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      We knew or thought we knew...
	 The universe is decelerating.
	 Standard candles could measure deceleration.
	 Supernovae could in principle be standard candles at great distances.
	 With HST, SNe could  be studied
	 	 at cosmologically relevant distances —if we knew where to look.

What we didn't know...

What we found... 
	

Now what we don't know is...
	

But we know how to find out...

A decade leading to an accelerating universe:
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001



      We knew or thought we knew:
	 The universe is decelerating
	 Standard candles could measure deceleration
	 Supernovae could in principle be standard candles at great distances;
	 With HST,  supernovae could  be studied
	      at cosmologically relevant distances — if we knew where to look.

What we didn't know:

What we found 
	

Now what we don't know is	

But we know how to find out

	 The mass density of the universe 
	 	 = how much is the universe decelerating
	 The current rate of expansion: the age of universe.
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We knew or thought we knew...

What we didn’t know:

	 about supernovae studies
	 that SNe could be found systematically

	 	 at cosmologically relevant distances (z > 0.3)
	 that SNe could be identified spectroscopically  at z > 0.3
	 that SNe K-corrections could be handled at z > 0.3
	 that extinction could be handled at z > 0.3
	 that SNe could be calibrated  (accounts for progenitor variation)

What we found... 
	 The universe is not decelerating, but accelerating.
	 Some unidentified negative-pressure energy density exists.
	 This "dark energy" density dominates over mass density today.   Now what we don’t know is...

	 the values of the “dark” and mass energy densities
	 the curvature of space
	 the identity of the “dark” energyBut we know how to find out...

	 We can find and study supernovae at z ~ 1.2
	 We can systematically find low-redshift supernovae
	 We can dramatically improve statistics and systematics with a satellite.

A decade of HST Science:   An accelerating universe



Search Strategy Perlmutter et al. (1996a)
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Composite light curve
for Type Ia SNe



Lightcurve Width-Luminosity Relation
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We knew or thought we knew...

What we didn’t know:

	 about the universe
	 That the measurement of  ΩM could be separated 

	 	 from the measurement of  ΩΛ

	 about supernovae studies
	 that SNe could be found systematically
	 	 at cosmologically relevant distances (z > 0.3)

	 that SNe could be identified spectroscopically  at z > 0.3
	 that SNe K-corrections could be handled at z > 0.3
	 that extinction could be handled at z > 0.3
	 that SNe could be calibrated  (accounts for progenitor variation)

What we found... 
	 The universe is not decelerating, but accelerating.
	 Some unidentified negative-pressure energy density exists.
	 This "dark energy" density dominates over mass density today.   Now what we don’t know is...

	 the values of the “dark” and mass energy densities
	 the curvature of space
	 the identity of the “dark” energyBut we know how to find out...

	 We can find and study supernovae at z ~ 1.2
	 We can systematically find low-redshift supernovae
	 We can dramatically improve statistics and systematics with a satellite.

A decade of HST Science:   An accelerating universe
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Perlmutter, et al., Nature (1998)
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We knew or thought we knew...  
	 The universe is decelerating
	 Standard candles could measure deceleration
	 Type Ia SNe could in principle be standard candles at great distances;
	 With HST ("ST" then) Type Ia supernovae could  be studied
	 	 at cosmologically relevant distances — if we knew where to look.What we didn’t know...

What we found: 
The universe is not decelerating, but accelerating.

     Some unidentified negative-pressure energy density exists.
	 This “dark energy” density dominates over mass density today.   

Now what we don’t know is:
	 the values of the “dark” and mass energy densities

 the curvature of space
    the identity of the “dark energy” 

But we know how to find out...	 We can find and study supernovae at z ~ 1.2
	 We can systematically find low-redshift supernovae.
	 We can dramatically improve statistics and systematics with a satellite.

A decade of HST Science:   An accelerating universe
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Reiss et al. (1998)  

14 Supernovae from High-z Supernova Search Team
+2 Supernovae from Supernova Cosmology Project
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Systematic Error Checks

•   Malmquist bias

	
•   Extinction in SN-host galaxy or our Galaxy.

•   Evolution of SNe Ia

•   Local Hubble bubble

•   Gravitational Lensing

Evolution of dust?

Kim et al. (1996)
Riess et al. (1997)

Frieman (1996)
Wambsgans et al. (1996)
Kantowski et al. (1994)
Holz & Wald (1998)

Shift in metallicity/progenitors?   Calibratable?



Measurements by SCUBA at 850 µm
are already close to ruling out gray dust.

Wavelength (microns)

Fl
ux

 (
W

/m
2

/s
r)

gr
ay

 d
us

t m
od

el
   

re
-e

m
is

si
on  i
nt

er
ga

la
ct

ic
 

ra
di

at
io

n 
fi

el
d

FIRAS total Far-IR
background glow
measurements...

+1σ

– 1σ

are almost completely
accounted for by the 

individual sources
seen by SCUBA,

leaving very little

room for the 
re-emitted glow

of gray dust model.

he
ats u

p dust

Aguirre & Haiman (1999)



Spectra
An Example: SN1994an

at z = 0.378
+9 days past max observer frame

= +6 days rest frame

days 
rest frame

Wavelength in SN Rest Frame

Scaled Flux +
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Supernova 1997ap  at z = 0.83

Note:  –4 days (before) max observer frame = –2 days rest frame

“Nearby” Type Ia
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Statistical
high-redshift SNe		   0.05
low-redshift SNe			   0.065
Total					   0.085

Systematic
dust that reddens		 < 0.03
RB(z=0.5) < 2 RB(today)			

evolving grey dust
clumpy						   
same for each SN				

Malmquist bias difference	 < 0.04

SN Ia evolution			   	        
  shifting distribution of		      
  prog mass/metallicity/C-O/..		   

K-correction uncertainty	 < 0.025
   including zero-points

Total					    0.05
  identified entities/processes

Cross-Checks  of sensitivity to

Width-Luminosity Relation < 0.03
Non-SN Ia contamination	 < 0.05
Galactic Extinction Model	 < 0.04

Gravitational Lensing		 < 0.06
   by clumped mass

Score Card of Current Uncertainties 
  on  (ΩM,  ΩΛ    )  = (0.28, 0.72)flat flat

Perlmutter et al. (1998)
        astro-ph/9812133
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What's wrong with a non-zero
vacuum energy / cosmological constant?

Two coincidences:

•  Why so small?

Might expect      Λ  ~  m

This is off by ~120 orders of magnitude!

• "Why now?"

R  =  – 4πG  (ρ + 3p)

MATTER:    	 	     p = 0          	 ρ ∝ R
VACUUM ENERGY:    p = – ρ          ρ ∝ constant

  R   3

8πG
4
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time

energy
density

mass
  energy
     density

vacuum
energy
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What's wrong with a non-zero
vacuum energy / cosmological constant?

What are the alternatives?

Two coincidences:

 New Physics:

    “Dark energy”: Dynamical scalar fields, “quintessence”,...

•  Why so small?

Might expect      Λ  ~  m

This is off by ~120 orders of magnitude!

• "Why now?"

R  =  – 4πG  (ρ + 3p)

MATTER:    	 	     p = 0          	 ρ ∝ R
VACUUM ENERGY:    p = – ρ          ρ ∝ constant

  R   3

8πG
4
Planck

–3

..

R
–3(1+ w)

COSMIC
  STRINGS:

    		     p = –1/3  ρ          	 ρ ∝ R

General
  Equation of State:    p = wρ  ρ ∝ 

–2

and  w  can vary with time
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S.P.,  Turner, & White (1999)
Phys. Rev. Lett.
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constant
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LSS + CMB

SNe Ia

Constraints on Equation of State 
of "Dark Energy"

astro-ph 9901052



We knew or thought we knew...  
	 The universe is decelerating
	 Standard candles could measure deceleration
	 Type Ia SNe could in principle be standard candles at great distances;
	 With HST ("ST" then) Type Ia supernovae could  be studied
	 	 at cosmologically relevant distances — if we knew where to look.What we didn’t know...

What we found...

Now what we don’t know is...	the values of the “dark” and mass energy densities
	 the curvature of space
	 the identity of the “dark energy” 

But we know how to find out:

	We can find and study supernovae at z ~ 1.2
	 We can systematically find low-redshift supernovae.

	 We can dramatically improve 
	 	 statistics and systematics with a satellite.

A decade of HST Science:   An accelerating universe
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SN 1981B at max
redshifted to z = 1.20

SN "Albinoni"
Keck spectrum

Host Galaxy
Ca H & K

z = 1.2
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Hubble Space Telescope Lightcurves:
High Redshift Type Ia Supernovae
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satellite overview

SNAP
 SuperNova
Acceleration
     Probe

•  ~2 m aperture telescope
Can reach very distant SNe.

•  1 square degree mosaic camera, 1 billion pixels
Efficiently studies large numbers of SNe.

•  3-channel spectroscopy,  0.3um -- 1.7um
Detailed analysis of each SN.

Dedicated instrument.

Designed to repeatedly observe an area of sky.

Essentially no moving parts.

4-year construction cycle.
3-year operation for experiment

(lifetime open-ended).

Satellite:

Instruments:



Search Strategy - Deep & Often
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Co-added images:   mAB = 32.0 !  
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Cosmological Params.
Dark Matter Properties

Dark
Energy Properties
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network of cosmic strings
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represents ~50-supernova bin

Dark Energy Models:
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Binned simulated SNAP data compared with 
Dark Energy models currently in the literature.

periodic potential

double exponential potential

Pseudo-Nambu-Goldstone Boson (example)

Weller & Albrecht
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SUPERNOVA / ACCELERATION PROBE

Instrumentation Suite

CCD Imager

Star Tracker

Gyro Package

  SNAP TTL Star Guider

Optical Spectrograph

IR Spectrograph

Shutter

Filter Assy

CCD Heat Shield

Key Instruments:
1) Wide Field Imager

(one billion pixels)

2) IR Photometer

(small field of view)

3) 3-channel spectrograph
350-600 nm,

550-1000 nm,

900-1700 nm

4) Star Guider

(image stabilization)

5) Telescope, Optics Bench,
Filters, Shutters
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CCD
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BU V R I Z

High quantum efficiency from near UV to near IR
No thinning, no fringing.
High yield.
Radiation hard.



We knew or thought we knew:  
	 The universe is decelerating
	 Standard candles could measure deceleration
	 Type Ia SNe could in principle be standard candles at great distances;
	 With HST ("ST" then) Type Ia supernovae could  be studied
	 	 at cosmologically relevant distances — if we knew where to look.

What we didn’t know:
	 about the universe
	 The mass density of the universe 
	 	 = how much is the universe decelerating
	 The current rate of expansion: the age of universe.
	 That the measurement of mass density could be separated 
	 	 from the measurement of the cosmological constant energy density

	 about supernovae studies
	 that SNe could be found systematically
	 	 at cosmologically relevant distances (z > 0.3)
	 that SNe could be identified spectroscopically  at z > 0.3
	 that SNe K-corrections could be handled at z > 0.3
	 that extinction could be handled at z > 0.3
	 that SNe could be calibrated  (accounting for progenitor variation)

What we found: 
	 The universe is not decelerating, but accelerating.
	 Some unidentified negative-pressure energy density exists.
	 This "dark energy" density dominates over mass density today.   

Now what we don’t know is:
	 the values of the “dark” and mass energy densities
	 the curvature of space
	 the identity of the “dark” energy

But we know how to find out:
	 We can find and study supernovae at z ~ 1.2
	 We can systematically find low-redshift supernovae
	 We can dramatically improve statistics and systematics with a satellite.

A decade of HST Science:   An accelerating universe

1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
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