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Introduction 
 
One of the uniqueness of Laue diffraction is its use of polychromatic source, X-
ray or neutron.  The normalization of incident intensities at all wavelengths is 
therefore a critical step of Laue data processing, which is often known as 
wavelength normalization.  The resulting wavelength-dependent function is 
called λ-curve.  This process does not require an experimentally measured 
source spectrum, instead the λ-curve can be extracted from the integrated 
intensities of all reflections.  This wavelength-dependent function can be 
modeled numerically or by empirical polynomials, such as Chebyshev 
approximation.  Recent advances in this area include 1) modeling sharply-
varying incident spectrum with less parameters, 2) correction of wavelength 
assignment errors caused in the steps prior to wavelength normalization, 3) 
integration over a finite mosaic spread of a protein crystal, and 4) correction of 
residual errors unaccounted by the spectral model λ-curve.  These new features 
are incorporated in the commercial software Precognition™ for Laue data 
processing (http://renzresearch.com/Precognition). 



Nonlinear Wavelength Mapping 
 
Some X-ray sources like undulators generate very sharp-edged spectra, which 
require more parameters to be modeled accurately compared to a smooth one.  
New, nonlinear wavelength mapping technique effectively reduces the number 
of required parameters.  For a relatively smooth neutron spectrum, very small 
number of parameters, say 8 or less, would be enough to describe. 
 
The black λ-curve below models an undulator spectrum of 1.6% bandwidth.  
This curve is a 40-term Chebyshev approximation with a nonlinear wavelength 
mapping function shown as the red curve.  In comparison, a regular mapping 
would simply map the wavelength range 0.82 - 1.2 Å to the interval [-1, 1] 
linearly (straight line in red).  A strategically designed nonlinear function maps 
large intervals on the vertical axis to those wavelength regions where the λ-
curve varies sharply or has strong intensity, and only small intervals to two 
wings of the λ-curve. 
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Correction for Wavelength Assignment Error 
 
Laue diffraction experiment from X-rays often lacks a characteristic wavelength 
marker.  As a result, interactions between several linear variables (cell lengths, 
crystal-to-detector distance, detector pixel size, and wavelength) in a Laue 
experiment does not have a fixed reference scale, which is prone to the 
possibility of a wavelength assignment error.  Since this error is highly 
systematic, and therefore correctable during the modeling of source spectrum.  
Time-of-flight neutron diffraction experiment provides a gridlock in wavelength 
assignment, so that effectively limits the possible error.  However, the regular 
neutron Laue diffraction shares the same problem with X-ray Laue diffraction. 
 
Specific to each exposure, the wavelength assignment error can be modeled by a 
constant shift and a linear term as if the crystal cell is isotropically expanded.  
The constant term corrects most of the errors, and the linear one does the rest.  
Corrections for higher order distortion do not seem to be necessary.  As a result 
of these corrections, λ-curves of all frames are shifted and stretched differently 
to overcome wavelength assignment error. 
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Effect from Crystal Mosaicity 
 
Mosaicity of protein crystals plays an important role in Laue diffraction, but the 
wavelength span of a reflection due to a finite mosaic spread is often 
oversimplified to none.  This strongly wavelength- and resolution-dependent 
variable makes some reflections, especially those at lower resolution, partial, 
and virtually all partial in a time-of-flight neutron diffraction.  These energy 
partials, respect to those angular partials in monochromatic diffraction, can be 
fully reduced to useful observations if the effect of crystal mosaicity is properly 
modeled.  The graph below shows an Ewald construction with a reciprocal 
lattice ‘cap’ instead of a ‘point’ in order to deduce relationships under the 
assumption of a crystal mosaic spread of δ. 
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It can be shown that relative bandwidth of a Laue reflection is proportional to 
crystal mosaic spread δ and inversely proportional to tangent of Bragg angle, 
and approximately the angle itself in nearly all protein cases. 
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Integration over the bandwidth ∆λ caused by mosaic spread δ at wavelength λ 
and Bragg angle θ results in a λ-surface instead of λ-curve.  The top curve 
below stands for wavelength-dependent correction equivalent to no effect of 
crystal mosaicity.  The other curves are at Bragg angles of 1, 2, …, and 10 
degrees, respectively, from bottom to top.  The mosaic spread is refined to 0.034 
degree in full-width at half-maximum. 
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Local Scaling 
 
After all, a local scaling procedure corrects residual errors when a rational 
spectral model has been obtained.  Local scaling targets various types of 
unexplained errors as function of wavelength, integrated intensity, location on 
detector, Bragg angle, and resolution.  The following example shows two λ-
curves before (in red) and after (in black) local scaling.  The latter becomes even 
sharper. 
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Completeness 
 
The quality of Laue data critically depends how they are collected and processed.  
In general, it is very easy to obtain a modestly complete data set in the first a 
few pictures, if they are wisely spaced.  However, it is very hard to absolutely 
complete a data set at the very low and high resolution ranges, if it is already 
over 90% complete.  The 
additional exposures will largely 
measure the data redundantly.  
This figure shows a typical 
completeness curve as function 
of resolution.  The accuracy of a 
Laue data set benefits greatly 
from its naturally high 
redundancy.  The next several 
pages show that Laue data can be 
of superb quality for structural 
analysis. 
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 2Fo-Fc map of dimeric 
clam hemoglobin at 1.6 
Å resolution
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