a commercial hairy vetch and PI-383803. The test was similar to the first test except clipping time was at 75% bloom of each plot. This test was established at Americus PMC and Tallassee Alabama (Dr. Elosjidis, Auburn University).

In October 1992 a new test was added to the project at Tallassee and Americus. This test measured canopy height and biomass yields harvested in mid-February. Also synthetic 3, composed of lines 8, 12 and 26 was added to the test.

RESULTS AND DISCUSSION

Tables 1-3 indicate that Synthetic 3 and the lines that constitute Synthetic 3 produce comparable or superior amounts of forage yield around April when compared to commercial hairy vetch.

No reseeding ability was observed in the projects second test.

Commercial hairy vetch and the lines that constitute Synthetic 3 produce similar amounts of crude protein (Table 4).

Table 5 shows that Synthetic 3 and its constituents produce significantly more biomass yield than commercial hairy vetch during February 15 harvest.

Due to its later maturing characteristics, commercial hairy vetch produces more forage yield at flowering than the early maturing entries (Tables 6 & 7).

Tables 8 & 9 show Synthetic 3 and its constituents bloom significantly earlier than commercial hairy vetch.

The lines that formed Synthetic 3 contain no particular resistance to nematodes beyond those commonly found in the species (Table 10).

Auburn University Alabama Agricultural Experiment Stations and USDA-SCS plan to joint release Synthetic 3 for conservation tillage. This release will provide farmers with the flexibility of early blooming and early developing hairy vetch cover crops. An increase field of this material was planted in October 1993 at the Americus PMC. Experiments harvested from the end of March to middle April in 1992 and 1993.

Accession	Tallassee	Americus	Winfield	Belle Mina	Marion Junction	Monroeville	Mean
				q m ⁻²	ang Ang ang Ang ang Ang ang Ang ang		
LINE 26	98.3	148.1	61.5	178.5	141.1	379.1	172.4
LINE 12	75.5	139.7	73.4	187.1	154.1	336.3	161.1
LINE 8	97.7	144.9	60.6	158.6	154.5	316.3	155.5
COMMERCIAL	85.4	122.0	48.3	287.9	90.2	220.0	142.3
MSD (.05)	ns	ns	12.9	57.9	30.6	ns	

Table. | Forage yield of hairy vetch accessions at six locations in 1992.

Table. 2. Estimated forage yield (average of 3 lines) of Synthetic 3 and actual yield of commercial type at six locations in 1992.

Accession	Tallassee	Americus	Winfield	Belle Mina	Marion Junction	Monroeville	Mean
Synthetic COMMERCIAL	90.5 85.4	144.2 122.0	65.2 48.3	g m ⁻² 174.7 287.9	149.9 90.2	343.9 220.0	163.0 142.3

Table, 3 Forage yield of hairy vetch Synthetic 3 and commercial type at six locations in 1993.

Accession	Tallassee	Americus	Winfield*	Belle	Marion	Monroeville	Mean
				Mina	Junction		
	tana agia ama ana ama ana ama ama a			$g m^{-2}$			
Synthetic :	3 101.9	125.2	-	303.0	138.2	233.4	180.4
COMMERCIAL	67.7	80.8		297.1	93.4	306.8	161.9
Probability	y 0.052	0.18		0.49	0.018	0.21	
MSD (.05)	ns	ns		ns	42.8	ns	
Î Plants we	ere kill by	frost, ex	cept commer	cial th	at was dam	aged.	

Table.⁴ Mean crude protein content and production of hairy vetch accessions at Tallassee and Americus in **1992.** Plants were harvested around April 1.

Accession	Content	Production
LINE 26 LINE 12 LINE 8 COMMERCIAL	% 27.7 26.6 26.7 28.7	g m ⁻² 33.5 29.0 32.1 29.6
MSD (,05)	ns	ns

Experiments Harvested on February 15, 1993

Table. 5 Canopy height and biomass yield of vetches grown at Tallassee and Americus in **1993.**

	Tal	lassee	Amer	Americus		
Accession	Canopy <u>Height</u>	Yield	Canopy Height	y Yield		
	Cm	$g m^{-2}$	CM	$q m^{-2}$		
Synthetic 3	27	23.1	33.7	17.2		
LINE 26	27	24.2	36.0	19.8		
LINE 12	32	31.1	31.1	17.4		
LINE 8	32	24.0	30.5	14.9		
COMMERCIAL	14	1.3	10.0	5.4		
MSD (.05)	7.6	9.2	4.1	6.2		

Table. 6 Mean canopy height and forage yield of vetch lines grown at Tallassee and Americus in 1992.

Accession	canopy Height	Yield
LINE 26 LINE 12 LINE 8	cm 49 48 58	g m ⁻² 294.4 258.9 346.1
MSD (.05)	71 ns	515.4 103.7

Table.7 Mean canopy height and forage yield of vetch accessions grown at Tallassee and Americus in 1993.

Accession	Canopy	Yield			
	Height	Tallassee	Americus		
	Cm	g m	-2		
Synthetic 3	101	174.0	295.5		
LINE 26	122	235.3	263.0		
LINE 12	109	275.0	321.5		
LINE 8	126	242.1	336.1		
COMMERCIAL	148	659.5	^		
MSD (.05)	ns	182.7	ns		
Î Plots were	lost				

TABLE. 8 Number of days (counted from March 1) of vetch accessions to 75% bloom at Tallassee and Americus in 1992.

Accession	Tallassee	Americus	Mean
LINE 26	49.3	32.5	40.9
LINE 12	48.7	31.5	38.9
LINE 8	41.2	32.8	37.4
COMMERCIAL	69.5	68.8	69.1
<u>MSD (.05)</u>	5.9	10.8	

TABLE. 9 Number of days (counted from March 1) of vetch accessions to 75% bloom at Tallassee and Americus in 1993.

Accession	Tallassee	Americus	Mean
Synthetic 3 LINE 26 LINE 12 LINE 8 COMMERCIAL	42.3 45.0 46.7 44.8 74.0	32.5 32.0 32.3 32 _x 3	36.7 37.6 38.4 38.5 74.0
<u>MSD f.05)</u> Plots were	<u>11.0</u> lost	ns	

Tabl	e.10 Par	ameters	of resis	tance	to Weloid	losvne ar	enaria :	race 2	and	Heteroder	a q	lycir	nes race	4 measured
for	hairy	vetch	entries,	and	'Davis'	soybean	(expe	rimenta	al d	control)	in	an	8-week	greenhouse
expe	riment.													

	Overall plant growth			<u>M</u> .	H. alycines		
Entry	Shoot weight (g)	Root weight (g)	Root condition ^x (1-5)	Gall rating ^y (0-10)	Galls per gram of root	Juveniles per gram of root	cysts per gram of root
Davis soybean Hairy vetch	.91 ^z	.70²	4.0'	3.7	36	374	62
Commercial hairy vetch	.12	.17	4.5	7.7	207	665	0
Line 26	.23	.21	4.4	6.4	133	624	0
Line 12	.17	.19	4.8	8.0	170	7 3 7	0
Line 8 Common vetch	- 17	.16	4.5	6.9	196	922	0
Cahaba White	.31	.22	2.7	0.0	0	0	0
Vantage	.39	.22	2.9	0.0	0	31	0
Vanguard	.28	.13	3.5	0.0	0	0	0
Nova II	.34	.10	3.6	0.0	0	0	0
Warrior	.38	.11	3.9	0.0	0	0	0
LSD (0.05)	.10	.07	0.5	0.8	31	600	

^x Root condition scale: $1 \neq \text{best}$, 5 = worst. ^y Gall rate scale: 0 = no galls, 10 = maximum galling. ^z Data not included in the analysis.

PROJECT 13A142R - HAY AND GRAZING MANAGEMENT OF EASTERN GAMMAGRASS

INTRODUCTION

. .

Eastern gammagrass (<u>Tripsacum dactyloides</u>) is a native perennial warm season bunch-grass. It is widely distributed in the United States:. It occurs in most states east of the Mississippi River. It can be utilized for forage and hay production. It is a monoecious grass with morphology similar to maize. The diploid plants reproduce sexually. However, the tetraploids are faculative apomicts and the hexaploid. plants are obligate apomicts. The mechanism for apomixis is displospory followed by pseudogamy. A gynomonoecious sex form with the potential of increased seed production has been identified. Gammagrass root.stalk is a proliteration of tillers.

This project attempts to define management criteria for the production of Eastern gammagrass forage.

MATERIALS AND METHODS

In April 1993, cold stratified 'Pete' Eastern gammagrass seed was planted to five acres on the southern end of the Americus PMC. A two row corn planter set on 36" rows was used to plant approximately four seed per linear foot of row. Seed was planted $1\frac{1}{2}$ inches deep. Six-hundred pounds of 0-14-14 fertilizer was applied at planting and 75 pounds of N per acre was applied in June. Weeds were primarily controlled by cultivation.

The center suffered a severe drought in summer 1993, however the field produced an excellent stand of Eastern gammagrass.

In 1994 the area will be fenced to allow rotational grazing (as per Ft. Worth NIC range conservationist recommendations).

NAME

4 4 ⁴

'Doncorae' brunswickgrass Paspalum nicorae

'Sumter Orange' daylily Hemerocallis fulva

'Wetlander' giant cutgrass Zizaniopsis miliacea

'Restorer' giant bulrush Scirpus californicus

'Americus' hairy vetch Vicia villosa

USE

Grassed waterways and filter strips

Beautification

Constructed wetlands

Constructed wetlands

Conservation tillage

SEED AND PLANT PRODUCTION IN 1993

SEED

NAME	POUNDS
'Amquail' bush lespedeza	200 if
PI-514673 indiangrass	100 *
'Doncorae' brunswickgrass	30
'Dove' proso millet	1804
PI-436971 virginia wildrye	37
'Americus' hairy vetch	335
Caley peas (5 lines)	72
Hairy vetch line 8 line 12 line 26	281 245 339

* Estimate

PLANTS

NAME	EACH
Ogeche lime	300
'Flageo' marshhay cordgrass	100,000
Vetivera grass	20,000
Giant reed	10,000
'Big O' crabapple	850
'Sumter Orange' daylily	2,500

LIST OF PUBLICATIONS IN 1993 - AMERICUS PLANT MATERIALS CENTER

1992 Annual Technical Report - APMC Staff

"Yield and Persistence of Tall Fescue in the Southeastern Coastal Plain after Removal of its Endophyte". Agronomy Journal 85: 52-55' (1993). J.H. Bouton, R.N. Gates, D.P. Belesky and M. Owsley.

"Reaction of Three Cool-Season Annual Legume Species to Meloidogyne Arenaría and Heterodera Glycines". Nematropica Vol. 23, No. 1, 1993. J.A. Mosjidis, Rodrigo Rodriquez-Kabana and Charles M. Owsley.

"Release of 'Big O' Wild Crabapple". American Nurseryman, Dec 15, 1992. Mike Owsley.