
Discovery of Principles of Nature
From Mathematical Modeling of

DNA Microarray Data

Orly Alter

Department of Biomedical Engineering,
Institute for Cellular and Molecular Biology and

Institute for Computational Engineering and Sciences

University of Texas at Austin





Astronomy Molecular Biology

Technology Galileo

   

Large-Scale
Data Brahe

Mathematical
Modeling Kepler

Basic
Principles Newton  

Technology NASA Control of Cellular Mechanisms



DNA Microarrays Record Genomic Signals

DNA microarrays rely
on hybridization t o
record the complete
genomic signals that
guide the progression of
cellular processes, such
as abundance levels of
DNA, RNA and  DNA-
bound proteins on a
genomic scale.



DNA                  RNA                Protein

Genomic Signal Processing
The data are in large quantities.
Artifacts are superimposed on the data.
Different types of genome-scale data need
to be understood simultaneously.
Existing genetic models applied to
genome-wide data appear inconsistent.

?
Analogy From Machine Vision

Large-scale biological signals are complex, easily
understood by the biological system, simple laws may
govern the complex signal.



Data-Driven Models for Genomic Data
Alter, PNAS 103, 16063 (2006);

Alter, to be published in Microarray Data Analysis: Methods and Applications (Humana Press).
Mathematical frameworks for the description of the data, in which the
mathematical variables and operations might represent biological reality.
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Predicting a Biological Principle:

Previously Unknown Correlation Between DNA
Replication Initiation and RNA Transcription

Might Be Due to an Undiscovered
Mechanism of Regulation



Singular Value Decomposition (SVD)
Alter, Brown & Botstein, PNAS 97, 10101 (2000);

http://www.bme.utexas.edu/research/orly/SVD/PNAS_2000/.
Linear transformation of gene expression data from genes ¥ arrays space
to reduced diagonalized “eigengenes” ¥ “eigenarrays” space.

Yeast Cell Cycle
Spellman et al., MBC 9, 3273 (1998).



Math Variables Æ Biology 
Significant eigengenes Æ independent biological
processes and experimental artifacts:

90% of expression is steady state,
2.5% is day-of-hybridization artifact,

less than 7.5% is periodic Æ

Weak Signal Detection

Yeast Cell Cycle: Cdc15 Spellman et al., MBC 9, 3273 (1998).



Math Variables Æ Biology 
Significant eigengenes and eigenarrays Æ genome-
wide effects of regulators, and samples in which these
regulators are overactive, respectively:

Cln3, Clb2 genome–wide effects  =  ≤ first eigengene
Cln3, Clb2 overactive samples  =  ≤ first eigenarray

Alberts et al., Molecular Biology of the Cell (1994).



Traveling Wave of Expression
Cln3, Clb2 overactive samples  =  ± first eigenarray

Consistent model for the expression of almost the full
yeast genome during cell cycle, in a subspace spanned
by only two eigengenes and corresponding
eigenarrays.
Æ Are there only two cellular elements or modules

that drive the yeast cell cycle?
Æ Can we design a synthetic genetic network

analogous to the analog harmonic oscillator,
which would simulate the yeast cell cycle?



GSVD for Comparative Analysis
Alter, Brown & Botstein, PNAS 100, 3351 (2003);
http://www.bme.utexas.edu/research/orly/GSVD/.

Linear transformation of two datasets from two genes
¥  ar rays  spaces  to two r e d u c e d diagonalized
“genelets” ¥ “arraylets” spaces.

Yeast Cell Cycle Spellman et al. MBC 9 3273 (1998).

Human Cell Cycle Whitfield et al., MBC 13, 1977 (2002).



Math Variables Æ Biology
Genelets of almost equal significance in both datasets
Æ processes common to both genomes:

Common Cell Cycle Subspace

Genelets of almost no significance in one dataset
relative to the other Æ genome exclusive processes:

Exclusive Synchronization
Responses Subspaces

¨ Saccharomyces cerevisiae Human Æ



Simultaneous Classification in
Common Cell Cycle Subspace

Saccharomyces
cerevisiae

Human

Æ Are there only three cellular elements or modules
that drive both the yeast and human cell cycles?

Æ Can we design a synthetic genetic network
analogous to the digital 3-inverter ring oscillator
to simulate both yeast and human cell cycles?



Math Operations Æ Biology 
Data reconstruction in two subspaces Æ experimental
observation of differential expression of a genome in the
two cellular programs these subspaces represent:

Differential Expression in Yeast
During Mating and Cell Cycle

Pheromone Synchronization Response Subspace:
KAR4 is required for CIK1 induction during mating*

Common Cell Cycle Subspace: Mitotic expression of
CIK1 during S/G2 is independent of KAR4*

*Kurihara, Stewart, Gammie & Rose, MCB 16, 3990 (1996).



Modeling the Yeast Cell Cycle

Math Variables Æ Biology

Eigengenes and genelets
correlate with observed
genome-wide effects of
cell cycle regulators;
Eigenarrays and arraylets
correlate with measured
samples of the regulated
cell cycle stages.

Math Operations Æ Biology

Classification maps the
data onto cell cycle stages

 

Alberts et al., Molecular Biology
of the Cell (1994).



Pseudoinverse Integrative Modeling
Alter & Golub, PNAS 101, 16577 (2004);  Alter et al., Proc. MNBWS 15 (2004);

http://www.bme.utexas.edu/research/orly/pseudoinverse/.
Unique linear transformation of the genome-scale data from ORFs ¥
data arrays space to reduced basis arrays ¥ data arrays space.

Proteins’ DNA-Binding Data RNA Expression Bases
Transcription Factors

Replication Initiation Proteins
Simon et al., Cell 106, 697 (2001);
Wyrick et al., Science 294, 2397 (2001).



Math Operations Æ Biology
Classification maps reconstructed data states onto those of the basis Æ
global picture of the causal coordination of these two sets of states.

Novel Correlation: DNA ´ RNA



The genome-scale binding profiles of Mcm3, Mcm4,
Mcm7 and Orc1 are correlated with transcription
minima during the cell cycle stage G1.
Æ Replication initiation requires binding of these

proteins at origins of replications across the yeast
genome during G1.
Diffley, Cocker, Dowell, & Rowley, Cell 78, 303 (1994).

Æ They are involved with transcriptional silencing at
the yeast mating loci.
Micklem et al., Nature 366, 87 (1993).

Either one of two previously unknown mechanisms of
regulation may be underlying this correlation:
Æ Replication may regulate transcription:

The binding of ORC and MCM proteins, which is
known to be required for initiation of replication
at origins across the yeast genome, represses, and
possibly inhibits the transcription of genes that are
located near the origins.

Æ Transcription may regulate replication:
The transcription of genes at G1 reduces the
efficiency of origins that are located near the
transcribed genes.

This is the first time that a data-driven mathematical
model has been used to predict a biological principle
that is truly on a genome scale.



Predicting a Physical Principle:

Previously Unknown Asymmetry in
mRNA Abundance Levels Profiles

of Genes Across Gel Slices
Might Be Due to a Previously Unknown

Asymmetry in the Thermal Broadening of a
Moving Band of mRNA Molecules



SVD Modeling Reveals Asymmetric Band
Broadening in RNA Gel Electrophoresis

Alter & Golub, PNAS 103, 11828 (2006);
http://www.bme.utexas.edu/research/orly/harmonic_oscillator.

Hurowitz & Brown, Genome Biology 5, R2 (2003).
Fractions of Eigenabundance Fit a Geometric Series



Eigengenes fit
“Asymmetric”
Hermite
Functions



“Asymmetric” Generalized
Coherent State Model of Genome-
Scale mRNA Lengths Distribution

Distribution of the Peaks of the Genes’ Profiles
Fits an Asymmetric Gaussian



Profiles of mRNA Abundance Levels of Most
Genes Fit Asymmetric Gaussians



Genome-Scale mRNA Lengths Distribution
Fits an Approximated Asymmetric

Generalized Coherent State



Genome-Scale
mRNA
Lengths
Distribution
Fits an
Approximated
Asymmetric
Generalized
Coherent State



Why Does the Distribution of the Peaks of the
Genes’ Profiles Fit an Asymmetric Gaussian?

Hypothesis:
Two competing evolutionary
forces determine the distribution
of mRNA gene transcripts.
These forces are linearly
proportional to and oppositely
directed to the displacement from
the equilibrium gel migration
length, in the manner of the
restoring force of the harmonic
oscillator.



Why Do the Profiles of Most Genes Fit
Asymmetric Gaussians?

Prediction:
In the thermal broadening of a
moving band of RNA molecules
the peak of the band is moving
toward the front of the band and
away from its back.
Previous simulations and
measurements of DNA band
broadening in gel electrophoresis
have shown that the broadening
of a moving band can be different
from that of a stationary band,
but have not suggested
asymmetry.



Medical Applications of DNA Microarray Data:
Diagnosis, Treatment and Drug Development

SVD normalization and classification of tumor data uncover a novel
subtype of leiomyosarcomas that express a group of muscle genes.

Nielsen, West, Linn, Alter et al., Lancet 359, 1301 (2002).



Future Algorithms:
Large-Scale Molecular Biological Data are of

Higher Orders
Higher-Order Algorithms Are Needed for

Comparative and Integrative Data Modeling



Networks are Tensors of “Subnetworks”

Æ =

+ +...

The relations among the activities of genes, not only the activities of the
genes alone, are known to be pathway-dependent, i.e., conditioned by
the biological and experimental settings in which they are observed.



Tensor Models for Networks of Correlations
Computed from Genomic Data

Alter & Golub, PNAS 102, 17559 (2005);
http://www.bme.utexas.edu/research/orly/network_decomposition/.
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Future Data Management Tools:

?



In the future, cellular processes could be
controlled in real time and in vivo.

Cancer and disease could be stopped or reversed.
Damaged tissues could be engineered to regenerate.

Aging could be slowed or even halted altogether.



Today, NASA can control the trajectories of its spacecraft…

… because their motion is understood and can be predicted.
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