1	
2	
3	U.S. Climate Change Science Program
4	
5	
6	Synthesis and Assessment Product 3.3
7	
8	Weather and Climate Extremes in
9	a Changing Climate
10	
11	Regions of Focus: North America, Hawaii,
12	Caribbean, and U.S. Pacific Islands
13	
14	
15	
16	
17	Lead Agency:
18	National Oceanic and Atmospheric Administration
19	
20	Contributing Agencies:
21	Department of Energy
22	National Aeronautics and Space Administration
23	U.S. Geological Survey
24	

Table of Contents

26	ABSTRACT	5
27	PREFACE	7
28	EXECUTIVE SUMMARY	11
29	ES.1 What Are Extremes and Why Do They Matter	11
30	ES.2 Temperature–related Extremes	
31	ES.2.1 Observed Changes	
32	ES.2.2 Attribution of Changes	
33	ES.2.3 Projected Changes	
34	ES.3 Precipitation Extremes	15
35	ES.3.1 Observed Changes	15
36	ES.3.2 Attribution of Changes	
37	ES.3.3 Projected Changes	
38	ES.4 Drought	16
39	ES.4.1 Observed Changes	
40	ES.4.2 Attribution of Changes	
41	ES.4.3 Projected Changes	17
42	ES.5 Storms	17
43	ES.5.1 Hurricanes and Tropical Storms	17
44	ES.5.2 Other Storms	19
45 46	ES.6 Recommendations: What Measures Can be Taken to Improve the Understanding of Weat and Climate Extremes?	ather 21
47	CHAPTER 1 WHY WEATHER AND CLIMATE EXTREMES MATTER	29
48	1.1 Extremes Matter Because They Impact People, Plants, and Animals	30
49	1.2 Extremes Are Changing	
50	1.3 Systems Are Sensitive to Changes in Extremes	
51	1.4 Future Impacts of Changing Extremes Also Depend on System Vulnerability	43
52 53	1.5 Systems are Adapted to Particular Morphologies of Extremes so Changes in Extremes Pos Challenges	se 49
54	1.6 Actions Can Increase or Decrease the Impact of Extremes	52
55	1.7 Assessing Impacts of Changes in Extremes Is Difficult	56
56	1.8 Summary and Conclusions	58

57 58	CHAPTER 2 OBSERVED CHANGES OF WEATHER AND CLIMATE EXTREMES	95
59	2.1 Background	
60 61 62 63	2.2 Observed Changes and Variations in Weather and Climate Extremes 2.2.1 Temperature Extremes 2.2.2 Precipitation Extremes 2.2.3 Storm Extremes	
64 65 66	2.3 Key Uncertainties Related to Measuring Specific Variations and Change 2.3.1 Methods Based on Counting Exceedances Over a High Threshold 2.3.2 The GEV Approach	 181 181 184
67 68 69	CHAPTER 3 HOW WELL DO WE UNDERSTAND THE CAUSES OF OBSERVED CHANGES IN EXTREMES, AND WHAT ARE THE PROJEC FUTURE CHANGES?	CTED 240
70	3.1 Introduction	242
71 72	3.2 What Are the Physical Mechanisms of Observed Changes in Extremes? 3.2.1 Detection and Attribution of Anthropogenic Influences on Climate Extremes Over M	243 North
73	America	243
14 75	3.2.2 Changes in Temperature Extremes	
15	3.2.3 Changes in Precipitation Extremes	
/0 77	3.2.4 Tropical Cyclones	
78	3.2.5 Extratropical Storms	
70	2.2 Projected Future Changes in Futurence Their Course Machanisms and Uncertainties	277
80	3.3 1 Temperature	····· 411 777
81	3 3 2 Frost	
82	3.3.3 Growing Sesson Length	
83	3.3.4 Snow Cover and Sea Ice	
84	3 3 5 Precinitation	284
85	3 3 6 Flooding and Dry Days	286
86	3.3.7 Drought	
87	3.3.8 Snowfall	
88	3.3.9 Tropical Storms	
89	3.3.10 Extratropical Storms	308
90	3.3.11 Convective Storms	310
91	CHAPTER 4 RECOMMENDATIONS FOR IMPROVING OUR	
92	UNDERSTANDING	351
93 94	4.1 The continued establishment and maintenance of high quality climate observing systems monitor climate variability and change should be of the highest priority	to 352
95 96	4.2 Efforts to digitize, homogenize and analyze long-term observations in the instrumental r should be expanded.	ecord 353
97 98	4.3 Current weather observing systems should adhere to standards of observation that are c with the needs of both the climate and the weather forecasting communities.	onsistent 355

99	4.4 Efforts to extend reanalysis products using surface observations should be pursued
100 101	4.5 Research is needed to create annually-resolved, regional-scale reconstructions of the climate for the past 2,000 years
102 103	4.6 Research efforts to improve our understanding of the mechanisms that govern hurricane intensity should be increased
104 105 106	4.7 Substantial increases in computational and human resources should be made available to fully investigate the ability of climate models to recreate the recent past as well as make projections under a variety of future forcing scenarios
107 108 109	4.8 Modeling groups should make available high temporal resolution data (daily, hourly) from climate model simulations both of the past and for the future to allow the investigation of potential changes in weather and climate extremes
110 111	4.9 Research needs to move beyond purely statistical analysis and focus more on linked physical processes that produce extremes and their changes with climate
112 113	4.10 Communication between the science community and the user community should be enhanced in both directions
114	4.11 Summary
115 116	APPENDIX A STATISTICAL TREND ANALYSIS

117 Abstract

118

119 120 Lead Authors: Thomas C. Peterson, NOAA; Kenneth Kunkel, Univ. Ill. Urbana-121 Champaign, Ill. State Water Survey; William J. Gutowski, Iowa State Univ.; David R. 122 Easterling, NOAA 123 124 Science Editor: Susan J. Hassol, STG, Inc. 125 126 Changes in extreme weather and climate events are among the most serious challenges to 127 society in coping with global warming. While some extremes, such as snowstorms and 128 ice storms in the U.S., have not generally been observed to change, many others have, 129 and are already causing impacts. For example, most of North America is experiencing 130 more unusually hot days and nights and fewer unusually cold days and nights. There has 131 been a decrease in frost days, particularly in the western part of North America. Extreme 132 precipitation episodes (heavy downpours) have become more frequent and intense. All 133 these trends are expected to continue or accelerate. 134 135 There are recent regional tendencies toward more severe droughts in the southwestern 136 U.S., and parts of Canada, Alaska, and Mexico. In the future, droughts are likely to 137 become more frequent and severe in some regions, leading to an increased need to 138 respond to reduced water supplies, increased wildfires, and various ecological impacts. 139 140 Atlantic tropical storm and hurricane destructive potential has increased substantially 141 since about 1970. Although there have been fluctuations from decade to decade, the

Convening Lead Authors: Thomas R. Karl, NOAA; Jerry Meehl, NCAR

142	balance of evidence suggests that human activity has caused a discernible increase in
143	tropical storm/hurricane and major hurricane frequency in the North Atlantic over the
144	past century. U.S. land-falling hurricane frequency has not increased since the late 1800s.
145	Hurricane intensity in the eastern Pacific has decreased since 1980, but rainfall from
146	near-coastal hurricanes has increased since 1949. Hurricane rainfall rates, wind speeds,
147	and the potential for storm surge damage are projected to increase.
148	
149	For cold-season storms, in the North Pacific, storm tracks are shifting northward and the
150	strongest storms are becoming even stronger, with increases in extreme wave heights
151	along the Pacific Northwest coast. In the future, there are likely to be more frequent
152	strong cold-season storms in both the Atlantic and Pacific basins, with stronger winds and
153	more extreme wave heights. Observations and models used to determine changes in
154	tornadoes and severe thunderstorms are inadequate to make definitive statements about
155	past and projected changes.
156	
157	Current and future impacts resulting from these changes depend not only on the changes
158	in extremes, but also on responses by human and natural systems.

160 **Preface**

161

Authors: Thomas R. Karl, NOAA; Jerry Meehl, NCAR; Christopher D. Miller, NOAA;
William L. Murray, NOAA

164

165 According to the National Research Council, "an essential component of any research

166 program is the periodic synthesis of cumulative knowledge and the evaluation of the

167 implications of that knowledge for scientific research and policy formulation." The U.S.

168 Climate Change Science Program (CCSP) is helping to meet that fundamental need

169 through a series of 21 "synthesis and assessment products" (SAPs). A key component of

170 the CCSP Strategic Plan (released July 2003), the S&A products integrate research

171 results focused on important science issues and questions frequently raised by decision

172 makers.

173

174 The SAPs support informed discussion and decisions by policymakers, resource 175 managers, stakeholders, the media, and the general public. They are also used to help 176 define and set the future direction and priorities of the program. The products help meet 177 the requirements of the Global Change Research Act of 1990. The law directs agencies to 178 "produce information readily usable by policymakers attempting to formulate effective 179 strategies for preventing, mitigating, and adapting to the effects of global change" and to 180 undertake periodic scientific assessments. This SAP (3.3) provides an in-depth 181 assessment of the state of our knowledge about changes in weather and climate extremes 182 in North America (and U.S. territories), where we live, work, and grow much of our food. 183

184	The impact of weather and climate extremes can be severe and wide-ranging although in
101	The impact of weather and enhance endemes can be severe and whee ranging atmough, in
185	some cases, the impact can also be beneficial. Weather and climate extremes affect all
186	sectors of the economy and the environment, including human health and well-being.
187	During the period 1980-2006, the U.S. experienced 70 weather-related disasters in which
188	overall damages exceeded \$1 billion at the time of the event. Clearly, the direct impact of
189	extreme weather and climate events on the U.S. economy is substantial.
190	
191	There is scientific evidence that a warming world will be accompanied by changes in the
192	intensity, duration, frequency, and spatial extent of weather and climate extremes. The
193	Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report has
194	evaluated extreme weather and climate events on a global basis in the context of observed
195	and projected changes in climate. However, prior to SAP 3.3 there has not been a specific
196	assessment of observed and projected changes in weather and climate extremes across
197	North America (including the U.S. territories in the Caribbean Sea and the Pacific
198	Ocean), where observing systems are among the best in the world and the extremes of
199	weather and climate are some of the most notable occurring across the globe.
200	
201	The term "weather extremes", as used in SAP 3.3, signifies individual weather events that
202	are unusual in their occurrence (minimally, the event must lie in the upper or lower ten
203	percentile of the distribution) or have destructive potential, such as hurricanes and
204	tornadoes. The term "climate extremes" is used to represent the same type of event, but
205	viewed over seasons (e.g., droughts), or longer periods. In this assessment we are
206	particularly interested in whether climate extremes are changing in terms of a variety of

207	characteristics, including intensity, duration, frequency, or spatial extent, and how they
208	are likely to evolve in the future although, due to data limitations and the scarcity of
209	published analyses, there is little that can be said about extreme events in Hawaii, the
210	Caribbean or the Pacific Islands outside of discussion of tropical cyclone intensity and
211	frequency. It is often very difficult to attribute a particular climate or weather extreme,
212	such as a single drought episode or a single severe hurricane, to a specific cause. It is
213	more feasible to attribute the changing "risk" of extreme events to specific causes. For
214	this reason, this assessment focuses on the possible changes of past and future statistics of
215	weather and climate extremes.
216	
217	In doing any assessment, it is helpful to precisely convey the degree of certainty of
218	various findings and projections. For this reason, a lexicon expressing the likelihood of
219	each key finding is presented below and used throughout this report. There are numerous
220	choices for categories of likelihood and appropriate wording to define these categories.
221	CCSP SAP 5.2, currently under review, but scheduled for public release before SAP 3.3
222	is finalized, provides useful guidance. Additionally, the community of scientists and
223	policy-makers familiar with the IPCC assessments provide yet another consistent way to
224	express likelihood statements. The US National Assessment published in 2000 provides a
225	similar approach to likelihood statements. Figure Preface.1 provides the common terms
226	used in this report to express likelihood of occurrence based on experience with previous
227	likelihood statements. Because of the nature of the topic being considered, our likelihood
228	statements do not have discrete boundaries, unlike in IPCC, but characterize likelihood in
229	more general terms (Figure Preface.1). In some cases, there is sufficiently strong

230	evidence to draw a conclusion, but not enough to allow a determination of 'likely'. In
231	these few cases, the term 'the balance of evidence' is used to express our assessment of
232	the state of the science. Statements made without likelihood qualifiers are intended to
233	indicate a high degree of certainty.
234	
235	Dedication
236	This Climate Change and Synthesis Product is dedicated to the memory of our colleague,

237 friend and co-author Dr. Miguel Cortez whose untimely passing during the writing of the

report was a loss to us all.

239

240

241

Figure Preface.1 Language in this Synthesis and Assessment Product used to express the

243 team's expert judgment of likelihood.

244	Executive Summary
245	
246 247	Convening Lead Authors: Thomas R. Karl, NOAA; Jerry Meenl, NCAR
248	Lead Authors: Thomas C. Peterson, NOAA; Kenneth Kunkel, Univ. Ill. Urbana-
249	Champaign, Ill. State Water Survey; William J. Gutowski, Iowa State Univ.; David R.
250	Easterling, NOAA
251	
252	Editors: Susan J. Hassol, STG, Inc.; Christopher D. Miller, NOAA; William L. Murray,
253	NOAA; Anne M. Waple, STG, Inc.
254	
255	ES.1 What Are Extremes and Why Do They Matter
256	Weather and climate extremes (Figure ES.1) have always posed serious challenges to
257	society. Changes in extremes are already observed to be having impacts on
258	socioeconomic and natural systems, and future changes associated with continued
259	warming will present additional challenges. Increased frequency of heat waves and
260	drought, for example, could seriously affect human health, agricultural production, water
261	resources, and water quality (chapter 1, section 1.1).
262	
263	Extremes are a natural part of even a stable climate system and have associated costs
264	(Figure ES.2) and benefits. For example, extremes are essential in some systems to keep
265	insect pests under control. While hurricanes cause significant death, injury, damage, and
266	disruption, they also provide needed rainfall to certain areas, and some tropical plant
267	communities are dependent on hurricane winds toppling tall trees, allowing more sunlight
268	to rejuvenate low-growing trees. But on balance, because systems have adapted to their

- historical range of extremes, the majority of the impacts of events outside this range arenegative impacts (chapter 1, section 1.4 and 1.5).
- 271

272	The impacts of changes in extremes depend on both changes in climate and ecosystem
273	and societal vulnerability. Vulnerability is shaped by factors such as population dynamics
274	and economic status as well as developing and utilizing adaptation measures such as
275	appropriate building codes, disaster preparedness, and water use efficiency. Some actions
276	taken to lessen the risk from extreme events can lead to increases in vulnerability to even
277	larger extremes. For example, moderate flood control measures on a river can stimulate
278	development in a now "safe" floodplain, only to see those new structures damaged when
279	a very large flood occurs (chapter 1, section 1.6).
280	
281	Human activities are known to affect climate averages. This is relevant to extremes
282	because small changes in the averages of many variables result in larger changes in their
283	extremes. Thus, within a changing climate system, what are now considered to be
284	extreme events will occur more frequently (Figures ES.3, ES.4). More frequent extreme
285	events occurring over a shorter period reduce the time available for recovery and
286	adaptation. In addition, extreme events often occur in clusters. The cumulative effect of
287	compound or back-to-back extremes has far larger impacts than the same events spread
288	out over a longer period of time. For example, heat waves, droughts, air stagnation, and
289	resulting wildfires often occur concurrently and have more severe impacts than any of
290	these alone (chapter 1, section 1.2).

292 ES.2 Temperature–related Extremes

293 ES.2.1 Observed Changes

- 294 Since 1998, over half of the U.S. annual average temperatures have been extremely high,
- including the hottest two years on record (1998 and 2006). Accompanying a general rise
- in the average temperature, most of North America is experiencing more unusually hot
- 297 days and nights. The number of heat waves (extended periods of extremely hot weather)
- also has been increasing since 1950. However, the heat waves of the 1930s remain the
- 299 most severe in the U.S. historical record (chapter 2, section 2.2.1).
- 300
- 301 There have been fewer unusually cold days during the last few decades. The last 10 years
- 302 have seen fewer severe cold waves than any other 10-year period in the historical record,
- 303 which dates back to 1895. There has been a decrease in frost days and a lengthening of
- 304 the frost-free season over the past century (chapter 2, section 2.2.1).
- 305
- 306 In summary, there is a shift towards a warmer climate with an increase in extreme high
- 307 temperatures and a reduction in extreme low temperatures. These changes have been
- 308 especially apparent in the western half of North America (chapter 2, section 2.2.1).
- 309

310 ES.2.2 Attribution of Changes

311 Human-induced warming has likely caused much of the average temperature increase in

- 312 North America over the past fifty years and, consequently, changes in temperature
- 313 extremes. The very hot year of 2006 has now been scientifically attributed primarily to
- human influences (chapter 3, section 3.2.1 and 3.2.2).

315 **ES.2.3 Projected Changes** 316 Future changes in extreme temperatures will generally follow changes in average 317 temperature. Abnormally hot days and nights and heat waves are very likely to become 318 more frequent. Cold days and cold nights are very likely to become much less frequent. 319 The number of days with frost is very likely to decrease (chapter 3, section 3.3.1 and 320 3.3.2). 321 322 Climate models indicate that currently rare extreme events will become more 323 commonplace. For example, for a mid-range emissions scenario, a day so hot that it is 324 currently experienced once every 20 years would occur every three years by the middle 325 of the century over much of the continental U.S. and every five years over most of 326 Canada. By the end of the century, it would occur every other year or more (chapter 3, 327 section 3.3.1). 328 329 Episodes of what are now considered to be unusually high sea-surface temperature are 330 very likely to become more frequent and widespread. Sustained periods (e.g., months) of 331 unusually high temperatures could lead, for example, to more coral bleaching and death 332 of the corals (chapter 3, section 3.3.1).

333

Sea ice extent is expected to continue to decrease and may even disappear entirely in the
 Arctic Ocean in summer in the coming decades. This increases extreme coastal erosion in

336 Arctic Alaska and Canada due to the increased exposure of the coastline to strong wave

action (chapter 3, section 3.3.1 and 3.3.10).

338 ES.3 Precipitation Extremes

339 ES.3.1 Observed Changes

- 340 Extreme precipitation episodes (heavy downpours) have become more frequent and more
- 341 intense in recent decades over most of North America and now account for a larger
- 342 percentage of total precipitation. For example, intense precipitation (the heaviest 1%) in
- 343 the continental U.S. increased by 20% over the past century while total precipitation
- increased by 7% (chapter 2, section 2.2.2.2).
- 345
- 346 The monsoon season is beginning about 10 days later than usual in Mexico. In general,

347 for the summer monsoon in southwestern North America, there are fewer rain events, but

348 the events are more intense (chapter 2, section 2.2.2.3).

349

350 ES.3.2 Attribution of Changes

351 Heavy precipitation events averaged over North America have increased over the past 50

352 years, consistent with the increased water holding capacity of the atmosphere in a warmer

353 climate and the observed increase in water vapor over the oceans (chapter 3, section

354 3.2.3).

355

356 ES.3.3 Projected Changes

357 On average, precipitation is likely to be less frequent but more intense, and precipitation

- 358 extremes are very likely to increase. For example, for a mid-range emission scenario,
- daily precipitation so heavy that it now occurs only once every 20 years is projected by

- 360 climate models to occur every eight years or so by the end of this century over much of361 Eastern North America (chapter 3, section 3.3.5).
- 362

363 ES.4 Drought

364 ES.4.1 Observed Changes

365 Drought can be defined in many ways, from acute short-term to chronic long-term

366 hydrological drought, agricultural drought, meteorological drought, and so on. The

367 assessment in this report focuses primarily on drought as measured by the Palmer

368 Drought Severity Index (PDSI), which best represents multi-seasonal aspects of drought.

369 Some other indices are included where and when available especially because of known

deficiencies in the PDSI (Box 2.1).

371

372 Averaged over the continental U.S. and southern Canada the most severe droughts

373 occurred in the 1930s and there is no indication of an overall trend in the observational

record, which dates back to 1895. In Mexico and the U.S. Southwest, the 1950s were the

driest period, though droughts in the past 10 years now rival the 1950s drought. There are

also recent regional tendencies toward more severe droughts in parts of Canada and

377 Alaska (chapter 2, section 2.2.2.1).

378

379 ES.4.2 Attribution of Changes

380 No formal attribution studies for greenhouse warming and changes in drought severity in

- 381 North America have been attempted. However, it is likely that the increasing
- 382 temperatures (and associated increasing evaporation potential over land) are already

383	contributing to droughts that are longer and more intense. The location and severity of
384	droughts are also affected by the spatial pattern of sea surface temperatures, which appear
385	to have been a factor in the severe droughts of the 1930s and 1950s (chapter 3, section
386	3.2.3).
387	
388	ES.4.3 Projected Changes
389	A contributing factor to droughts becoming more frequent and severe is higher air
390	temperatures increasing the potential for evaporation. It is likely that droughts will
391	become more severe in the southwestern U.S. and parts of Mexico. In other places where
392	precipitation increases cannot keep pace with increased evaporation, droughts are also
393	likely to become more severe (chapter 3, section 3.3.7).
394	
395	It is likely that droughts will continue to be exacerbated by earlier and possibly lower
396	spring snowmelt run-off in the mountainous West, which results in less water available in
397	late summer (chapter 3, section 3.3.4 and 3.3.7).
398	
399	In southwestern North America, the precipitation in the winter rainy season is projected
400	to continue to decrease, increasing the risk of drought (chapter 3, section 3.3.7).
401	
402	ES.5 Storms
403	ES.5.1 Hurricanes and Tropical Storms
404	ES.5.1.1 Observed Changes

Atlantic tropical storm and hurricane destructive potential as measured by the Power
Dissipation Index (which combines storm intensity, duration, and frequency) has
increased. This increase is substantial since about 1970, and is likely substantial since the
1950s and 60s, in association with warming Atlantic sea surface temperatures (Figure
ES.5) (chapter 2, section 2.2.3.1).

410

411 There have been fluctuations from decade to decade, and data uncertainty is larger in the 412 early part of the record compared to the satellite era beginning in 1965. Taking these into 413 account, it is likely that the annual numbers of tropical storms/hurricanes and major 414 hurricanes in the North Atlantic have increased over the past 100 years, a time in which 415 Atlantic sea surface temperatures also increased. The evidence is less compelling for 416 trends beginning in the late 1800s because uncertainties due to data issues preclude any 417 definitive conclusions prior to 1900. Despite the likely increase in basin-wide hurricane 418 counts over the past 100 years, there is no observational evidence for an increase in North 419 American mainland land-falling hurricanes since the late 1800s (Chapter 2, section 420 2.2.3.1).

421

The hurricane Power Dissipation Index in the eastern Pacific, affecting the Mexican west
coast and shipping lanes, has decreased since 1980. However, coastal station observations
show that rainfall from hurricanes has increased since 1949, in part due to slower moving
storms (chapter 2, section 2.2.3.1)

426

428	ES.5.1.2 Attribution of Changes
429	It is likely that human activities have caused a discernible increase in sea surface
430	temperatures in the hurricane formation region of the tropical Atlantic Ocean over the
431	past 100 years. The balance of evidence suggests that human activity has caused a
432	discernable increase in tropical storm/hurricane and major hurricane frequency in the
433	North Atlantic (chapter 3, section 3.2.4.3).
434	
435	ES.5.1.3 Projected Changes
436	For North Atlantic and North Pacific hurricanes (both basin-wide and land-falling) it is
437	likely that for each one degree Celsius increase in tropical sea surface temperatures core
438	rainfall rates will increase by 6 to 18% and the surface wind speeds of the strongest
439	hurricanes will increase by about 2 to 10% (chapter 3, section 3.3.9.2 and 3.3.9.4).
440	
441	ES.5.2 Other Storms
442	ES.5.2.1 Observed Changes
443	It is very likely that there has been a northward shift in the tracks of strong low-pressure
444	systems (storms) in both the N. Atlantic and N. Pacific over the past fifty years. In the
445	North Pacific, the strongest storms are becoming even stronger. Evidence in the Atlantic
446	is insufficient to draw a conclusion about changes in storm strength (Chapter 2, section
447	2.2.3.2).

449	Increases in extreme wave heights have been observed along the Pacific Northwest coast
450	of North America based on three decades of buoy data, and are likely a reflection of
451	changes in cold season storm tracks (chapter 2, section 2.2.3.3).
452	
453	While snow cover extent has decreased over North America, overall trends in
454	snowstorms and episodes of freezing rain have not been observed over the past century
455	(chapter 2, section 2.2.3.4).
456	
457	The data used to examine changes in the frequency and severity of tornadoes and severe
458	thunderstorms are inadequate to make definitive statements about actual changes (chapter
459	2, section 2.2.3.5).
460	
461	ES.5.2.2 Attribution of Changes
462	Human influences on changes in sea-level pressure patterns have been detected over the
463	Northern Hemisphere and this affects the location and intensity of storms (chapter 3,
464	section 3.2.5).
465	
466	ES.5.2.3 Projected Changes
467	There are likely to be more frequent deep low-pressure systems (strong storms) outside
468	the tropics, with stronger winds and more extreme wave heights (Figure ES.6) (chapter 3,
469	section 3.3.10).
470	

471	ES.6 Recommendations: What Measures Can be Taken to Improve the
472	Understanding of Weather and Climate Extremes?
473	Drawing on the material presented in this report, recommendations are described in detail
474	in Chapter 4. Briefly summarized here, they emphasize the highest priority areas for rapid
475	and substantial progress in improving understanding of weather and climate extremes.
476	
477	4.1. The continued establishment and maintenance of high quality climate observing
478	systems to monitor climate variability and change should be of the highest priority
479	
480	4.2 Efforts to digitize, homogenize, and analyze long-term observations in the
481	instrumental record should be expanded.
482	
483	4.3 Current weather observing systems should adhere to standards of observation that
484	are consistent with the needs of both the climate and the weather forecasting
485	communities.
486	
487	4.4 Efforts to extend reanalysis products using surface observations should be pursued.
488	
489	4.5 Research is needed to create annually-resolved, regional-scale reconstructions of the
490	climate for the past 2,000 years.
491	
492	4.6 Research efforts to improve our understanding of the mechanisms that govern
493	hurricane intensity should be increased.

- *4.7 Substantial increases in computational and human resources should be made*
- 496 available to fully investigate the ability of climate models to recreate the recent past as
- *well as make projections under a variety of future forcing scenarios.*

- *4.8 Modeling groups should make available high temporal resolution data (daily, hourly)*
- *from climate model simulations both of the past and for the future to allow the*
- *investigation of potential changes in weather and climate extremes.*
- 503 4.9 Research needs to move beyond purely statistical analysis and focus more on linked
- *physical processes that produce extremes and their changes with climate.*

- *4.10 Communication between the science community and the user community should be*
- *enhanced in both directions.*

511 Figure ES.1 Most measurements of temperature (top) will tend to fall within a range 512 close to average, so their probability of occurrence is high. A very few measurements will 513 be considered extreme and these occur very infrequently. Similarly, for rainfall (bottom), 514 there tend to be more days with relatively light precipitation and only very infrequently 515 are there extremely heavy precipitation events, meaning their probability of occurrence is 516 low. The exact threshold for what is classified as an extreme varies from one analysis to 517 another, but would normally be as rare as, or rarer than, the top or bottom 10% of all 518 occurrences. For the purposes of this report, all tornadoes and hurricanes are considered 519 extreme.

Figure ES.2 The blue bars show the number of events per year that exceed a cost of 1 billion dollars (these are scaled to the left side of the graph). The blue line (actual costs at the time of the event) and the red line (costs adjusted for wealth/inflation) are scaled to the right side of the graph, and depict the annual damage amounts in billions of dollars.

Increase in Percentage of Very Warm Nights

526

527

528 **Figure ES.3** Increase in the percentage of days in a year in which the daily low

529 temperature is unusually warm (falling in the top 10% of annual daily lows, using 1961 to

- 530 1990 as a baseline). Under the lower emissions scenario^{*}, the percentage of very warm
- 531 nights increases about 20% by 2100 whereas under the higher emissions scenarios, it
- 532 increases by about 40%.

B1 blue line: emissions increase very slowly for a few more decades, then level off and decline

^{*}3 future emission scenarios from the IPCC Special Report on Emissions Scenarios:

A2 black line: emissions continue to increase rapidly and steadily throughout this century

A1B red line: emissions increase rapidly until 2050 and then decline.

There are more details on these emission scenarios in the glossary.

Increase in Heavy Daily Precipitation (Top 5%)

- 534
- 535 **Figure ES.4** Increase in the amount of precipitation that falls in heavy events (the top
- 536 5% of all precipitation events in a year) compared to the 1961-1990 average Various
- 537 emission scenarios are used for future projections*

Relationship Between Sea Surface Temperatures and Hurricane Power in the North Atlantic Ocean

540 **Figure ES.5** Sea surface temperatures (blue) are correlated with the Power Dissipation

541 Index for North Atlantic hurricanes (Emanuel, 2007)

543

- 544 Figure ES.6 The projected change in intense low pressure systems (strong storms) during the
- 545 cold season for the Northern Hemisphere for various emission scenarios* (adapted from Lambert

546 and Fyfe; 2006).

547	Chapter 1 Why Weather and Climate Extremes Matter				
548					
549	Convening Lead Author: Thomas C. Peterson, NOAA				
551	Lead Authors: David Anderson NOAA: Stewart I Cohen Environment Canada and				
552	Univ of British Columbia: Miguel Cortez, National Meteorological Service of Mexico:				
553	Richard Murnane, Bermuda Inst. of Ocean Sciences: Camille Parmesan, Univ. of Tex. at				
554	Austin: David Phillins Environment Canada: Roger Pulwarty NOAA: John Stope				
555	Carleton Univ				
556					
557	Contributing Authors: Tamara G. Houston, NOAA; Susan L. Cutter, Univ. of S.C.				
558					
559	KEY FINDINGS				
560	• Climate extremes expose existing human and natural system vulnerabilities.				
561	• Changes in extreme events are one of the most significant ways socio-economic and				
562	natural systems are likely to experience climate change.				
563	- Systems have adapted to their historical range of extreme events.				
564	- The impacts of extremes in the future, some of which are expected to be outside				
565	the historical range of experience, will depend on both climate change and future				
566	vulnerability. The latter is shaped by factors such as population dynamics and				
567	poverty as well as by development and utilization of climate change adaptation				
568	measures such as appropriate building codes, disaster preparedness, and water use				
569	efficiency.				
570	• Changes in extreme events are already observed to be having impacts on socio-				
571	economic and natural systems.				
572	– Two or more extreme events that occur over a short period reduce the time				

573	available for recovery.
574	- The cumulative effect of back-to-back extremes is greater than if the same
575	events are spread over a longer period.
576	• Extremes can have positive or negative effects. However, on balance, because
577	systems have adapted to their historical range of extremes, the majority of the impacts
578	of events outside this range are expected to be negative.
579	• Actions that lessen the risk from small or moderate events in the short-term can lead
580	to increases in vulnerability to larger extremes in the long-term.
581	
582	1.1 Extremes Matter Because They Impact People, Plants, and Animals
583	Observed and projected warming of North America has direct implications for the
584	occurrence of extreme weather and climate events. It is very unlikely that the climate
585	could change without extremes changing as well. Extreme events drive natural systems
586	much more than average climate (Parmesan et al., 2000). Extreme events cause property
587	damage, injury, loss of life and threaten the existence of some species. Society recognizes
588	the need to plan for the protection of communities from extreme events of various kinds.
589	Structural measures (such as engineering works), governance measures (such as zoning
590	and building codes), financial instruments (such as insurance and contingency funds) and
591	emergency measures practices have all been used to lessen the impacts of historical
592	extremes. To the extent that changes in extremes can be reliably forecast, society can
593	engage in practices that would mitigate future impacts.

595	Global and regional climate patterns have changed throughout the history of our planet.
596	Prior to the Industrial Revolution, these changes occurred due to natural causes, including
597	variations in the Earth's orbital parameters, volcanic eruptions, and fluctuations in solar
598	output. Since the late nineteenth century, atmospheric concentrations of carbon dioxide
599	and other trace greenhouse gases (GHG) have been increasing due to human activity,
600	such as fossil-fuel combustion and land-use change. On average, the world has warmed
601	by 0.74°C over the last century with most of that coming in the last three decades, as
602	documented by instrumental observations of air temperature over land and ocean surface
603	temperature (IPCC, 2007a; Arguez, 2007; Lanzante et al., 2006). These observations are
604	corroborated by, among many examples, the shrinking of mountain glaciers (Barry,
605	2006), later lake and river freeze dates and earlier thaw dates (Magnuson et al., 2000),
606	earlier blooming of flowering plants (Cayan et al., 2001), earlier spring bird migrations
607	(Sokolov, 2006), thawing permafrost and associated shift in ecosystem functioning,
608	shrinking sea ice (Arctic Climate Impact Assessment, 2004), earlier spring events and
609	shifts of plant and animal ranges both poleward and up mountainsides both within the
610	U.S. (Parmesan and Galbraith, 2004) and globally (Walther et al., 2002; Parmesan and
611	Yohe, 2003; Root et al., 2003; Parmesan 2006). Most of the recent warming observed
612	around the world has very likely been due to observed changes in GHG concentrations
613	(IPCC, 2007a). The continuing increase in GHG concentration is projected to result in
614	additional warming of the global climate by 1.1 to 6.4°C by the end of this Century
615	(IPCC, 2007a).

617	Extremes are already having significant impacts on North America. As examination of
618	Figure 1.1 reveals, it is a rare year when the United States doesn't have any billion dollar
619	weather and climate-related disasters. Furthermore, the costs of weather and climate-
620	related disasters in the U.S. have been increasing faster than non-weather related disaster
621	costs (Hazards and Vulnerability Research Institute, 2007). For the world as a whole,
622	"weather-related [insured] losses in recent years have been trending upward much faster
623	than population, inflation, or insurance penetration, and faster than non-weather-related
624	events" (Mills, 2005a). Numerous studies indicate that both the climate and the socio-
625	economic vulnerability to weather and climate extremes are changing, although their
626	relative contributions to observed increases in disaster costs are subject to debate. For
627	example the extent to which increases in coastal building damage is due to population
628	growth ¹ in vulnerable coastal locations versus increase in storm intensity is not easily
629	quantified. Though the causes of the current damage increases are difficult to
630	quantitatively assess, it is clear that any change in extremes will have a significant
631	impact.
632	
633	Hurricanes and tropical storms are the leading cause of billion dollar weather and climate

events followed by floods, droughts and heat waves.. It should be noted that partitioning

635 losses into the different categories is often not clear cut. For example, tropical storms also

- 636 contribute to damages that were categorized as flooding and coastal. The annual mean
- 637 loss of life from weather extremes in the U.S. exceeds 1,500 per year (Kunkel *et al.*,
- 638 1999) without including such factors as fog-related traffic fatalities. Approximately half

¹ Since 1980, the U.S. coastal population growth has generally reflected the same rate of growth as the entire nation (Crossett *et al.*, 2004).

639	of these deaths are related to hypothermia due to extreme cold, with extreme heat
640	responsible for another one-fourth of the fatalities. There appears to be no trend in the
641	number of these deaths (Goklany and Straja, 2000). However, it should be noted that
642	these statistics were compiled before the 1,400 hurricane-related fatalities in 2004-2005
643	(Chowdhury and Leatherman, 2007).
644	
645	Natural systems display complex vulnerabilities to climate change that sometimes are not
646	evident until after the event. According to van Vliet and Leemans (2006), "the
647	unexpected rapid appearance of ecological responses throughout the world" can be
648	explained largely by the observed changes in extremes over the last few decades. Insects
649	in particular have the ability to respond quickly to climate amelioration by increasing in
650	abundances and/or increasing numbers of generations per year, which has resulted in
651	widespread mortality of previously healthy trees (Logan et al., 2003). The observed
652	warming-related biological changes may have direct adverse effects on biodiversity,
653	which in turn may impact ecosystem stability, resilience, and ability to provide societal
654	goods and services (Parmesan and Galbraith, 2004; Arctic Climate Impact Assessment,
655	2004). The greater the change in global mean temperature, the greater will be the change
656	in extremes and their consequent impacts on species and systems.
657	
658	This introductory chapter addresses various questions that are relevant to the points raised

above. Section 1.2 focuses on defining characteristics of extremes. Section 1.3 discusses
 the sensitivities of socio-economic and natural systems to changes in extremes. Factors
 that influence the vulnerability of systems to changes in extremes are described in section

662	1.4. As systems are already adapted to particular morphologies of extremes, section 1.5
663	explains why changes in extremes usually pose challenges. Section 1.6 describes how
664	actions taken in response to those challenges can either increase or decrease future
665	impacts of extremes. Lastly, in section 1.7, the difficulties in assessing extremes are
666	discussed. The chapter also includes several text boxes, which highlight a number of
667	topics related to particular extremes and their impacts, as well as analysis tools for
668	assessing impacts.
669	

670 **1.2 Extremes Are Changing**

671 When most people think of extreme weather or climate events, they focus on short-term 672 intense episodes. However, this perspective ignores longer-term, more cumulative events, 673 such as droughts. Thus, rather than defining extreme events solely in terms of temporal 674 considerations, it is useful to look at them from a statistical point of view. If one plots all 675 values of a particular variable, such as temperature, the values most likely will fall within 676 a typical bell-curve with many values near average and fewer occurrences of values far 677 away from the average. Extreme temperatures are in the tails of such distributions, as 678 shown in the top panel of Figure 1.2. 679

680	According to the	Glossary of the	e Intergovernmental	Panel on	Climate	Change ((IPCC)
-----	------------------	-----------------	---------------------	----------	---------	----------	--------

Fourth Assessment Report (IPCC, 2007a), "an extreme weather event is an event that is

- rare at a particular place and time of year. Definitions of *rare* vary, but an extreme
- 683 weather event would normally be as rare as or rarer than the 10th or 90th percentile² of

² On average, one in every ten temperature values is cold enough to be at or below the 10^{th} percentile just as one in every ten temperature values is hot enough to be at or above the 90^{th} percentile.

684	the observed probability density function ³ . By definition, the characteristics of what is
685	called extreme weather may vary from place to place in an absolute sense. When a
686	pattern of extreme weather persists for some time, such as a season, it may be classed as
687	an extreme climate event, especially if it yields an average or total that is itself extreme
688	(e.g., <i>drought</i> or heavy rainfall over a season)." Extreme climate events such as drought
689	can often be viewed similarly to the tails on the temperature distribution.

691 Daily precipitation, however, has a distribution which is very different than the 692 temperature distribution. Over most of North America, the majority of days have no 693 precipitation at all. Of the days where some rain or snow does fall, many have very light 694 precipitation while only a few have heavy precipitation, as illustrated by the bottom panel 695 of Figure 1.2. Extreme value theory is a branch of statistics that fits a probability 696 distribution to historical observations. The tail of the distribution can be used to estimate 697 the probability of very rare events. This is the way the 100-year flood level can be 698 estimated using 50 years of data. One problem with relying on historical data is that some 699 extremes are far outside the observational record. For example, the heat wave that struck 700 Europe in 2003 was so far outside natural variability that public health services were 701 unprepared for the excess mortality (see Figure 1.3). Climate change is likely to increase 702 the severity and frequency of extreme events for both statistical and physical reasons. 703 704 Wind is one parameter where statistics derived from all observations are not generally

705

used to define what is an extreme. This is because most extreme wind events are

³ A probability density function is the distribution of the probabilities of all different possible weather or climate events which is depicted by the heavy black lines in Figure 1.2.

generated by special meteorological conditions that are well known. For purposes of this
report, all tornadoes and hurricanes are considered extreme. Extreme wind events
associated with other phenomena, such as blizzards or nor'easters, tend to be defined by
thresholds based on impacts rather than statistics or are just one aspect of the measure of
intensity of these storms.

711

712 Most considerations of extreme weather and climate events are limited to discrete 713 occurrences. However, in some cases, events that occur repeatedly can have impacts 714 greater than the simple sum of each individual event. For example, the ice storm that 715 occurred in eastern Ontario and southern Quebec in 1998 was the most destructive and 716 disruptive storm in Canada in recent memory. The storm featured record amounts of 717 freezing rain and sleet in a series of storms over a record number of hours. Further, the 718 storm brutalized an area extending nearly 1000 km which included one of the largest 719 urban areas of Canada, leaving more than 4 million people freezing in the dark for hours, 720 if not days. The conditions were so severe that no clean-up action could be taken between 721 storms and the ice built up, stranding even more people at airports, bringing down high-722 tension transmission towers, and straining food supplies. Such cumulative events need 723 special consideration.

724

Also, compound extremes are conditions that depend on two or more parameters. For example, heat waves have greater impacts on human health when they are accompanied by high humidity. Additionally, problems with one extreme, such as a windstorm, may only be present if it is preceded by a different extreme, such as drought, which would, in
this example, result in far more wind-blown dust than the storm would generate withoutthe drought.

731

732	As the global climate continues to adjust to changes in radiative forcing brought on by
733	increasing concentrations of GHG in the atmosphere, many different aspects of extremes
734	have the potential to change as well (Easterling et al., 2000a,b). The most commonly
735	considered parameter is frequency. Is the extreme occurring more frequently? Will
736	currently rare events become commonplace in 50 years? Changes in intensity are as
737	important as changes in frequency. Are, for example, hurricanes becoming more intense?
738	This is important because, as explained in the box on hurricanes, damage increases
739	exponentially with the speed of the wind so a more intense hurricane causes much more
740	destruction than a weak hurricane.

741

742 Frequency and intensity are only two parts of the puzzle. There are also temporal 743 considerations, such as time of occurrence and duration. For example, the timing of peak 744 snow melt in the western mountains has become earlier (Johnson et al., 1999; Cayan et 745 al. 2001). Earlier snowmelt in the Sierra Nevada Mountains means a longer dry season 746 with far-reaching impacts on the ecologies of plant and animal communities, fire threat 747 and human water resources. Indeed, in the American West, wildfires are strongly 748 associated with increased spring and summer temperatures and correspondingly earlier 749 spring snowmelt in the mountains (Westerling et al., 2006). In Canada, human-induced warming of summer temperatures has a detectable influence on the increased area burned 750 751 by forest fires in recent decades (Gillett et al., 2004). Changing the timing and/or number

752	of wildfires might pose threats to certain species by overlapping with their active seasons
753	(causing increased deaths) rather than occurring during a species' dormant phase (when
754	they are less vulnerable). Further, early snowmelt reduces summer water resources,
755	particularly in California where summer rains are rare. The duration of events (such as
756	heat waves, flood-inducing rains, and droughts), is also potentially subject to change.
757	Spatial characteristics also need to be considered. Is the size of the impact area changing?
758	In addition to the size of the individual events, the location is subject to change. For
759	example, is the region susceptible to freezing rain moving farther north?
760	
761	Therefore, the focus of this assessment is not only the meteorology of extreme events, but
762	how climate change might alter the characteristics of extremes. Figure 1.4 illustrates how
763	the tails of the distribution of temperature and precipitation are anticipated to change in a
764	warming world. For temperature both the mean and the tails of the distributions are
765	expected to warm. While the change in the number of average days may be small, the
766	percentage change in the number of very warm and very cold days can be quite large. For
767	precipitation, model and observational evidence indicates an increase in the number of
768	heavy rain events which are balanced by a proportionate decrease in the number of light
769	precipitation events.

771 **1.3 Systems Are Sensitive to Changes in Extremes**

772 Climate sensitivity is defined as the degree to which a system is affected by climate-

related stimuli. The effect may be direct, such as changing crop yield due to variations in

temperature or precipitation, or indirect, such as the decision to build a house in a

775	location based on insurance rates, which can change due to flood risk caused by sea level
776	rise (IPCC, 2007b). Indicators of climate sensitivity can include changes in, timing of life
777	events, or distributions of individual species, or alteration of whole ecosystem
778	functioning (Parmesan and Yohe, 2003; Parmesan and Galbraith, 2004).
779	
780	Climate sensitivity directly impacts the vulnerability of a system or place. As a result,
781	managed systems, both rural and urban, are constantly adjusting to changing perceptions
782	of risks and opportunities. For example, hurricane destruction can lead to the adoption of
783	new building codes (or enforcement of existing codes) and the implementation of new
784	construction technology, which alter the future climate sensitivity of the community.
785	Further, artificial selection and genetic engineering of crop plants can adjust agricultural
786	varieties to changing temperature and drought conditions. Warrick (1980) suggested that
787	the impacts of extreme events would gradually decline because of improved planning and
788	early warning systems. Ausubel (1991) went further, suggesting that irrigation, air
789	conditioning, artificial snow making, and other technological improvements, were
790	enabling society to become more climate-proof. While North American society is not as
791	sensitive to extremes as it was 400 years ago - for example, a megadrought in Mexico
792	mid to late 1500s contributed to conditions that caused tremendous population declines as
793	illustrated by Figure 1.5 — socio-economic systems are still far from being climate-
794	proof.
795	
796	Society is clearly altering relationships between climate and society, and thereby

sensitivities to climate. However, this is not a unidirectional change. Societies make

798	decisions that alter regional-scale landscapes (urban expansion, pollution, land-use
799	change, water withdrawals) which can increase or decrease both societal and ecosystem
800	sensitivities (e.g., Mileti, 1999; Glantz, 2003). Contrary to an anticipated gradual decline
801	in impacts, recent droughts have resulted in increased economic losses and conflicts
802	(Riebsame et al., 1991; Wilhite, 2005). The increased concern about El Niño's impacts
803	reflect a heightened awareness of its effects on extreme events worldwide, and growing
804	concerns about the gap between scientific information and adaptive responses by
805	communities and governments (Glantz, 1996). In the U.S. Disaster Mitigation Act of
806	2000, Congress specifically wrote that a "greater emphasis needs to be placed on
807	implementing adequate measures to reduces losses from natural disasters."
808	
809	Many biological processes undergo sudden shifts at particular thresholds of temperature
810	or precipitation (Precht et al., 1973; Weiser, 1973; Hoffman and Parsons, 1997). The
811	adult male/female sex ratios of certain reptile species such as turtles and snakes are
812	determined by the extreme maximum temperature experienced by the growing embryo
813	(Bull, 1980; Bull and Vogt, 1979; Janzen, 1994). A single drought year has been shown
814	to affect population dynamics of many insects, causing drastic crashes in some species
815	(Singer and Ehrlich, 1979; Ehrlich et al., 1980; Hawkins and Holyoak, 1998) and
816	population booms in others (Mattson and Haack, 1987). The nine-banded armadillo
817	(Dasypus novemcinctus) cannot tolerate more than nine consecutive days below freezing
818	(Taulman and Robbins, 1996). The high sea surface temperature (SST) event associated
819	with El Niño in 1997-98 ultimately resulted in the death of 16% of the world's corals
820	(Hoegh-Guldberg 1999, 2005; Wilkinson 2000); see the box on coral bleaching for more

821	information. Further, ecosystem structure and function are impacted by major disturbance
822	events, such as tornadoes, floods, and hurricanes (Pickett and White, 1985; Walker,
823	1999). Warming winters, with a sparse snow cover at lower elevations, have led to false
824	springs and subsequent population declines and extirpation in certain butterfly species
825	(Parmesan, 1996, 2005).
826	
827	By far, most of the documented impacts on natural systems have been ecological in
828	nature. Observed ecological responses to local, regional and continental warming include
829	changes in species' distributions, changes in species' phenologies (the timing of the
830	different phases of life events) and alterations of ecosystem functioning (Walther et al.,
831	2002; Parmesan and Yohe, 2003; Root et al., 2003; Parmesan and Galbraith, 2004;
832	Parmesan, 2006; IPCC 2007b). Changes in species' distributions include a northward and
833	upward shift in the mean location of populations of the Edith's checkerspot butterfly in
834	western North America of a magnitude approximately equal to the degree expected from
835	the observed shift in thermal isotherms from 0.7 C warming – about 100 km northward
836	and 100 m upward (Parmesan, 1996; Karl et al., 1996). Phenological (e.g., timing)
837	changes includes lilac blooming 1.5 days earlier per decade and honeysuckle blooming
838	3.5 days earlier per decade since the 1960s in the western U.S. (Cayan et al., 2001). In
839	another example, tree swallows across the U.S. and southern Canada bred about 9 days
840	earlier from 1959 to 1991, mirroring a gradual increase in mean May temperatures (Dunn
841	and Winkler, 1999). One of the clearest examples of the impacts of warming on whole
842	ecosystem functioning comes from the Arctic tundra, where warming trends have been
843	considerably stronger than in the contiguous U.S. Melting and drying of the permafrost

844	layer has caused an increase in decomposition rates of dead organic matter during winter,
845	which ultimately in some areas has already resulted in a shift from the tundra being a
846	carbon sink to being a carbon source (Oechel et a., 1993; Oechel et al., 2000).
847	
848	Very few behavioral changes have been observed, but there is some evidence that
849	individuals of the sooty shearwater have shifted their migration pathway from the coastal
850	California current to a more central Pacific pathway, apparently in response to a
851	warming-induced shift in regions of high productivity during their summer flight (Spear
852	and Ainley, 1999; Oedekoven et al., 2001). Evolutionary studies of climate change
853	impacts are also few (largely due to dearth of data), but it is clear that genetic responses
854	have already occurred (Parmesan, 2006). Genetic changes in local populations have taken
855	place resulting in much higher frequencies of individuals who are warm-adapted (e.g., for
856	fruit flies; Rodriguez-Trelles and Rodriguez, 1998; Levitan, 2003; Balanya et al., 2006),
857	or can disperse better (e.g., for the bush cricket; Thomas et al., 2001). For species-level
858	evolution to occur, either appropriate novel mutations or novel genetic architecture (i.e.,
859	new gene complexes) would have to emerge to allow a response to selection for increased
860	tolerance to more extreme climate than the species is currently adapted to (Parmesan et
861	al., 2000; Parmesan et al., 2005). However, so far there is no evidence for change in the
862	absolute climate tolerances of a species, and hence no indication that evolution at the
863	species level is occurring, nor that it might occur in the near future (Parmesan, 2006).
864	
865	Ecological impacts of climate change on natural systems are beginning to have carry-over

866 impacts on human health (Parmesan and Martens, 2007). The best example comes from

867 the bacteria which causes human cholera, Vibrio cholerae, which lives in brackish rivers 868 and sea water and uses a diversity of marine life as reservoirs, including many shellfish, 869 some fish, and even water hyacinth. Two-hundred years of observational records strong 870 repeated patterns in which extreme warm water temperatures cause algae blooms which 871 then promote rapid increases in zooplankton abundances, and hence also in their 872 associated V. cholerae bacteria (Colwell, 1996). Analyses of long-term data sets from 873 Peru and Bangladesch (from 18 years up to 70 years) show that cholera has recently 874 become associated with El Niño events, suggesting a threshold for high transmission as 875 only recently been commonly surpassed as El Niño events have become stronger and 876 more frequent in the past three decades (Pascual et al., 2000: Rodó et al., 2002). Even 877 when known epidemiological dynamics are taken into account (such as cycling of 878 immunity in human populations), a strong El Niño signal in cholera dynamics is 879 maintained (Koelle et al., 2005). In summary, there is compelling evidence for links 880 between climate variability, climate change (via increases in strength of El Niño), native 881 plankton dynamics, bacterial dynamics in the wild, and cholera disease epidemics. 882

883 1.4 Future Impacts of Changing Extremes Also Depend on System Vulnerability

Climate change presents a significant risk management challenge, and dealing with weather and climate extremes is one of its more demanding aspects. In human terms, extreme events are important precisely because they expose the vulnerabilities of communities and the infrastructure on which they rely. Extreme weather and climate events are not simply hydrometeorological occurrences. They impact socio-economic systems and are often exacerbated by other stresses, such as social inequalities, disease,

890	and conflict. Extreme events can threaten our very well-being. Understanding
891	vulnerabilities from weather and climate extremes is a key first step in managing the risks
892	of climate change.
893	

894 According to IPCC (2007b), "vulnerability to climate change is the degree to which 895 systems are susceptible to, and unable to cope with, adverse impacts." Vulnerability is a 896 function of the character, magnitude, and rate of climate variation to which a system is 897 exposed, its sensitivity, and its adaptive capacity. A system can be sensitive to change but 898 not vulnerable, such as agriculture in North America; or relatively insensitive but highly 899 vulnerable. An example of the latter is incidence of diarrhea (caused by a variety of 900 water-borne organisms) in less developed countries. Diarrhea, which is not correlated 901 with temperatures in the U.S. because of highly-developed sanitation facilities, shows a 902 strong correlation with high temperatures in Lima, Peru (Checkley et al., 2000; WHO, 903 2003, 2004). Thus, vulnerability is highly dependent on robust societal infrastructures, 904 which have been shown to break down under flood events even in the U.S. (Curreriero et 905 al., 2001). Systems that normally survive are those well adapted to the more frequent 906 forms of low-damage events. On the other hand, the less frequent high-damage events 907 can overwhelm the ability of any system to quickly recover.

908

909 The adaptive capacity of socio-economic systems is determined largely by their

910 characteristics such as poverty and resource availability, which often can be managed.

911 Communities with little adaptive capacities are those with limited economic resources,

912 low levels of technology, weak information systems, poor infrastructure, unstable or

913	weak institutions, and uneven access to resources. Enhancement of social capacity,
914	effectively addressing some of the exacerbating stresses, represents a practical means of
915	coping with changes and uncertainties in climate. However, despite advances in
916	knowledge and technologies, costs appear to be a major factor in limiting the adoption of
917	adaptation measures (White et al., 2001).
918	
919	Communities can often achieve significant reductions in losses from natural disasters by
920	adopting land-use plans that avoid the hazards, <i>e.g.</i> , by not allowing building in a
921	floodplain. Building codes are also effective for reducing disaster losses but they need to
922	be enforced. For example, more than 25% of the damage from Hurricane Andrew could
923	have been prevented if the existing building codes had been enforced (Board on Natural
924	Disasters, 1999). The first major industry sector to pay attention to the threats posed by
925	climate change was insurance, which recognized the steady increase in claims paralleling
926	an increase in the number and severity of extreme weather and climate events – a trend
927	that is expected to continue. The insurance industry in fact has an array of
928	instruments/levers that can stimulate policy-holders to take actions to adapt to future
929	extremes. These possibilities are increasingly being recognized by governments. When
930	such measures take effect, the same magnitude event can have less impact, as illustrated
931	by the top panel of Figure 1.6.
932	
933	Extreme events themselves can alter vulnerability and expose underlying stresses. There
934	are obvious response times for recovery from the effects of any extreme weather or

935 climate event – ranging from several decades in cases of significant loss of life, to years

936	for the salinization of agricultural land following a tropical storm, to several months for
937	stores to restock after a hurricane. A series of extreme events that occurs in a shorter
938	period than the time for recovery can exacerbate the impacts as illustrated in the bottom
939	panel of Figure 1.6. For example, in 2005 there was a series of hurricanes that made
940	landfall in Florida; these occurred close enough in time and space that it often proved
941	impossible to recover from one hurricane before the next arrived. Hardware stores and
942	lumberyards were not able to restock quickly enough. A multitude or sequence of
943	extreme events can also strain the abilities of insurance and re-insurance companies to
944	compensate victims. Extremes can also initiate adaptive responses. For example,
945	droughts in the 1930s triggered waves of human migration that altered the demographics
946	of the United States. After the 1998 eastern Canadian ice storm the design criteria for
947	freezing rain on high-voltage power and transmission lines were changed to
948	accommodate radial ice accretion of 25 mm in the Great Lakes region to 50 mm for
949	Newfoundland and Labrador (Canadian Standards Association, 2001).
950	
951	Factors such as societal exposure, vulnerability, and sensitivity to weather and climate
952	can play a significant role in determining whether a weather or climate event is
953	considered extreme. In fact, an extreme weather or climate event, defined solely using
954	statistical properties, may not be perceived to be an extreme if it affects an exposure unit ⁴
955	that is designed to withstand that extreme. Conversely, a weather or climate event that is
956	not extreme in a statistical sense might still be considered an extreme event because of
957	the resultant impacts. Case in point, faced with an extended dry spell, consider the
958	different effects and responses in a city with a well-developed water supply infrastructure

⁴ An exposure unit can be a person, home, city, or animal or plant community.

959 and a village in an underdeveloped region with no access to reservoirs. These differences 960 also highlight the role of adaptive capacity in a society's response to an extreme event. 961 Wealthy societies will be able to devote the resources needed to construct a water supply 962 system that can withstand an extended drought. 963 964 Given the relationship between extreme events and their resultant socio-economic 965 impacts, it would seem that the impacts alone would provide a good way to assess 966 changes in extremes. Unfortunately, attempts to quantify trends in the impacts caused by extreme events are hindered by the difficulty in obtaining loss-damage records. As a 967 968 result, there have been many calls for improvements in how socio-economic data are 969 collected (Changnon, 2003; Cutter and Emrich, 2005; National Research Council, 1999). 970 However, there is no government-level coordinated mechanism for collecting data on all 971 losses or damage caused by extreme events. A potentially valuable effort, led by the 972 Hazards Research Lab at the University of South Carolina, is the assembly of the Spatial 973 Hazard Events and Losses Database for the United States (Cutter et al., 2007). If 974 successful, this effort could provide standardized guidelines for loss estimation, data 975 compilation, and metadata standards. Without these types of guidelines, a homogeneous 976 national loss inventory will remain a vision and it will not be possible to precisely and 977 accurately detect and assess trends in losses and quantify the value of mitigation. 978 979 To date most efforts at quantifying trends in losses caused by impacts are based on 980 insured loss data or on total loss (insured plus non-insured losses) estimates developed by 981 insurers. Unfortunately, the details behind most of the insured loss data are proprietary

982	and only aggregated loss data are available. The relationship between insured losses and
983	total losses will likely vary as a function of extreme event and societal factors such as
984	building codes, the extent of insurance penetration, and more complex societal factors.
985	The National Hurricane Center generally assumes that for the United States, total losses
986	are twice insured loss estimates. However, this relationship will not hold for other
987	countries or other weather phenomena.

989 Regardless of the uncertainties in estimating insured and total losses, it is clear that the 990 absolute dollar value of losses from extreme events has increased over the past few 991 decades, even after accounting for the effects of inflation (see Figure 1.1). However, 992 much of the increasing trend in losses, particularly from tropical cyclones, appears to be 993 related to an increase in population and wealth (Pielke *et al.*, 2003; Pielke, 2005; Pielke 994 and Landsea, 1998). The counter argument is that there is a climate change signal in 995 recent damage trends. Similarly, those damage trends have increased significantly despite 996 ongoing adaptation efforts that have been taking place (Mills, 2005b; Stott et al., 2004; 997 Kunkel *et al.*, 1999). A number of other complicating factors also play a role in 998 computing actual losses. For example, all other things being equal, the losses from 999 Hurricane Katrina would have been dramatically lower if the dikes had not failed. In 1000 addition, the potential for an increase in storm intensity (e.g., tropical cyclone wind 1001 speeds and precipitation) (Knutson and Tuleya, 2003) and the intensity of the

- 1002 hydrological cycle⁵ (Trenberth *et al.*, 2003) raises the possibility that changes in climate 1003 extremes will contribute to an increase in loss.
- 1004

1005 Another confounding factor in assessing extremes through their impacts is that an 1006 extreme event that lasts for a few days or even less can have impacts that persist for 1007 decades. For example, it will take years for Honduras and Guatemala to recover from the 1008 damage caused by Hurricane Mitch in 1998 and it seems likely that New Orleans will 1009 need years to recover from Hurricane Katrina. Furthermore, extreme events not only 1010 produce "losers" but "winners" too. Examples of two extreme-event winners are the 1011 construction industry in response to rebuilding efforts and the tourism industry at 1012 locations that receive an unexpected influx of tourists who changed plans because their 1013 first-choice destination experienced an extreme event that crippled the local tourism 1014 facilities. Even in a natural ecosystem there are winners and losers. For example, the 1015 mountain pine beetle infestation in British Columbia has been warmly greeted as a dinner 1016 bell by woodpeckers. 1017 1018 1.5 Systems are Adapted to Particular Morphologies of Extremes so Changes in 1019 **Extremes Pose Challenges**

- 1020 Over time, socio-economic and natural systems adapt to their climate, including
- 1021 extremes. Snowstorms that bring traffic to a standstill in Atlanta are shrugged off in
- 1022 Minneapolis. Hurricane-force winds that topple tall non-indigenous Florida trees like the
- 1023 Australian pine (*Casuarina equisetifolia*) may only break a few small branches from the

⁵ The hydrologic cycle is the continuous movement of water on, above and below the surface of the Earth where it evaporates from the surface, condenses in clouds, falls to Earth as rain or snow, flows downhill in streams and rivers and then evaporates again.

1024	native live oak (Quercus virginiana) or gumbo-limbo (Bursera simaruba) trees that
1025	evolved in areas frequented by strong winds. Some species even depend on major
1026	extremes happening. For example, the jack pine (Pinus banksiana) produces very durable
1027	resin-filled cones that remain dormant until wildfire flames melt the resin. Then the cones
1028	pop open and spread their seeds (Herring, 1999).
1029	
1030	Therefore, it is less a question of whether extremes are good or bad, but rather, what will
1031	be the impact of their changing characteristics? For certain species and biological
1032	systems, various processes may undergo sudden shifts at specific thresholds of
1033	temperature or precipitation (Precht et al., 1973; Weiser, 1973; Hoffman and Parsons,
1034	1997), as discussed in section 1.3. Generally, managed systems are more buffered against
1035	extreme events than natural systems, but certainly are not immune to them. The heat
1036	waves of 1995 in Chicago and 2003 in Europe caused considerable loss of life in large
1037	part because building architecture and city design were adapted for more temperate
1038	climates and not adapted for dealing with such extreme and enduring heat (Patz et al.,
1039	2005). On balance, because systems have adapted to their historical range of extremes,
1040	the majority of the impacts of events outside this range are negative (IPCC, 2007b).
1041	
1042	When considering how the statistics of extreme events have changed, and may change in
1043	the future, it is important to recognize how such changes may affect efforts to adapt to

1044 them. Adaptation is important because it can reduce the extent of damage caused by

1045 extremes (*e.g.*, Mileti, 1999; Wilhite, 2005). Currently, long-term planning uses, where

1046 possible, the longest historical time series, including consideration of extreme events. The

1047 combined probabilities of various parameters that can occur at any given location can be
1048 considered the cumulative hazard of a place. Past observations lead to expectations of
1049 their recurrence, and these form the basis of building codes, infrastructure design and
1050 operation, land-use zoning and planning, insurance rates, and emergency response plans.
1051

However, what would happen if statistical attributes of extreme events were to change as the climate changes? Individuals, groups, and societies would seek to adjust to changing exposure. Yet the climate may be changing in ways that pose difficulties to the historical decision-making approaches (Burton *et al.*, 1993). The solution is not just a matter of utilizing global climate model projections. It is also involves translating the projected changes in extremes into changes in risk.

1058

1059 Smit *et al.* (2000) outline an "anatomy" of adaptation to climate change and variability, 1060 consisting of four elements: a) adapt to what, b) who or what adapts, c) how does 1061 adaptation occur, and d) how good is the adaptation. Changing extreme statistics will 1062 influence the adaptation. As noted earlier, a change in the frequency of extreme events 1063 may be relatively large, even though the change in mean is small. Increased frequencies 1064 of extreme events could lead to reduced time available for recovery, altering the 1065 feasibility and effectiveness of adaptation measures. Changes to the timing and duration 1066 of extremes, as well as the occurrence of new extreme thresholds (e.g., greater 1067 precipitation intensity, stronger wind speeds), would be a challenge to both managed and 1068 unmanaged systems.

1069

1070 Trends in losses or productivity of climate-sensitive goods exhibit the influences of both 1071 climate variability/change and ongoing behavioral adjustments. For example, U.S. crop 1072 yields have generally increased with the introduction of new technologies. As illustrated 1073 by Figure 1.7, climatic variability still causes short-term fluctuations in crop production, 1074 but a poor year in the 1990s tends to have better yields than a poor year (and sometimes 1075 even a good year) in the 1960s. Across the world, property losses show a substantial 1076 increase in the last 50 years, but this trend is being influenced by both increasing property 1077 development and offsetting adaptive behavior. For example, economic growth has 1078 spurred additional construction in vulnerable areas but the new construction is often 1079 better able to withstand extremes than older construction. Future changes in extreme 1080 event will be accompanied by both autonomous and planned adaptation, which will 1081 further complicate calculating losses due to extremes. 1082

1083 **1.6 Actions Can Increase or Decrease the Impact of Extremes**

1084 It is important to note that most people do not use climate and weather data, and forecasts 1085 directly. People who make decisions based on meteorological information typically base 1086 their decisions on the output of an intermediate model that translates the data into a form 1087 that is more relevant for their decision process (Figure 1.8). For example, a farmer will 1088 not use weather forecasts or climate data directly when making a decision on when to 1089 fertilize a crop or on how much pesticide to apply. Instead, the forecast is filtered through 1090 a model or mental construct that uses such information as one part of the decision process 1091 and includes other inputs such as crop type, previous pesticide application history,

government regulations, market conditions, producer recommendations, and theprevalence and type of pest.

1094

One useful decision tool is a plant hardiness zone map (Cathey, 1990). Plant hardiness
zones are primarily dependent on extreme cold temperatures. Already due to changing
locations of plant hardiness zones, people are planting fruit trees such as cherries farther
north than they did 30 years ago as the probability of winterkill has diminished. This type
of adaptation is common among farmers who continually strive to plant crop species and
varieties well suited to their current local climate.

1101

1102 To a large extent, individual losses for hazard victims have been reduced as the larger 1103 society absorbs a portion of their losses through disaster relief and insurance. Clearly 1104 relevant for settings such as New Orleans is the so-called levee effect, first discussed by 1105 Burton (1962), in which construction of levees (dams, revetments, beach nourishment) 1106 induces additional development leading to much larger losses when the levee is 1107 eventually overtopped. A more general statement of this proposition is found in the safe 1108 development paradox in which increased safety (e.g., flood control) induces increased 1109 development (such as in areas considered safe due to the protection provided by levees or 1110 dams) leading to increased losses when a major event hits. The notion that cumulative 1111 reduction of smaller scale risks might increase vulnerability to large events has been 1112 referred to as the *levee effect* even when the concern has nothing to do with levees 1113 (Bowden et al., 1981).

1114

1115 After particularly severe or visible catastrophes, policy windows have been identified as 1116 windows of opportunity for creating long-term risk reduction plans which can include 1117 adaptation for climate change. A policy window opens when the opportunity arises to 1118 change policy direction and is thus an important part of agenda setting (Kingdon, 1995). 1119 Policy windows can be created by triggering or focusing events, such as disasters, as well 1120 as by changes in government and shifts in public opinion. Immediately following a 1121 disaster, the social climate may be conducive to much needed legal, economic, and social 1122 change, which can begin to reduce structural vulnerabilities. Indeed, an extreme event 1123 that is far out of normal experience can wake society up to the realization that extremes 1124 are changing and that society must adapt to these changes. 1125 1126 The assumptions behind the utility of policy windows are that (1) new awareness of risks 1127 after a disaster leads to broad consensus, (2) agencies are reminded of disaster risks, and 1128 (3) enhanced community will and resources become available. However, during the post-1129 recovery phase, reconstruction requires weighing, prioritizing, and sequencing of policy 1130 programming, and there are usually too many mainstreaming agendas for most decision 1131 makers and operational actors to digest with attendant requests for resources for various 1132 actions. Thus, there is pressure to quickly return to the "normal" conditions prior to the 1133 event, rather than incorporate longer-term development strategies (Berube and Katz, 1134 2005; Christoplos, 2006). In addition, while adaptive institutions clearly matter, they are 1135 often not there in the aftermath (or even before the occurrence) of a disaster. 1136

1137	In contrast to the actual reconstruction plans, the <i>de facto</i> decisions and rebuilding
1138	undertaken ten months after Katrina clearly demonstrate the rush to rebuild the familiar,
1139	as found after other major disasters in other parts of the world (Kates et al., 2006). This
1140	perspective helps explain the evolution of vulnerability of settings such as New Orleans,
1141	where smaller events have been mitigated, but with attendant increases in long-term
1142	vulnerability. As in diverse contexts such as El Niño-Southern Oscillation (ENSO)
1143	related impacts in Latin America, induced development below dams or levees in the
1144	United States, and flooding in the United Kingdom, the result is that focusing only on
1145	short-term risk reduction can actually produce greater vulnerability to future events
1146	(Pulwarty et al., 2003). Thus, the evolution of responses in the short-term after each
1147	extreme event can appear logical, but might actually increase long-term risk to larger or
1148	more frequent events. Adaptation to climate change must be placed within the context of
1149	adaptation to climate across time scales (from extremes and interannual variability
1150	through long-term change) if it is to be embedded into effective response strategies.
1151	
1152	According to the Stern Review on the economics of climate change (Stern, 2006), "many
1153	developing countries are already struggling to cope with their current climate. Both the
1154	economic costs of natural disasters and their frequency have increased dramatically in the
1155	recent past. Global losses from weather-related disasters amounted to a total of around
1156	\$83 billion during the 1970s, increasing to a total of around \$440 billion in the 1990s
1157	with the number of 'great natural catastrophe' events increasing from 29 to 74 between
1158	those decades. The financial costs of extreme weather events represent a greater

1159 proportion of GDP loss in developing countries, even if the absolute costs are more in

1160	developed countries given the higher monetary value of infrastructure. And over 96% of
1161	all disaster-related deaths worldwide in recent years have occurred in developing
1162	countries. Climatic shocks can - and do - cause setbacks to economic and social
1163	development in developing countries. The IMF, for example, estimates costs of over 5%
1164	of GDP per large disaster on average in low-income countries between 1997 and 2001."
1165	Given the high costs, wise adaptation has ample opportunity to save money in the long
1166	run.
1167	
1168	1.7 Assessing Impacts of Changes in Extremes Is Difficult
1169	As has been mentioned, assessing consequences relevant to extreme weather and climate

1171 critically on the vulnerability of the system being impacted. Thus, the context in which

events is not simply a function of the hydrometeorological phenomena but depends

1172 these extreme events take place is crucial. This means that while the changes in extreme

1173 events are consistent with a warming climate (IPCC, 2007a), any analysis of past events

1174 or projection of future events has to carefully weigh non-climatic factors. In particular,

1175 consideration must be given to changes in demographic distributions and wealth. It is

1176 likely that part of the increase in economic losses shown in Figure 1.1 has been due to

1177 increases in population in regions that are vulnerable such as coastal communities

1178 affected by hurricanes, sea-level rise, and storm surges. In addition, property values have

1179 risen. These factors increase the sensitivity of our infrastructure to extreme events.

1180 Together with the expected increase in the frequency and severity of extreme events

1181 (IPCC 2007a), our vulnerability to extreme events is very likely to increase.

1182 Unfortunately, because many extreme events occur at small temporal and spatial scales,

1183	where model skill is currently limited and local conditions are highly variable,
1184	projections of future impacts cannot always be made with a high level of confidence.
1185	
1186	While anthropogenic climate change is very likely to affect the distribution of extreme
1187	events, it can be misleading to attribute any particular event solely to human causes.
1188	Nevertheless, scientifically valid statements regarding the increased risk can sometimes
1189	be made. A case in point is the 2003 heat wave in Europe, where it it is very likely that
1190	human influence at least doubled the risk of such a heat wave occurring (Stott et al.,
1191	2004). Furthermore, over time, there is expected to be some autonomous adaptation to
1192	experienced climate variability and other stresses. Farmers, for example, have
1193	traditionally altered their agricultural practices, such as planting different crop varieties,
1194	based on experience and water engineers have built dams and reservoirs to better manage
1195	resources during recurring floods or droughts. Such adaptation needs to be considered
1196	when assessing the importance of future extreme events.
1197	
1198	Assessing historical extreme weather and climate events is more complicated than just

the statistical analysis of available data. Intense rain storms are often of short duration and not always captured in standard meteorological records; however, they can often do considerable damage to urban communities, especially if the infrastructure has not been enhanced as the communities have grown. Similarly, intense wind events (hurricanes are a particular example), may occur in sparsely populated areas or over the oceans, and it is only since the 1960s, with the advent of satellite observations, that a comprehensive picture can be put together. Therefore, it is important to continually update the data sets

1206	and improve the analyses. For example, probabilistic estimates of rainfall intensities for a
1207	range of durations, from 5 minutes to 24 hours for return periods, or recurrence intervals
1208	of 20, 50, and 100 years, have long been employed by engineers when designing many
1209	types of infrastructure. In the United States, these probabilistic estimates of intense
1210	precipitation are in the process of being updated. Newer analysis based on up-to-date
1211	rainfall records often differ by more than 45% from analyses done in the 1970s (Bonnin
1212	<i>et al.</i> , 2003).

1214 **1.8 Summary and Conclusions**

1215 For good and for ill, weather and climate extremes have always been present. Both socio-1216 economic and natural systems are adapted to historical extremes. Changes from this 1217 historical range matter because people, plants, and animals tend to be more impacted by 1218 changes in extremes compared to changes in average climate. Extremes are changing, and 1219 in some cases impacts on socio-economic and natural systems have been observed. The 1220 vulnerability of these systems is a function not only of the rate and magnitude of climate 1221 change but also depends on the sensitivity of the system, the extent to which it is 1222 exposed, and its adaptive capacity. Vulnerability can be exacerbated by other stresses 1223 such as social inequalities, disease, and conflict, and can be compounded by changes in 1224 other extremes events (e.g., drought and heat occurring together) and by rapidly-recurring 1225 events. 1226

1227 Despite the widespread evidence that humans have been impacted by extreme events in

1228 the past, predicting future risk to changing climate extremes is difficult. Extreme

phenomena are often more difficult to predict than changes in mean climate. In addition,
systems are adapting and changing their vulnerability to risk in different ways. The
ability to adapt differs among systems and changes through time. Decisions to adapt to or
mitigate the effect of changing extremes will be based not only on our understanding of
climate processes but also on our understanding of the vulnerability of socio-economic
and natural systems.

1235

1236 BOX 1.1: Warm Temperature Extremes and Coral Bleaching

1237 Corals are marine animals that obtain much of their nutrients from symbiotic unicellular

algae that live protected within the coral's calcium carbonate skeleton. Elevated sea

1239 surface temperatures (SST), one degree C above long-term summer averages, lead to the

loss of algal symbionts resulting in bleaching of tropical corals (Hoegh-Guldberg, 1999).

1241 While global SST has risen an average of 0.13°C per decade since 1950 (IPCC, 2007a), a

1242 more acute problem for coral reefs is the increase in episodic warming events such as El

1243 Niño. High SSTs associated with the strong El Niño event in 1997-98 caused bleaching

1244 in every ocean (up to 95% of corals bleached in the Indian Ocean), ultimately resulting in

1245 16% of corals dying globally (Hoegh-Guldberg, 1999, 2005; Wilkinson, 2000).

1246

Recent evidence for genetic variation in temperature thresholds among the obligate algal symbionts suggests that some evolutionary response to higher water temperatures may be possible (Baker, 2001; Rowan, 2004). Changes in genotype frequencies toward increased frequency of high temperature-tolerant symbionts appear to have occurred within some coral populations between the mass bleaching events of 1997/1998 and 2000/2001 (Baker

1252	et al., 2004). However, other studies indicate that many entire reefs are already at their
1253	thermal tolerance limits (Hoegh-Guldberg, 1999). Coupled with poor dispersal of
1254	symbionts between reefs, this has led several researchers to conclude that local
1255	evolutionary responses are unlikely to mitigate the negative impacts of future temperature
1256	rises (Donner et al., 2005; Hoegh-Guldberg et al., 2002). Interestingly, though, hurricane-
1257	induced ocean cooling can temporarily alleviate thermal stress on coral reefs (Manzello et
1258	al., 2007).
1259	
1260	Examining coral bleaching in the Caribbean, Donner et al. (2007) concluded that "the

observed warming trend in the region of the 2005 bleaching event is unlikely to be due tonatural climate variability alone." Indeed, "simulation of background climate variability

1263 suggests that anthropogenic warming may have increased the probability of occurrence of

1264 significant thermal stress events for corals in this region by an order of magnitude. Under

1265 scenarios of future greenhouse gas emissions, mass coral bleaching in the eastern

1266 Caribbean may become a biannual event in 20–30 years." As coral reefs make significant

1267 contributions to attracting tourists to the Caribbean, coral bleaching has adverse socio-

1268 economic impacts.

1269

1270 BOX 1.2: Cold Temperature Extremes and Forest Beetles

1271 Forest beetles in western North America have been responding to climate change in ways

1272 that are destroying large areas of forests (see Figure 1.9). The area affected is 50 times

1273 larger than the area affected by forest fire with an economic impact nearly five times as

1274 great (Logan et al., 2003). Two separate responses are contributing to the problem. The

1275	first is a response to warm summers, which enable the mountain pine beetle
1276	(Dendroctonus ponderosae), in the contiguous United States, to have two generations in a
1277	year, when previously it had only one (Logan et al., 2003). In south-central Alaska, the
1278	spruce beetle (Dendroctonus rufipennis) is maturing in one year, where previously it took
1279	two years (Berg et al., 2006).
1280	
1281	The second response is to winter temperatures, specifically extremely cold winter
1282	temperatures, which strongly regulate over-winter survival of the spruce beetle in the
1283	Yukon (Berg et al., 2006) and the mountain pine beetle in British Columbia. The
1284	supercooling threshold, which is the temperature at which the insect freezes and dies, for
1285	spruce beetle larvae, is $-41^{\circ}C^{6}$ and for adults $-37^{\circ}C$ (Werner <i>et al.</i> , 2006). Recent
1286	warming, limiting the frequency of sub-40°C occurrences, has reduced over-winter
1287	mortality of mountain pine beetle larvae in British Columbia. It has led to an explosion of
1288	the beetle population, with tree losses covering an area of 8.7 million hectares ⁷ in 2005, a
1289	doubling since 2003, and a 50-fold increase since 1999 (British Columbia Ministry of
1290	Forests and Range, 2006a). It is estimated that at the current rate of spread, 80% of
1291	British Columbia's mature lodgepole pine trees, the province's most abundant
1292	commercial tree species, will be dead by 2013 (Natural Resources Canada, 2007).
1293	Similarly in Alaska, approximately 847,000 hectares of south-central Alaska spruce
1294	forests were infested by spruce beetles from 1920 to 1989 while from 1990 to 2000, an
1295	extensive outbreak of spruce beetles caused mortality of spruce across 1.19 million

⁶ The freezing point of water is 0°C or 32°F. The boiling point of water is 100 degrees higher in Celsius (100°C) and 180 degrees higher in Fahrenheit (212°F). Therefore, to convert from Celsius to Fahrenheit, multiply the Celsius temperature by 1.8 and then add 32. ⁷ One hectare is 10,000 square meters or the area in a square with sides of 100 meters and equals 2.5 acres.

1296	hectares, approximately 40% more forest area than had infested the state the previous 70
1297	years (Werner et al., 2006). The economic loss goes well beyond the millions of board
1298	feet of dead trees as tourism revenue is highly dependent on having healthy, attractive
1299	forests. Hundreds of millions of dollars are being spent to mitigate the impacts of beetle
1300	infestation in British Columbia alone (British Columbia Ministry of Forests and Range,
1301	2006b).
1302	
1303	The beetle-forest relationships are much more complex than just climate and beetle
1304	survival and life cycle. In the contiguous United States, increased beetle populations have
1305	increased incidences of a fungus they transmit (pine blister rust, Cronartium ribicola)
1306	(Logan et al., 2003). Further, in British Columbia and Alaska, long-term fire suppression
1307	activities have allowed the area of older forests to double. Older trees are more
1308	susceptible to beetle infestation. The increased forest litter from infected trees has, in
1309	turn, exacerbated the forest fire risks. Forest managers are struggling to keep up with
1310	changing conditions brought about by changing climate extremes.
1311	
1312	BOX 1.3: Heavy Precipitation and Human Health
1313	Anthropogenic climate change is already affecting human health (WHO 2002, 2003,
1314	2004). For the year 2000, the World Health Organization estimated that 6% of malaria

- 1315 infections, 7% of dengue fever cases and 2.4% of diarrhea could be attributed to climate
- 1316 change (Campbell-Lendrum et al., 2003). Increases in these water borne diseases has
- 1317 been attributed to increases in intensity and frequency of flood events, which in turn has
- 1318 been linked to greenhouse-gas driven climate change (Easterling *et al.*, 2000a,b; IPCC

1319	2007a). Floods directly promote transmission of water-borne diseases by causing
1320	mingling of untreated or partially treated sewage with freshwater sources, as well as
1321	indirectly from the breakdown of normal infrastructure causing post-flood loss of
1322	sanitation and fresh water supplies (Atherholt et al., 1998; Rose et al., 2000; Curriero et
1323	al., 2001; Patz et al., 2003). Precipitation extremes also cause increases in malnutrition
1324	due to drought and flood-related crop failure. For all impacts combined, WHO estimated
1325	that for a single year, total deaths due to climate change of 150,000 people (WHO 2002).
1326	
1327	There is general agreement that the health sectors are strongly buffered against responses
1328	to climate change, and that a suite of more traditional factors is often responsible for both
1329	chronic and epidemic health problems. These include quality and accessibility of health
1330	care, sanitation infrastructure and practices, land use change (particularly practices which
1331	alter timing and extent of standing water), pollution, population age structure, presence
1332	and effectiveness of vector control programs, and general socio-economic status (Patz et
1333	al., 2001; IPCC 2001b; Gubler et al., 2001; Campbell-Lendrum et al., 2003; Wilkinson et
1334	al., 2003; WHO 2004, IPCC 2007b).
1335	

1336 It is generally assumed that diarrhea incidence in developed countries, which have much

1337 better sanitation infrastructure, has little or no association with climate (WHO 2003,

1338 2004). Studies for the U.S., however, indicate that the assumption that developed

- 1339 countries have low vulnerability may be premature, as independent studies have
- 1340 repeatedly concluded that water and food-borne pathogens (that cause diarrhea) will

1341	likely increase with projected increases in regional flooding events, primarily by
1342	contamination of main waterways (Rose et al., 2000; Ebi et al., 2006).

1344	A U.S. study documented that 51% of waterborne disease outbreaks were preceded by
1345	precipitation events above the 90th percentile, with 68% of outbreaks preceded by
1346	precipitation above the 80th percentile (Curriero et al., 2001). These outbreaks comprised
1347	mainly intestinal disorders due to contaminated well water or water treatment facilities
1348	that allowed microbial pathogens, such as E. coli, to enter drinking water. In 1993, 54
1349	people in Milwaukee, Wisconsin died in the largest reported flood-related disease
1350	outbreak (Curriero et al., 2001). The costs associated with this one outbreak were \$31.7
1351	million in medical costs and \$64.6 million in productivity losses (Corso et al., 2003).
1352	
1353	Another heavy precipitation-human health link comes from the southwestern desert of the
1354	United States. This area experienced extreme rainfalls during the intense 1992/1993 El
1355	Niño. Excess precipitation promoted lush vegetative growth, which led to population
1356	booms of deer mice (Peromyscus maniculatus). This wild rodent carries the hantavirus
1357	which is transmissible to humans and causes a hemorrhagic fever that is frequently lethal.
1358	The virus is normally present at moderate levels in wild mouse populations. In most
1359	years, humans in nearby settlements experienced little exposure. However, in 1993, local
1360	overcrowding arising from the wet-year/population boom, caused greater spillover rodent
1361	activity. Subsequent increased human contact and higher transmission rates led to a major
1362	regional epidemic of the virus (Engelthaler et al., 1999; Glass et al., 2000). Similar

- dynamics have been shown for plague in the western United States (Parmenter *et al.*,1364 1999).
- 1365

1366 **BOX 1.4: Drought**

Drought should not be viewed as merely a physical phenomenon. Its impacts on society result from the interplay between a physical event (less precipitation than expected) and the demand people place on water supply. Human beings often exacerbate the impact of drought. Recent droughts in both developing and developed countries and the resulting economic and environmental impacts and personal hardships have underscored the vulnerability of all societies to this natural hazard (National Drought Mitigation Center, 2006).

1374

1375 Over the past century, the area affected by severe and extreme drought in the United 1376 States each year averages around 14% with the affected area as high as 65% in 1934. In 1377 recent years, the drought-affected area ranged between 35 and 40% as shown in Figure 1378 1.10. FEMA (1995) estimates that average annual drought-related losses at \$6-8 billion 1379 (based on relief payments alone). Losses were as high as \$40 billion in 1988 (Riebsame 1380 et al., 1991). Available economic estimates of the impacts of drought are difficult to 1381 reproduce. This problem has to do with the unique nature of drought relative to other 1382 extremes, such as hurricanes. The onset of drought is slow. Further, the secondary 1383 impacts may be larger than the immediately visible impacts and often occur past the 1384 lifetime of the event (Wilhite and Pulwarty, 2005).

1385

1386	In recent years, the western United States has experienced considerable drought impacts,
1387	with 30% of the region under severe drought since 1995. Widespread declines in
1388	springtime snow water equivalent in the U.S. West have occurred over the period 1925-
1389	2000, especially since mid-century. While non-climatic factors, such as the growth of
1390	forest canopy, might be partly responsible, the primary cause is likely changing climate
1391	because the patterns of climatic trends are spatially consistent and the trends are
1392	dependent on elevation (Mote et al., 2005). Increased temperature appears to have led to
1393	increasing drought (Andreadis and Lettenmaier, 2006). In the Colorado River Basin, the
1394	2000-2004 period had an average flow of 9.9 million acre feet ⁸ (maf) per year, lower than
1395	the driest period during the Dust Bowl years of (1931-35 with 11.4 maf), and the 1950s
1396	with (10.2 maf) (Pulwarty et al., 2005). For the winter of 2004-5, average precipitation in
1397	the Basin was around 100% of normal. However, the combination of low antecedent soil
1398	moisture (absorption into soil and depleted high mountain aquifers) and the warmest
1399	January-July period on record (driving evaporation) resulted in a reduced flow of 75% of
1400	average.
1401	

At the same time, states in the U.S. Southwest experienced some of the most rapid 1402 1403 economic and population growth in the country, with attendant demands on water 1404 resources and associated conflicts. It is estimated that as a result of the 1999-2004 drought and increased water resources extraction, Lake Mead and Lake Powell⁹ will take 1405 1406 13 to 15 years of average flow conditions to refill. In the Colorado River Basin, high-1407 elevation snow pack contributes approximately 70% of the annual runoff. Because the

 ⁸ One acre foot is equal to 325,853 U.S. gallons or 1233.5 cubic meters.
 ⁹ Lake Mead and Lake Powell are reservoirs on the Colorado River. Lake Mead is the largest man-made lake in the United States.

1408	Colorado River Compact ¹⁰ prioritizes the delivery of water to the Lower Basin states of
1409	Arizona, California, and Nevada, the largest impacts may be felt in the Upper Basin
1410	states of Wyoming, Utah, Colorado, and New Mexico. With increased global warming,
1411	the compact requirements may only be met 59% to 75% of the time (Christensen et al.,
1412	2004).
1413	
1414	While there are multi-billion dollar estimates for annual agricultural losses (averaging
1415	about \$4 billion a year over the last ten years), it is unclear whether these losses are
1416	directly related to crop production alone or other factors. Wildfire suppression costs to
1417	the United States Department of Agriculture (USDA) alone have surpassed \$1 billion
1418	each of the last four years but it is unclear how much of this is attributable to dry
1419	conditions. Little or no official loss estimates exist for the energy, recreation/tourism,
1420	timber, livestock, or environmental sectors, although the drought impacts within these
1421	sectors in recent years is known to be large. Better methods to quantify the cumulative
1422	direct and indirect impacts associated with drought need to be developed. The recurrence
1423	of a drought today of equal or similar magnitude to major droughts experienced in the
1424	past will likely result in far greater economic, social, and environmental losses and
1425	conflicts between water users.

- 1426
- 1427 BOX 1.5: Hurricanes

1428 There are substantial vulnerabilities from hurricanes along the Atlantic seaboard of the

1429 United States. Four major concentrations of economic vulnerability (capital stock greater

¹⁰ The Colorado River Compact is a 1922 agreement among seven U.S. states in the basin of the Colorado River which governs the allocation of the river's water.

1430	than \$100 billion) are along the Miami coast, New Orleans, Houston, and Tampa. Three
1431	of these four areas have been hit by major storms in the last fifteen years (Nordhaus,
1432	2006). A simple extrapolation of the current trend of doubling losses every ten years
1433	suggests that a storm like the 1926 Great Miami Hurricane could result in perhaps \$500
1434	billion in damages as early as the 2020s (Pielke et al., 2007; Collins and Lowe, 2001).
1435	
1436	Property damages are well correlated to hurricane intensity. The formula for the kinetic
1437	energy of a moving object, be it a baseball or the wind, is one half the mass times the
1438	square of the speed. The mass of the wind in a hurricane does not change significantly.
1439	However because the kinetic energy increases with the square of the wind speed, faster
1440	winds have much more energy, dramatically increasing damages, as shown in Figure
1441	1.11. Only 21% of the hurricanes making landfall in the United States are in Saffir-
1442	Simpson categories 3, 4, or 5, yet they cause 83% of the damage (Pielke and Landsea,
1443	1998). Nordhaus (2006) argues that hurricane damage does not increase with the square
1444	of the wind speed as kinetic energy does, but rather, damage appears to rise with the
1445	eighth power of maximum wind speed. The 2005 total hurricane economic damage of
1446	\$174 billion was primarily due to the cost of Katrina (\$135 billion). As Nordhaus (2006)
1447	notes, 2005 was an economic outlier not because of extraordinarily strong storms but
1448	because the cost as a function of hurricane strength was high.
1449	
1450	A fundamental problem within many economic impact studies lies in the unlikely
1451	assumption that there are no other influences on the macro-economy during the period

1452 analyzed for each disaster (Pulwarty *et al.*, 2007). However, more is at work than

1453	aggregate indicators of population and wealth. It has long been known that different
1454	social groups, even within the same community, can experience the same climate event
1455	quite differently. In addition, economic analysis of capital stocks and densities does not
1456	capture the fact that many cities, such as New Orleans, represent unique corners of
1457	American culture and history (Kates et al., 2006). Importantly, the implementation of
1458	past adaptations (such as levees) actually conditions the degree of present and future
1459	impacts (Pulwarty et al., 2003). At least since 1979, the reduction of mortality over time
1460	has been noted, including drought in the United States and Africa, tropical cyclones in
1461	Bangladesh, and floods and hurricanes in the United States. On the other hand, a
1462	reduction in property damage is less clear because aggregate property damages have risen
1463	along with increases in the population, material wealth, and development in hazardous
1464	areas.

1466 BOX 1.6: Impacts Tools

1467 There are a variety of impact tools that help users translate climate information into an

assessment of what the impacts will be and provide guidance on how to plan accordingly.

1469 These tools would be part of the filter/medium circle in Figure 1.8. However, as

1470 illustrated, using the example of a catastrophe risk model, the model has clear linkages to

1471 all the other boxes in Figure 1.8.

1472

1473 A catastrophe risk model can be divided into four main components, as shown in Figure

1474 1.12. The hazard component provides information on the characteristics of a hazard. For

1475 probabilistic calculations, this component would include a catalog with a large number of

simulated events with realistic characteristics and frequencies. Event information for each
hazard would include the frequency, size, location, and other characteristics. The overall
statistics should agree with an analysis of historical events.

1479

1480 The inventory component provides an inventory of structures that are exposed to a hazard

1481 and information on their construction. The vulnerability component simulates how

1482 structures respond to a hazard. This component requires detailed information on the

1483 statistical response of a structure to the forces produced by a hazard. This component

1484 would also account for secondary damage such as interior water damage after a

structure's windows are breached. The fourth component in the risk model estimates

1486 losses produced by a hazard event and accounts for repair or replacement costs. In cases

1487 of insurance coverage, the loss component also accounts for business interruption costs

and demand surge. If the model is used for emergency management purposes, the loss

1489 component also accounts for factors such as emergency supplies and shelters.

1490

1491 It should be noted, though, that how the loss component is treated impacts the

1492 vulnerability and inventory components, as indicated by the curved upward pointing

arrows. Is a house destroyed in a flood rebuilt in the same location or on higher ground?

1494 Is a wind damaged building repaired using materials that meet higher standards? These

1495 actions have profound effects on future catastrophe risk models for the area.

1496	Chapter 1 References
1497	
1498	Acuna-Soto, R., D.W. Stahle, M.K. Cleaveland, and M.D. Therrell, 2002: Megadrought
1499	and megadeath in 16 th century Mexico. <i>Emerging Infectious Diseases</i> , 8 , 360-362.
1500	
1501	Arguez, A., ed., 2007: State of the Climate in 2006. Bulletin of the American
1502	Meteorological Society, 88 , s1–s135.
1503	
1504	Andreadis, K.M. and D.P. Lettenmaier, 2006: Trends in 20th century drought over the
1505	continental United States. Geophysical Research Letters, 55, L10405,
1500	doi:10.1029/2000GL025/11.
1507	A notic Climate Impact Assessment 2004: Impacts of a Warming Anotic Combridge
1500	Liniversity Press, Combridge, UK
1510	University riess, Cambridge, UK.
1510	Atherholt T.B. M.W. LeChevallier, W.D. Norton, J.S. Rosen, 1998: Effect of rainfall
1512	on giardia and crypto Journal of the American Water Works Association 90 66-
1512	80
1513	
1515	Ausubel, J.H., 1991: Does climate still matter? <i>Nature</i> 350 , 649-652
1516	
1517	Baker , A.C., 2001: Reef corals bleach to survive change. <i>Nature</i> , 411 , 765-66.
1518	
1519	Baker, A.C., C.J. Starger, T.R. McClanahan, and P.W. Glynn, 2004: Coral reefs: corals'
1520	adaptive response to climate change. <i>Nature</i> , 430 , 741.
1521	
1522	Balanya, J., J.M. Oller, R.B. Huey, G.W. Gilchrist and L. Serra, 2006: Global genetic
1523	change tracks global climate warming in drosophila subobscura. Science, 313,
1524	1773-1775.
1525	
1526	Barry, R.G., 2006: The status of research on glaciers and global glacier recession: a
1527	review. Progress in Physical Geography, 30 , 285-306.
1528	
1529	Bull, J.J., 1980: Sex determination in reptiles. <i>Quarterly Review of Biology</i> , 55, 3-21.
1530	
1531	Bull , J.J. and R.C. Vogt, 1979: Temperature-dependent sex determination in turtles.
1532	Science, 206 , 1186-1188.
1533	
1534	Berg, E.E., J.D. Henry, C.L. Fastie, A.D. De Volder, and S.M. Matsuoka, 2006: Spruce
1535	beetie outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and
1530	Reserve, Y ukon Territory: Relationship to summer temperatures and regional
153/	unterences in disturbance regimes. <i>Forest Ecology and Management</i> , 227, 219-
1538	232.
1570	Berube A and B Katz 2005: Katring's window: Confronting concentrated powerty
1540	across America. The Brookings Institution 12 pp
1741	across micrica. The brookings insutation, 15 pp.

Board on Natural Disasters , 1999: Mitigation emerges as a major strategy for reducing
10sses caused by natural disasters. Science, 204 , 1945-1947.
Bonnin , G. M., B. Lin, and T. Parzybok, 2003: Updating NOAA/NWS Rainfall Frequency Atlases. <i>Symposium on Observing and Understanding the Variability</i> <i>of Water in Weather and Climate</i> , Long Beach, Calif., 9-13 February.
Bowden M. R. Kates, P. Kay, W. Riebsame, H. Gould, D. Johnson, R. Warrick, and D.
Weiner, 1981: The effects of climate fluctuations on human populations: two hypotheses, In: <i>Climate and history: Studies in Past Climates and Their Impact</i> on Man, [Wigley, T.M.L., M.J. Ingram, and G. Farmer (eds.)], Cambridge, 479- 513.
British Columbia Ministry of Forests and Range, 2006a: Backgrounder: Mountain
<i>pine beetle district breakdown</i> . FOR0011-000152, British Columbia Ministry of Forestry and Range, Victoria. 1 pp.
Pritich Columbia Ministry of Forests and Pango 2006h, Postla Plan Cuides Forests
British Columbia Ministry of Forests and Kange , 20000: Beetle Plan Guides Forests,
bttp://www.2 news gov bc.co/news_releases_2005_2000/2006EOP0112
001109 htm
<u>001109.iluii</u>
Burton J. P. W. Kates and G. F. White 1993: The Environment as Hazard 2^{nd} edition
The Guilford Press New York 290 pp
The Outfold Tress, New Tork, 290 pp.
Burton J 1962: Types of Agricultural Occupance of Flood Plains in the United States
University of Chicago Press, Chicago.
Campbell-Lendrum D A Pruss-Ustun and C Corvalan 2003: How much disease
could climate change cause? ch. 7 (np. 133-158) in: WHO 2003: Climate Change
and Human Health Risks and Responses McMichael A L D H Campbell-
Lendrum C F Corvalán K L Ebi A K Githeko I D Scheraga and A
Woodward (Eds), the World Health Organization, the World Meteorological
Organization and the United Nations Environment Programme
(WHO/WMO/UNEP) World Health Organization Geneva Switzerland 333 pp
(WING/ WING/ CIVER). World Hould Organization, Conova, Switzerland, 555 pp.
Canadian Standards Association 2001 [.] Canadian Standard CSA-S37 Antennas
Towers and Antenna Supporting Structures. Ice and Wind Loads Contributed by
R. Morris, T. Yin, and H. Auld. Canadian Standards Association. Rexdale.
Cathey, H.M., 1990: USDA Plant Hardiness Zone Man. USDA Miscellaneous
Publication No. 1475. United States Department of Agriculture, Washington, DC
1586 1587

1588
1589 1590 1501
1591
1592
1594
1595
1596 1597
1598
1599
1600
1601
1602
1603
1604
1605
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1624
1625
1626
1627
1628
1629
1630
1631

1632	Cutter, S.L. and C. Emrich, 2005: Are natural hazards and disaster losses in the U.S.
1633	increasing? EOS, Transactions, American Geophysical Union, 86, 381.
1634	
1635	Cutter, S.L., M. Gall and C.T. Emrich, 2007: Toward a comprehensive loss inventory of
1636	weather and climate hazards, In: Climate Extremes and Society, [Diaz H.L. and R.
1637	J. Murnane (eds.)], Cambridge University Press, Cambridge (in press).
1638	
1639	Donner, S.D., W.J. Skirving, C.M. Little, M. Oppenheimer, and O. Hoegh-Guldberg,
1640	2005: Global assessment of coral bleaching and required rates of adaptation under
1641	climate change. Global Change Biology, 11, 2251-65.
1642	
1643	Donner, S.D., T.R. Knutson and M. Oppenheimer, 2007: Model-based assessment of the
1644	role of human-induced climate change in the 2005 Caribbean coral bleaching
1645	event. Proceedings of the National Academy of Sciences, 104, 5483-5488.
1646	
1647	Dunn P.O. and D.W. Winkler, 1999: Climate change has affected the breeding date of
1648	tree swallows throughout North America. Proc. R. Soc. London Ser. B., 266,
1649	2487-2490.
1650	
1651	Easterling, D.R., J.L. Evans, P.Y. Groisman, T.R. Karl, K.E. Kunkel, and P. Ambenje,
1652	2000a: Observed variability and trends in extreme climate events: A brief review.
1653	Bulletin of the American Meteorological Society, 81 , 417–425.
1654	
1655	Easterling, D.R., S. Chagnon, T.R. Karl, J. Meehl, and C. Parmesan, 2000b: Climate
1656	extremes: observations, modeling, and impacts. Science, 289, 2068–2074.
1657	
1658	EDI , K.L., D.M. MIIIS, J.B. Smith and A. Grambsch, 2006: Climate change and human
1059	nearth impacts in the United States: An update on the results of the U.S. National Assessment $E_{\rm state}$ (111, 1219, 1224)
1000	Assessment. Environmental Health Perspectives, 114 , 1518-1524.
1001	Ehrlich D.D. Murnhy M.C. Singer C.D. Sherwood D.D. White and I.L. Prown
1662	Elificit , F.K., D.D. Mulphy, M.C. Singel, C.D. Sherwood, K.K. white, and i.L. Brown, 1080: Extinction reduction stability and increases the responses of checkerspot
1664	hutterfly (Eurlydrygs edithg) populations to the California drought Oggologia
1665	<i>A</i> 6 101 105
1666	40, 101-105.
1667	Engelthaler DM DG Mosley IE Cheek CE Levy KK Komatsu P Ettestad T
1668	Davis DT Tanda I. Miller IW Frampton <i>et al.</i> 1999: Climatic and
1669	environmental patterns associated with hantavirus pulmonary syndrome. Four
1670	Corners region United States <i>Emerging Infactious Dispasses</i> 5 87-94
1671	Corners region, Childe Sales. Energing injections Discuses, 5, 67 97.
1672	Federal Emergency Management Agency (FEMA), 1995: National Mitigation
1673	Strategy: Partnerships for Building Safer Communities Federal Emergency
1674	Management Agency, Washington, D.C., 40 nn.
1675	
-	

1676	Gillett, N.P., A.J. Weaver, F.W. Zwiers, and M.D. Flannigan, 2004: Detecting the effect
1677	of climate change on Canadian forest fires. Geophys. Res. Lett., 31, L18211,
1678	doi:10.1029/2004GL020876.
1679	
1680	Glantz, M.A., 1996: Currents of change: El Niño's impact on climate and society.
1681	Cambridge University Press, Cambridge, UK.
1682	
1683	Glantz, M.A., 2003: Climate affairs: A primer. Island Press, Washington, D.C., 291 pp.
1684	
1685	Glass, G.E., J.E. Cheek, J.A. Patz, T.M. Shields, T.J. Doyle, D.A. Thoroughman, D.K.
1686	Hunt, R.E. Enscore, K.L. Gage, C. Ireland, C.J. Peters, and R. Bryan, 2000: Using
1687	remotely sensed data to identify areas of risk for hantavirus pulmonary syndrome.
1688	Emerging Infectious Diseases, 6, 238-247.
1689	
1690	Goklany, I.M. and S.R. Straja, 2000: U.S. trends in crude death rates due to extreme heat
1691	and cold ascribed to weather, 1979-97. Technology, 7, 165-173.
1692	
1693	Gubler, D.J., P. Reiter, K.I. Ebi, W. Yap, R. Nasci, and J.A. Patz, 2001: Climate
1694	variability and change in the United States: Potential impacts on vector- and
1695	rodent-borne diseases. Environmental Health Perspectives, 109. (supplement
1696	2):223-233.
1697	
1698	Hazards and Vulnerability Research Institute, 2007: The Spatial Hazard Events and
1699	Losses Database for the United States, Version 5.1 [Online Database]. Columbia,
1700	SC: University of South Carolina. Available from http://www.sheldus.org.
1701	Hawkins, B.A. and M. Holyoak, 1998: Transcontinental crashes of insect populations?
1702	American Naturalist, 152, 480-484.
1703	
1704	Heinz, The H. John Heinz III Center for Science, Economics and the Environment, 2002:
1705	The State of the Nation's Ecosystems: Measuring the Lands, Waters, and Living
1706	Resources of the United States. Cambridge University Press, Cambridge, 288 pp.
1707	Herring, D., 1999: Evolving in the presence of fire. <i>Earth Observatory</i> , NASA, October,
1708	
1709	Hoegh-Guldberg, O., 1999: Climate change, coral bleaching and the future of the
1710	world's coral reefs. Marine and Freshwater Research, 50, 839-66.
1711	······································
1712	Hoegh-Guldberg , O., 2005: Marine ecosystems and climate change. In: Lovejov, T.E.
1713	and L. Hannah (eds) <i>Climate Change and Biodiversity</i> . Yale University Press, 440
1714	pp. 256-271.
1715	rr, ==== =, =,
1716	Hoegh-Guldberg, O., R.J. Jones, S. Ward, W.K. Loh. 2002: Is coral bleaching really
1717	adaptive? Nature, 415 , 601-2.
1718	
1719	Hoffman, A.A. and P.A. Parsons 1997: Extreme Environmental Change and Evolution
1720	Cambridge University Press, Cambridge, UK, 1997
1721	
., <u>.</u> .	

1722	Intergovernmental Panel on Climate Change (IPCC) 2007a: Climate Change 2007:
1723 1724	Assessment Report (AR4), www.ipcc.ch, 987 pp.
1725	
1726 1727	Intergovernmental Panel on Climate Change (IPCC) 2007b: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the
1728 1729 1730	pp.
1731	Intergovernmental Panel on Climate Change (IPCC) 1997: Climate Change 1997:
1732 1733	<i>The Supplementary Report to the IPCC Scientific Assessment.</i> [Houghton, J.T., Callandar, B.A., and S.K. Varney, (eds.), Cambridge University Press, 198 pp.
1725	Janzan E. J. 1004: Climate alange and temperature dependent say determination in
1735 1736 1737	reptiles. <i>Proceedings of the National Academy of Sciences, USA</i> , 91 , 7487-7490.
1738	Johnson T. J. Dozier and J. Michaelsen, 1999: Climate change and Sierra Nevada
1730	snownack International Association of Hydrological Sciences Publication 756
1739	62 70
1740	03-70.
1/41	Karl T.D. D.W. Kright D.D. Easterling and D.C. Oussels 1006. Indians of alignate
1742	Kari , T.K., K.W. Knight, D.K. Easterning, and K.G. Quayle, 1990. Indices of chinate
1743 1744	279–292.
1745	
1746 1747	Kates, R.W., C.E. Colten, S. Laska, and S.P. Leatherman, 2006: Reconstruction of New Orleans after Hurricane Katrina: A research perspective. <i>Proceedings of the</i>
1748 1749	National Academy of Sciences of the United States of America, Special Feature, 103(40) (26 September): 14653-14660.
1750	
1751 1752	Kingdon , J.W., 1995: <i>Agendas, Alternatives and Public Policies</i> , 2nd ed., HarperCollins Publishers, New York, 254 pp.
1/53	
1754 1755 1756	Koelle , K., X. Rodo, M. Pascual, M. Yunus, G. Mostafa, 2005: Refractory periods and climate forcing in cholera dynamics. <i>Nature</i> , 436 ,696-700.
1757	Kunkal K.E. D.A. Dielke Ir. and C.A. Changener, 1000, Temporal fluctuations in
1757 1758 1750	weather and climate extremes that cause economic and human health impacts: a
1760	ieview. Duiletin of the American Meleorological Society, 50 , 1077-1098.
1/60	
1761 1762	Knutson , T. R. and R. E. Tuleya, 2003: Increased hurricane intensities with CO2- induced warming as simulated using the GFDL hurricane prediction system.
1/03	Cumate Dynamics, 15 , 503-519.
1764	
1765	Lanzante, J.R., T.C. Peterson, F.J. Wentz, and K.Y. Vinnikov, 2006: What do
1766 1767	observations indicate about the change of temperatures in the atmosphere and at the surface since the advent of measuring temperatures vertically? In:

1768	Temperature Trends in the Lower Atmosphere: Steps for Understanding and
1769	Reconciling Differences. [T.R. Karl, S.J. Hassol, C.D. Miller, and W.L. Murray,
1770	(eds.)] A Report by the Climate Change Science Program and the Subcommittee
1771	on Global Change Research Washington DC
1772	on onobul change Research, Washington, D.C.
1773	Levitan M 2003: Climatic factors and increased frequencies of 'southern' chromosome
1774	forms in notural nonulations of Dresenhild robusta Eval Easl Pass 5 507 604
1775	Torms in natural populations of <i>Drosophila robusia</i> . Evol. Ecol. Res., 5, 597-004.
1776	Logon I.A. I. Despise I.A. Desuell 2002, Accessing the impacts of alphal warming on
1//0	Logan, J.A., J. Regnere, J.A. Powen, 2005: Assessing the impacts of global warming on
1///	Torest pest dynamics. Frontiers in Ecology and the Environment, 1, 150-157.
1//0	Lett N and T Dess 2006 Tracking billion dellar U.S. mosther disasters (Newsest
1700	Lott, N., and I. Ross, 2006: Iracking billion-dollar U.S. weather disasters. (Nowcast,
1/80	news and notesconference notebook). Bulletin of the American Meteorological
1781	Society, 87 (5), 557-559 (May 2006).
1782	<u>ttp://ttp.ncdc.noaa.gov/pub/data/papers/2006n155/tree.pdf</u>
1783	
1784	Lott, N., and T. Ross, 2006: <u>Tracking and evaluating U.S. billion dollar weather</u>
1785	disasters, 1980-2005, 86th AMS Annual Meeting, 29 January - 2 February 2006,
1786	Atlanta, Georgia, combined preprints [CD-ROM], American Meteorological
1787	Society, Boston, MA, 1.2, 7 p. (January 2006)
1788	ftp://ftp.ncdc.noaa.gov/pub/data/papers/200686ams1.2nlfree.pdf
1789	
1790	Magnuson, J.J., D.M. Robertson, B.J. Benson, R.H. Wynne, D.M. Livingstone, T. Arai,
1791	R.A. Assel, R.G. Barry, V. Card, E. Kuusisto, N.G. Granin, T.D. Prowse, K.M
1792	Stewart, V.S. Vuglinski, 2000: Historical Trends in lake and river ice cover in the
1793	Northern Hemisphere. Science, 289, 1743-1746.
1794	-
1795	Manzello, D.P., M. Brandt, T.B. Smith, D. Lirman, J.C. Hendee and R.S. Nemeth, 2007:
1796	Hurricanes benefit bleached corals. Proceedings National Academy of Sciences,
1797	104 , 12035-12039.
1798	
1799	Mattson, W.J. and R.A. Haack, 1987: The role of drought in outbreaks of plant-eating
1800	insects, <i>Bioscience</i> , 37 , 110-118.
1801	
1802	Mever, P., M. Bisping, and M. Weber, 1997: <i>Tropical Cyclones</i> , Swiss Reinsurance
1803	Company, Zurich, 31 pp.
1804	
1805	Mileti D 1999. Disasters by Design Joseph Henry Press Washington 351 pp
1806	
1807	Mills E 2005a: Insurance in a climate of change Science 309 1040-1044
1808	11111 , 2., 2005a. Insurance in a climate of change. Science, 507 . 10 4 0-10 44 .
1800	Mills E 2005b: Response to Pielke Science 310 1616
1810	141113 , 12., 20030. Response to 1 leike. Science, 310 , 1010.
1010	Moto D. A. Hamlet M. Clark and D. Lattenmaior 2005. Dealining mountain an annual
1011	in western North America, Pulletin of the American Metacological Sector, 96
1012	in western North America. <i>Dutienn of the American Meteorological Society</i> , 80 ,
1015	ン プー4ブ.

1814	
1815	National Drought Mitigation Center , 2006: Understanding and Defining Drought.
1816	Available from http://www.drought.unl.edu/whatis/concept.htm.
1817	
1818	National Research Council, 1999: The Impacts of Natural Disasters: A Framework for
1819	Loss Estimation, National Academy Press, Washington, D.C., 80 pp.
1820	
1821	Natural Resources Canada, 2007: Mountain Pine Beetle Program,
1822	http://mpb.cfs.nrcan.gc.ca/index_e.html.
1823	
1824	Nordhaus, W.D., 2006: The Economics of Hurricanes in the United States. National
1825	Bureau of Economic Research (NBER) Working Paper, Cambridge, Mass.,
1826	Available at http://www.nber.org/papers/w12813
1827	
1828	Oechel, W.C., G.L. Vourlitis, S.J. Hastings, R.C. Zulueta, L. Hinzman, and D. Kane,
1829	2000: Acclimation of ecosystem CO_2 exchange in the Alaska Arctic in response
1830	to decadal warming. Nature, 406, 978–981.
1831	
1832	Oechel, W.C., S.J. Hastings, G. Vourlitis, and M. Jenkins, 1993: Recent change of arctic
1833	tundra ecosystems from net carbon dioxide sink to a source. <i>Nature</i> , 361 , 520–
1834	523.
1835	
1836	Oedekoven, C. S., D. G. Ainley and L. B. Spear, 2001: Variable responses of seabirds to
1837	changes in marine climate: California Current 1985-1994. Marine Ecology
1838	Progress Series, 212, 265-281.
1839	
1840	Parmenter, R.R., E.P. Yadav, C.A. Parmenter, P. Ettestad, and K.L. Gage, 1999:
1841	Incidence of plague associated with increased winter-spring precipitation in New
1842	Mexico. American Journal of Tropical Medicine and Hygiene, 61, 814-821.
1843	
1844	Parmesan, C., 2005: Case Study: Euphydryas editha. Special essay In: Lovejoy, T.E. and
1845	L. Hannah (eds) Climate Change and Biodiversity. Yale University Press, 440 pp.
1846	
1847	Parmesan, C., 1996: Climate and species range. Nature, 382, 765-766.
1848	
1849	Parmesan, C., 2006: Ecological and evolutionary responses to recent climate change.
1850	Annual Reviews of Ecology, Evolution and Systematics, 37 , 637-669.
1851	
1852	Parmesan, C., T.L. Root, and M.R. Willig, 2000: Impacts of extreme weather and
1853	climate on terrestrial biota. Bulletin of the American Meteorological Society, 81,
1854	443-50.
1855	
1856	Parmesan C. and G. Yohe, 2003: A globally coherent fingerprint of climate change
1857	impacts across natural systems. Nature, 421, 37-42.
1858	

1859	Parmesan C., and H. Galbraith, 2004: Observed Ecological Impacts of Climate Change
1860	in North America. Pew Center for Global Climate Change, Arlington, Va.
1861	
1862	Parmesan, C., S. Gaines, L. Gonzalez, D.M. Kaufman, J. Kingsolver, A.T. Peterson and
1863	R. Sagarin, 2005: Empirical perspectives on species' borders: from traditional
1864	biogeography to global change. Oikos, 108, 58-75.
1865	
1866	Parmesan, C. and P. Martens, 2007: Climate change, wildlife and human health. Chapter
1867	14 in: SCOPE Assessment: "Biodiversity, Global Change and Human Health", O.
1868	Sala, C. Parmesan and L. Myers (Eds), Island Press, in press.
1869	
1870	Pascual, M., X. Rodó, S.P. Ellner, R. Colwell and M.J. Bouma, 2000: Cholera dynamics
1871	and El Niño southern oscillation. Science, 289, 1766-1769.
1872	
1873	Patz, J.A., M.A McGeehin, S.M. Bernard, K.L. Ebi, P.R. Epstein, A Grambsch, D.J.
1874	Gubler, P. Reiter, E. Romieu, J.B. Rose, J.M. Samet, J. Trtanj and T. F. Cecich,
1875	2001: Potential consequences of climate variability and change for human health
1876	in the United States. ch. 15 (pp. 437-458) in: The U.S. National Assessment on
1877	Potential Consequences of Climate Variability and Climate Change, Executive
1878	Office of the President of the United States of America, United States Global
1879	Change Research Program, National Assessment Synthesis Team, Cambridge
1880	University Press, Cambridge, UK.
1881	
1882	Patz, J. A., A.K. Githeko, J.P. McCarty, S. Hussein, U. Confalonieri and N. de Wet,
1883	2003: Climate change and infectious diseases. Chapter 6 in: WHO 2003: Climate
1884	Change and Human Health. Risks and Responses, McMichael, A.J., D.H
1885	Campbell-Lendrum, C.F. Corvalán, K.L. Ebi, A.K. Githeko, J.D. Scheraga and A.
1886	Woodward (Eds), the World Health Organization, the World Meteorological
1887	Organization and the United Nations Environment Programme
1888	(WHO/WMO/UNEP). World Health Organization, Geneva, Switzerland, pp. 333.
1889	
1890	Patz, J.A., D. Campbell-Lendrum, T. Holloway and J.A. Foley, 2005: Impact of regional
1891	climate change on human health. <i>Nature</i> , 438 , 310-317.
1892	
1893	Pleike, R.A., Jr., J. Rubiera, C. Landsea, M. Fernandez, and R.A. Klein, 2003: Hurricane
1894	vulnerability in Latin America and the Caribbean: normalized damage and loss
1895	potentials. Natural Hazards Review, 4, 101-114.
1896	\mathbf{D} = \mathbf{D} A = \mathbf{D} A = \mathbf{D} A = \mathbf{D}
189/	PIEIKE , K.A., Jr., 2005: Are there trends in nurricane destruction? <i>Nature</i> , 438 , E11,
1898	doi:10.1058/nature04426.
1899	D : allog D A. La and C W. Landage 1009; Normalized horizont democratic (1. 11. (1. 1
1900	rieike, K.A., Jr., and U.W. Landsea, 1998: Normalized nurricane damages in the United
1901	states: 1923-1993. weather Forecasting, 13, 021-031.
1902	

1903	Pielke, R, Jr., J. Gratz, W. Christopher, C. Landsea., D. Douglas Collins, M. Saunders,
1904	and R. Musulin, 2007: Normalized hurricane damages in the United States: 1900-
1905	2005 (in review).
1906	
1907	Precht, H., J. Christophersen, H. Hensel, and W. Larcher, 1973: Temperature and Life,
1908	Springer-Verlag, New York, 779 pp.
1909	
1910	Pickett, S.T.A. and P.S. White, (eds.), <i>The Ecology of Natural Disturbance and Patch</i>
1911	Dynamics. Academic Press, San Diego, 472 pp.
1912	
1913	Pulwarty , R., K. Jacobs, R. Dole, 2005: The hardest working river: Drought and critical
1914	water problems on the Colorado. In: Drought and Water Crises: Science,
1915	Technology and Management, [D. Wilhite (ed.)]. Taylor and Francis Press, 249-
1916	285.
1917	
1918	Pulwarty, R., U. Trotz, and L. Nurse, 2007: Risk and criticality-Caribbean Islands in a
1919	changing climate. In: Key Vulnerable Regions and Climate Change, [W. Hare and
1920	A. Battaglini (eds.)] (in press).
1921	
1922	Pulwarty, R., K. Broad, T. Finan, 2003: ENSO forecasts and decision making in Brazil
1923	and Peru. 83-98. In Bankoff, G., G. Frerkes, and T. Hilhorst (eds.), Mapping
1924	Vulnerability: Disasters, Development and People. Earthscan, London, 236 pp.
1925	
1926	Riebsame , W.E., S.A. Changnon Jr., and T.R. Karl, 1991: <i>Drought and Natural</i>
1927	Resource Management in the United States. Westview Press Inc., Boulder, 174 p.
1928	
1929	Rodó, X., M. Pascual, G. Fuchs, and A.S.G. Faruque, 2002: ENSO and cholera: a
1930	nonstationary link related to climate change? PNAS, 20, 12901-12906.
1931	
1932	Rodríguez-Trelles F, M.A. Rodriguez, 1998: Rapid micro-evolution and loss of
1933	chromosomal diversity in <i>Drosophila</i> in response to climate warming. Evol. Ecol.,
1934	12, 829-838
1935	
1936	Root, T.L., J.T. Price, K.R. Hall, S.H. Schneider, C. Rosenzweig and J.A. Pounds, 2003:
1937	Fingerprints of global warming on wild animals and plants. <i>Nature</i> , 421 , 57–60.
1938	
1939	Rose, J.B.S. et al., 2000: Climate and waterborne outbreaks in the US: a preliminary
1940	descriptive analysis. Journal of the American Water Works Association, 92, 77–
1941	86.
1942	
1943	Rowan, R., 2004: Thermal adaptation in reef coral symbionts. <i>Nature</i> , 430 , 742.
1944	
1945	Schär, C., P.L. Vidale, D. Lüthi, C. Frei, C. Häberli, M.A. Liniger and C. Appenzeller.
1946	2004: The role of increasing temperature variability for European summer heat
1947	waves. <i>Nature</i> , 427 , 332-336; doi:10.1038/nature02300.
1948	

1949 1950	Singer, M.C. and P.R. Ehrlich, 1979: Population dynamics of the checkerspot butterfly Euphydryas editha. <i>Fortschr. Zool.</i> , 25 , 53-60.
1951	
1952	Sokolov, L.V., 2006: The influence of global warming on timing of migration and
1953	breeding of passerine bird in the twentieth century. Zoologichesky Zhurnal, 85,
1954	317-341.
1955	
1956	Smit, B., I. Burton, R.J.T. Klein, and J. Wandel, 2000: An anatomy of adaptation to
1957	climate change and variability. <i>Climatic Change</i> , 45 , 223-251.
1958	Spear, L.B., D.G. Ainley, 1999: Migration routes of sooty shearwaters in the Pacific
1959	ocean. Condor, 101 , 205-218
1960	
1961	Stern, N., 2006: The Economics of Climate Change: The Stern Review, Cambridge
1962	University Press, 712 pp.
1963	
1964	Stott, P.A., D.A. Stone, and M.R. Allen, 2004: Human contribution to the European heat
1965	wave of 2003. <i>Nature</i> , 432 , 610-614.
1966	
1967	Taulman, J.F., and L.W. Robbins, 1996: Recent range expansion and distributional
1968	limits of the nine-banded armadillo (Dasypus novemcinctus) in the United States.
1969	Journal of Biogeography, 23, 635-648.
1970	
1971	Thomas, C.D., E.J. Bodsworth, R.J. Wilson, et al., 2001: Ecological and evolutionary
1972	processes at expanding range margins. <i>Nature</i> , 411 , 577-581.
1973	
1974	Trenberth, K. E., A. Dai, R.M. Rasmussen, and D.B. Parsons, 2003: The changing
1975	character of precipitation. Bulletin of the American Meteorological Society, 84,
1976	1205-1217.
1977	
1978	van Vliet, A. and R. Leemans, 2006: Chapter 12: Rapid species' responses to changes in
1979	climate require stringent climate protection targets. Avoiding Dangerous Climate
1980	Change, Cambridge University Press, Cambridge, 135-141.
1981	
1982	Walker, L.R., ed., 1999: Ecology of Disturbed Ground. Elsevier, Amsterdam, 900 pp.
1983	
1984	Walther, G.R., E. Post, P. Convery, A. Menzel, C. Parmesan, et al., 2002: Ecological
1985	responses to recent climate change. <i>Nature</i> , 416 , 389-95.
1986	
1987	Warrick, R.A., 1980: Drought in the Great Plains: A case study of research on climate
1988	and society in the USA. In Ausubel J. and A.K. Biswas (eds.), Climatic
1989	constraints and human activities. Pergamon, New York, 215 pp.
1990	Westerling, A. L., H. G. Hidalgo, D. R. Cayan and T. W. Swetnam, 2006: Warming and
1991	earlier spring increase in Western U.S. forest wildfire activity. Science, 313, 940-
1992	943.
1993	

2004

2008

1994	Weiser, W., ed., 1973: Effects of Temperature on Ectothermic Organisms. Springer-
1995	Verlag, New York, 298 pp.
1996	

- Werner, R.A., E.H. Holsten, S.M. Matsuoka, and R.E. Burnside, 2006: Spruce beetles
 and forest ecosystems in south-central Alaska: A review of 30 years of research.
 Forest Ecology and Management, 227, 195-206.
- White, G.F., R.W. Kates, and I. Burton, 2001: Knowing Better and Losing Even More:
 The Use of Knowledge in Hazards Management. *Environmental Hazards*, 3, 8192.
- Wilkinson, C.R., ed., 2000: Global Coral Reef Monitoring Network: Status of Coral
 Reefs of the World in 2000. Australian Institute of Marine Science. Townsville,
 Queensland. 363 pp.
- Wilkinson, P., D.H. Campbell-Lendrum and C.L. Bartlett, 2003: Monitoring the health
 effects of climate change. Chapter 10 in: *Climate Change Impacts on the United States: the Potential Consequences of Climate Variability and Change*. National
 Assessment Synthesis Team, United States Global Change Research Program,
 Washington, D.C.
- Wilhite, D.A., ed., 2005: Drought and Water Crises: Science, Technology and
 Management Issues. Taylor and Francis Press, Boca Raton, 432 pp.
- Wilhite, D. and R. Pulwarty, 2005: Drought, crises and water management. 289-298. In:
 Wilhite, D.A., ed.: *Drought and Water Crises: Science, Technology and*Management Issues. Taylor and Francis Press, Boca Raton, 432 pp.
- World Health Organization, 2002: World Health Report 2002: Reducing Risks,
 Promoting Healthy Life. World Health Organization, Geneva, Switzerland, 230
 pp.
- World Health Organization, 2003: Climate Change and Human Health: Risks and
 Responses. Project Team: A.J. McMichael, D.H. Campbell-Lendrum, C.F.
 Corvalán, K.L. Ebi, A.K. Githeko, J.D. Scheraga, A Woodward. World Health
 Organization, Geneva, Switzerland, pp. 333.
- World Health Organization, 2004: Using climate to predict infectious disease
 outbreaks: a review. Project team: M Anker, C. Corvalán, K. Kuhn. D. Campbell Lendrum, A. Haines, J. Cox. World Health Organization, Geneva, Switzerland, 55
 pp.

Figure 1.1 The blue bars show the number of events per year that exceed a cost of 1
billion dollars (these are scaled to the left side of the graph). The blue line (actual costs at
the time of the event) and the red line (costs adjusted for wealth/inflation) are scaled to
the right side of the graph, and depict the annual damage amounts in billions of dollars.
Over the last 27 years, the U.S. averaged between two and three weather and climaterelated disasters a year that exceeded one billion dollars in cost. Data from NOAA's
National Climatic Data Center.

2047 the black line, the more often weather with those characteristics occurs.

2049

2050 **Figure 1.3** Like the European summer temperature of 2003, some extremes that are

2051 more likely to be experienced in the future will be far outside the range of historical

2052 observations. Each vertical line represents the summer temperature for a single year with

the extreme values from the years 1909, 1947 and 2003 identified. From Schär et al.,

2054 2004.

Increase in Probability of Extremes in a Warmer Climate

2055

Figure 1.4 Simplified depiction of the changes in temperature and precipitation in awarming world.

Drought and Population Collapse in Mexico

2059

2060

2061 **Figure 1.5** Megadrought and megadeath in 16th Century Mexico. Four hundred years

ago the Mexican socio-economic and natural systems were so sensitive to extremes that a

- 2063 mega-drought in Mexico led to a massive population declines (Acuna-Soto *et al.*, 2002).
- 2064 The 1545 Codex En Cruz depicts the effects of the cocoliztli epidemic which has
- 2065 symptoms similar to rodent-borne hantavirus hemorrhagic fever.

2067

Figure 1.6 Extreme events such as hurricanes can have significant sudden impacts that take some time to recover from. Top: Two similar magnitude events take place but after

2070 the first one, new adaptation measures are undertaken, such as changes in building codes,

so the second event doesn't have as great an impact. Bottom: An extreme that occurs

2072 before an area has completely recovered from the previous extreme can have a total

2073 impact in excess of what would have occurred in isolation.

2075

Figure 1.7 Climate variability may reduce crop yield, but because of technological
improvements, a poor yield in the 1990s can still be higher than a good yield in the 1950s
indicating a changing relationship between climate and agricultural yield. Data are in
units of cubic meters or metric tons per unit area with the yield in 1975 defined as 1. Data
from USDA National Agricultural Statistics Service via update to Heinz Center (2002).

Climate Information and Decision-Making

2082

- 2084 **Figure 1.8** Illustration of how climate information is processed, filtered, and combined
- 2085 with other information in the decision process relevant to stakeholder interests.

2087

Beetle Damage to Pine Trees in Canada

2088

2089

2091 infestation in the Quesnel-Prince George British Columbia area. Fewer instances of

- 2092 extreme cold winter temperatures that control beetle populations as well as hotter
- summers that increase populations are leading to a greater likelihood of beetle
- 2094 infestations. (Figure inclusion in Final Document subject to copyright permission).

Figure 1.10 Percent of area in the contiguous U.S. and western U.S. affected by severe
and extreme drought as indicated by Palmer Drought Severity Index (PDSI) values of
less than or equal to -3. Data from NOAA's National Climatic Data Center.

Increased Damage with More Intense Hurricanes

2100

2101

2102 **Figure 1.11** More intense hurricanes cause much greater losses. Mean damage ratio is the

average expected loss as a percent of the total insured value. Adapted from Meyer *et al.*

2104 (1997).

A Typical Risk Model

2105

- 2107 **Figure 1.12** Schematic diagram of a typical risk model used by the insurance industry.
- 2108 The diagram highlights the three major components (hazard, damage, and loss) of a risk
- 2109 model. What happens to the loss component feedbacks to the vulnerability and inventory
- 2110 components.

2111	Chapter 2 Observed Changes of Weather and Climate
2112	Extremes
2113	
2114	Convening Lead Author: Kenneth Kunkel, Univ. Ill. Urbana-Champaign, Ill. State
2115	Water Survey
2116	
2117	Lead Authors: Peter Bromirski, Scripps Inst. Oceanography, UCSD; Harold Brooks,
2118	NOAA; Tereza Cavazos, Centro de Investigación Científica y de Educación Superior de
2119	Ensenada, Mexico; Arthur Douglas, Creighton Univ.; David Easterling, NOAA; Kerry
2120	Emanuel, Mass. Inst. Tech.; Pavel Groisman, UCAR/NCDC; Greg Holland, NCAR;
2121	Thomas Knutson, NOAA; James Kossin, Univ. WisMadison, CIMSS; Paul Komar,
2122	Oreg. State Univ.; David Levinson, NOAA; Richard Smith, Univ. N.C., Chapel Hill
2123	
2124	Contributing Authors: Jonathan Allan, Oreg. Dept. Geology and Mineral Industries;
2125	Raymond Assel, NOAA; Stanley Changnon, Univ. Ill. Urbana-Champaign, Ill. State
2126	Water Survey; Jay Lawrimore, NOAA; Kam-biu Liu, La. State Univ., Baton Rouge;
2127	Thomas Peterson, NOAA
2128 2129 2130 2131	KEY FINDINGS Observed Changes
2132	Upward trends in the frequency of unusually warm nights, extreme precipitation
2133	episodes, the frequency of North Atlantic tropical cyclones (hurricanes), the length of the
2134	frost-free season, and extreme wave heights along the west coast are notable changes in
2135	the North American climate record.
2136	• Most of North America is experiencing more unusually hot days. The number of
2137	warm spells has been increasing since 1950. However, the heat waves of the 1930s
2138	remain the most severe in the U.S. historical record back to 1895.

2139	•	There are fewer unusually cold days during the last few decades. The last 10 years
2140		have seen a lower number of severe cold waves than for any other 10-yr period in the
2141		historical record which dates back to 1895. There has been a decrease in the number
2142		of frost days and a lengthening of the frost-free season, particularly in the western
2143		part of North America.
2144	•	Extreme precipitation episodes (heavy downpours) have become more frequent and
2145		more intense in recent decades than at any other time in the historical record dating
2146		back to the late 19 th Century and account for a larger percentage of total precipitation.
2147		The most significant changes have occurred in most of the U.S., northern Mexico,
2148		southeastern, northern and western Canada, and southern Alaska.
2149	•	There are recent regional tendencies toward more severe droughts in the southwestern
2150		U.S., parts of Canada and Alaska, and Mexico.
2151	•	For the continental U.S. and southern Canada, the most severe droughts occurred in
2152		the 1930s and there is no indication of an overall trend since 1895; in Mexico, the
2153		1950s and 1994-present were the driest period.
2154	•	Atlantic tropical cyclone (hurricane) activity, as measured by both frequency and the
2155		Power Dissipation Index (which combines storm intensity, duration and frequency)
2156		has increased.
2157		– The increases are substantial since about 1970, and are likely substantial since
2158		the 1950s and 60s, in association with warming Atlantic sea surface temperatures.
2159		There is less confidence in data prior to 1900.
2160		– It is likely that there has been an increase in tropical cyclone <i>frequency</i> in the
2161		North Atlantic over the past 100 years, which has closely followed warming

2162		tropical Atlantic sea surface temperatures. There is increasing uncertainty in the
2163		data as one proceeds further back in time.
2164		- The frequency of major hurricanes has increased coincident with overall
2165		tropical cyclone numbers.
2166	•	There is no observational evidence for an increase in North American mainland land-
2167		falling hurricanes since the late 1800s.
2168	•	The hurricane Power Dissipation Index in the eastern Pacific, affecting the Mexican
2169		west coast and shipping lanes, has decreased since 1980, but rainfall from near-
2170		coastal hurricanes has increased since 1949.
2171	•	The balance of evidence suggests that there has been a northward shift in the tracks of
2172		strong low pressure systems (storms) in both the N. Atlantic and N. Pacific basins.
2173		There is a trend toward stronger intense low pressure systems in the North Pacific.
2174	•	Increases in extreme wave height characteristics have been observed along the
2175		Atlantic and Pacific coasts of North America during recent decades based on 3
2176		decades of buoy data.
2177		- Increases along the West coast have been greatest in the Pacific Northwest, and are
2178		likely a reflection of changes in storm tracks.
2179		- Increases along the U.S. east coast are evident during the hurricane season.
2180	•	Although snow cover extent has decreased over North America, there is no indication
2181		of continental-scale trends in snowstorms and episodes of freezing rain during the
2182		20 th Century.
2183	•	There is no trend in the frequency of tornadoes and other severe convective storms

when the data are adjusted for changes in observing practices.

2185 **2.1 Background**

2186 Weather and climate extremes exhibit substantial spatial variability. It is not unusual for 2187 severe drought and flooding to occur simultaneously in different parts of North America 2188 (e.g. catastrophic flooding in the Mississippi River basin and severe drought in the 2189 southeast U.S. during summer 1993). These reflect temporary shifts in large-scale 2190 circulation patterns that are an integral part of the climate system (Chapter 2, Box 2.3). 2191 The central goal of this chapter is to identify long-term shifts/trends in extremes and to 2192 characterize the continental-scale patterns of such shifts. Such characterization requires 2193 data that is homogeneous, of adequate length, and with continental-scale coverage. Many 2194 datasets meet these requirements for limited periods only. For temperature and 2195 precipitation, rather high quality data are available for the conterminous U.S. back to the late 19th Century. However, shorter data records are available for parts of Canada, 2196 2197 Alaska, Hawaii, Mexico, the Caribbean, and U.S. territories. In practice, this limits true 2198 continental-scale analyses of temperature and precipitation extremes to the middle part of the 20th Century onward. Other phenomena have similar limitations and continental-scale 2199 2200 characterizations are generally limited to the last 50-60 years or less, or must confront 2201 data homogeneity issues which add uncertainty to the analysis. We consider all studies 2202 that are available, but in many cases these studies have to be interpreted carefully because 2203 of these limitations. A variety of statistical techniques are used in the studies cited here. 2204 General information about statistical methods along with several illustrative examples are 2205 given in the Appendix. 2206

2208 2.2 Observed Changes and Variations in Weather and Climate Extremes

2209 2.2.1 Temperature Extremes

- 2210 Extreme temperatures do not always correlate with average temperature, but they often
- 2211 change in tandem; thus, average temperature changes provide a context for discussion of
- 2212 extremes. In 2005, virtually all of North America was above to much above average¹¹
- (Shein et al. 2006) and 2006 was one of the warmest years on record in the conterminous
- 2214 United States (Arguez et al., 2007). The areas experiencing the largest temperature
- anomalies included the higher latitudes of Canada and Alaska. Annual average
- temperature time series for Canada, Mexico and the United States all show substantial
- 2217 warming since the middle of the 20th century (Shein et al. 2006). Since 1998 over half of
- the U.S. annual average temperatures have been extremely high, including the hottest two
- 2219 years on record (1998 and 2006).
- 2220
- 2221 Since 1950, the annual percent of days exceeding the 90th, 95th, and 97.5th percentile

thresholds¹² for both maximum (daytime highs) and minimum (nighttime lows)

temperature has increased when averaged over all the land area (Figure 2.1; Peterson et

- al. 2007). Although the changes are greatest in the 90th percentile (increasing from about
- 2225 10% of the days to about 13% for maximum and almost 15% for minimum) and decrease
- as the threshold temperatures increase indicating more rare events (the 97.5th percentage
- increases from about 3% of the days to 4% for maximum and 5% for minimum), the

¹¹ NOAA's National Climatic Data Center uses the following terminology for classifying its monthly/seasonal/annual U.S. temperature and precipitation rankings: "near-normal" is defined as within the *mid-tercile*, "above/below normal" is within the *top-tercile*, and "much-above/much-below normal" is within the *top-decile* of all such periods on record.

¹² An advantage of the use of percentile, rather than absolute, thresholds is that they account for regional climate differences

2228	relative changes are similar. There are important regional differences in the changes. For
2229	example, the largest increases in the 90 th percentile threshold temperature occur in the
2230	western part of the continent from northern Mexico through the western U.S. and Canada
2231	and across Alaska, while some areas, such as eastern Canada, show declines of as many
2232	as 10 days per year from 1950 to 2004 (Fig. 2.2).
2233	
2234	Other regional studies have shown similar patterns of change. For the U.S., the number of
2235	days exceeding the 90 th , 95 th and 99 th percentile thresholds (defined monthly) have
2236	increased in recent years ¹³ , but are also dominated earlier in the 20 th century by the
2237	extreme heat and drought of the 1930s ¹⁴ (DeGaetano and Allen 2002). Changes in cold
2238	extremes (days falling below the 10 th , 5 th , and 1 st percentile threshold temperatures) show
2239	decreases, particularly since 1960 ¹⁵ . For the 1900-1998 period in Canada, there are fewer
2240	cold extremes in winter, spring and summer in most of southern Canada and more high
2241	temperature extremes in winter and spring, but little change in warm extremes in
2242	summer ¹⁶ (Bonsal et al. 2001). However, for the more recent (1950-1998) period there
2243	are significant increases in warm extremes over western Canada, but decreases in eastern
2244	Canada. Similar results averaged across all of Canada are found for the longer 1900-2003
2245	period, with 28 fewer cold nights, 10 fewer cold days, 21 more extreme warm nights and
2246	8 more warm days per year now than in 1900 ¹⁷ (Vincent and Mekis 2006). For the U.S.
2247	and Canada, the largest increases in daily maximum and minimum temperature are

¹³ The number of stations with statistically significant positive trends for 1960-1996 passed tests for field significance based on resampling.

¹⁴ The number of stations with statistically significant negative trends for 1930-1996 was greater than the number with positive trends.

¹⁵ The number of stations with statistically significant downward trends for 1960-1996 passed tests for field ¹⁶ Statistical significance of trends was assessed using Kendall's tau test
 ¹⁷ These trends were statistically significant at more than 20% of the stations based on Kendall's tau test

2248	occurring in the colder days of each month (Robeson 2004). For the Caribbean region,
2249	there is an 8% increase in the number of very warm nights and 6% increase in the number
2250	of very warm days for the 1958-1999 period. There also has been a corresponding
2251	decrease of 7% in the number of cold days and 4% in the number of cold nights (Peterson
2252	et al. 2002). The number of warm nights has increased by 10 or more per year for Hawaii
2253	and 15 or more per year for Puerto Rico from 1950 to 2004 (Fig. 2.2).
2254	
2255	Analysis of multi-day very extreme heat and cold episodes ¹⁸ in the U.S. were updated ¹⁹
2256	from Kunkel et al. (1999) for the period 1895-2005. The most notable feature of the
2257	pattern of the annual number of the extreme heat waves (Fig. 2.3a) through time is the
2258	high frequency in the 1930s compared to the rest of the years in the 1895-2005 period.
2259	This was followed by a decrease to a minimum in the 1960s and 1970s and then an
2260	increasing trend since then. There is no trend over the entire period, but a highly
2261	statistically significant upward trend since 1960. The heat waves during the 1930s were
2262	characterized by extremely high daytime temperatures while nighttime temperatures were
2263	not as unusual (Fig. 2.3b,c). An extended multi-year period of intense drought
2264	undoubtedly played a large role in the extreme heat of this period, particularly the
2265	daytime temperatures, by depleting soil moisture and reducing the moderating effects of
2266	evaporation. By contrast, the recent period of increasing heat wave index is distinguished
2267	by the dominant contribution of a rise in extremely high nighttime temperatures (Fig.
2268	2.3c). Cold waves show a decline in the first half of the 20 th century, then a large spike of

 ¹⁸ The threshold is approximately the 99.9 percentile.
 ¹⁹ The data were first transformed to create near-normal distributions using a log transformation for the heat wave index and a cube root transformation for the cold wave index. The transformed data were then subjected to least squares regression. Details are given in the Appendix, Example 2.

2269	events during the mid-1980s, then a decline ²⁰ . The last 10 years have seen a lower
2270	number of severe cold waves in the U.S. than in any other 10-yr period since 1895,
2271	consistent with observed impacts such as insect populations (Chapter 1, Box 1.2).
2272	Decreases in the frequency of extremely low nighttime temperatures have made a
2273	somewhat greater contribution than extremely low daytime temperatures to this recent
2274	low period of cold waves. Over the entire period there is a downward trend but it is not
2275	statistically significant at the p=0.05 level.
2276	
2277	The annual number of warm spells ²¹ averaged over North America has increased since
2278	1950 (Peterson et al. 2007). In the U.S. the annual number of warm spells ²² has increased
2279	by about 1 ¹ / ₂ per year, and the duration has increased by about 1 day since 1950
2280	(Easterling et al. 2007a). Regionally the largest increases, up to about 2 ¹ / ₂ per year, were
2281	found in the western U.S., with many parts of the south and southeast showing little
2282	change. Seasonal results show the largest increases in the spring and winter, with little
2283	change in the number of events for the fall or summer. These results for warm spells are
2284	roughly consistent with those for the much more extreme heat waves illustrated in Fig.
2285	2.3a for the common period of analysis (1950-present); the warm spell analyses do not
2286	extend back to the 1930s when very extreme heat was frequent. The frequency and extent
2287	of hot summers ²³ was highest in the 1930s, 1950s, and 1995-2003; the geographic pattern

²⁰ Details of this analysis are given in the Appendix, Example 1.
²¹ Defined as at least 3 consecutive days above the 90th percentile threshold done separately for maximum and minimum temperature.
²² Defined as at least 3 consecutive days with both the daily maximum and succeeding daily minimum temperature above the 80th percentile.
²³ Based on percentage of North American grid points with summer temperatures above the 90th or below the 10th percentiles of the 1950-1999 summer climatology.

of hot summers during 1995-2003 was similar to that of the 1930s (Gershunov and 2288 Douville 2007). 2289

2291	The occurrence of temperatures below the biologically- and societally-important freezing
2292	threshold (0°C, 32°F) is an important aspect of the cold season climatology. Studies have
2293	typically characterized this either in terms of the number of frost days (days with the
2294	minimum temperature below freezing) or the length of the frost-free season ²⁴ . The
2295	number of frost days decreased by 4 days per year in the U.S. during the 1948-1999
2296	period, with the largest decreases, as many as 13 days per year, occurring in the Western
2297	U.S. ²⁵ (Easterling 2002). In Canada, there have been significant decreases in frost day
2298	occurrence over the entire country from 1950 to 2003, with the largest decreases in
2299	extreme western Canada where there have been decreases of up to 40 or more frost days
2300	per year, and slightly smaller decreases in eastern Canada (Vincent and Mekis 2006). The
2301	start of the frost-free season in the Northeastern U.S. occurred 11 days earlier in the
2302	1990s than in the 1950s (Cooter and LeDuc 1995). For the entire U.S., the average length
2303	of the frost-free season over the 1895-2000 period for the U.S. increased by almost 2
2304	weeks ²⁶ (Figure 2.4; Kunkel et al. 2004). The change is characterized by 4 distinct
2305	regimes, with decreasing frost-free season length from 1895 to1910, an increase in length
2306	of about 1 week from 1910 to 1930, little change during1930-1980, and large increases
2307	since1980. The frost-free season length has increased more in the western U.S. than in
2308	the eastern U.S. (Easterling 2002; Kunkel et al. 2004), which is consistent with the

 ²⁴ The difference between the date of the last spring frost and the first fall frost
 ²⁵ Trends in the western half of the U.S. were statistically significant based on simple linear regression
 ²⁶ Statistically significant based on least-squares linear regression

2309	finding that the spring pulse of snow melt water in the Western U.S. now comes as much
2310	as 7-10 days earlier than in the late 1950s (Cayan et al. 2001).
2311	
2312	Ice cover on lakes and the oceans is a direct reflection of the number and intensity of
2313	cold, below freezing days. Ice cover on the Laurentian Great Lakes of North American
2314	usually forms along the shore and in shallow areas in December and January, and in
2315	deeper mid-lake areas in February due to their large depth and heat storage capacity. Ice
2316	loss usually starts in early to-mid-March and lasts through mid-to-late April (Assel 2003).
2317	
2318	Annual maximum ice cover on the Great Lakes has been monitored since 1963. The
2319	maximum extent of ice cover over the past 4 decades varied from less then 10% to over
2320	90%. The winters of 1977-1982 were characterized by a higher ice cover regime relative
2321	to the prior 14 winters (1963-1976) and the following 24 winters (1983-2006) (Assel et
2322	al. 2003, Assel 2005a, Assel personal communication for winter 2006). A majority of the
2323	mildest (lowest) seasonal average ice cover winters (Assel 2005b) over the past 4 decades
2324	occurred during the most recent 10-year period (1997-2006). Analysis of ice breakup
2325	dates on other smaller lakes in North America with at least 100 years of data (Magnuson
2326	et al. 2000) show a uniform trend toward earlier breakup dates (up to 13 days earlier per
2327	$100 \text{ years})^{27}$.
2328	

2329 Reductions in Arctic sea ice, especially near-shore sea ice, allow strong storm and wave

2330 activity to produce extensive coastal erosion resulting in extreme impacts. Observations

2331 from satellites starting in 1978 show that there has been a substantial decline in Arctic sea

²⁷ Statistically significant trends were found for 16 of 24 lakes

2332	ice, with a statistically significant decreasing trend in annual Arctic sea ice extent of -33
2333	\pm 8.8 x 10 ³ km ² per year (equivalent to approximately -2.7% \pm 0.7% per decade).
2334	Seasonally the largest changes in Arctic sea ice have been observed in the ice that
2335	survives the summer, where the trend in the minimum Arctic sea ice extent, between
2336	1979 and 2005, was $-60 \pm 24 \times 10^{3} \text{ km}^{2}$ per year (-7.4 ± 2.9% per decade) (Lemke et al.
2337	2007).
2338	
2339	Rising sea surface temperatures have led to an increase in the frequency of extreme high
2340	SST events causing coral bleaching (see Box 1.1, Chapter 1). Mass bleaching events were
2341	not observed prior to 1980. However, since the 1970s, there have been 6 major global
2342	cycles of mass bleaching, with increasing frequency and intensity (Hoegh-Guldberg
2343	2005). Almost 30% of the world's coral reefs have disappeared in that time.
2344	
2345	Less scrutiny has been focused on Mexico temperature extremes, in part, because much
2346	of the country can be classified as a 'tropical climate' where temperature changes are
2347	presumed fairly small, or semi-arid to arid climate where moisture availability exerts a far
2348	greater influence on human activities than does temperature.
2349	
2350	Most of the sites in Mexico's oldest temperature observing network are located in major
2351	metropolitan areas and there is considerable evidence to indicate that trend behaviors at
2352	least partly reflect urbanization and urban heat island influences (Englehart and Douglas,
2353	2003). To avoid such issues in analysis, a monthly rural temperature dataset has recently

2354	been developed ²⁸ . Examined in broad terms as a national aggregate, a couple of basic
2355	behaviors emerge. First, long period temperature trends over Mexico are generally
2356	compatible with continental-scale trends which indicate a cooling trend over North
2357	America from about the mid-1940s to the mid-1970s, with a warming trend thereafter.
2358	
2359	The rural gridded data set indicates that much of Mexico experienced decreases in both
2360	T_{max} and T_{min} during 1941-1970 (-0.27 $^{\circ}C/decade$ for T_{max} and -0.19 $^{\circ}C/decade$ for $T_{min})$
2361	while the later period of 1971-2001 is dominated by positive trends that are most strongly
2362	evident in T_{max} (0.35°C/decade for T_{max} and 0.10°C/decade for T_{min}). Based on these
2363	results it appears very likely that much of Mexico has experienced an increase in average
2364	temperature driven in large measure by increases in T_{max} . The diurnal temperature range
2365	$(T_{max} minus T_{min})$ for the warm season (June-September) averaged over all of Mexico has
2366	increased by 0.26°C/decade since 1970 with particularly rapid rises since 1990 (Fig. 2.5)
2367	reflecting a comparatively rapid rise in T_{max} with respect to T_{min} (Englehart and Douglas
2368	2005) ²⁹ . This behavior departs from the general picture for many regions of the world,
2369	where warming is attributable mainly to a faster rise in T_{min} than in T_{max} (e.g. Easterling
2370	et al., 1997).
2371	

- Given Mexico's largely tropical/sub-tropical climate and the influence of nearby oceans, 2372
- a reasonable expectation would be that changes in the behavior of temperature extremes 2373

²⁸ It consists of monthly historical surface air temperature observations (1940-2001) compiled from stations (n=103) located in places with population <10,000 (2000 Census). To accommodate variable station record lengths and missing monthly observations, the dataset is formatted as a grid-type (2.5° x 2.5° lat.-long.) based on the climate anomaly method (Jones and Moberg, 2003)²⁹ Statistically significant trends were found in the northwest, central, and south, but not the northeast

regions

2374	could be small and difficult to detect as compared to at many mid-and high latitude
2375	locations. However, the cold surge ³⁰ phenomena – the equatorward penetration of
2376	modified cold air, known as nortes in Mexico – is an integral part of the country's cool
2377	season climatology. The frequency of both cold surge days and cold surge events tends to
2378	vary depending in part on Pacific Decadal Oscillation (PDO) phase: under negative PDO
2379	phase cold surge activity tends to be more prevalent. However, the intensity of cold surge
2380	events as indicated by the maximum daily drop in T_{min} tends to be greater under positive
2381	PDO phase. Analysis of linear trends indicates that from the early 1950s onward, it is
2382	very likely that southern Mexico has experienced a trend toward decreasing frequency of
2383	both cold surge days by 2.4 cold days/decade and cold surge events by 0.88
2384	events/decade (Englehart and Douglas 2007).
2385	
2386	2.2.2 Precipitation Extremes
2387	2.2.2.1 Drought
2388	Droughts are one of the most costly natural disasters (Chapter 1, Box 1.4), with estimated
2389	annual U.S. losses of \$6 – 8 billion (Federal Emergency Management Agency, 1995). An
2390	extended period of deficient precipitation is the root cause of a drought episode, but the
2391	intensity can be exacerbated by high evaporation rates arising from excessive
2392	temperatures, high winds, lack of cloudiness, and/or low humidity. Drought can be
2393	defined in many ways, from acute short-term to chronic long-term hydrological drought,
2394	agricultural drought, meteorological drought, and so on. The assessment in this report

- 2395 focuses mainly on meteorological droughts based on the Palmer (1965) Drought Severity
- 2396 Index (PDSI), though other indices are also documented in the report (Chapter 2, Box
- 2397 2.1).

 $^{^{30}}$ Cold surges are defined for the period 1925-2002 based on daily station observations of T_{min} from two locations – stations in south Texas and near coastal stations from the southern Mexican state of Veracruz. Cold surge days have T_{min} below its climatological values by 1 standard deviation. Cold surge events are runs of 1 or more consecutive cold surge days.

2399	Individual droughts can occur on a range of spatial scales, but they often affect rather
2400	large areas and can persist for many months and even years. Thus, the aggregate impacts
2401	can be very large. For the U.S., the percentage area affected by severe to extreme drought
2402	(Fig. 2.6) highlights some major episodes of extended drought. The most widespread and
2403	severe drought conditions occurred in the 1930s and 1950s (Andreadis et al. 2005). The
2404	early 2000s were also characterized by severe droughts in some areas, notably in the
2405	western U.S. When averaged across the entire U.S. (Fig. 2.6), there is no clear tendency
2406	for a trend based on the PDSI. Similarly, long-term trends (1925-2003) of hydrologic
2407	droughts based on model derived soil moisture and runoff show that droughts have, for
2408	the most part, become shorter, less frequent, and cover a smaller portion of the U.S. over
2409	the last century (Andreadis and Lettenmaier, 2006). The main exception is the Southwest
2410	and parts of the interior of the West, where increased temperature has led to positive
2411	drought trends (Andreadis and Lettenmaier, 2006). The trends averaged over all of North
2412	America since 1950 (Fig. 2.6) are similar to U.S. trends for the same period, indicating no
2413	overall trend.
2414	
2415	Since the contiguous United States has experienced an increase in both temperature and

2416 precipitation during the 20^{th} century, one question is whether these increases are

2417 impacting the occurrence of drought. Easterling et al (2007b) examined this possibility by

- 2418 looking at drought, as defined by the PDSI, for the United States using detrended
- temperature and precipitation. Results indicate that without the upward trend in
- precipitation the increase in temperatures would have lead to an increase in the area ofthe U.S. in severe-extreme drought of up to 30% in some months.
- 2422

2423 Summer conditions, which relate to fire danger, have trended toward lesser drought in the 2424 upper Mississippi, Midwest, and Northwest, but the fire danger has increased in the 2425 Southwest, in California in the spring season (not shown), and, surprisingly, over the 2426 Northeast, despite the fact that annual precipitation here has increased. A century-long 2427 warming in this region is quite significant in summer, which reverses the tendencies of 2428 the precipitation contribution to soil wetness (Groisman et al. 2004). Westerling et al. 2429 (2006) document that large wildfire activity in the Western U.S. increased suddenly and 2430 markedly in the mid-1980s, with higher large-wildfire frequency, longer wildfire 2431 durations, and longer wildfire seasons. The greatest increases occurred in mid-elevation, 2432 Northern Rockies forests, where land-use histories have relatively little effect on fire risks 2433 and are strongly associated with increased spring and summer temperatures and an earlier 2434 spring snowmelt.

For the entire North American continent, there is a north-south pattern in drought trends
(Dai et al. 2004). Since 1950, there is a trend toward wetter conditions over much of the
conterminous U.S., but a trend toward drier conditions over southern and western
Canada, Alaska, and Mexico. The summer PDSI averaged for Canada indicates dry
conditions during the 1940s and 1950s, generally wet conditions from the 1960s to 1995,
but much drier after 1995 (Shabbar and Skinner, 2004). In Alaska and Canada, the
upward trend in temperature, resulting in increased evaporation rates, has made a

2443	substantial contribution to the upward trend in drought (Dai et al. 2004). In agreement
2444	with this drought index analysis, the area of forest fires in Canada has been quite high
2445	since 1980 compared to the previous 30 years and Alaska experienced a record high year
2446	for forest fires in 2004 followed by the third highest in 2005 (Soja et al. 2007). During
2447	the mid-1990s and early 2000s, central (Stahle et al. 2007) and western Mexico (Kim et
2448	al. 2002; Nicholas and Battisti, 2006; Hallack and Watkins, 2007) experienced
2449	continuous cool-season droughts having major impacts in agriculture, forestry, and
2450	ranching, especially during the warm summer season. In 1998, "El Niño" caused one of
2451	the most severe droughts in Mexico since the 1950s (Ropelewski, 1999), creating the
2452	most difficult wildfire season in Mexico's history. Mexico had 14,445 wildfires affecting
2453	849,632 hectares - the largest area ever burned in Mexico in a single season
2454	(SEMARNAP, 2000).

2456 Reconstructions of drought prior to the instrumental record based on tree-ring 2457 chronologies indicate that the 1930s may have been the worst drought since 1700 (Cook 2458 et al. 1999). There were three major multiyear droughts in the U.S. during the latter half 2459 of the 1800s: 1856-1865, 1870-1877 and 1890-1896 (Herweijer et al. 2006). Similar 2460 droughts have been reconstructed for northern Mexico (Therrell et al. 2002). There is 2461 evidence of earlier, even more intense drought episodes (Woodhouse and Overpeck 2462 1998). A period in the mid to late 1500s has been termed a "mega-drought" and was 2463 longer-lasting and more widespread than the 1930s Dust Bowl (Stahle et al. 2000). 2464 Several additional mega-droughts occurred during 1000-1470 (Herweijer et al. 2007). 2465 These droughts were about as severe as the 1930s Dust Bowl episode but much longer,

2466	lasting 20-40 years. In the western U.S., the period of 900-1300 was characterized by
2467	widespread drought conditions (Fig. 2.7; Cook et al. 2004). In Mexico, reconstructions of
2468	seasonal precipitation (Stahle et al. 2000, Acuña-Soto et al. 2002, Cleaveland et al. 2004)
2469	indicate that there have been droughts more severe than the 1950s drought, e.g., the
2470	mega-drought in the mid- to late- 16 th century, which appears as a continental-scale
2471	drought.
2472	
2473	During the summer months, excessive heat and drought often occur simultaneously
2474	because the meteorological conditions typically causing drought are also conducive to
2475	high temperatures. The impacts of the Dust Bowl droughts and the 1988 drought were
2476	compounded by episodes of extremely high temperatures. The month of July 1936 in the
2477	central U.S. is a notable example. To illustrate, Lincoln, NE received only 0.05" of
2478	precipitation that month (after receiving less than 1 inch the previous month) while
2479	experiencing temperatures reaching or exceeding 110°F on 10 days, including 117°F on
2480	July 24. Although no studies of trends in such "compound" extreme events have been
2481	performed, they represent a significant societal risk.
2482	
2483	BOX 2.1: Drought Indicators and Resources
2484	• Palmer Drought Severity Index (PDSI; Palmer, 1965) – meteorological drought.
2485	The PDSI is a commonly-used drought index that measures intensity, duration, and
2486	spatial extent of drought. It is derived from measurements of precipitation, air
2487	temperature, and local estimated soil moisture content. Categories range from less
2488	than -4 (extreme drought) to more than +4 (extreme wet conditions), and have been

Do Not Cite or Quote

2489	standardized to facilitate comparisons from region to region. Alley (1984) identified
2490	some positive characteristics of the PDSI that contribute to its popularity: (1) it is an
2491	internationally recognized index; (2) it provides decision makers with a measurement
2492	of the abnormality of recent weather for a region; (3) it provides an opportunity to
2493	place current conditions in historical perspective; and (4) it provides spatial and
2494	temporal representations of historical droughts. However, the PDSI has some
2495	limitations (1) it may lag emerging droughts by several months; (2) it is less well
2496	suited for mountainous land or areas of frequent climatic extremes; (3) it does not
2497	take into account streamflow, lake and reservoir levels, and other long-term
2498	hydrologic impacts (Karl and Knight, 1985), such as snowfall and snow cover; (4) the
2499	use of temperature alone to estimate potential evapotranspiration (PET) can introduce
2500	biases in trend estimates because humidity, wind and radiation also affect PET and
2501	changes in these elements are not accounted for. In fact, Hobbins et al. (2007) show
2502	that the PDSI trends in Australia and New Zealand are exaggerated compared to
2503	trends using more realistic methods to estimate evapotranspiration. The use of
2504	temperature alone is a practical consideration since measurements of these other
2505	elements are often not available.
2506 •	Crop Moisture Index (CMI; Palmer, 1968) – short-term meteorological drought.
2507	Whereas the PDSI monitors long-term meteorological wet and dry spells, the CMI
2508	was designed to evaluate short-term moisture conditions across major crop-producing
2509	regions. It is based on the mean temperature and total precipitation for each week, as

2510 well as the CMI value from the previous week. Categories range from less than -3

2511 (severely dry) to more than +3 (excessively wet). The CMI responds rapidly to

2512 changing conditions, and it is weighted by location and time so that maps, which 2513 commonly display the weekly CMI across the United States, can be used to compare 2514 moisture conditions at different locations. Weekly maps of the CMI are available as 2515 part of the USDA/JAWF Weekly Weather and Crop Bulletin. 2516 Standardized Precipitation Index (SPI; McKee et al., 1993) – precipitation-based 2517 drought. The SPI was developed to categorize rainfall as a standardized departure 2518 with respect to a rainfall probability distribution function; categories range from less 2519 than -3 (extremely dry) to more than +3 (extremely wet). The SPI is calculated on the 2520 basis of selected periods of time (typically from 1 to 48 months of total precipitation) 2521 and it indicates how the precipitation for a specific period compares with the long-2522 term record at a given location (Edwards and McKee, 1997). The index correlates 2523 well with other drought indices. Sims et al. (2002) suggested that the SPI was more 2524 representative of short-term precipitation and a better indicator of soil wetness than 2525 the PDSI. The 9-month SPI corresponds closely to the PDSI (Heim 2002; Guttman 2526 1998).

 Keetch-Byram Index (KBDI; Keetch and Byram, 1968) – meteorological drought and wildfire potential index. This was developed to characterize the level of potential fire danger. It uses daily temperature and precipitation information and estimates soil moisture deficiency. High values of KBDI are indicative of favorable conditions for wildfires. However, the index needs to be regionalized, as values are not comparable among regions Groisman et al. 2004, 2007a).

No-rain episodes – meteorological drought. Groisman and Knight (2007) proposed
 to directly monitor frequency and intensity of prolonged no-rain episodes (greater

2535	than 20, 30, 60, etc. days) during the warm season, when evaporation and
2536	transpiration are highest and the absence of rain may affect natural ecosystems and
2537	agriculture. They found that during the past four decades the duration of prolonged
2538	dry episodes has significantly increased over the Eastern and Southwestern United
2539	States and adjacent areas of Northern Mexico and Southeastern Canada.
2540	• Soil Moisture and Runoff Index (SMRI; Andreadis and Lettenmaier, 2006) –
2541	hydrologic and agricultural droughts. The SMRI is based on model-derived soil
2542	moisture and runoff as drought indicators; it uses percentiles and the values are
2543	normalized from 0 (dry) to 1 (wet conditions). The limitation of this index is that it is
2544	based on land-surface model-derived soil moisture. However, long-term records of
2545	soil moisture – a key variable related to drought – are essentially non-existent
2546	(Andreadis and Lettenmaier, 2006). Thus, the advantage of the SMRI is that it is
2547	physically based and with the current sophisticated land-surface models it is easy to
2548	produce multimodel average climatologies and century-long reconstructions of land
2549	surface conditions, which could be compared under drought conditions.
2550	Resources: A list of these and other drought indicators, data availability, and current
2551	drought conditions based on observational data can be found at the National Climatic
2552	Data Center (NCDC, <u>http://www.ncdc.noaa.gov</u>). The North American Drought Monitor
2553	at NCDC monitors current drought conditions in Canada, the United States, and Mexico.
2554	Tree-ring reconstruction of PDSI across North America over the last 2000 years can be
2555	also found at NCDC
2556	

2558 2.2.2.2 Short Duration Heavy Precipitation

2559 2.2.2.1 Data Considerations and Terms

2560 Intense precipitation often exhibits higher spatial variability than many other extreme

2561 phenomena. This poses challenges for the analysis of observed data since the heaviest

area of precipitation in many events may fall between stations. This adds uncertainty to

estimates of regional trends based on the climate network. The uncertainty issue is

2564 explicitly addressed in some recent studies.

2565

2566 Precipitation extremes are typically defined based on the frequency of occurrence [by

2567 percentile (e.g., upper 5%, 1%, 0.1%, etc) or by return period (e.g. an average occurrence

of once every 5 years, once every 20 years, etc.)] of rain events and/or their absolute

values (e.g., above 50 mm, 100 mm, 150 mm, or more). Values of percentile or return

2570 period thresholds vary considerably across North America. For example, in the U.S.,

2571 regional average values of the 99.9 percentile threshold for daily precipitation are lowest

2572 in the Northwest and Southwest (average of 55 mm) and highest in the South (average of

2573 130mm)³¹.

2574

2575 As noted above, spatial patterns of precipitation have smaller spatial correlation scales

2576 (for example, compared to temperature and atmospheric pressure) which means that a

2577 denser network is required in order to achieve a given uncertainty level. While monthly

2578 precipitation time series for flat terrain have typical radii of correlation³² (ρ) of ~300 km

³¹ The large magnitude of these differences is a major motivation for the use of regionally-varying thresholds based on percentiles.

³² Spatial correlation decay with distance, r, for many meteorological variables, X, can be approximated by

2579	or even more, daily precipitation may have ρ less than 100 km with typical values for
2580	convective rainfall in isolated thunderstorms of ~15 to 30 km (Gandin and Kagan 1976).
2581	Values of ρ can be very small for extreme rainfall events and sparse networks may not be
2582	adequate to detect a desired minimum magnitude of change that can result in societally-
2583	important impacts and can indicate important changes in the climate system.
2584	
2585	2.2.2.2 United States
2586	One of the clearest trends in the U.S. observational record is that of an increasing
2587	frequency and intensity of heavy precipitation events (Karl and Knight 1998; Groisman et
2588	al. 1999, 2001, 2004; Kunkel et al. 1999; Easterling et al. 2000; IPCC 2001; Semenov
2589	and Bengtsson 2002, Kunkel 2003). For example, the area of the United States affected
2590	by a much above normal contribution to total annual precipitation of daily precipitation
2591	events exceeding 50.8 mm (2 inches) increased by a statistically significant amount from
2592	about 9% in the 1910s to about 11% in the 1980s and 1990s (Karl and Knight 1998).
2593	Total precipitation also increased during this time, due in large part to increases in the
2594	intensity of heavy precipitation events (Karl and Knight 1998). In fact, there has been
2595	little change or decreases in the frequency of light and average precipitation days
2596	(Easterling et al. 2000; Groisman et al. 2004, 2005) during the last 30 years while heavy
2597	precipitation frequencies have increased (Sun and Groisman 2004). For example, the
2598	amount of precipitation falling in the heaviest 1% of rain events has increased by 20%
2599	during the 20 th Century while total precipitation has increased by only 7% (Groisman et
2600	al. 2004). Although the exact character of those changes has been questioned (e.g.

an exponential function of distance: Corr (X(A), X(B)) ~ $e^{-r/\rho}$ where r is a distance between point A and B and ρ is a radius of correlation, which is a distance where the correlation between the points is reduced to 1/e compared to an initial "zero" distance.

- 2601 Michaels et al. 2004), it is highly likely that in recent decades extreme precipitation2602 events have increased more than light to medium events.
- 2603

A statistically significant 50% increase during the 1900s in the frequency of days with

- 2605 precipitation exceeding 101.6 mm (4 inches) was found in the upper Midwest U.S.
- 2606 (Groisman et al. 2001). Upward trends in the amount of precipitation occurring in the
- 2607 upper 0.3% of daily precipitation events are statistically significant for the period of
- 2608 1908-2002 within three major regions (the South, Midwest, and Upper Mississippi; see
- Fig. 2.8) of the central United States (Groisman et al. 2004). The upward trends are
- 2610 primarily a warm season phenomenon when the most intense rainfall events typically
- 2611 occur. A time series of the frequency of events in the upper 0.3% averaged for these 3
- regions (Fig 2.8) shows a 20% increase over the period of 1893-2002 with all of this
- 2613 increase occurring over the last third of the 1900s (Groisman et al. 2005).
- 2614

Examination of intense precipitation events defined by return period, covering the period of 1895-2000, indicates that the frequencies of extreme precipitation events before 1920 were generally above the long-term averages for durations of 1 to 30 days and return periods 1 to 20 years and only slightly lower than values during the 1980s and 1990s (Kunkel et al. 2003). The highest values occur after about 1980, but the elevated levels prior to about 1920 are an interesting feature suggesting that there is considerable variability in the occurrence of extreme precipitation on multi-decadal time scales

2623	There is a seeming discrepancy between the results for the 99.7 th percentile (which do not
2624	show high values early in the record in the analysis of Groisman et al. 2004) and for 1 to
2625	20-yr return periods (which do in the analysis of Kunkel et al. 2003). The number of
2626	stations with available data is only about half (about 400) in the late 1800s of what is
2627	available in most of the 1900s (800-900). Furthermore, the spatial distribution of stations
2628	throughout the record is not uniform; the density in the western U.S. is relatively lower
2629	than in the central and eastern U.S. It is possible that the resulting uncertainties in heavy
2630	precipitation estimates are too large to make unambiguous statements about the recent
2631	high frequencies.
2632	

2633 Recently, this question was addressed (Kunkel et al. 2007a) by analyzing the modern 2634 dense network to determine how the density of stations affects the uncertainty and then to 2635 estimate the level of uncertainty in the estimates of frequencies in the actual (sparse) 2636 network used in the long-term studies. The results were unambiguous. For all 2637 combinations of three durations (1-day, 5-days and 10-days) and 3 return periods (1-yr, 2638 5-yr, and 20-yr), the frequencies for 1983-2004 were significantly higher than those for 2639 1895-1916 at a high level of confidence. In addition, the observed linear trends were all 2640 found to be upward, again with a high level of confidence. Based on these results, it is 2641 highly likely that the recent elevated frequencies in the U.S. are the highest since 1895. 2642

2643 **2.2.2.3 Alaska and Canada**

2644 The sparse network of long-term stations in Canada increases the uncertainty in estimates2645 of extremes. Changes in the frequency of heavy events exhibit considerable multi-decadal

2646	variability since 1900, but no long-term trend for the entire century (Zhang et al. 2001).
2647	However, according to Zhang et al. (2001), there are not sufficient instrumental data to
2648	discuss the nationwide trends in precipitation extremes over Canada prior to 1950.
2649	Nevertheless, there are changes that are noteworthy. For example, the frequency of
2650	99.7% events exhibits a statistically significant upward trend of 19%/50yr in British
2651	Columbia since 1910 (Fig. 2.8; Groisman et al. 2005). For Canada, increases in
2652	precipitation intensity during the second half of the 1900s are concentrated in heavy and
2653	intermediate events, with the largest changes occurring in Arctic areas (Stone et al. 2000).
2654	The tendency for increases in the frequency of intense precipitation while the frequency
2655	of days with average and light precipitation does not change or decreases has also been
2656	observed in Canada over the last 30 years (Stone et al. 2000), mirroring U.S. changes.
2657	Recently, Vincent and Mekis (2006) repeated analyses of precipitation extremes for the
2658	second half of 1900s (1950-2003 period). They reported a statistically significant increase
2659	of 1.8 days per 54 years in heavy precipitation days (defined as the days with
2660	precipitation above 10 mm) and statistically insignificant increases in the maximum 5-
2661	day precipitation (by ~5%) and in the number of "very wet days" defined as days with
2662	precipitation above the upper 5 th percentiles of local daily precipitation (by 0.4 days).
2663	
2664	There is an upward trend of 37%/50yr in southern Alaska since 1950 although this trend
2665	is not statistically significant (Fig. 2.8; Groisman et al. 2005).
2666	
2667	

2669 **2.2.2.4 Mexico**

2670 On an annual basis, the number of heavy precipitation (P > 10 mm) days has increased in 2671 northern Mexico and the Sierra Madre Occidental and decreased in the south-central part 2672 of the country (Alexander et al. 2006). The percent contribution to total precipitation

2673 from heavy precipitation events exceeding the 95th percentile threshold has increased in

the monsoon region (Alexander et al., 2006) and along the southern Pacific coast

2675 (Aguilar et al. 2005), while some decreases are documented for south-central Mexico

2676 (Aguilar et al. 2005).

2677

2678 On a seasonal basis, the maximum precipitation reported in 5 consecutive days during 2679 winter and spring has increased in Northern Mexico and decreased in south-central 2680 Mexico (Alexander et al. 2006). Northern Baja California, the only region in Mexico 2681 characterized by a Mediterranean climate, has experienced an increasing trend in winter precipitation exceeding the 90th percentile, especially after 1977 (Cavazos and Rivas, 2682 2683 2004). Heavy winter precipitation in this region is significantly correlated with El Niño 2684 events (Pavia and Badan, 1998; Cavazos and Rivas, 2004); similar results have been 2685 documented for California (e.g., Gershunov and Cayan, 2003). During the summer there 2686 has been a general increase of 2.5 mm in the maximum 5-consecutive-day precipitation in most of the country and an upward trend in the intensity of events exceeding the 99th and 2687 99.7th percentiles in the high plains of Northern Mexico during the summer season 2688 2689 (Groisman et al. 2005).

2691	During the monsoon season (June-September) in northwestern Mexico, the intensity and
2692	seasonal contribution of rainfall events exceeding the 95 th percentiles significantly
2693	increased (p<0.05) in the core monsoon region and at mountain sites (Fig. 2.8; Cavazos et
2694	al. 2007). The mean intensity of 95 th percentile events in the monsoon region increased
2695	significantly by 0.6 mm dec ⁻¹ during 1950-2003. It went from 17.9 mm d ⁻¹ in the 1950-
2696	1976 period to 19.6 mm d ⁻¹ in 1977-2003 while at mountain sites the increase was from
2697	40.8 mm d ⁻¹ to 43.9 mm d ⁻¹ , respectively. These increases are mainly due to an increase
2698	in tropical cyclone-derived rainfall after 1980. The frequency of heavy events does not
2699	show a significant trend (Englehart and Douglas 2001; Neelin et al. 2006; Cavazos et al.,
2700	2007). Similarly, Groisman et al. (2005) report that the frequency of very heavy summer
2701	precipitation events (above the 99 th percentile) in the high plains of Northern Mexico
2702	(east of the core monsoon) has not increased, whereas their intensity has increased
2703	significantly.
2704	
2705	The increase in the mean intensity of heavy summer precipitation events in the core
2706	monsoon region during the 1977-2003 period are significantly correlated with the

2707 Oceanic El Niño Index (ONI³³) conditions during the cool season. El Niño SST

- anomalies antecedent to the monsoon season are associated with less frequent, but more
- 2709 intense, heavy precipitation events³⁴ (exceeding the 95th percentile threshold), and vice

2710 versa.

³³ ONI INDEX:

<u>http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml</u> Warm and cold episodes based on a threshold of +/- 0.5°C for the Oceanic Niño Index (ONI) [3 month running mean of ERSST.v2 SST anomalies in the Niño 3.4 region (5°N-5°S, 120°-170°W)], based on the 1971-2000 base period.

³⁴ The correlation coefficient between ONI and heavy precipitation frequency (intensity) is -0.37 (+0.46)

- 2711 There has been an insignificant decrease in the number of consecutive dry days in
- 2712 northern Mexico, while an increase is reported for south-central Mexico (Alexander et
- al., 2006), and the southern Pacific coast (Aguilar et al. 2005).
- 2714

2715 2.2.2.5 Summary

- 2716 All studies indicate that changes in heavy precipitation frequencies are *always* higher
- than changes in precipitation totals and, in some regions, an *increase* in heavy and/or
- 2718 very heavy precipitation occurred while no change or even a decrease in precipitation
- totals was observed (e.g., in the summer season in central Mexico). There are regional
- 2720 variations in where these changes are statistically significant (Fig. 2.8). The most
- 2721 significant changes occur in the central U.S., central Mexico, southeastern, northern and
- 2722 western Canada, and southern Alaska. These changes have resulted in a wide range of
- 2723 impacts, including human health impacts (Chapter 1, Box 1.3).

2724

2725 **2.2.2.3 Monthly to Seasonal Heavy Precipitation**

2726 On the main stems of large river basins, significant flooding will not occur from short

2727 duration extreme precipitation episodes alone. Rather, excessive precipitation must be

sustained for weeks to months. The 1993 Mississippi River flood, which resulted in an

- estimated \$17 billion in damages, was caused by several months of anomalously high
- 2730 precipitation (Kunkel et al. 1994).

2731

2732 A time series of the frequency of 90-day precipitation totals exceeding the 20-year return

2733 period (a simple extension of the approach of Kunkel et al. 2003) indicates a statistically

2734	significant upward trend (Fig. 2.9). The frequency of such events during the last 25 years
2735	is 20% higher than during any earlier 25-year period. Even though the causes of multi-
2736	month excessive precipitation are not necessarily the same as for short duration extremes,
2737	both show moderately high frequencies in the early 20 th Century, low values in the 1920s
2738	and 1930s, and the highest values in the past 2-3 decades. The trend ³⁵ over the entire
2739	period is highly statistically significant.

- 2740
- 2741 2.2.2.4 North American Monsoon

2742 Much of Mexico is dominated by a monsoon type climate with a pronounced peak in

rainfall during the summer (June through September) when up to 60% to 80% of the

annual rainfall is received (Douglas et al., 1993; Higgins et al., 1999 and Cavazos et al.,

2745 2002). Monsoon rainfall in southwest Mexico is often supplemented by tropical cyclones

2746 moving along the coast. Farther removed from the tracks of Pacific tropical cyclones,

2747 interior and northwest sections of Mexico receive less than 10% of the summer rainfall

from passing tropical cyclones (Fig. 2.10; Englehart and Douglas 2001). The main

2749 influences on total monsoon rainfall in these regions rests in the behavior of the monsoon

as defined by its start and end date, rainfall intensity and duration of wet and dry spells

2751 (Englehart and Douglas 2006). Extremes in any one of these parameters can have a

- 2752 strong effect on the total monsoon rainfall.
- 2753

2754 The monsoon in northwest Mexico has been studied in detail because of its singular

2755 importance to that region and because summer rainfall from this core monsoon region

³⁵ The data were first subjected to a square root transformation to produce a data set with an approximate normal distribution; then least squares regression was applied. Details can be found in the Appendix, Example 4.

2756	spills over into the U.S. Desert Southwest (Douglas et al., 1993; Higgins et al. 1999,
2757	Cavazos et al. 2002). Based on long term data from 8 stations in southern Sonora, the
2758	summer rains have become increasingly late in arriving (Englehart and Douglas 2006)
2759	and this has had strong hydrologic and ecologic repercussions for this northwest core
2760	region of the monsoon. Based on linear trend, the mean start date for the monsoon has
2761	been delayed almost 10 days (9.89 days with a significant trend of 1.57 days per decade)
2762	over the past 63 years (Figure 2.11a). Because extended periods of intense heat and
2763	desiccation typically precede the arrival of the monsoon, the trend toward later starts to
2764	the monsoon will place additional stress on the water resources and ecology of the region
2765	if continued into the future.
2766	
2767	Accompanying the tendency for later monsoon starts, there also has been a notable
2768	change in the "consistency" of the monsoon as indicated by the average duration of wet
2769	spells in southern Sonora (Figure 2.11b). Based on a linear trend, the average wet spell ³⁶
2770	has decreased by almost one day (0.88 days with a significant trend of -0.14 days per
2771	decade) from nearly four days in the early 1940s to slightly more than three days in
2772	recent years. The decrease in wet spell length indicates a more erratic monsoon is now
2773	being observed. Extended periods of consecutive days with rainfall are now becoming
2774	less common during the monsoon. These changes can have profound influences on

2775 surface soil moisture levels which affect both plant growth and runoff in the region.

³⁶ For southern Sonora, Mexico, wet spells are defined as the mean number of consecutive days with mean regional precipitation ≥ 1 mm.

2777	A final measure of long term change in monsoon activity is associated with the change in
2778	rainfall intensity over the past 63 years (Figure 2.11c). Based on linear trend, rainfall
2779	intensity ³⁷ in the 1940s was roughly 5.6mm per rain day, but in recent years has risen to
2780	nearly 7.5mm per rain day ³⁸ . Thus, while the summer monsoon has become increasingly
2781	late in arriving and wet spells have become shorter, the average rainfall during rain
2782	events has actually increased very significantly by 17% or 1.89mm over the 63 year
2783	period (0.3 mm per decade) as well as the intensity of heavy precipitation events (Fig.
2784	2.9). Taken together, these statistics indicate that the rainfall in the core region of the
2785	monsoon (i.e., northwest Mexico) has become more erratic with a tendency towards high
2786	intensity rainfall events countering the tendency towards a shorter monsoon with shorter
2787	wet spells.
2788	
2789	Variability in Mexican monsoon rainfall shows modulation by large-scale climate modes.
2790	Englehart and Douglas (2002) demonstrate that a well developed inverse relationship
2791	exists between ENSO and total seasonal rainfall (June-September) over much of Mexico,
2792	but the relationship is only operable in the positive phase of the PDO. Evaluating
2793	monsoon rainfall behavior on intraseasonal time scales, Englehart and Douglas (2006)
2794	demonstrate that rainfall intensity (mm/rain day) in the core region of the monsoon is
2795	related to PDO phase with the positive (negative) phase favoring relatively high (low)
2796	intensity rainfall events. Analysis indicates that other rainfall characteristics of the

monsoon respond to ENSO with warm events favoring later starts to the monsoon and 2797

³⁷ Daily rainfall intensity during the monsoon is defined as the regional average rainfall for all days with rainfall ≥ 1 mm. ³⁸ The linear trend in this time series is significant at the p=0.01 level

shorter length wet spells (days) with cold events favoring opposite behavior (Englehartand Douglas 2006).

2800

2801 2.2.2.5 Tropical Storm Rainfall in Western Mexico

Across southern Baja California and along the southwest coast of Mexico, 30% to 50% of

2803 warm season rainfall (May-November) is attributed to tropical cyclones (Fig. 2.10) and in

2804 years heavily affected by tropical cyclones (upper 95th percentile) 50% to 100% of the

summer rainfall comes from tropical cyclones. In this region of Mexico, there is a long

2806 term, upward trend in tropical cyclone-derived rainfall at both Manzanillo

2807 (41.8mm/decade; Fig. 2.12a) and Cabo San Lucas (20.5mm/decade)³⁹. This upward trend

2808 in tropical cyclone rainfall has led to an increase in the importance of tropical cyclone

rainfall in the total warm season rainfall for southwest Mexico (Fig. 2.12b) and this has

2810 resulted in a higher ratio of tropical cyclone rainfall to total warm season rainfall. Since

these two stations are separated by more than 700km, these significant trends in tropical

2812 cyclone rainfall imply large scale shifts in the summer climate of Mexico.

2813

2814 This recent shift in emphasis on tropical cyclone warm season rainfall in western Mexico

2815 has strong repercussions as rainfall becomes less reliable from the monsoon and becomes

- 2816 more dependent on heavy rainfall events associated with passing tropical cyclones. Based
- 2817 on the large scale and heavy rainfall characteristics associated with tropical cyclones,
- 2818 dams in the mountainous regions of western Mexico are often recharged by strong

 $^{^{39}}$ The linear trends in tropical cyclone rainfall at these two stations are significant at the p=0.01 and p=0.05 level, respectively.

- tropical cyclone events which therefore have positive benefits for Mexico despite anyattendant damage due to high winds or flooding.
- 2821

2822 This trend in tropical cyclone-derived rainfall is consistent with a long term analysis of 2823 near-shore tropical storm tracks along the west coast of Mexico (storms passing within 5° 2824 of the coast) which indicates an upward trend in the number of near shore storms over the 2825 past 50 years (Fig. 2.12c). While the number of tropical cyclones occurring in the entire 2826 east Pacific Basin is uncertain prior to the advent of satellite tracking in about 1967, it 2827 should be noted that the long term data sets for near shore storm activity (within 5° of the 2828 coast) are considered to be much more reliable due to coastal observatories and heavy 2829 ship traffic to and from the Panama Canal to Pacific ports in Mexico and the United 2830 States. The number of near shore storm days (storms less than 550km from the station) 2831 has increased by 1.3 days/decade in Manzanillo and about 0.7 days/decade in Cabo San Lucas $(1949-2006)^{40}$. The long term correlation between tropical cyclone days at each 2832 2833 station and total tropical cyclone rainfall is r = 0.61 for Manzanillo and r = 0.37 for Cabo 2834 San Lucas, illustrating the strong tie between passing tropical cyclones and the rain that 2835 they provide to coastal areas of Mexico. 2836

- 2837 Interestingly, the correlations between tropical cyclone days and total tropical cyclone
- rainfall actually drop slightly when based only on the satellite era, 1967-2006 (r = 0.54
- for Manzanillo and r = 0.31 for Cabo San Lucas). The fact that the longer time series has
- the higher set of correlations shows no reason to suggest problems with near shore

 $^{^{40}}$ The linear trends in near shore storm days are significant at the p=0.05 level and p=0.10 level, respectively.

2841 tropical cyclone tracking in the pre-satellite era. The lower correlations in the more recent 2842 period between tropical cyclone days and total tropical cyclone rainfall may be tied to 2843 tropical cyclone derived rainfall rising at a faster pace compared to the rise in tropical 2844 cyclone days. In other words, tropical cyclones are producing more rain per event than in 2845 the earlier 1949-1975 period when SSTs were colder. 2846 2847 **2.2.2.6 Tropical Storm Rainfall in the Southeastern United States** 2848 Tropical cyclone-derived rainfall along the southeastern coast of the United States on a 2849 century time scale has changed insignificantly in summer (when no century-long trends

2850 in precipitation was observed) as well as in autumn (when the total precipitation

increased by more than 20% since the 1900s; Groisman et al. 2004).

2852

2853 2.2.3 Storm Extremes

2854 2.2.3.1 Tropical Cyclones

2855 **2.2.3.1.1 Introduction**

Each year, about 90 tropical cyclones develop over the world's oceans, and some of these

2857 make landfall in populous regions, exacting heavy tolls in life and property. Their

2858 occurrence is often statistically modeled as a Poisson process. The global number has

2859 been quite stable since 1970, when global satellite coverage began in earnest, having a

- standard deviation of 10 and no evidence of any substantial trend (e.g. Webster et al
- 2861 1995). However, there is some evidence for trends in storm intensity and/or duration
- 2862 (e.g. Holland and Webster 2007 and quoted references for the North Atlantic; Chan 2000
- 2863 for the Western North Pacific), and there is substantial variability in tropical cyclone

2864 frequency within each of the ocean basins they affect. Regional variability occurs on all 2865 resolved time scales, and there is also some evidence of trends in certain measures of 2866 tropical cyclone energy, affecting many of these regions and perhaps the globe as well. 2867 2868 There are at least two reasons to be concerned with such variability. The first and most 2869 obvious is that tropical cyclones rank with flash floods as the most lethal and expensive 2870 natural catastrophes, greatly exceeding other phenomena such as earthquakes. In 2871 developed countries, such as the U.S., they are enormously costly: Hurricane Katrina is 2872 estimated to have caused in excess of \$80 billion 2005 dollars in damage, and killed more 2873 than 1500 people. Death and injury from tropical cyclones is yet higher in developing 2874 nations; for example, Hurricane Mitch of 1998 took more than 11,000 lives in Central 2875 America. Any variation or trend in tropical cyclone activity is thus of concern to coastal 2876 residents in affected areas, compounding trends related to societal factors such as 2877 changing coastal population.

2878

2879 A second, less obvious and more debatable issue is the possible feedback of tropical 2880 cyclone activity on the climate system itself. The inner cores of tropical cyclones have 2881 the highest specific entropy content of any air at sea level, and for this reason such air 2882 penetrates higher into the stratosphere than is the case with other storm systems. Thus 2883 tropical cyclones may play a role in injecting water and trace gases and microscopic 2884 airborne particles into the upper troposphere and lower stratosphere, though this idea 2885 remains largely unexamined. There is also considerable evidence that tropical cyclones 2886 vigorously mix the upper ocean, affecting its circulation and biogeochemistry, perhaps to 2887 the point of having a significant effect on the climate system. Since the current generation 2888 of coupled climate models greatly under-resolves tropical cyclones, such feedbacks are 2889 badly underrepresented, if they are represented at all. 2890 For these reasons, it is important to quantify, understand, and predict variations in 2891 tropical cyclone activity. The following sections review current knowledge of these 2892 variations on various time scales. 2893 2894 2.2.3.1.2 Data Issues 2895 Quantifying tropical cyclone variability is limited, sometimes seriously, by a large suite 2896 of problems with the historical record of tropical cyclone activity. In the North Atlantic 2897 and eastern North Pacific regions, responsibility for the tropical cyclone database rests 2898 with NOAA's National Hurricane Center (NHC), while in other regions, archives of 2899 hurricane activity are maintained by several organizations, including the U.S. Navy's 2900 Joint Typhoon Warning Center (JTWC), the Japan Meteorological Agency (JMA), the 2901 Hong Kong Observatory (HKO) and the Australian Bureau of Meteorology (BMRC). 2902 The data, known as ``best track" data (Jarvinen et al. 1984; Chu et al. 2002), comprise a 2903 global historical record of tropical cyclone position and intensity, along with more recent 2904 structural information. Initially completed in real time, the best tracks are finalized by 2905 teams of forecasters update the best track data at the end of the hurricane season in each 2906 ocean basin using data collected during and after each hurricane's lifetime. 2907 2908 It should first be recognized that the primary motivation for collecting data on tropical

2909 cyclones was initially to support real-time forecasts and this remains the case in many

2910	regions today. From the 1970s onwards increasing emphasis has been placed on
2911	improving the archive for climate purposes, and on extending the record back to include
2912	historical systems (e.g. Laurensz 1977; Neumann 1993; Landsea et al 2004).
2913	Unfortunately, improvements in measurement and estimation techniques have often been
2914	implemented with little or no effort to calibrate against existing techniques and with poor
2915	documentation where such calibrations were done. Thus the available tropical cyclone
2916	data contain an inhomogeneous mix of changes in quality of observing systems, reporting
2917	policies, and the methods utilized to analyze the data
2918	
2919	It remains a scientific tragedy that insufficient effort is expended in re-examining and
2920	quality controlling the tropical cyclone record on a year to year basis, particularly outside
2921	the Atlantic and eastern North Pacific regions. Efforts are ongoing to reanalyze the
2922	historic best track data, but such a posteriori reanalyses are less than optimal because not
2923	all of the original data that the best track was based on are readily available.
2924	
2925	Documentation of the occurrence of tropical cyclones is thought to be reliable back to
2926	about 1945 in the Atlantic and 1970 in the Eastern Pacific (e.g. Holland and Webster
2927	2007 and references therein), and back to about 1975 for the Western and Southern
2928	Pacific basins, thanks to earth-orbiting satellites (e.g. Holland 1981). Until the launch of
2929	MeteoSat-7 in 1998, the Indian Oceans were seen only obliquely, but storm counts may
2930	still be expected to be accurate after 1977. Before those periods, storms could and
2931	undoubtedly remain undetected, especially if they did not pass near ships at sea or land
2932	masses. For the North Atlantic it is likely that up to 3 storms per year were missing

before 1900 dropping to zero by the early 1960s (Holland and Webster 2007; Chang and
Guo 2007). Estimates of the duration of storms are considered to be less reliable prior to
the 1970's due particularly to a lack of good information on their time of genesis. Since
the 1970s storms were more accurately tracked throughout their lifetimes by
geostationary satellites.

2938

2939 Estimates of storm intensity are far less reliable, and this remains true for large portions 2940 of the globe even today. Airborne hurricane reconnaissance flight became increasingly 2941 routine in the North Atlantic and western North Pacific regions after 1945, but was 2942 discontinued in the western North Pacific region in 1987. Some missions are today being 2943 conducted under the auspices of the government of Taiwan. However airborne 2944 reconnaissance only samples a small fraction of storms, and then only over a fraction of 2945 their lifetimes; moreover, good, quantitative estimates of wind speeds from aircraft did 2946 not become available until the late 1950s. Beginning in the mid 1970s, tropical cyclone 2947 intensity has been estimated from satellite imagery. Until relatively recently, techniques 2948 for doing so were largely subjective, and the known lack of homogeneity in both the data 2949 and techniques applied in the post-analyses has resulted in significant skepticism 2950 regarding the consistency of the intensity estimates in the data set. This lack of temporal 2951 consistency renders the data suspect for identifying trends, particularly in metrics related 2952 to intensity.

2953

Recent studies have addressed these known data issues. Kossin et al. (2007a) constructeda more homogeneous record of hurricane activity and found remarkably good agreement

2956 in both variability and trends between their new record and the best track data in the N. 2957 Atlantic and Eastern Pacific basins during the period 1983–2005. They concluded that the 2958 best track maintained by the NHC does not appear to suffer from data quality issues 2959 during this period. On the other hand, they were not able to corroborate the presence of 2960 upward intensity trends in any of the remaining tropical cyclone-prone ocean basins. This 2961 could be due to inaccuracies in the satellite best tracks, or could be due to the training of 2962 the Kossin et al technique on North Atlantic data. This is supported by Wu et al. (2006), 2963 who considered Western Pacific best track data constructed by other agencies (HKMO 2964 and JMA) who construct best track data for the western North Pacific. Harper and 2965 Callaghan (2006) report on reanalyzed data from the Southeastern Indian Ocean and 2966 showed some biases, but a remaining upward intensity trend. These studies underscores 2967 the need for improved care in analyzing tropical cyclones and in obtaining better 2968 understanding of the climatic controls of tropical cyclone activity beyond SST-based 2969 arguments alone.

2970

The standard tropical cyclone databases do not usually contain information pertaining to the geometric size of tropical cyclones Exceptions include the Australian region and the enhanced database for the North Atlantic over the last few decades. A measure of size of a tropical cyclone is a crucial complement to estimates of intensity as it relates directly to storm surge and damage area associated with landfalling storms. Such size measures can be inferred from aircraft measurements and surface pressure distributions, and can now be estimated from satellite imagery (e.g. Mueller et al. 2006; Kossin et al. 2007b).

2980	2.2.3.1.3 Low-frequency Variability and Trends of Tropical cyclone Activity Indices
2981	"Low frequency" variability is here defined as variations on time scales greater than
2982	those associated with ENSO (i.e. more than 3-4 years). Several papers in recent years
2983	have quantified interdecadal variability of tropical cyclones in the Atlantic (Goldenberg
2984	et al., 2001; Bell and Chelliah, 2006) and the western North Pacific (Chan and Shi, 1996),
2985	attributing most of the variability to natural interdecadal variability of regional climates
2986	in the Atlantic and Pacific, respectively. In the last few years, however, several papers
2987	have attributed both low frequency variability and trends in tropical cyclone activity to
2988	changing radiative forcing owing to anthropogenic sulfate aerosols and greenhouse gases.
2989	Emanuel (2005a) developed a "Power Dissipation Index" (PDI) of tropical cyclones,
2990	defined as the sum of the cubed estimated maximum sustained surface wind speeds at 6-
2991	hour intervals accumulated over each Atlantic tropical cyclone from the late 1940s to
2992	2003. Landsea (2005) commented on the quality of data comprising the index. An
2993	updated version of this analysis (Emanuel 2007), shown in Fig. 2.13, confirms that there
2994	has been a substantial increase in tropical cyclone activity since about 1970, and indicates
2995	that the low-frequency Atlantic PDI variations are strongly correlated with low-frequency
2996	variations in tropical Atlantic SSTs. Based on this analysis, it is likely that hurricane
2997	activity, as measured by the Power Dissipation Index (PDI), has increased substantially
2998	since the 1950s and 60s in association with warmer Atlantic SSTs. The magnitude of this
2999	increase depends on the adjustment to the wind speed data from the 1950s and 60s
3000	(Landsea 2005; Emanuel 2007). It is very likely that PDI has generally tracked SST
3001	variations on decadal time scales in the tropical Atlantic since 1950 and likely that it also

3002 generally tracked the secular increase of SST. Confidence in these statistics prior to the
3003 late 1940s is low, due mainly to the decreasing confidence in hurricane duration and
3004 intensity observations. The PDI in the eastern Pacific has decreased since 1980 (Kossin et
3005 al. 2007).

3006

3007 The Power Dissipation Index for U.S. landfalling tropical cyclones has not increased 3008 since the late 1800s (Landsea 2005). Pielke (2005) noted that there are no evident trends 3009 in observed damage in the North Atlantic region, after accounting for population 3010 increases and coastal development. However, Emanuel (2005b) notes that a PDI series 3011 such as Landsea's (2005) based on only U.S. landfalling data, contains only about 1 3012 percent of the data that Emanuel's (2005a) basin-wide PDI contains, which is based on all 3013 storms over their entire lifetimes. Thus a trend in basin-wide PDI may not be detectable 3014 in U.S. landfalling PDI since the former index has a factor of 10 advantage in signal to 3015 noise ratio.

3016

3017 Figure 2.14 (from Holland and Webster 2007), indicates that there has been no distinct

3018 trend in the mean intensity of all Atlantic storms, hurricanes, and major hurricanes. A

3019 distinct increase in the most intense storms occurred around the time of onset of aircraft

3020 reconnaissance, but this is considered to be largely due to better observing methods.

3021 Holland and Webster also found that the overall proportion of hurricanes has remained

3022 remarkably constant during the 20th century at around 50%, and there has been a marked

3023 oscillation in major hurricane proportions, which has no observable trend.

3024 Webster et al. (2005) reported that the number of category 4 and 5 hurricanes has almost

August 16, 2007

3025	doubled globally over the past three decades. The recent reanalysis of satellite data
3026	beginning in the early 1980s by Kossin et al. (2007a) support these results in the Atlantic
3027	although the results in the remaining basins were not corroborated.
3028	
3029	The recent Emanuel and Webster et al. studies have generated much debate in the
3030	hurricane research community, particularly with regard to homogeneity of the tropical
3031	cyclone data over time and the required adjustments (e.g. Landsea 2005; Knaff and
3032	Sampson 2006; Chan 2006; Hoyos et al. 2006; Landsea et al. 2006; Sriver and Huber
3033	2006; Klotzbach 2006; Elsner et al. 2006; Maue and Hart 2007; Manning and Hart 2007;
3034	Holland and Webster 2007, Landsea 2007, Mann et al 2007, Holland 2007). Several of
3035	these studies argue that data problems preclude determination of significant trends in
3036	various tropical cyclone measures, while others provide further evidence in support of
3037	reported trends. In some cases, differences between existing historical data sets
3038	maintained by different nations can yield strongly contrasting results (e.g., Kamahori et
3039	al. 2006).

3040

Several studies have examined past regional variability in tropical cyclone tracks (Wu et
al. 2005; Xie et al. 2005; Vimont and Kossin 2007; Kossin and Vimont 2007). Thus far,
no clear long-term trends in this metric have been reported, but there is evidence that
Atlantic tropical cyclone formation regions have undergone systematic long-term shifts to
more eastward developments (Holland 2007). These shifts affect track and duration,
which subsequently affects intensity. The modulation of the Atlantic tropical cyclone
genesis region occurs through systematic changes of the regional SST and circulation

3048	patterns. Thus SST affects intensity not just through thermodynamic pathways that are
3049	local to the storms, but also through changes in basinwide circulation patterns (Kossin
3050	and Vimont 2007).

3052 In summary, we conclude that Atlantic tropical storm and hurricane destructive potential

3053 as measured by the Power Dissipation Index (which combines storm intensity, duration,

3054 and frequency) has increased. This increase is substantial since about 1970, and is likely

3055 substantial since the 1950s and 60s, in association with warming Atlantic sea surface

- 3056 temperatures.
- 3057

3058 2.2.3.1.4 Low-frequency Variability and Trends of Tropical Cyclone Counts

3059 Mann and Emanuel (2006) reported that Atlantic tropical cyclone counts closely track

3060 low-frequency variations in tropical Atlantic SSTs, including a long-term increase since

the late 1800s and early 1900s (see also Fig. 2.15 from Holland and Webster 2007).

3062 There is currently debate on the relative roles of internal climate variability (e.g.,

3063 Goldenberg et al. 2001) versus radiative forcing, including greenhouse gases, and sulfate

- aerosols (Mann and Emanuel 2006; Santer et al 2006) in producing the multi-decadal
- 3065 cooling of the tropical North Atlantic. This SST variation is correlated with reduced
- 3066 hurricane activity during the 1970s and 80s relative to the 1950s and 60s or to the period
- 3067 since 1995 (see also Zhang et al. 2007).

3068

3069 On a century time scale, time series of tropical storm frequency in the Atlantic (Fig. 2.15)

3070 show substantial interannual variability and a marked increase (of over 100%) since

3071	about 1900. This increase occurred in two sharp jumps of around 50%, one in the 1930s
3072	and another that commenced in 1995 and has not yet stabilized. Holland and Webster
3073	(2007) have suggested that these sharp jumps are transition periods between relatively
3074	stable climatic periods of tropical cyclone frequency (Fig. 2.15). Figure 2.15 uses
3075	unadjusted storm—an issue which will be addressed further below.
3076	
3077	For tropical cyclone frequency, the finding that the largest recorded increases over the
3078	past century have been in the eastern North Atlantic (e.g., see recent analysis in Vecchi
3079	and Knutson 2007; Holland 2007), which historically has been the least well observed,
3080	has led to questions of whether this may be due to data issues (Landsea et al. 2004;
3081	Landsea 2007). The major observing system change points over the past century have
3082	been:
3083	• The implementation of routine aircraft reconnaissance in 1944-45;
3084	• The use of satellite observations and related analysis procedures from the late
3085	1960s onwards; and,
3086	• A change in analysis practice by the National Hurricane Center from 1970 to
3087	include more mid-latitude systems.
3088	In addition, there have steady improvements in techniques and instrumentation, which
3089	may also introduce some spurious trends.
3090	
3091	Landsea (2007) has used the fraction of storms striking land in the satellite and pre-
3092	satellite era to estimate the number of missing storms per year in the pre-satellite era
3093	(1900 to 1965) to be about 3.2 storms per year. This assumes that the fraction of all

storms that strike land in the real world has been relatively constant over time, which has
been shown to be incorrect by Holland (2007). Holland also shows that the smaller
fraction of storms that made landfall during the past fifty years (1956-2005) compared to
the previous fifty years (1906-1955) is directly related to changes in the main formation
location regions, with a decrease in western Caribbean and Gulf of Mexico developments
and an increase in the eastern Atlantic.

3100

3101 Alternative approaches to estimating the earlier data deficiencies have been used by 3102 Chang and Guo (2007), Vecchi and Knutson (2007) and Mann et al (2007). The first two 3103 studies use historical ship tracks from the pre-satellite era, combined with storm track 3104 information from the satellite era, to infer an estimated adjustment for missing storms in 3105 the pre-satellite era (assumed as all years prior to 1965). Mann et al used statistical 3106 climate relationships to estimate potential errors. Vecchi and Knutson found 2.5 storms 3107 per year were missing prior to 1900, decreasing to zero by 1960. Chang and Guo found 3108 1.2 storms missing around 1910 also decreasing to zero by 1960. Mann et al, estimated a 3109 more modest undercount bias of 1 per year back to 1970. The adjusted time series by 3110 Vecchi and Knutson (Fig. 2.16) suggest a statistically significant (p=0.003 or less) 3111 positive linear trend in adjusted storm counts of 55%/century since 1900. However, 3112 beginning the trend from 1878, the trend through 2006 is smaller (+15%) century) and not statistically significant at the p=0.05 level (p-value of about 0.3)⁴¹. It is notable that the 3113 3114 degree of increase over the past century depends on the analysis methodology. When 3115 using a linear trend, as above, the increase from 1900 to 2005 is around 55% in the 3116 adjusted storm counts. However, using the essentially non-linear approach by Holland

⁴¹ Details of the statistical analysis are given in the Appendix, Example 5.

3117	and Webster (2007) of separate climatic regimes, the increase in adjusted storm counts
3118	from the 1900-1920 regime to the 1995-2006 regime is 85%. The trend from 1900 begins
3119	near a local minimum in the time series and ends with the recent high activity, perhaps
3120	exaggerating the significance of the trend due to multidecadal variability. On the other
3121	hand high levels of activity during the late 1800s, which lead to the insignificant trend
3122	result, are indirectly inferred in large part from lack of ship track data, and the uncertainty
3123	in the late 1800s storm counts is greater than that during the 1900s.
3124	
3125	Hurricane frequency closely follows the tropical cyclone variability, with a stable 50% of
3126	all cyclones developing to hurricane strength over much of the past century (Holland and
3127	Webster 2007). However, there has been a concomitant increase in both overall storm
3128	frequency and the proportion of major hurricanes since 1995. Taken together, these result
3129	in a very sharp increase in major hurricane numbers, which can be associated with
3130	changes of SST (Holland and Webster 2007, Webster et al 2005). The PDI trend reported
3131	by Emanuel (2007) is largely due to this increase in major hurricane numbers.
3132	
3133	Atlantic basin total hurricane counts, major hurricane counts, and U.S. landfalling
3134	hurricane counts as recorded in the HURDAT data base for the period 1851-2006 are
3135	shown in Fig. 2.17. These have not been adjusted for missing storms, as there was likely
3136	less of a tendency to miss both hurricanes and major hurricanes in earlier years compared

- to tropical storms, largely because of their intensity and damage potential. There is a
- 3138 slight negative trend in U.S. landfalling hurricane frequency. The basin-wide major
- 3139 hurricane counts increase over the long-term. For total hurricanes, trends to 2005

3140	beginning in 1881 through 1921 are positive and statistically significant (p=0.05)
3141	whereas trends beginning in 1851 through 1871 are positive but not statistically
3142	significant, owing to the prolonged active period in the late 1800s. For major hurricanes,
3143	trends beginning in 1851 through 1911 were positive and statistically significant, whereas
3144	the trend beginning from 1921 was positive but not statistically significant ⁴² .
3145	
3146	Regional storm track reconstructions for the basin (Vecchi and Knutson 2007; Holland
3147	and Webster 2007b(?)) indicate a decrease in tropical storm occurrence in the western
3148	part of the basin, consistent with the minimal change or slight decrease in U.S.
3149	landfalling tropical storm or hurricane counts. These analyses further suggest that-after
3150	adjustment for missing storms a century-scale increase in basin-wide Atlantic tropical
3151	storm occurrence has occurred, with increases mainly in the central and eastern parts of
3152	the basin (also consistent with Chang and Guo 2007). From a climate variability
3153	perspective, Kossin and Vimont (2007) have shown that a positive phases of the Atlantic
3154	Meridional Mode is correlated to an systematic eastward extension of the genesis region
3155	in the Atlantic. Elsner (1996) and Holland and Webster (2007) have shown that the
3156	increasing frequency over the past 30 years is associated with a changeover to equatorial
3157	developments and particularly to developments in the eastern equatorial region.
3158	
3159	In summary, we conclude that there have been fluctuations from decade to decade in
3160	tropical cyclone numbers, and data uncertainty is larger in the earlier parts of the record,
3161	particularly prior to aircraft reconnaissance beginning in the mid-1940s. While there are

undoubtedly data deficiencies and missing storms in the early record, they appear

⁴² Further details of the statistical analysis are given in the Appendix, Example 6.

3163	insufficient to remove the observed positive trends in basin-wide tropical storm counts. It
3164	is likely that that the annual numbers of tropical storms/hurricanes and major hurricanes
3165	in the North Atlantic basin have increased significantly over the past 100 years in close
3166	relationship with warming equatorial Atlantic sea surface temperatures. The positive
3167	linear trend in all storm categories extends back to the 1800s, but is generally not
3168	significant prior to 1890. The increasingly decreased confidence in the data before 1900
3169	precludes any definitive conclusions from this era. The increases in basin-wide storm
3170	counts has occurred primarily from an eastward shift in the formation and occurrence
3171	regions and there has been a distinct decrease in western Caribbean and Gulf of Mexico
3172	developments. As a result, North American mainland land-falling hurricanes have
3173	remained quasi-static over the past century.
3174	
5171	
3175	2.2.3.1.5 Paleoclimate Proxy Studies of Past Tropical Cyclone Activity
31753176	2.2.3.1.5 Paleoclimate Proxy Studies of Past Tropical Cyclone Activity Paleotempestology is an emerging field of science that attempts to reconstruct past
317531763177	 2.2.3.1.5 Paleoclimate Proxy Studies of Past Tropical Cyclone Activity Paleotempestology is an emerging field of science that attempts to reconstruct past tropical cyclone activity using geological proxy evidence or historical documents. This
 3175 3175 3176 3177 3178 	 2.2.3.1.5 Paleoclimate Proxy Studies of Past Tropical Cyclone Activity Paleotempestology is an emerging field of science that attempts to reconstruct past tropical cyclone activity using geological proxy evidence or historical documents. This work attempts to expand knowledge about hurricane occurrence back in time beyond the
 3175 3175 3176 3177 3178 3179 	 2.2.3.1.5 Paleoclimate Proxy Studies of Past Tropical Cyclone Activity Paleotempestology is an emerging field of science that attempts to reconstruct past tropical cyclone activity using geological proxy evidence or historical documents. This work attempts to expand knowledge about hurricane occurrence back in time beyond the limits of conventional instrumental records, which cover roughly the last 150 years. A
 3175 3175 3176 3177 3178 3179 3180 	 2.2.3.1.5 Paleoclimate Proxy Studies of Past Tropical Cyclone Activity Paleotempestology is an emerging field of science that attempts to reconstruct past tropical cyclone activity using geological proxy evidence or historical documents. This work attempts to expand knowledge about hurricane occurrence back in time beyond the limits of conventional instrumental records, which cover roughly the last 150 years. A broader goal of paleotempestology is to help researchers explore physically based
 3175 3175 3176 3177 3178 3179 3180 3181 	 2.2.3.1.5 Paleoclimate Proxy Studies of Past Tropical Cyclone Activity Paleotempestology is an emerging field of science that attempts to reconstruct past tropical cyclone activity using geological proxy evidence or historical documents. This work attempts to expand knowledge about hurricane occurrence back in time beyond the limits of conventional instrumental records, which cover roughly the last 150 years. A broader goal of paleotempestology is to help researchers explore physically based linkages between prehistoric tropical cyclone activity and other aspects of past climate.
 3175 3175 3176 3177 3178 3179 3180 3181 3182 	2.2.3.1.5 Paleoclimate Proxy Studies of Past Tropical Cyclone Activity Paleotempestology is an emerging field of science that attempts to reconstruct past tropical cyclone activity using geological proxy evidence or historical documents. This work attempts to expand knowledge about hurricane occurrence back in time beyond the limits of conventional instrumental records, which cover roughly the last 150 years. A broader goal of paleotempestology is to help researchers explore physically based linkages between prehistoric tropical cyclone activity and other aspects of past climate.
 3175 3175 3176 3177 3178 3179 3180 3181 3182 3183 	2.2.3.1.5 Paleoclimate Proxy Studies of Past Tropical Cyclone Activity Paleotempestology is an emerging field of science that attempts to reconstruct past tropical cyclone activity using geological proxy evidence or historical documents. This work attempts to expand knowledge about hurricane occurrence back in time beyond the limits of conventional instrumental records, which cover roughly the last 150 years. A broader goal of paleotempestology is to help researchers explore physically based linkages between prehistoric tropical cyclone activity and other aspects of past climate.
 3175 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 	2.2.3.1.5 Paleoclimate Proxy Studies of Past Tropical Cyclone Activity Paleotempestology is an emerging field of science that attempts to reconstruct past tropical cyclone activity using geological proxy evidence or historical documents. This work attempts to expand knowledge about hurricane occurrence back in time beyond the limits of conventional instrumental records, which cover roughly the last 150 years. A broader goal of paleotempestology is to help researchers explore physically based linkages between prehistoric tropical cyclone activity and other aspects of past climate. Among the geologically based proxies, overwash sand layers deposited in coastal lakes and marshes have proven to be quite useful (Liu and Fearn, 1993, 2000; Liu 2004;

3185 Donnelly and Webb 2004). Similar methods have been used to produce proxy records of

3186	hurricane strikes from back-barrier marshes in Rhode Island and New Jersey extending
3187	back about 700 years (Donnelly et al. 2001a, 2001b; Donnelly et al. 2004; Donnelly and
3188	Webb 2004), and more recently in the Caribbean (Donnelly 2005). Stable isotope signals
3189	in tree rings (Miller et al. 2006), cave deposits (Frappier et al. 2007) and coral reef
3190	materials are also being actively explored for their utility in providing paleoclimate
3191	information on tropical cyclone activity. Historical documents apart from traditional
3192	weather service records (newspapers, plantation diaries, Spanish and British historical
3193	archives, etc.) can also be used to reconstruct some aspects of past tropical cyclone
3194	activity (Ludlam, 1963; Millas, 1968; Fernandez-Partagas and Diaz, 1996; Chenoweth,
3195	2003; Mock 2004; Garcia Herrera et al. 2004; 2005; Liu et al. 2001; Louie and Liu 2003;
3196	Louie and Liu 2004).
3197	

3198 Donnelly and Woodruff's (2007) proxy reconstruction the past 5,000 years of intense 3199 hurricane activity in the western North Atlantic suggests that hurricane variability has 3200 been strongly modulated by El Nino during this time and that the past 250 years has been relatively active in the context of the past 5,000 years. Nyberg et al. (2007) suggest that 3201 3202 major hurricane activity in the Atlantic was anomalously low in the 1970s and 1980s 3203 relative to the past 270 years. As with Donnelly and Woodruff, their proxy measures 3204 were located in the western part of the basin (near Puerto Rico), and in their study, 3205 hurricane activity was inferred indirectly through statistical associations with proxies for 3206 vertical wind shear and SSTs. 3207

3210 2.2.3.2 Strong Extratropical Cyclones Overview Extra-tropical cyclone $(ETC)^{43}$ is a generic term for any non-tropical, large-scale low 3211 3212 pressure storm system that develops along a boundary between warm and cold air masses. These types of cyclonic⁴⁴ disturbances are the dominant weather phenomenon 3213 3214 occurring in the mid- and high-latitudes during the cold season because they are typically 3215 large and often have associated severe weather. The mid-latitude North Pacific and North 3216 Atlantic basins, between ~30°N-60 °N, are regions where large-numbers of ETC's 3217 develop and propagate across the ocean basins each year. Over land or near populous 3218 coastlines, strong or extreme ETC events generate some of the most devastating impacts 3219 associated with extreme weather and climate, and have the potential to affect large areas 3220 and dense population centers. A notable example was the blizzard of 12-14 March 1993 3221 along the East Coast of the U.S. that is often referred to as the "super-storm" or "storm of the century"⁴⁵ (e.g., Kocin et al. 1995;). Over the ocean, strong ETCs generate high waves 3222 3223 that can cause extensive coastal erosion when combined with storm surge as they reach 3224 the shore, resulting in significant economic impact. Rising sea level extends the zone of 3225 impact from storm surge and waves farther inland, and will likely result in increasingly 3226 greater coastal erosion and damage from storms of equal intensity. 3227

⁴³ The fundamental difference between the characteristics of extra-tropical and tropical cyclones is that ETC's have a cold core and their energy is derived from baroclinic instability, while tropical cyclones have a warm core and derive their energy from barotropic instability (Holton 1979).

⁴⁴ A term applied to systems rotating in the counter-clockwise direction in the Northern Hemisphere.

⁴⁵ The phrase "Storm of the Century" is also frequently used to refer to the 1991 Halloween ETC along the Northeast US coast, immortalized in the movie *The Perfect Storm*
2220	
5449	

3230	Studies of changes in strong ETC's and associated frontal systems have focused on
3231	locations where ETCs form and the resulting storm tracks, frequencies, and intensities ⁴⁶ .
3232	The primary constraint on these studies has been the limited period of record available
3233	that has the best observation coverage for analysis and verification of results, with most
3234	research focused on the latter half of the 20 th century. Model reanalysis data is used in the
3235	majority of studies, either NCEP-NCAR (Kalnay et al. 1996) or ERA-40 (Upalla et al.
3236	2005) datasets, although prior to 1965 data quality have been shown to be less reliable
3237	
3238	It is important to stress that any observed changes in ETC storm tracks, frequencies or
3239	intensities are highly dependent on broad-scale atmospheric modes of variability, and the
3240	noise associated with this variability is large in relation to any observed linear trend.
3241	Therefore, detection and attribution of long-term (decadal- to century-scale) changes in
3242	ETC activity is extremely difficult.
3243	
3244	2.2.3.2.1 Variability of Extra-Tropical Cyclone Activity
3245	Inter-annual and inter-decadal variability of ETC's is primarily driven by the location and
3246	other characteristics associated with the Polar jet stream. The mean location of the Polar
3247	jet is often referred to as the "storm track". The large-scale circulation is governed by the
3248	equator-to-pole temperature gradient, which is strongly modulated by SST's over the
3249	oceans. The magnitude of the equator-to-pole temperature gradient is of utmost

⁴⁶ These studies use *in situ* observations (both surface and upper-air), re-analysis fields, and Atmospheric-Ocean Global Climate Model (GCM) hind-casts

3250	importance in determining the intensity of storms: the smaller (larger) the gradient in
3251	temperature, the weaker (stronger) the potential energy available for extra-tropical
3252	cyclone formation. The observed intensity of ETC's at the surface is related to the
3253	amplitude of the large-scale circulation pattern, with high-amplitude, negatively tilted
3254	troughs favoring stronger development of ETC's at the surface (Sanders and Gyakum
3255	1980).

3257 From a seasonal perspective, the strongest ETC's are temporally out of phase in the 3258 Pacific and Atlantic basins, since the baroclinic wave energy climatologically reaches a 3259 peak in late fall in the North Pacific and in January in the North Atlantic (Nakamura 3260 1992; Eichler and Higgins 2006). While it remains unclear what the physical basis is for 3261 the offset in peak storm activity between the two basins, Nakamura (1992) showed statistically that when the Pacific jet exceeds 45 m s⁻¹ there is a suppression of baroclinic 3262 3263 wave energy, even though the low-level regional baroclinicity and strength of the Pacific 3264 jet are at a maximum (this effect is not evident in the Atlantic basin, since the peak strength of the jet across the basin rarely exceeds 45 m s⁻¹). Despite the observed 3265 seasonal difference in the peak of ETC activity, Chang and Fu (2002) found a strong 3266 3267 positive correlation between the Pacific and Atlantic storm tracks using monthly mean 3268 reanalysis data covering 51 winters (1949 to 1999). They found the correlations between 3269 the two basins remained positive and robust over individual months during winter (DJF) 3270 or over the entire season (Chang and Fu 2002). 3271

- 3272

It has been widely documented that the track position, intensity and frequency of ETC's

3273	is strongly modulated on inter-annual time-scales by different modes of variability, such
3274	as the El Niño/Southern Oscillation (ENSO) phenomenon (Gershunov and Barnett 1998;
3275	An et al. 2007). In a recent study, Eichler and Higgins (2006) used both NCEP-NCAR
3276	and ERA-40 reanalysis data to diagnose the behavior of ETC activity during different
3277	ENSO phases. Their results showed that during El Niño events there is an equator-ward
3278	shift in storm tracks in the North Pacific basin, as well as an enhancement of the storm
3279	track along the U.S. East Coast. However, they found significant variability related to the
3280	magnitude of the El Niño event. During strong El Niños, ETC frequencies peak over the
3281	North Pacific and along the eastern U.S., from the southeast coast to the Maritime
3282	Provinces of Canada (Eichler and Higgins 2006), with a weaker track across the Midwest
3283	from the lee of the Rocky Mountains to the Great Lakes. During weak to moderate El
3284	Niños, the storm tracks are similar to the strong El Niños, except there is a slight increase
3285	in the number of ETC's over the northern Plains and the frequency of ETC activity
3286	decreases over the mid-Atlantic region. Similar to other previous studies (e. g. Hirsch et
3287	al. 2001; Noel and Changnon 1998), an inverse relationship typically exists during La
3288	Niñas; as the strength of La Niña increases, the frequency maxima of East Coast storms
3289	shifts poleward, the North Pacific storm track extends eastward toward the Pacific
3290	Northwest, and the frequency of cyclones increases across the Great Lakes region
3291	(Eichler and Higgins (2006).
3292	
3293	In addition to ENSO, studies have shown that the Arctic Oscillation (AO) can strongly
3294	influence the position of storm tracks and the intensity of ETC's. Previous studies have

3295 shown that during positive AO conditions Northern Hemisphere cyclone activity shifts

3296	poleward (Serreze et al. 1997; Clark et al. 1999). Inversely, during negative AO
3297	conditions the polar vortex is weaker and cyclone activity shifts southward. Since the
3298	North Atlantic Oscillation (NAO) represents the primary component of the AO, it has a
3299	similar affect on storm tracks position, especially over the eastern North Atlantic basin
3300	(McCabe et al. 2001). For futher information on the different atmospheric modes of
3301	variability (Chapter 2, Box 2.3).
3302	
3303	2.2.3.2.2 Changes in Storm Tracks and Extra-Tropical Cyclone Characteristics
3304	Many studies have documented changes in storm track activity. Specifically, a significant
3305	pole-ward shift of the storm track in both the Pacific and Atlantic ocean basins has been
3306	verified by a number of recent studies that have shown a decrease in ETC frequency in
3307	mid-latitudes, and a corresponding increase in ETC activity in high-latitudes (Wang et al.
3308	2006a; Simmons and Keay 2002; Paciorek et al. 2002; Graham and Diaz 2001; Geng and
3309	Sugi 2001; McCabe et al. 2001; Key and Chan 1999; Serreze et al. 1997). Several of
3310	these studies have examined changes in storm tracks over the entire Northern Hemisphere
3311	(i.e. McCabe et al. 2001; Paciorek et al. 2002; Key and Chan 1999), while several others
3312	have focused on the storm track changes over the Pacific (i.e., Graham and Diaz 2001)
3313	and Atlantic basins (i.e., Geng and Sugi 2001), or both (i.e., Wang and Swail 2001). Most
3314	of these studies focused on changes in frequency and intensity observed during winter
3315	(DJF) or the entire cold season (Oct-Mar). However, for spring, summer and autumn,
3316	Key and Chan (1999) found opposite trends in 1000-hPa and 500-hPa cyclone
3317	frequencies for both the mid- and high latitudes of the Northern Hemisphere.

3318	The standardized annual departures ⁴⁷ of ETC frequency for the entire Northern
3319	Hemisphere over the period 1959-1997 (Fig. 2.18a,b; McCabe et al. 2001) shows that
3320	cyclone frequency has decreased for the mid-latitudes $(30^{\circ}-60^{\circ}N)$ and increased for the
3321	high latitudes (60° - 90° N). For the 55-year period of 1948-2002, a metric called the
3322	Cyclone Activity Index (CAI) ⁴⁸ was developed by Zhang et al. (2004) to document the
3323	variability of Northern Hemisphere cyclone activity. The CAI has increased in the Arctic
3324	Ocean (70°-90°N) during the latter half of the 20 th century, while it has decreased in mid-
3325	latitudes (30 ⁰ -60 ⁰ N) from 1960 to 1993, which is evidence of a pole-ward shift in the
3326	average storm track position. Interestingly, the number and intensity of cyclones entering
3327	the Arctic from the mid-latitudes has increased, particularly during summer (Zhang et al.
3328	2004). The increasing activity in the Arctic was more recently verified by Wang et al.
3329	(2006a), who analyzed ETC counts by applying two separate cyclone detection
3330	thresholds to ERA-40 reanalysis of mean sea level pressure data. Their results showed an
3331	increase in high latitude storm counts, and a decrease in ETC counts in the mid-latitudes
3332	during the latter half of the 20 th century.
3333	
3334	Northern Hemisphere ETC intensity has increased over the period 1959-1997 across both

- mid- and high-latitudes cyclone intensity (McCabe et al. 2001; Fig. 2.18c,d), with the
- 3336 upward trend more significant for the high latitudes (0.01 level) than for the mid-latitudes

⁴⁷ Standardized departures (*z* scores) were computed for each 5[°] latitudinal band by subtracting the respective 1959-1997 mean from each value and dividing by the respective 1959-1997 standard deviation (McCabe et al. 2001). ⁴⁸ The CAI integrates information on cyclone intensity, frequency, and duration into a comprehensive index

⁴⁸ The CAI integrates information on cyclone intensity, frequency, and duration into a comprehensive index of cyclone activity. The CAI is defined as the sum over all cyclone centers, at a 6-hourly resolution, of the differences between the cyclone central SLP and the climatological monthly mean SLP at corresponding grid points in a particular region during the month (Zhang et al. 2004).

3337	(0.10 level). From an ocean basin perspective, the observed increase in intense ETC's
3338	appears to be more robust across the Pacific than the Atlantic. Using reanalysis data
3339	covering the period 1949-1999, Paciorek et al. (2002) found that extreme wind speeds
3340	have increased significantly in both basins (Fig. 2.19a,d). Their results also showed that
3341	the observed upward trend in the frequency of intense cyclones has been more
3342	pronounced in the Pacific basin (Fig. 2.19c), although the inter-annual variability is much
3343	less in the Atlantic (Fig. 2.19f). Surprisingly, they found that the overall counts of ETC's
3344	showed either no long-term change, or a decrease in the total number of cyclones (Fig.
3345	2.19b,e). However, this may be a result of the large latitudinal domain used in their study
3346	$(20^{\circ}-70^{\circ}N)$, which included parts of the tropics, sub-tropics, mid- and high latitudes.
3347	
3348	On a regional scale, ETC activity has increased in frequency, duration and intensity in the
3349	lower Canadian Arctic during 1953-2002 with the most statistically significant trends
3350	during winter ⁴⁹ (p=0.05 level; Wang et al. 2006b). In contrast to the Arctic region,
3351	cyclone activity was less frequent and weaker along the southeast and southwest coasts of
3352	Canada. Winter cyclone deepening rates (i.e. rates of intensification) have increased in
3353	the zone around 60°N, but decreased further south in the Great Lakes area and southern
3354	Prairies-British Columbia region of Canada. This is also indicative of a pole-ward shift in
3355	ETC activity, and corresponding weakening of ETC's in the mid-latitudes and an
3356	increase in observed intensities in the high latitudes. For the period of 1949-1999, the
3357	intensity of Atlantic ETC's increased from the 1960's to the 1990's during the winter

⁴⁹ Results based on hourly average sea level pressure data observed at 83 stations

season⁵⁰ (Harnik and Chang 2003). Their results showed no significant trend in the
Pacific region but this is a limited finding because of a lack of upper-air (i.e. radiosonde)
data over the central North Pacific⁵¹ in the region of the storm track peak (Harnik and
Chang 2003).

3362

3363 There have been very few studies that have analyzed the climatological frequencies and

3364 intensities of ETC's across the central U.S., specifically in the Great Lakes region (e.g.,

Lewis 1987; Harmon et al. 1980; Garriott 1903). Over the period 1900 to 1990 the

number of strong cyclones (≤992 mb) increased significantly across the Great Lakes

3367 (Angel and Isard 1998). This increasing trend was evident (at the p=0.05 level) both

annually and during the cold season,. In fact, over the 91-yr period analyzed, they found

that the number of strong cyclones per year more than doubled during both November

and December.

3371

In addition to studies using reanalysis data, which have limited record lengths, other longer-term studies of the variability of *storminess* typically use wave or water level measurements as proxies for storm frequency and intensity. Along the U.S. West Coast, one of the longest continuous climate-related instrumental time series in existence is the hourly tide gauge record at San Francisco that dates back to 1858. A derived metric called non-tide residuals (NTR)⁵², which are related to broad-scale atmospheric

⁵⁰ Results based on gridded rawinsonde observations covering the Northern Hemisphere

⁵¹ Besides the few radiosonde sites located on islands (i.e., Midway or the Azores), most upper-air observations over the vast expanses of the North Pacific and Atlantic are from automated pilot reports (pireps) that measure temperature, wind speed, and barometric pressure onboard commercial aircraft traveling at or near jet stream level (between 200-300 hPa).

⁵² Non-tide residuals are obtained by first removing the known tidal component from the water level variations using a spectral method; then, variations longer than 30 days and shorter than 2.5 days are

3378	circulation patterns across the eastern North Pacific that affect storm track location,
3379	provides a measure of storminess variability along the California coast (Bromirski et al.
3380	2003). Average monthly variations in NTR, which are associated with the numbers and
3381	intensities of all ETCs over the eastern North Pacific, did not change substantially over
3382	the period 1858-2000 or over the period covered by most ETC reanalysis studies, 1951-
3383	2000. However, the highest 2% of extreme winter NTR (Fig. 2.20), which are related to
3384	the intensity of the most extreme ETCs, had a significant upward trend since ~1950, with
3385	a pronounced quasi-periodic decadal-scale variability that is relatively consistent over the
3386	last 140 yr. Changes in storm intensity from the mid-1970s to early 1980s are also
3387	suggested by a substantial pressure decreases at an elevation above sea level of about
3388	3000 m over the eastern North Pacific and North America (Graham 1994), indicating that
3389	the pattern of variability of extreme storm conditions observed at San Francisco (as
3390	shown in Fig. 2.20) likely extends over much of the North Pacific basin and the U.S. The
3391	oscillatory pattern of variability is thought to be influenced by teleconnections from the
3392	tropics, predominately during ENSO events (Trenberth and Hurrell 1994), resulting in a
3393	deepened Aleutian low shifted to the east that causes both ETC intensification and a shift
3394	in storm track. It is interesting to note that peaks in the 5-year moving average in Fig.
3395	2.20 generally correspond to peaks in extreme rainfall in Fig. 2.10 suggesting that the
3396	influence of El Niño and broad-scale atmospheric circulation patterns across the Pacific
3397	that affect sea level variability along the West Coast are associated with storm systems
3398	that affect rainfall variability across the U.S

- 3399
- 3400 The amplitude and distribution of ocean wave energy measured by ocean buoys is removed with a bandpass filter.

determined by ETC intensity and track location. Changes in long period (>12 sec),
intermediate period, and short period (<6 sec) components in the wave-energy spectra
permit inferences regarding the changes over time of the paths of the storms, as well as
their intensities and resulting wave energies (Bromirski et al. 2005). Analysis of the
combination of observations from several buoys in the eastern North Pacific supports a
progressive northward shift of the dominant Pacific storm tracks to the central latitudes
(section 2.2.3.3).

3408

3409 2.2.3.2.3 Nor'easters

Those ETCs that develop and propagate along the East Coast of the U.S. and southeast Canada are often termed colloquially as *Nor'easters*⁵³. In terms of their climatology and any long-term changes associated with this subclass of ETCs, there are only a handful of studies in the scientific literature that have analyzed their climatological frequency and intensity (Jones and Davis 1995), likely due to a lack of any formal objective definition of this important atmospheric phenomenon (Hirsch et al. 2001).

3416

3417 Because waves generated by ETCs are a function of storm size and the duration and area 3418 over which high winds persist, changes in significant wave heights can also be used as a 3419 proxy for changes in Nor'easters. Using hindcast wave heights and assigning a minimum 3420 criterion of open ocean waves greater than 1.6 m in height (a commonly used threshold 3421 for storms that caused some degree of beach erosion along the mid-Atlantic coast) to 3422 qualify as a nor'easter, the frequency of nor'easters along the Atlantic coast peaked in the

⁵³ According to the *Glossary of Meteorology* (Huschke 1959), a *nor'easter* is any cyclone forming within 167 km of the East Coast between 30° - 40° N and tracking to the north-northeast

- 3423 1950's, declined to a minimum in the 1970's, and then increased again to the mid-1980's3424 (Dolan et al. 1988; Davis et al. 1993).
- 3425

3426	An alternate approach utilized by Hirsch et al. (2001) uses pressure, direction of
3427	movement and wind speed to identify such systems and generically names them as East
3428	Coast Winter Storms (ECWS) ⁵⁴ . Hirsch et al. (2001) defined an ECWS as "strong" if the
3429	maximum wind speed is greater than 23.2 m s ⁻¹ (45 kt). During the period of 1951-1997,
3430	their analysis showed that there were an average of 12 ECWS events occurring each
3431	winter (October-April), with a maximum in January, and an average of 3 strong events
3432	(Fig. 2.21a). They found a general tendency toward weaker systems over the past few
3433	decades, based on a marginally significant (at the 90% confidence level) increase in
3434	average storm minimum pressure (not shown). However, their analysis found no
3435	statistically significant trends in ECWS frequency for all nor'easters identified in their
3436	analysis, for those storms that occurred over the northern portion of the domain (> 35^{0} N),
3437	or those that traversed full coast (Fig. 2.21b,c) during the 46-year period of record used in
3438	this study.
3439	
3440	Because strong storms over the open ocean generate high amplitude waves, buoy

- 3441 measurements of wave height and wave period can be used to infer characteristics of
- 3442 ETC variability. The wave power index (WPI) of strong storm-forced wave events

⁵⁴ According to Hirsch et al. (2001), in order to be classified as an ECWS, an area of low pressure is required to (1) have a closed circulation; (2) be located along the east coast of the United States, within the quadrilateral bounded at 45° N by 65° and 70° W and at 30° N by 75° and 85° W; (3) show general movement from the south-southwest to the north-northeast; and (4) contain winds greater than 10.3 m s⁻¹ (20 kt) during at least one 6-h period.

3443 (significant wave heights > 3 m) measured at deep-water open-ocean NOAA buoys 3444 44004, 41001, 41002 along the U.S. Atlantic coast (see Figure 2.25 for locations) during 3445 winter months (October-March, excluding tropical cyclone wave events) shows a 3446 decreasing trend that is significant at the p=0.05 level amounting to a decrease in ETC-3447 forced wave power of about 1%/yr (Bromirski 2007). Coupled with no statistically 3448 significant change in either mean wave height or the number of measurements exceeding 3449 3 m (implying no change in storm duration and/or the number of strong storms), the 3450 downward trend in the WPI suggests that winter ETC intensity has decreased since 1980, 3451 in general agreement with Hirsch et al. (2001). 3452 3453 BOX 2.2: Extreme Coastal Storm Impacts: "The Perfect Storm" as a True 3454 **Nor'easter:** From a coastal impacts perspective, damage is greatest when large storms 3455 are propagating *towards* the coast, which generally results in both a larger storm surge 3456 and more long period wave energy (resulting in greater run-up causing more 3457 beach/coastal erosion/damage). Storm intensity (winds) is usually greatest in the right-3458 front quadrant of the storm (based on the cyclone's forward movement), so the typical 3459 track of east coast winter storms propagating parallel to the coast leaves the most intense 3460 part of the storm out to sea. In contrast to storms propagating parallel to the coast, 3461 Nor'easters (such as "the Perfect Storm") that propagate from east-to-west in a retrograde 3462 track at some point in their lifetime (Fig. 2.22) can generate much greater surge and 3463 greater long period wave energy, and also potentially have the most intense associated 3464 winds making landfall along the coast.

3465

3466 2.2.3.3 Coastal Waves: Trends of Increasing Heights and Their Extremes 3467 The high wind speeds of hurricanes and extratropical cyclones over bodies of water cause 3468 extremes in the heights and energies of the waves they generate. Seasonal and long-term changes 3469 in storm intensities and their tracks produce corresponding variations in wave heights and 3470 periods along coasts, defining their wave climates. Waves generated by extratropical storms 3471 dominate the oceans at higher latitudes, including the Northeast Pacific along the shores of 3472 Canada and the west coast of the United States, and along the Atlantic coast of North America 3473 where they originate from destructive Nor'easters. Tropical cyclones dominate the wave climates 3474 at lower latitudes during the warm season (June-September), including the southeast Atlantic 3475 coast of the United States, Gulf of Mexico, and the Caribbean, while hurricanes in the East 3476 Pacific generate waves along the western shores of Mexico and Central America. The 3477 magnitude of associated damage from storm waves depends to a large extent on whether the 3478 storms make landfall, when storm surge, high winds, and heavy rainfall combined with high 3479 waves cause severe impacts. However, high waves from strong tropical cyclones that reach 3480 hurricane strength and then track northward along the East Coast as they weaken, can combine 3481 with extratropical systems, such as the 1991 Halloween Storm (Bromirski 2001; Chapter 2, Box 3482 2.2), and cause severe coastal erosion and have significant economic impacts (Davis et al. 1993; 3483 Dolan et al. 1988; Mather et al. 1967).

3484

3485 **2.2.3.3.1** The Waves of Extratropical Storms and Hurricanes

The heights and periods of waves generated by a storm depend on the speed of its winds, the area over which the winds blow (the storm's fetch), and on the duration of the storm, factors that

3488 determine the amount of energy transferred to the waves. Wave climate variability has been

3489 estimated from: (1) direct measurements by buoys; (2) visual observations from ships; (3) wave 3490 hindcast analyses where wave heights and periods are assessed using forecast models that are run 3491 retrospectively using observed meteorological data; and (4) in recent years from satellite 3492 altimetry. The reliability of the wave records ranges widely for these different sources, and 3493 changes in data-collection methodologies and processing techniques can affect the data 3494 consistency. However, long records from these sources make it possible to identify long-term 3495 trends, and to investigate underlying climate controls. 3496 3497 In the Northern Hemisphere the hurricane winds are strongest on the right-hand side of the storm 3498 relative to it track, where its cyclonic winds coincide with the direction of the storm's 3499 propagation, in turn producing the highest waves on that side of the storm. They achieve their 3500 greatest heights in proximity to the wall of the storm's eye where the winds reach their 3501 maximum, and systematically decrease outward as the wind speeds are reduced. Extreme heights 3502 are closely associated with the Saffir-Simpson hurricane classification system, where the central 3503 atmospheric pressures are lower and the associated wind speeds are higher for the higher 3504 hurricane categories. A correlation between the meausred wave heights and the central atmospheric pressure (Hsu et al. 2000) allows the magnitude of the significant wave height⁵⁵, 3505 $H_{s,to}$ be related to the hurricane categories⁵⁶. Estimates of the maximum H_{s} generated close to 3506 3507 the wall of the hurricane's eye on the storm's leading right quadrant where the wind speeds are 3508 greatest, range from 6 to 7 m for Category 1 storms to about 20 m and greater for Category 5 3509 storms. The decrease in observed $H_{\rm S}$ outward from the hurricane's eye in response to the

⁵⁵ The "significant wave height" is a commonly used statistical measure for the waves generated by a storm, defined as the average of the highest one-third of the measured wave heights

⁵⁶ Hsu et al. (2000) have developed the empirical formula $H_{smax}=0.2(P_n-P_c)$ where P_c and $P_n \sim 1013$ mbar are respectively the atmospheric pressures at the center and edge of the tropical cyclone, and H_{smax} is the maximum value of the significant wave height

3510	outward decrease in wind speeds, demonstrates that $H_{\rm S}$ is reduced by 50% at approximately a
3511	distance of 5 times the radius of the eye, typically occurring about 250 km outward from the
3512	storm's center (Hsu, et al. 2000).
3513	
3514	The impression has been, however, that such models under-predict the highest waves of
3515	Category 4 and 5 storms, and this has led to recent investigations that included the direct
3516	measurement of waves generated by hurricanes. For example, measurements obtained by six
3517	wave gauges deployed by the Naval Research Laboratory (NRL) at depths of 60 to 90 m in the
3518	Gulf of Mexico, when the Category 4 Hurricane Ivan passed directly over the array on 15
3519	September 2004, recorded significant wave heights ranging from 16.1 to 17.9 m; the largest
3520	individual wave height reached 27.7 m (Wang et al. 2005). The simple model of Hsu et al.
3521	(2000) yields a maximum significant wave height of 15.6 m for Ivan's 935-mbar central
3522	pressure, seemingly in agreement with the 16-m measured waves. However, the NRL gauges
3523	were about 30 km outward from the zone of strongest winds and were positioned toward the
3524	forward face of Ivan rather than in its right-hand quadrant, so Wang et al. (2005) concluded it is
3525	likely that the maximum significant wave height was greater than 21 m, with the largest
3526	individual wave heights having been greater than 40 m, indicating that the Hsu et al. (2000)
3527	empirical formula somewhat under predicts the waves generated by high-category hurricanes. On
3528	the other hand, hurricane waves from more complex models that use spatially distributed surface
3529	wind measurements (Tolman et al. 2002) compare well with satellite and buoy observations both
3530	in deep water and in shallow water as hurricanes make landfall (Moon et al. 2003).
3531	

3532	Any trend over the years of increasing intensities of hurricanes or of extratropical storms should
3533	on average be reflected in similar upward trends in associated wave heights. Analyses of wave-
3534	buoy data along both the Atlantic and Pacific coasts of the United States document that wave-
3535	height increases have occurred at some locations since the late 1970s.
3536	
3537	2.2.3.3.2 Atlantic Coast Waves
3538	Two analyses have recently been undertaken of the hourly measurements of the significant wave
3539	heights collected by the buoys of NOAA's National Data Buoy Center (NDBC) along the U.S.
3540	Atlantic shore. These analyses, while differing in some important methodological aspects that
3541	affect some of the results, both show changes in waves generated by hurricanes while the ranges
3542	of wave heights created by extratropical storms appear to have undergone little change.
3543	
3544	Komar and Allan (2007a) analyzed the data from three buoys located in deep water to the east of
3545	Cape May, New Jersey, Cape Hatteras, North Carolina, and offshore from Charleston, South
3546	Carolina. These buoys were selected due to their long record lengths and because the sites
3547	represent a range of latitudes where the wave climate is expected to be affected by both tropical
3548	hurricanes and extratropical storms (Nor'easters). Separate analyses were undertaken for the
3549	winter season dominated by extratropical storms and the summer season of hurricanes ⁵⁷ . There
3550	was not a statistically significant change over the decades in the heights of waves generated by
3551	extratropical storms, but statistically significant increases have occurred for the hurricane-
3552	generated waves. The increases in annual-averaged significant wave heights measured by the

⁵⁷ The hurricane waves were analyzed for the months of July through September, expected to be dominated by tropical cyclones, while the waves of extratropical storms were based on the records from November through March; transitional months such as October were not included, when both types of storms could be expected to be important in wave generation. Also, strict missing data criteria eliminated some years from the analysis.

3553	three Atlantic buoys for the summer hurricane seasons are graphed in Figure 2.23. These annual
3554	averages have included only occurrences when the significant wave heights were greater than 3
3555	m, it having been found that those higher waves can be directly attributed to specific hurricanes,
3556	whereas the lower waves represent the calmer periods between storms. It is seen in Figure 2.23
3557	that there has been a dependence on the latitude, with the highest rate of increase having
3558	occurred in the south; 0.059 m/yr (1.8 m in 30 years) for the Charleston buoy, 0.024 m/yr for the
3559	Hatteras buoy, and 0.017 m/yr for Cape May^{58} .
3560	
3561	Figure 2.24 provides a comparison of histograms for the numbers of significant wave heights
3562	measured during the hurricane season by the Cape Hatteras buoy, one histogram for data from
3563	early in its record (1977-1990) and the second from 1996-2005, this comparison further
3564	documenting the decadal increase seen in Figure 2.23, especially of the more-extreme waves ⁵⁹ .
3565	The histogram for the early decade in the wave record shows that the maximum significant wave
3566	height measured was 7.8 m, providing an approximate estimate for the height expected to have a
3567	10-year recurrence interval. From this, we could expect that the 100-year extreme (1%
3568	probability) would have been on the order of 9.5 m significant wave height. In contrast, during
3569	1996-2005 there has been a considerably larger number of occurrences having significant wave
3570	heights greater than 4 m, with the most extreme heights measured ranging up to 10.3 m. The
3571	100-year extreme is now on the order of 12 m, about 3 m higher than in the 1980s. Similar

 $^{^{58}}$ The regressions in Figure 2.38 for the Charleston and Cape Hatteras buoy data are statistically significant at the p=0.05 level according to the Wilcoxon Test, whereas the value of the trend for the Cape May does not pass that test.

⁵⁹ Traditionally a wave histogram is graphed as the percentages of occurrences, but here the actual numbers of occurrences for the range of wave heights have been plotted, using a log scale that emphasizes the most-extreme heights.

- results have been found in analyses of the wave-height histograms for the Cape May andCharleston buoys (Komar and Allan, 2007a).
- 3574

3575 This analysis of the three U.S. East Coast buoys (Figures 2.23 and 2.24) demonstrate that there 3576 has been a 30-year increase in wave heights measured during the hurricane season. This increase 3577 could depend on several factors, including changes from year to year in the numbers and 3578 intensities of storms, their tracks that determine whether they traveled northward through the 3579 Atlantic where their generated waves could be recorded by these buoys, and how distant the 3580 hurricanes were from the buoys, whether they passed far offshore within the central Atlantic, or 3581 approached the east coast and possibly made landfall. Analyses by Komar and Allan (2007b) 3582 indicate that all of these factors have been important to the observed wave-height increases, but 3583 the increased hurricane intensities found by Emanuel (2005) based on the measured wind speeds 3584 provide the best explanation for the progressive increase in wave heights seen in Figure 2.23, 3585 since the numbers and tracks of the storms show considerable variability from year to year. 3586 In the second study (Bromirski and Kossin, 2007)⁶⁰, extreme tropical cyclone-associated H_s 3587 3588 events (deep water H_s exceeding 3 m) measured at buoys in both the Atlantic and Gulf regions 3589 (Figure 2.25a) show a general tendency for more significant tropical cyclone-associated wave

- 3590 events since 1995 (Figure 2.25b), consistent with increasing overall counts of named storms
- during recent years [Webster et al. 2005; Klotzbach 2006]. As would be expected, the intense
- 3592 2005 hurricane season had the highest incidence of significant H_S events over the data record in

⁶⁰ In this study, the entire hurricane season (June-November) was analyzed. Hurricane track data were used to restrict the analysis to time periods when hurricanes were likely the cause of extreme waves, the goal being to minimize the effects of ETCs during the transition months of October and November. Less stringent missing data were applied, resulting in the inclusion of more years than in Komar and Allan (2007).

3593	the Gulf when Hurricanes Katrina, Rita, and Wilma occurred. Since 1978, there were
3594	substantially more significant H_S events along the Atlantic coast than in the Gulf, with almost
3595	three times as many events during September (Figure 2.25c). The monthly distribution along
3596	both coasts peaks in September, with an equally likely chance of a significant tropical cyclone
3597	wave event occurring during October as during August over the 1978-2006 data record. About 3
3598	times as many extreme events occurred in September in the Atlantic compared with the Gulf
3599	from 1978-2006. However, inclusion of all tropical cyclone generated wave events (listed in
3600	http://www.nhc.noaa.gov/pastall.shtml) for the entire June though November hurricane season
3601	indicates that there is no significant trend in mean tropical cyclone associated H_S at either the
3602	western North Atlantic or Gulf buoys (Bromirski and Kossin, 2007; Figure 2.25b).
3603	
3604	A tropical cyclone wave power index, WPI ⁶¹ , shows an increase in the Atlantic during
3605	the mid-1990s (Bromirski and Kossin, 2007; Figure 2.26), associated with an increase in
3606	the number of significant tropical cyclone forced wave events, that is proportionally
3607	consistent with the increase observed for the tropical cyclone power dissipation index
3608	(PDI, Emanuel 2005]\). The Gulf WPI indicates that only the 2005 hurricane season was
3609	exceptional in the Gulf, but is highly correlated with the Atlantic multidecadal oscillation
3610	(AMO, Goldenberg et al. 2001) over the 1980-2006 period. In contrast, the Atlantic WPI
3611	is not well correlated with the AMO, suggesting that tropical sea surface temperature
3612	variability has a greater influence on the characteristics of tropical cyclones that reach the
3613	Gulf.

⁶¹ The WPI for the Atlantic and Gulf regions is obtained as the average of the total wave power for all tropical cyclone associated wave events during the June – November hurricane season at the three southernmost Atlantic buoys and the three Gulf buoys in Figure 2.waves.1a (Bromirski, 2007).

3615	To summarize, these 2 studies both detect changes in tropical cyclone-related waves, but
3616	in different aspects. Komar and Allan (2007a) show statistically significant increases in
3617	extreme wave heights during July-September, while Bromirski and Kossin (2007) do not
3618	find the trends over the entire hurricane season to be statistically significant. However,
3619	Bromirski and Kossin (2007) do find a statistically significant increase in tropical
3620	cyclone-caused wave power, a trend that is attributed to an increase in numbers of events
3621	rather than intensity.
3622	
3623	In contrast to the changes in the hurricane waves, analyses of the winter wave heights
3624	generated by extratropical storms and recorded since the mid-1970s by the three buoys
3625	along the central U.S. Atlantic shore have shown little change (Komar and Allan, 2007a).
3626	The records from the Cape Hatteras and Charleston NDBC buoys yield regressions
3627	indicating that they have actually experienced a slight decrease over the decades (-0.005
3628	m/yr), while the Cape May buoy shows a lower rate of reduction (-0.001 m/yr). These
3629	trends are not statistically significant, but may a reflection in the changes in storm tracks
3630	over the decades, with the storms having shifted to the north.
3631	

Analyses of the winter waves generated by extratropical storms demonstrate that the highest measured occurrences are on the order of 10.5-m significant wave heights, with the extremevalue assessments placing the 100-year event at on the order of 11.5 m, effectively the same as seen in the histogram of Figure 2.24 for the summer hurricane waves recorded by the Hatteras buoy during the 1996-2005 decade, so the wave climates of the two seasons are now quite similar. However, thirty-years ago when these buoys first became operational, the significant wave heights generated in the summer by hurricanes were much lower than those of the
extratropical storms during the winter; while the heights of hurricane-generated waves have
progressively increased since the 1970s, the wave heights due to extratropical storms have not.

3642 Although minimal change in the heights of waves generated by extratropical storms have been

3643 measured by buoys along the U.S. shore in the Western Atlantic, progressive increases have

3644 occurred in the Northeast Atlantic extending back to at least the 1960s, documented by the Seven

3645 Stones ship-borne wave recorder located in deep water off the southwest coast of England

3646 (Carter and Draper, 1988; Bacon and Carter, 1991). Of interest, the rate of increase (0.022 m/yr)

in the annual averages are closely similar to those measured by buoys along the northwest coast

3648 of the United States in the Pacific Ocean, discussed below.

3649

3650 The documentation by buoys of trends in wave heights in the North Atlantic are limited by 3651 their relatively short records, hindering a determination of the longevity of the identified trends 3652 and the possible presence of any decadal cycles in climate-determined variability. To 3653 supplement the buoy data, visual observations from ships in transit provide longer time series 3654 of estimated ocean wave-heights; although the quality of the data may be questionable, its 3655 availability extends back through the entire 20th century, and in general appears to yield 3656 reasonably consistent trends when compared with the buoy data and with wave hindcasts. 3657 Gulev and Grigorieva (2004) have undertaken detailed analyses of the visual assessments of wave heights from ships, covering the years 1895-2002 except for a gap in the data during 3658 3659 World War II. The observations for the northeast Atlantic showed a distinct increase in wave 3660 heights after about 1955, corresponding to the wave-sensor measurements since the 1960s

3661 collected southwest of England. Earlier in the 20th century, however, there were distinct cycles 3662 in the visual wave heights observed from ships, with years during which the average wave 3663 heights were some 0.2 m higher than at present. These cycles correlate with the North Atlantic 3664 Oscillation (NAO), with the higher wave heights having been associated with high NAO 3665 indices. 3666 3667 Hindcasts by Wang and Swail (2001) of the wave climates based on the meteorological records 3668 of extratropical storms have been analyzed with respect to changes in the 90th and 99th 3669 percentiles of the significant wave heights, thereby representing the trends for the more 3670 extreme wave conditions. The results indicate a lack of change along the east coast of North 3671 America, in agreement with the buoy data for waves generated by extratropical storms. 3672 2.2.3.3.3 Pacific Coast Waves 3673 3674 Analyses of the wave data from NDBC buoys have also been undertaken along the U.S. Pacific 3675 coast, similar to those discussed above for the Atlantic but with the focus having been on the 3676 waves generated by extratropical storms in the Northeast Pacific. The principal investigations of 3677 the trends of changing wave heights and their potential climate controls are those of Allan and 3678 Komar (2000, 2006), who analyzed the records from 6 buoys along the coast from Washington 3679 to south-central California (Point Conception). The analyses were limited to the "winter" waves, 3680 October though the following March, the season with the most intense storms and highest waves.

3681 Trends of increasing wave heights spanning the past 30 years were found, with the greatest rate

3682 of increase having occurred off the coast of Washington where the regression yielded an average

3683 rate of 0.032 m/yr for the winter, with a regular pattern of lesser rates of increase for the latitudes

to the south, such that off the coast of south-central California there has not been a statistically
 significant trend⁶².

3686

3687	Analyses of the more extreme wave heights measured off the Washington coast were undertaken
3688	due to their importance to coastal-erosion occurrences (Allan and Komar, 2006). Figure 2.27
3689	contains graphs of the annual averages of the winter wave heights, and the averages of the five
3690	largest significant wave heights measured each winter, the latter showing a higher rate of
3691	increase (0.095 m/yr, a 2.85-m increase in the significant wave heights in 30 years). The full
3692	series of analyses are listed in Table 2.1, demonstrating that there is an orderly progression with
3693	the more extreme the assessment the greater the rate of increase, up to a rate of 0.108 m/yr for
3694	the single highest measured significant wave height each year. While the data in Figure 2.27 for
3695	the averages of the largest five storm-wave occurrences each year are statistically significant at
3696	the p=0.05 level, the trends for the more extreme waves do not meet this criterion (Table 2.1).
3697	However, for applications to engineering design of coastal structures and in coastal management
3698	assessments of hazards, these extremes for the measured wave heights are of greatest relevance,
3699	and therefore are sometimes used in applications as is the trend for the assessment of the 100-
3700	year projected extreme, which has increased at a still greater rate over the decades, from about 11
3701	m in 1975 to 16 m at present. This use in applications is further supported by the fact that much
3702	of the scatter in the diagrams, as seen in Figure 2.27, can be accounted for by considering the
3703	range of climate events from El Niños to La Niñas (Allan and Komar, 2000, 2006).
3704	

⁶² Where trends of increasing wave heights do exist, they have again been verified by application of the Wilcoxon test, a statistical analysis that basically compares the first half the record with the second half to establish that there has been a meaningful change.

3705 The intensities of North Pacific extratropical storms and their associated tracks are strongly 3706 affected by the depth and position of the Aleutian Low, which tends to intensify and shift 3707 southward and eastward during strong El Nino events (Mo and Livezey, 1986). This southward 3708 shift results in increased occurrences of extreme waves throughout the eastern North Pacific, 3709 particularly along the south-central California coast (Seymour et al. 1984; Allan and Komar 3710 2000, 2006; Bromirski et al. 2005). Correlations between the measured wave heights and the 3711 Multivariate ENSO Index show that increased wave heights occur at all latitudes along the U.S. 3712 Pacific coast during major El Niños, but with the greatest increases along the shore of southern 3713 California (Allan and Komar, 2006). Along the coast of California where the trends of decadal 3714 increases are small to non-existent, it is this cycle between El Niños and La Niñas that exerts the 3715 primary climate control on the storm-wave heights and their extremes (and also on the monthly-3716 mean winter water levels, which are elevated by 20 to 50 cm during a major El Niño above the 3717 long-term mean sea levels).

3718

3719 The documentation of increasing wave heights in the North Pacific is given limited by the 3720 relatively short records from buoys, extending back only to the 1970s. Similar to discussed for 3721 the Atlantic, visual observations from ships in transit provide longer time series of ocean wave 3722 height estimates, but of questionable quality. Gulev and Grigorieva (2004) examined this source 3723 of wave data for the North Pacific, finding that there has been a general increase in the 3724 significant wave heights throughout the 20th century, with a rapid increase from 1900 to about 3725 1925, and a leveling off from 1925 to about 1950-60 but with an apparent maximum during the 3726 1940s (there being a gap in the data during World War II). There was a renewed increase 3727 beginning in about 1960, corresponding to that documented by the wave buoy measurements

3728	(Fig. 2.27). The wave hindcasts ⁶³ by Wang and Swail (2001), representing the more extreme
3729	significant wave-height occurrences (the 90 th and 99 th percentiles), largely also confirm the
3730	general increase in wave heights throughout the central to eastern North Pacific.
3731	
3732	There is the potential for the use of proxy evidence to examine the changes in wave heights
3733	back beyond that provided by the wave data, the proxy having the clearest potential being
3734	measurements by seismometers installed to monitor earthquake activity. During the "quiet"
3735	intervals between earthquakes it has been noted that there is a consistent level of "noise" in the
3736	recorded ground motions, termed "microseisms". It has been shown that much of this energy is
3737	derived from surf on the coast, with the microseisms increasing at times of storms. Analyses
3738	have been undertaken by Bromirski et al. (1999) correlating buoy measurements of ocean
3739	waves along the coast of central California and the microseisms measured by the seismometer
3740	at the University of California, Berkeley. The results of that study yielded a calibration
3741	between the ocean wave heights and the microseism energy, demonstrating the potential use of
3742	the archived seismic data that dates back to 1930, to investigate changes in the U.S. West Coast
3743	wave climate.

3745 **2.2.3.4 Winter Storms**

3746 **2.2.3.4.1 Snowstorms**

3747 The amount of snow that causes serious impacts varies depending on a given location's

- usual snow conditions. A snowstorm is defined here as an event in which more than 15
- 3749 cm of snow falls in 24 hours or less at some location in the U.S. This is an amount

⁶³ Hindcasts are model estimates of waves using forecast models that are run retrospectively using observed meteorological data

3750	sufficient to cause societally-important impacts in most locations. During the 1901-2001
3751	period, 2,257 snowstorms occurred (Changnon et al. 2006). Temporal assessment of the
3752	snowstorm incidences during 1901-2000 revealed major regional differences.
3753	Comparison of the storm occurrences in 1901-1950 against those in 1951-2000 revealed
3754	that much of the eastern U.S. had more storms in the early half of the 20 th Century,
3755	whereas in the West and New England, the last half of the century had more storms.
3756	Nationally, 53% of the weather stations had their peaks in 1901-1950 and 47% peaked in
3757	1951-2000.
3758	
3759	The South and lower Midwest had distinct statistically significant downward trends in
3760	snowstorm frequency from 1901 to 2000. In direct contrast, the Northeast and upper
3761	Midwest had statistically significant upward linear trends. These contrasting regional
3762	trends suggest a northward shift in snowstorm occurrence. Nationally, the regionally
3763	varying up and down trends resulted in a national storm trend that was slightly upward
3764	for 1901-2000, but not statistically significant. The long-term increases in the upper
3765	Midwest and Northeast occurred where snowstorms are most frequent, and thus had an
3766	influence on the upward trend in national snowstorm activity. Research has shown that
3767	cyclonic activity was low during 1931-1950, a period of few snowstorms in the U.S.
3768	
3769	Nationally, 39 of 231 stations with long-term records had their lowest frequencies of
3770	storms during 1931-1940, whereas 29 others had their peak of incidences then. The
3771	second ranked decade with numerous stations having low snowstorm frequencies was

3772 1981-1990. Very few low storm occurrences were found during 1911-1920 and in the

3773 1961-1980 period, times when storms were quite frequent. The 1911-1920 decade had the
3774 greatest number of high station values with 38 stations. The fewest peak values occurred
3775 in the next decade, 1921-1930. Comparison of the decades of high and low frequencies of
3776 snowstorms reveals, as expected, an inverse relationship. That is, when many high storm
3777 values occurred, there are few low storm frequencies.

3778

3779 Generally, the decades with high snowstorm frequencies were characterized by cold

3780 winters. The three highest decades for snowstorms (1911-1920, 1961-1970, and 1971-

3781 1980) were ranked 1st, 4th, and 3rd coldest, respectively while the two lowest decades

3782 (1921-1930 and 1931-1940) were ranked as 3rd and 4th warmest. One exception to this

3783 general relationship is the warmest decade (1991-2000), which experienced a moderately

- high number of snowstorms.
- 3785

3786 Very snowy seasons (those with seasonal snowfall totals exceeding the 90th percentile

threshold) were infrequent in the 1920s and 1930s and have also been rare since the mid-

3788 1980s (Kunkel et al. 2007b). There is a high correlation with average winter temperature.

3789 Warm winters tend to have few stations with high snowfall totals and most of the snowy

3790 seasons have also been cold.

3791

3792 Some of the snowiest regions in North America are the southern and eastern shores of the

3793 Great Lakes where cold northwesterly winds flowing over the warmer lakes pick up

3794 moisture and deposit on the shoreline areas. There is evidence of upward trends in

snowfall since 1951 in these regions even while locations away from the snowy shoreline

3796	areas have not experienced increases (Burnett et al. 2003). An analysis of historical heavy
3797	lake-effect snowstorms identified several weather conditions to be closely related to
3798	heavy lake-effect snowstorm occurrence including moderately high surface wind speed,
3799	wind direction promoting a long fetch over the lakes, surface air temperature in the range
3800	of -10 to 0°C, lake surface to air temperature difference of at least 7°C, and an unstable
3801	lower troposphere (Kunkel et al. 2002). It is also necessary that the lakes be mostly ice-
3802	free.
3803	
3804	Snow cover extent for North America based on satellite data (Robinson et al. 1993)
3805	abruptly decreased in the mid-1980s and generally has remained low since then
3806	(http://climate.rutgers.edu/snowcover/chart_anom.php?ui_set=0&ui_region=nam&ui_mo
3807	nth=6).
3808	
3809	2.2.3.4.2 Ice Storms
3810	Freezing rain is a phenomenon where even light amounts can have substantial impacts.
3811	All days with freezing rain (ZR) were determined during the 1948-2000 period based on
3812	data from 988 stations across the U.S. (Changnon and Karl 2003). The national frequency
3813	of freezing rain days (FZRA) exhibited a downward trend, being higher during 1948-
3814	1964 than in any subsequent period.
3815	
3816	The temporal distributions of FZRA for three climate regions (Northeast, Southeast, and

- 3817 South) reveal substantial variability. They all were high in 1977-1980, low in 1985-1988,
- 3818 and lowest in 1973-1976. The 52-year linear trends for all three regions were downward

3819	over time. The time distributions for the Central, West North Central, and East North
3820	Central regions are alike, all showing that high values occurred early, 1949-1956. All
3821	climate regions had their lowest FZRA during 1965-1976. The East north central,
3822	Central, Northwest, and Northeast regions, which embrace the northern half of the
3823	conterminous U.S., all had statistically significant downward linear trends. This is in
3824	contrast to trends in snowstorm incidences.
3825	
3826	Both snowstorms and ice storms are often accompanied or followed by extreme cold
3827	because a strong ETC (which is the meteorological cause of the snow and ice) is one of
3828	the meteorological components of the flow of extreme cold air from the Arctic. This
3829	compounds the impacts of such events in a variety of ways, including increasing the risks
3830	to human health and adversely affecting the working environment for snow removal and
3831	repair activities. While there have been no systematic studies of trends in such compound
3832	events, observed variations in these events appear to be correlated. For example, the late
3833	1970s were characterized both by a high frequency of extreme cold (Kunkel et al. 1999)
3834	and a high frequency of high snowfall years (Kunkel et al. 2007b).

3836 2.2.3.5 Convective Storms

3837 Thunderstorms in the United States are defined to be severe by the National Weather

3838 Service (NWS) if they produce hail of at least 1.9 cm (3/4 inch) in diameter, wind gusts

- 3839 of at least 25.5 m s⁻¹ (50 kt) or a tornado. Currently, reports come from a variety of
- 3840 sources to the local NWS forecast offices that produce a final listing of events for their
- area. Over the years, procedures and efforts to produce that listing have changed. Official

3842 data collection in near real-time began in 1953 for tornadoes and 1955 for hail and wind. 3843 Prior to 1973, tornado reports were verified by state climatologists (Changnon 1982). In 3844 addition, efforts to improve verification of severe thunderstorm and tornado warnings, the 3845 introduction of Doppler radars, changes in population, and increases in public awareness, 3846 have led to increases in reports over the years. Changes in reporting practices have also 3847 led to inconsistencies in many aspects of the records (e.g., Brooks 2004). Changnon and 3848 Changnon (2000) identified regional changes in hail frequency from reports made at 3849 official surface observing sites. With the change to automated surface observing sites in 3850 the 1990s, the number of hail reports at those locations dropped dramatically because of 3851 the loss of human observers at the sites. As a result, comparisons to the Changnon and 3852 Changnon work cannot be continued, although Changnon et al. (2001) have attempted to 3853 use insurance loss records as a proxy for hail occurrence.

3854

3855 The raw reports of annual tornado occurrences show an approximately doubling from 3856 1954-2003 (Brooks and Dotzek 2007), a reflection of the changes in observing and 3857 reporting. When detrended to remove this artificial trend, the data show large interannual 3858 variability, but a persistent minimum in the late 1980s (Fig. 2.28). There were changes in 3859 assigning intensity estimates in the mid-1970s that resulted in tornadoes prior to 1975 3860 being rated more strongly than those in the later part of the record (Verbout et al. 2006). 3861 More recently, there have been no tornadoes rated F5, the highest rating, since 3 May 3862 1999, the longest gap on record. Coupled with a large decrease in the number of F4 3863 tornadoes (McCarthy et al. 2006), it has been suggested that the strongest tornadoes are 3864 now being rated lower than practice prior to 2000.

3866 A dataset of F2 and stronger tornadoes extending back before the official record

3867 (Grazulis 1993) provides an opportunity to examine longer trends. This examination⁶⁴ of

the record from 1921-1995 indicates that the variability between periods was large,

3869 without significant long-term trends (Concannon et al. 2000).

3870

3871 The fraction of strong tornadoes (F2 and greater) that have been rated as violent (F4 and

3872 greater) has been relatively consistent in the US from the 1950s through the 1990s⁶⁵

3873 (Brooks and Doswell 2001)⁶⁶. There were no significant changes in the high-intensity

and of these distributions from 1950s through the 1990s, although the distribution from

3875 2000 and later may differ.

3876

3877 Nontornadic reports have increased even more rapidly than tornadic reports (Doswell et

al. 2005, 2006). Over the period 1955-2004, this increase was approximately exponential,

3879 resulting in an almost 20-fold increase over the period. The increase is mostly in

3880 marginally severe thunderstorm reports (Brooks 2007. An overall increase is seen, but the

distribution by intensity is similar in the 1970s and post-2000 eras for the strongest 10%

3882 of reports of hail and wind. Thus, there is no evidence for a change in the severity of

3883 events, and the large changes in the overall number of reports make it impossible to

3884 detect if meteorological changes have occurred.

⁶⁴ This analysis used the technique described in Brooks et al. (2003a) to estimate the spatial distribution over different periods

⁶⁵ Note that consistent overrating will not change this ratio.

⁶⁶ Feuerstein et al. (2005) showed that the distribution in the US and other countries could be fit to Weibull distributions with the parameters in the distribution converging as time goes along, which they associated with more complete reporting of events.

3886	Environmental conditions that are most likely associated with severe and tornadic
3887	thunderstorms have been derived from reanalysis data (Brooks et al. 2003b) and counts of
3888	the frequency of favorable environments for significant severe thunderstorms ⁶⁷ have been
3889	determined for the area east of the Rocky Mountains in the US for the period 1958-1999
3890	(Brooks and Dotzek 2007). The count of favorable environments decreased from the late
3891	1950s into the early 1970s and increased after that through the 1990s, so that the
3892	frequency was approximately the same at both ends of the analyzed period. Given the
3893	high values seen at the beginning of the reanalysis era, it is likely that the record is long
3894	enough to sample natural variability, so that it is possible that even though the 1973-1999
3895	increase is statistically significant, it does not represent a departure from natural
3896	variability. The time series of the count of reports of very large hail (7 cm diameter and
3897	larger) shows an inflection at about the same time as the inflection in the counts of
3898	favorable environments. A comparison of the rate of increase of the two series suggested
3899	that the change in environments could account for approximately 7% of the change in
3900	reports from the mid-1970s through 1999, with the rest coming from non-meteorological
3901	sources. Changes in tornado reports do not correspond to the changes in overall favorable
3902	severe thunderstorm environment, in part because the discrimination of tornadic
3903	environments in the reanalysis data is not as good as the discrimination of severe
3904	thunderstorm environments (Brooks et al. 2003a).
3905	

- 3906
- 3907

⁶⁷ Hail of at least 5 cm diameter, wind gusts of at least 33 m s⁻¹, and/or a tornado of F2 or greater intensity

3908 BOX 2.3: Changes in Modes of Variability

3909 The atmosphere-ocean system has a wide variety of circulation patterns, or modes, of 3910 climate variability that pulse on time scales ranging from days, to many decades, or 3911 longer. For example, the well-known winter weather pattern of a storm followed by clear 3912 skies and then another storm a week later is, part of an atmospheric wave (wind) pattern 3913 that circles the Earth. As these waves move over the ocean, heat from the ocean is given 3914 up to the air, which impacts both the intensity and the movement of the atmospheric 3915 waves (weather) as well as ocean circulations. Weather and climate extremes are often 3916 linked to one or more of these modes of climate variability, and following is a brief 3917 description of the most important circulation regimes. However, it is important to keep in 3918 mind that these modes of variability are not independent of each other.

3919

3920 El Niño-Southern Oscillation (ENSO)

3921 The ENSO phenomenon is the result of coupled ocean-atmosphere dynamics and is the 3922 largest source of interannual variability in global weather and climate. It is characterized 3923 by changes in eastern equatorial Pacific sea surface temperature (SST) and surface air 3924 pressure in the tropical Pacific region. Warm (cold) eastern Pacific SST anomalies are 3925 associated with El Niño (La Niña) events. El Niños occur at irregular intervals of 3926 approximately 2 to 7 years, and generally persists for 12 to 18 months. The Southern 3927 Oscillation component of ENSO is defined by air pressure differences between the 3928 eastern and western tropical Pacific (typically between Darwin and Tahiti) and is 3929 characterized by changes in tropical atmospheric flow patterns which are caused by and 3930 can enhance tropical Pacific SST variations. These tropical atmospheric circulation

2021	changes can	altar both the	intoncity or	nd tracks of	f North A	marican st	orme For	avamnla
5951	changes can a		intensity a	iu tracks of	I NOIUI P	American St	.011115. 1.01	erampie,

- 3932 El Niño is often associated with heavy winter rains in southern California.
- 3933

- - - .

3934	The nature of ENSO has varied considerably through time. Strong ENSO events occurred
3935	with regularity from the late 19 th Century through 1925 and again after 1950. Between
3936	1976 and 1977 rapid warming occurred in the Tropical Pacific with concurrent cooling in
3937	the Central Pacific that has been termed the climate shift of 1976/1977 (Trenberth 1990,
3938	Miller et al. 1994). The shift has been associated with increased El Niño activity, changes
3939	in storm tracks, increased storm intensity and is at the start of the period of rapid

- 3940 warming in global temperatures, and the 1997-1998 El Niño was the strongest on record.
- 3941

3942 The North Atlantic Oscillation (NAO)

3943 The NAO is the most important mode of winter climate variability in the North Atlantic 3944 region and is measured by an index that is based on air pressure differences between 3945 Iceland/Greenland and the Azores in the north Atlantic. As Figure 2.29 illustrates, high 3946 values of the NAO index are associated with intensified westerly winds around the arctic. 3947 Changes in the strength and location of the westerlies produce characteristic shifts in 3948 temperature, rainfall, and winds. Low NAO values correspond with cold extremes in 3949 central North America and high NAO index values increase the chances of warm winter 3950 extremes. Proxy and instrumental data show evidence for intervals of decadal and longer 3951 positive and negative NAO index in the last few centuries (Cook et al., 2002; Jones et al., 2003). A reversal occurred from minimum winter index values in the late 1960s to 3952

strongly positive NAO index values in the mid-1990s but since have declined to near thelong-term mean.

3955

3956 Atlantic Multidecadal Oscillation (AMO)

3957 The Atlantic Ocean meridional overturning circulation carries warm salty surface waters3958 into far-northern latitudes around Greenland where it cools, sinks, and returns cold deep

3959 waters southward across the equator. An oscillating pattern of SSTs in the northern

3960 Atlantic that is related to this overturning circulation, called the Atlantic Multidecadal

3961 Oscillation (AMO), has been identified by a number of researchers (Delworth and Mann,

3962 2000; Folland *et al.*, 1986; Mann and Park, 1994). The AMO is commonly identified by

3963 subtracting a linear trend from a time series of the North Atlantic SST. This trend

3964 subtraction is intended to remove, or at least reduce, the influence of greenhouse-gas

induced global warming from the AMO so that the bulk of the variability in the

3966 remainder is due to natural causes. The warm phase, the decades when the temperature is

3967 above the trend line, is associated with increased Atlantic hurricane activity, and the cool

3968 phase is associated with reduced Atlantic hurricane activity. Instrumental data has been

used to identify warm phases roughly between 1860-1880, 1930-1960, and one beginning

in the mid-1990s which continues to present. Cool phases were present during 1905-1925

and 1970-1990 (Schlesinger and Ramankutty, 1994).

3972

3973 Some scientists, however, question the validity of subtracting a linear trend from a time

3974 series created by non-linear forcings and wonder if the AMO as commonly calculated is

3975 primarily an artifact of this creation process rather than a real change in the ocean

3976 circulation. Some suggest that subtracting the global SST time series from the North 3977 Atlantic SST time series removes a global climate change signal better than subtracting a 3978 linear trend and produces a very different historical AMO record (Trenberth and Shea, 3979 2006). Proxy and modeling studies have identified an AMO-like signal and found that 3980 multidecadal eras in hurricane activity in the North Atlantic are correlated with the AMO 3981 (Bell and Chelliah, 2006). No matter how it is calculated, the AMO has such a long 3982 period that the observational SST data only records about 1.5 cycles which makes it 3983 difficult to determine whether the AMO is truly a natural oscillation or caused in whole 3984 or at least in part by greenhouse-gas induced climate change.

3985

3986 Pacific Decadal Oscillation (PDO)

3987 The Pacific Decadal Oscillation (PDO) is a multidecadal pattern of monthly SST 3988 anomalies in the North Pacific Ocean poleward of 20°N. Two full PDO cycles occurred 3989 through the twentieth century with each phase persisting for 20 to 30 years. The typical 3990 spatial pattern of the "warm" phase of the PDO has negative SST anomalies in the central 3991 and eastern North Pacific and positive SST anomalies along the coast of North America. 3992 Sea level pressure (SLP) anomalies during the warm phase tend to have a basin-scale low 3993 centered over the Aleutian Islands and high sea-level pressure over western North 3994 America. The cool phase of the PDO has SST and SLP patterns that are essentially the 3995 opposite of the warm phase. Because the PDO influences various weather systems it can 3996 affect the chances of, for example, winter temperatures cold enough to cause mountain 3997 pine beetle mortality in British Columbia (Stahl et al., 2006). When an El Niño event 3998 occurs during a warm phase of the PDO, the characteristic El Niño-related temperature

- and precipitation anomalies in North America tend to be accentuated. The PDO had
- 4000 extended periods of negative values indicative of weakened circulation from 1900 to
- 4001 1924 and 1947 to 1976, and positive values indicative of strengthened circulation from
- 4002 1925 to 1946 and 1977 to 2005. The 1976-1977 climate shift in the Pacific described
- 4003 above was associated with a phase change in the PDO from negative to positive
- 4004 (Trenberth et al., 2002; Deser et al., 2004).
- 4005
- 4006 Pacific North American Pattern (PNA)

4007 The PNA can be defined as a secondary pattern in the variability of monthly atmospheric

- 4008 pressure anomalies for the latitude range 20-90°N. When the PNA is positive, the mid-
- 4009 tropospheric winds over North America and the North Pacific have a strong meridional
- 4010 (north-south) wave pattern while the negative PNA has more zonal (west to east) flow.
- 4011 Strong wave patterns tend to bring extreme weather; whether the extremes are warm,
- 4012 cold, wet or dry at a particular location depends on the shape of the wave. A positive
- 4013 PNA is associated with El Niños and negative PNA is associated with La Niña.
- 4014
- 4015 The Madden-Julian Oscillation (MJO)
- 4016 The atmospheric response to convection on the equator, which heats the atmosphere, is
- 4017 the creation of circulation cells, which then move eastward. These cells have a period of
- 4018 about 50 days and either enhance tropical convection or help suppress it. Referred to as
- 4019 the Madden-Julian Oscillation (MJO), after the two scientists who discovered it (Madden
- 4020 and Julian, 1971 and 1972), it is the dominant source of tropical atmospheric variability
- 4021 on intraseasonal time scales. The MJO is related to North American extremes through its
| 4022 | influence on the dynamics of tropical cyclone formation (Hartmann and Maloney, 2001; |
|------|---|
| 4023 | Maloney and Hartmann, 2000a; 2000b, 2001) as well as western North American winter |
| 4024 | rainfall variability. The MJO can enhance or suppress either depending on which part of |
| 4025 | the circulation cell is active in the region. |
| 4026 | |
| 4027 | As the climate changes, some of the atmospheric circulation patterns or modes of |
| 4028 | atmospheric variability described above have changed as well. However, only one |
| 4029 | circulation pattern, the MJO, would not be expected to have long-term changes since it is |
| 4030 | a localized circulation response to convection on the equator. |
| 4031 | |
| 4032 | 2.3 Key Uncertainties Related to Measuring Specific Variations and Change |
| 4033 | In this section we review the statistical methods that have been used to assess |
| 4034 | uncertainties in studies of changing extremes. The focus of the discussion is on |
| 4035 | precipitation events, though similar methods have also been used for temperature. |
| 4036 | |
| 4037 | 2.3.1 Methods Based on Counting Exceedances Over a High Threshold |
| 4038 | Most existing methods follow some variant of the following procedure, given by Kunkel |
| 4039 | et al. (1999). First, daily data are collected, corrected for biases such as winter |
| 4040 | undercatchment. Only stations with nearly complete data are used (typically, "nearly |
| 4041 | complete" means no more than 5% missing values). Different event durations (for |
| 4042 | example, 1-day or 7-day) and different return periods (such as 1 year or 5 years) are |
| 4043 | considered. For each station, a threshold is determined according to the desired return |
| 4044 | value – for example, with 100 years of data and a 5-year return value, the threshold is the |

4045	20 th largest event. The number of exceedances of the threshold is computed for each year,
4046	and then averaged either regionally or nationally. The averaging is a weighted average in
4047	which, first, simple averaging is used over climate divisions (typically there are about 7
4048	climate divisions in each state), and then, an area-weighted average is computed over
4049	climate divisions, either for one of the nine U.S. climate regions or the whole contiguous
4050	U.S. This averaging method ensures that parts of the country with relatively sparse data
4051	coverage are adequately represented in the final average. Sometimes (e.g. Groisman et al.
4052	2005, Kunkel et al. 2007a) the climate divisons are replaced by 1° by 1° grid cells. Two
4053	additional refinements used by Groisman et al. (2005) are (i) to replace the raw
4054	exceedance counts for each year by anomalies from a 30-year reference period, computed
4055	separately for each station, (ii) to assess the standard error of the regional average using
4056	spatial statistics techniques. This calculation is based on an exponentially decreasing
4057	spatial covariance function with a range of the order 100-500 km. and a nugget:sill ratio
4058	(the proportion of the variability that is not spatially correlated) between 0 and 85%,
4059	depending on the region, season and threshold.
4060	
10/1	

4061 Once these spatially averaged annual exceedance counts or anomalies are computed, the 4062 next step is to compute trends. In most studies, the emphasis is on linear trends computed 4063 either by least squares regression or by the Kendall slope method, in which the trend is 4064 estimated as the median of all possible slopes computed from pairs of data points. The 4065 standard errors of the trends should theoretically be corrected for autocorrelation, but in 4066 the case of extreme events the autocorrelation is usually negligible (Groisman et al., 4067 2004).

4069	One of the concerns about this methodology is the effect of changing spatial coverage of
4070	the data set, especially for comparisons that go back to the late years of the 19 th century.
4071	Kunkel et al. (2007a) generated simulations of the 1895-2004 data record by first
4072	randomly sampling complete years of data from a modern network of 6351 stations for
4073	1971-2000, projecting to a random subnetwork equivalent in size and spatial extent to the
4074	historical data network, then using repeat simulations to calculate means and 95%
4075	confidence intervals for five 22-year periods. The confidence intervals were then
4076	superimposed on the actual 22-year means calculated from the observational data record.
4077	The results for 1-year, 5-year and 20-year return values show clearly that the most recent
4078	period (1983-2004) has the highest return values of the five periods, but they also show
4079	the second highest return values in 1895-1916 with a sharp drop thereafter, implying a
4080	still not fully explained role due to natural variability.
4081	
4082	Some issues that might justify further research include the following:
4083	1. Further exploration of why extreme precipitation apparently decreases
4084	after the 1895-1916 period before the recent (post-1983) rise when they exceeded
4085	that level. For example, if one breaks the data down into finer resolution spatially,
4086	does one still see the same effect?
4087	2. What about the effect of large-scale circulation effects such as ENSO
4088	events, AMO, PDO, etc? These could potentially be included as covariates in a

4089 time series regression analysis, thus allowing one to "correct" for circulation4090 effects in measuring the trend.

4091	3. The spatial analyses of Groisman et al. (2005) allow for spatial correlation
4092	in assessing the significance of trends, but they don't do the logical next step,
4093	which is to use the covariance function to construct optimal interpolations (also
4094	known as kriging) and thereby produce more detailed spatial maps. This is
4095	something that might be explored in the future.
4096	
4097	2.3.2 The GEV Approach
4098	An alternative approach to extreme value assessment is though the Generalized Extreme
4099	Value (GEV) distribution ⁶⁸ , and its variants. The GEV combines together three "types"
4100	of extreme value distributions that in earlier treatments were often regarded as separate
4101	families (e.g. Gumbel 1958). The distribution is most frequently applied to the annual
4102	maxima of a meteorological or hydrological variable, though it can also be applied to
4103	maxima over other time periods (e.g. one month or one season). With minor changes in
4104	notation, the distributions are also applicable to minima rather than maxima. The
4105	parameters may be estimated by maximum likelihood, though there are also a number of
4106	more specialized techniques such as L-moments estimation. The methods have been
4107	applied in climate researchers by a number of authors including Kharin and Zwiers
4108	(2000), Wehner (2004,2005), Kharin et al. (2007).
4109	

⁶⁸ The basic GEV distribution is given by the formula (see, e.g. Zwiers and Kharin (1998)) $F(x) = exp\{-[1-k(x-\zeta)/\alpha]^{1/k}\}$ in which ζ plays the role of a centering or location constant, α determines the scale, and *k* is a key parameter that determines the shape of the distribution. (Other authors have used different notations, especially for the shape parameter.) The range of the distribution is $x < \zeta + \alpha/k$ when k < 0, $x > \zeta + \alpha/k$ when k < 0, $-\infty < x < \infty$ when k = 0, in which case the formula reduces to $F(x) = exp\{-exp[-(x-\zeta)/\alpha]\}$ and is known as the Gumbel distribution.

4110	The potential advantage of GEV methods over those based on counting threshold
4111	exceedances is that by fitting a probability distribution to the extremes, one obtains more
4112	information that is less sensitive to the choice of threshold, and can also derive other
4113	quantities such as the <i>T</i> -year return value X_T , calculated by solving the equation $F(X_T)=1$ -
4114	1/T. Trends in the <i>T</i> -year return value (for typical values of <i>T</i> , e.g. 1, 10, 25 or 100 years)
4115	would be particularly valuable as indicators of changing extremes in the climate.
4116	Direct application of GEV methods is often inefficient because they only use very sparse
4117	summaries of the data (typically one value per year), and need reasonably long time
4118	series before they are applicable at all. Alternative methods are based on exceedances
4119	over thresholds, not just counting exceedances but also fitting a distribution to the excess
4120	over the threshold. The most common choice of distribution of excess is the Generalized
4121	Pareto distribution or GPD, which is closely related to the GEV (Pickands 1975, Davison
4122	and Smith 1990). Some recent overviews of extreme value distributions, threshold
4123	methods, and a variety of extensions are by Coles (2001) and Smith (2003).
4124	
4125	Much of the recent research (e.g. Wehner 2005, Kharin et al. 2007) has used model
4126	output data, using the GEV to estimate for example a 20-year return value at each grid
4127	cell, then plotting spatial maps of the resulting estimates. Corresponding maps based on
4128	observational data must take into account the irregular spatial distribution of weather
4129	stations, but this is also possible using spatial statistics (or "kriging") methodology. For
4130	example, Cooley et al. (2007) have applied a hierarchical modeling approach to
4131	precipitation data from the Front Range of Colorado, fitting a GPD to threshold
4132	exceedances at each station and combining results from different stations through a

- 4133 spatial model to compute a map of 25-year return values. Smith et al. (2007) applied
- 4134 similar methodology to data from the whole contiguous U.S., producing spatial maps of
- 4135 return values and also calculating changes in return values over the 1970-1999 period.

4136	Chapter 2 References
4137	
4138	Acuña-Soto, R., D. W. Stahle, M. K. Cleaveland, and M. D. Therrel, 2002: Megadrought
4139	and megadeath in 16 th century Mexico. <i>Historical Review</i> , 8 (4), 360-362.
4140	
4141	Aguilar, E., et al. (2005), Changes in precipitation and temperature extremes in Central
4142	America and northern South America, 1961–2003, J. Geophys. Res., 110,
4143	D23107, doi:10.1029/2005JD006119.
4144	
4145	Alexander, L. V., et al. (2006), Global observed changes in daily climate extremes of
4146	temperature and precipitation, J. Geophys. Res., 111, D05109,
4147	doi:10.1029/2005JD006290.
4148	
4149	Allan, J. C., and P. D. Komar, 2000: Are ocean wave heights increasing in the eastern
4150	North Pacific? EOS, Transaction of the American Geophysical Union, 47, 561-
4151	567.
4152	
4153	Allan, J. C. and P. D. Komer, 2006: Climate controls on US West Coast erosion
4154	processes. Journal of Coastal Research, 22, 511-529.
4155	
4156	Alley, W.M. 1984. The Palmer Drought Severity Index: Limitations and assumptions.
4157	Journal of Climate and Applied Meteorology 23:1100–1109.
4158	
4159	An, S.I., J.S. Kug, A. Timmermann, I.S. Kang, and O. Timm, 2007: The influence of
4160	ENSO on the generation of decadal variability in the North Pacific. J. Climate,
4161	20 , 667–680.
4162	
4163	Andreadis, K.M., E. A. Clark, A. W. Wood, A. F. Hamlet, and D. P. Lettenmaier, 2005:
4164	Twentieth-Century drought in the conterminous United States. <i>Journal of</i>
4165	Hydrometeorology, 6, 985–1001.
4166	Andread's K.M. and D. D. Lettermatics 2006. Treads in 20 th conternal treads to the
410/	Andreadis, K. M., and D. P. Lettenmaier, 2006: I fends in 20 century drought over the
4108	doi:10.1020/2006CL 025711
4109	doi.10.1029/2000GL023/11.
4170	Angel I.D. and S.A. Isard 1009. The frequency and intensity of Creat Lake evaluates I
4171	<i>Climate</i> 11 61 71
4172	<i>Climate</i> , 11 , 01–71.
4173 A17A	Arguez A (ed.) 2007: State of the Climate in 2006 Rull Amer Mateor Soc. 28 sl
+1/4 /175	a125
4175 A176	S155.
4177	Assel R A K Cronk and D C Norton 2003; Recent trends in Laurentian Great Lakes
4178	ice cover Climatic Change 57 185-204
4179	100 00 vol. Cumune Change, 37, 103-207.
11/2	

4180	Assel, R. A., 2003: Great Lakes ice cover, first ice, last ice, and ice duration. NOAA
4181	Technical Memorandum GLERL-125. NOAA, Great Lakes Environmental
4182	Research Laboratory, Ann Arbor, MI, 49 pp.
4183	
4184	Assel, R. A. Great Lakes ice cover climatology update: Winters 2003, 2004, and 2005.
4185	NOAA Technical Memorandum GLERL-135, 2005a: NOAA, Great Lakes
4186	Environmental Research Laboratory, Ann Arbor, MI, 21 pp.
4187	
4188	Assel, R. A., 2005b: Classification of annual Great Lakes ice cycles: Winters of 1973-
4189	2002. Journal of Climate, 18, 4895-4905.
4190	
4191	Bacon, S. and D.J.T. Carter, 1991: Wave climate changes in the North Atlantic and North
4192	Sea. International Journal of Climatology, 11, 545-558.
4193	
4194	Bell, D. B. and M. Chelliah, 2006: Leading tropical modes associated with interannual
4195	and multidecadal fluctuations in North Atlantic hurricane activity. Journal of
4196	<i>Climate</i> , 17 , 590-612.
4197	
4198	Bonsal, B. R., X. Zhang, L. Vincent and W. Hogg, 2001: Characteristics of daily and
4199	extreme temperatures over Canada. Journal of Climate, 14, 1959-1976.
4200	
4201	Bromirski, P.D., 2001, Vibrations from the "Perfect Storm", Geochem. Geophys.
4202	<i>Geosys.</i> , 2 (7), doi:10.1029/2000GC000119.
4203	
4204	Bromirski, P. D., 2007: Extratropical cyclone-forced wave power variability along the
4205	U.S. Atlantic coast. Nature, submitted.
4206	
4207	Bromirski, P. D. and J. Kossin, 2007: Hurricane waves along the U.S. east and Gulf
4208	coasts. Science, submitted.
4209	
4210	Bromirski, P. D., R.E. Flick and N. Graham, 1999: Ocean wave height determined from
4211	inland seismometer data: Implications for investigating wave climate changes:
4212	Journal of Geophysical Research, 104, 20753-20766.
4213	
4214	Bromirski, P.D., D.R. Cayan, and R.E. Flick, 2005: Wave spectral energy variability in
4215	the northeast Pacific. Journal of Geophysical Research, 110, C03005,
4216	doi:10.1029/2004JC002398.
4217	
4218	Bromirski, P.D., R.E. Flick, and D.R. Cayan, 2003: Decadal storminess variability along
4219	the California coast: 1858 – 2000. Journal of Climate, 16, 982-993.
4220	
4221	Brooks, H. E., 2004: On the relationship of tornado path length and width to intensity.
4222	Weather and Forecasting, 19 , 310-319.
4223	

4224	Brooks , H. E., 2007: Development and use of climatologies of convective weather.
4225	Atmospheric Convection: Research and Operational Forecasting Aspects.
4226	Springer-Verlag, in press.
4227	
4228	Brooks , H. E. and C. A. Doswell III, 2001: Some aspects of the international climatology
4229	of tornadoes by damage classification. Atmospheric Research, 56, 191-201.
4230	
4231	Brooks, H. E., C. A. Doswell III and M. P. Kay, 2003a: Climatological estimates of local
4232	daily tornado probability. Weather and Forecasting, 18, 626-640.
4233	
4234	Brooks, H. E., J. W. Lee and J. P. Craven, 2003b: The spatial distribution of severe
4235	thunderstorm and tornado environments from global reanalysis data. Atmospheric
4236	Research, 67-68 , 73-94.
4237	
4238	Brooks , H. E. and N. Dotzek, 2007: The spatial distribution of severe convective storms
4239	and an analysis of their secular changes. Climate Extremes and Society. H. F.
4240	Diaz and R. Murnane, Eds., Cambridge University Press, in press.
4241	
4242	Burnett, A.W., M.E. Kirby, H.T. Mullins, and W.P. Patterson, 2003: Increasing Great
4243	Lake-effect snowfall during the Twentieth Century: A regional response to global
4244	warming? J. Climate, 16, 3535-3541.
4245	
4246	Carter, D.J.T. and L. Draper, 1988: Has the north-east Atlantic become rougher? <i>Nature</i> ,
4247	332, 494.
4248	
4249	Cavazos, T., A. C. Comrie and D. M. Liverman, 2002: Intraseasonal variability
4250	associated with wet monsoons in southeast Arizona. J. Climate, 15, 2477-2490.
4251	
4252	Cavazos , T. and D. Rivas, 2004: Variability of extreme precipitation events in Tijuana,
4253	Mexico. Climate Research, 25, 229-243.
4254	
4255	Cavazos, T., C. Turrent., and D. P. Lettenmaier, 2007: Extreme precipitation variability
4256	in the core of the North American monsoon. Geophysical Research Letters, to be
4257	submitted.
4258	
4259	Cayan, D. R. A. Kammerdiener, M.D. Dettinger, J.M. Caprio, and D.H. Peterson, 2001:
4260	Changes in the onset of spring in the Western United States. Bulletin of the
4261	American Meteorological Society, 82, 399-415.
4262	
4263	Chan, J. C. L., 2006: Comment on "Changes in tropical cyclone number, duration, and
4264	intensity in a warming environment. Science, 311 , 1713.
4265	
4266	Chan, J. C. L. and JE. Shi, 1996: Long-term trends and interannual variability in
4267	tropical cyclone activity over the western North Pacific. Geophysical Research
4268	Letters, 23, 2765-2767.
4269	

4270	Chang, E.K.M., and Y. Fu, 2002: Inter-decadal variations in Northern Hemisphere
4271	winter storm track intensity. J. Climate, 15, 642–658.
4272	
4273	Chang, E. K., and Y. Guo, 2007: Is the number of North Atlantic tropical cyclones
4274	significantly underestimated prior to the availability of satellite observations?
4275	Geophys. Res. Lett., 34, L14801, doi:10.1029/2007GL030169.
4276	
4277	Changnon, D., S.A. Changnon and S. Changnon, 2001: A method for estimating crop
4278 4279	losses from hail in uninsured periods and regions. <i>Journal of Applied Meteorology</i> , 40 , 84-91.
4280	
4281	Changnon S A 1982: Trends in tornado frequency: Fact or fallacy? <i>Preprints</i> 12 th
4282	conference on severe local storms, San Antonio, TX, American Meteorological
4283	Society, 42-44.
4284	Change S. A. and D. Change on 2000, Long tarm fluctuations in hail insidences in
4285	the United States Loweral of Climate 13, 658, 664
4280	the United States. <i>Journal of Climate</i> , 15 , 058-004.
4287	
4288	Changnon, S.A., D. Changnon, and I.R. Karl, 2006: Temporal and spatial characteristics
4289	of snowstorms in the contiguous United States. <i>Journal of Applied Meteorology</i>
4290	and Climatology, 45, 1141-1155.
4291	~
4292	Changnon , S. and T. Karl, 2003: Temporal and spatial variations in freezing rain in
4293	the contiguous U.S. Journal of Applied Meteorology, 42, 1302-1315.
4294	Chanawath M. 2002. The 19 th contum alimete of Ismaics. American Philosophical
4293	Chenoweth, M., 2005. The 18 Century cumule of Jumaica. American Philosophical
4290	Society, 212-219.
4297	
4298	Chu, J. –H., C. R. Sampson, A. S. Levine and E. Fukada, 2002: The joint typhoon
4299 4300	warning center tropical cyclone best tracks, 1945-2000. Naval research Laboratory Reference Number NRL/MR/7540-02-16
4300	Laboratory Reference (Value) (REF, WHO 7540-02-10.
4302	Clark, M. P., M. C. Serreze, and D. A. Robinson, 1999: Atmospheric controls on
4303	Eurasian snow cover extent. Int. J. Climatol., 19, 27-40.
4304	
4305	Cleaveland, M. L., D. W. Stahle, M. D. Therrell, J. Villanueva-Diaz, and B. T. Burnes.
4306	2004: Tree-ring reconstructed winter precipitation and tropical teleconnections in
4307	Durango Mexico <i>Climatic Change</i> 59(3) , 369-388
4308	Darango, monico. Crimano Change, 07 (0), 509 500.
4300	Coles S.G. 2001: An Introduction to Statistical Modeling of Extreme Values. Springer
4310	Verlag New York
4311	venag, new rork.
4312	Concannon , P. R., H. E. Brooks, and C. A. Doswell III, 2000: Climatological risk of
4313	strong and violent tornadoes in the United States <i>Preprints</i> 2nd Symposium on
4314	Environmental Applications Long Beach California American Meteorological
4315	Society, 212-219

4316	
4317	Cook, E.R., D. M. Meko, D. W. Stahle, and M. K. Cleaveland, 1999: Drought
4318	reconstructions for the continental United States. Journal of Climate, 12, 1145-
4319	1162.
4320	
4321	Cook , E.R., R.D. D'Arrigo, and M.E. Mann, 2002; A well-verified, multiproxy
4322	reconstruction of the winter North Atlantic Oscillation index since A D 1400 <i>I</i>
1322	Climate 15 1754_1764
4323	Сипанс, 13, 1754 1764.
4324	Cook EP. Woodhouse CA. Eakin CM, et al. Long term aridity changes in the western
4323	United States SCIENCE 206 (5608): 1015 1018 NOV 5 2004
4320	<u>United States</u> SCIENCE 500 (5098). 1015-1018 NOV 5 2004
4327	Cooley D. D. Novooy and D. Nychka, 2007; Devesion spatial modeling of avtrame
4328	Cooley , D., P. Naveau and D. Nychka, 2007. Bayesian spatial modeling of extreme
4329	precipitation return levels. Journal of the American Statistical Association, to
4330	appear.
4331	
4332	Cooter, E. and S. LeDuc, 1995: Recent frost date trends in the northeastern United
4333	States. International Journal of Climatology, 15, 65-75.
4334	
4335	Dai A.G., K.E. Trenberth, and T.T. Qian, 2004: <u>A global dataset of Palmer Drought</u>
4336	Severity Index for 1870-2002: Relationship with soil moisture and effects of
4337	surface warming. Journal of Hydrometeorology, 5, 1117-1130.
4338	
4339	Davis, R. E., R. Dolan and G. Demme, 1993: Synoptic climatology of Atlantic coast
4340	north-easters, International Journal of Climatology, 13 (2), 171-189.
4341	
4342	Davison, A.C. and R.L. Smith, 1990: Models for exceedances over high thresholds (with
4343	discussion). Journal of the Royal Statistical Society 52, 393-442.
4344	
4345	DeGaetano, A. T. and R. J. Allen, 2002: Trends in the twentieth century temperature
4346	extremes across the United States. Journal of Climate, 15, 3188-3205.
4347	
1210	Deleverth TL and ME Many 2000. Observed and simulated multidated deleverishiliter
4348	Delworth , I.L. and M.E. Mann, 2000: Observed and simulated multidecadal variability
4349	in the Northern Hemisphere, <i>Climate Dynamics</i> , 16 , 661-676.
4350	
4351	Deser , C., A.S. Phillips, and J.W. Hurrell, 2004: Pacific interdecadal climate variability:
4352	Linkages between the tropics and the north Pacific during boreal winter since
4353	1900. J. Climate, 17, 3109–3124.
4354	
4355	Dolan , R., H. Lins and B. Hayden, 1988; Mid-Atlantic coastal storms. <i>Journal of Coastal</i>
4356	Research 4 (3) 417-433
4357	
4358	Donnelly I.P. 2005: Evidence of past intense tropical evolutions from backbarrier solt
	nond sediments: a case study from Isla de Culabrita Duerto Dico II S A Lournal
4360	of Coastal Research 12, 201, 210
4261	oj Cousiai Research, 42 , 201-210.
4301	

4362 4363	Donnelly , J.P., S. S. Bryant, J. Butler, J. Dowling, L. Fan, N. Hausmann, P. Newby, B. Shuman, J. Stern, K. Westover and T. Webb, III, 2001a: A 700 yr. sedimentary
4364 4365	record of intense hurricane landfalls in southern New England. <i>Geological Society of America Bulletin</i> , 113 , 714-727.
4360 4367 4368	Donnelly , J.P., J. Butler, S. Roll, M. Wengren, and T. Webb, III, 2004: A backbarrier overwash record of intense storms from Brigantine. New Jersey <i>Marine Geology</i>
4369 4370	210 : 107-121.
4371	Donnelly J.P., S. Roll, M. Wengren, J. Butler, R. Lederer and T. Webb, III, 2001b.
4372 4373	Sedimentary evidence of intense hurricane strikes from New Jersey. <i>Geology</i> , 29 , 615-618.
4374	
4375 4376	Donnelly , J.P. and T. Webb, III, 2004: Backbarrier sedimentary records of intense hurricane landfalls in the northeastern United States. In: <i>Hurricanes and</i>
4377 4378	<i>Typhoons: Past, Present, and Future</i> (eds. R.J. Murnane, R.J. and K-b. Liu, <i>Columbia University Press</i> , pp. 58-95.
4379	
4380	Donnelly, J. P., and J. D. Woodruff, 2007: Intense hurricane activity over the past 5,000
4381 4382	years controlled by El Nino and the West African monsoon. <i>Nature</i> , 447 , 465-468.
4383	
4384 4385	Doswell , C. A. III, H. E. Brooks and M. P. Kay, 2005: Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. <i>Weather</i>
4386 4387	and Forecasting, 20 , 577-595.
4388	Doswell, C. A. III, R. Edwards, R. L. Thompson and K. C. Crosbie, 2006: A simple and
4389 4390	in press.
4391	Develop MW DA Meller K Herred and C Develop 1002. The Merican response
4392 4393	<i>J. Climate</i> , 6 , 1665-1677.
4394	
4395	Easterling, D.R., J.L. Evans, P.Ya. Groisman, T.R. Karl, K.E. Kunkel, and P. Ambenje,
4396	2000a: Observed variability and trends in extreme climate events: a brief review.
4397 4398	Bulletin of the American Meteorological Society, 81 , 417-425.
4399	Easterling D R 2002. Recent changes in frost days and the frost-free season in the
4400	United States. Bulletin of the American Meteorological Society, 83 , 1327-1332.
4401 AA02	Fasterling D.R. B. Horton P.D. Jones T.C. Deterson T.D. Karl D.F. Darker M.I.
4403	Salinger V Razuvavev N Plummer P Jamison and C K Folland 1007.
4404	Maximum and minimum temperature trends for the globe Science 277 : 364-367
4405	Maximum and minimum temperature trends for the globe. Science 217. 304-307.

4406 4407 4408	Easterling , D.R., T. Wallis, J. Lawrimore, and R. Heim, 2007b: The effects of temperature and precipitation trends on U.S. drought. <i>Geophyical. Research Letters</i> , submitted.
4409 4410 4411 4412 4413	Easterling , D. R. B. Gleason, K. E. Kunkel and R, J. Stouffer, 2007a: A comparison between observed and model produced warm spells for the United States, to be submitted.
4414 4415 4416 4417	Edwards , D. C. and T. B. McKee, 1997: Characteristics of 20 th Century Drought in the United States at Multiple Time Scales. Fort Collins, Colorado, Department of Atmospheric Science, Colorado State University.
4418 4419 4420	Eichler , T., and W. Higgins, 2006: Climatology and ENSO-related variability of North American extra-tropical cyclone activity. <i>J. Climate</i> , 19 , 2076–2093.
4421 4422 4423 4423	Elsner , J. B., A. A. Tsonis and T. H. Jagger, 2006: High-frequency variability in hurricane power dissipation and its relationship to global temperature. <i>Bulletin of the American Meteorological Society</i> , 87 , 763-768.
4425 4426 4427	Emanuel, K. A., 2005a: Increasing destructiveness of tropical cyclones over the past 30 years. <i>Nature</i> , 436 , 686-688.
4428 4429	Emanuel, K. A., 2005b: Emanuel replies. <i>Nature</i> , 438 , doi:10.1038/nature04427.
4430 4431 4432	Emanuel , K. A., 2007: Environmental factors affecting tropical cyclone power dissipation. <i>J. Climate</i> , accepted for publication.
4433 4434 4435 4435	Englehart, P.J. and A.V. Douglas, 2001: The Role of Eastern North Pacific Tropical Storms in the Rainfall Climatology of Western Mexico. Int. J. Climatology, 21, 1357-1370.
4430 4437 4438 4439	Englehart , P.J., and A.V. Douglas, 2002: Mexico's summer rainfall patterns: an analysis of regional modes and changes in their teleconnectivity. <i>Atmósfera</i> , 15, pp. 147-164.
4440 4441 4442 4443	Englehart, P.J. and A.V. Douglas, 2003: Urbanization and seasonal temperature trends: observational evidence from a data sparse part of North America. <i>Int. J. Climatol</i> 23: 1253-1263.
4444 4445 4446 4447	Englehart P.J. and A.V. Douglas, 2005: Changing behavior in the diurnal range of surface air temperatures over Mexico. <i>Geophys. Res. Ltrs.</i> 32 No. 1: L01701 10.1029/2004GL021139.
4448 4449 4450 4451	Englehart , P.J. and A.V. Douglas, 2006: Defining intraseasonal variability within the North American monsoon. <i>J. Climate</i> , 19 , 4243-4253.

4452 4453	Englehart , P. J., M. D. Lewis, and A. V. Douglas, 2007: Defining the frequency of near shore tropical cyclone activity in the eastern North Pacific from historical surface
4454 4455	observations 1921-2005. Submitted to Geophys. Res. Lett
1455 AA56	Federal Emergency management Agency 1995: National mitigation strategy:
4457	Partnerships for building safer communities. Report, 40 pp, Washington, D. C.
4430	Formandag Portagog L and H. E. Diaz. 1006. Atlantic huminones in the second half of
4439	Fernandez-Partagas , J. and H. F. Diaz, 1990: Attantic numerates in the second nan of the nineteenth contumy. Bulletin of the American Meteorological Society 77
4460 4461	2899-2906.
4462	
4463 4464	Feuerstein , B., N. Dotzek and J. Grieser, 2005: Assessing a tornado climatology from global tornado intensity distributions, <i>Journal of Climate</i> , 18 , 585-596.
4465	
4466 4467	Folland, C.K., <i>et al.</i> , 1986: Sahel rainfall and worldwide sea temperatures, <i>Nature</i> , 320 , 686-688.
4468	
4469	Frappier, A., Sahagian, D., Carpeter, S.J., Gonzalez, L.A., Frappier, B., 2007: A
4470	stalagmite record of recent tropical cyclones. Geology, 7,, 111114; doi:
4471	10.1130/G23145A.
4472	
4473	Gandin L. S., and R. L. Kagan, 1976: Statistical Methods of Interpretation of
4474 4475	Meteorological Data. (in Russian). Gidrometeoizdat, 359 pp
4476	Garcia Herrera R. L. Gimeno, P. Ribera and F. Hernandez, 2005: New records of
4477 4478	Atlantic hurricanes from Spanish documentary sources, <i>Journal of Geophysical</i> <i>Research</i> 110 :D03100
4470	Research, 110 .D05107.
4477 1180	Carcia Harrara R. F. Rubio, D. Wheeler, F. Hernandez, M. R. Prieto and I. Gimero
4481	2004: The use of Spanish and British documentary sources in the investigation of Atlantic humisons incidence in historical times. In: Humisons and Turks and
4482	Auantic numeane incidence in instorical times. In: <i>Hurricanes and Typhoons:</i>
4485	Past, Present, and Future (eds. K.J. Murnane, K. J. and K-o. Liu), p. 149-176.
4484	Columbia University Press.
4485	Convict ED 1002. Starma of the Creat Lakes U.S. Department of Agriculture
4486 4487	Weather Bureau, <i>Bulletin K</i> , 486 pp.
4488	
4489	Geng, Q., and M. Sugi, 2001: Variability of the North Atlantic cyclone activity in winter
4490 4491	analyzed from NCEP–NCAR reanalysis data. J. Climate, 14, 3863–3873.
4492	Gershunov, A., and T.P. Barnett, 1998: Inter-decadal modulation of ENSO
4493	teleconnections. Bull. Amer. Meteor. Soc., 79, 2715–2725.
4494	
4495 4496	Gershunov, A. and D. R. Cayan, 2003: Heavy daily precipitation frequency over the contiguous United States: sources of climate variability and seasonal

4497	predictability. J. Climate, 16, 2752-2765.
4498	
4499 4500	Gershunov, A. and H. Douville, 2007: Extensive summer hot and cold extremes under current and possible future climatic conditions: Europe and North America. In
4501	Diaz, H.F. and Murnane, R.J. eds., Climate Extremes and Society, Cambridge:
4502	Cambridge University Press (in press).
4503	
4504	Goldenberg, S. B., C. W. Landsea, A.M. Mesta-Nuñez and W. M. Gray, 2001: The
4505	recent increase in Atlantic hurricane activity: Causes and implications. <i>Science</i> , 202 , 474, 470
4500	293, 474-479.
4507	
4508	Croham NE 1004: Decedel coole elimete verichility in the tranical and North Decific
4510	during the 1070s and 1080s; observations and model results. Climate Dynamics
4510	10 135 162
4512	10, 155-162.
4512	Graham N E and H E Diaz 2001: Evidence for intensification of North Pacific winter
4514	cyclones since 1948 <i>Bulletin of the American Meteorological Society</i> 82, 1869-
4515	1803
4516	1075.
4517	Grazulis T. P. 1993: Significant Tornadoes, 1680-1991, Environmental Films, St.
4518	Johnshury VT 1326 pp
4519	Johnsbury, V1, 1520 pp.
4520	Groisman, P.Ya., T.R. Karl, D.R. Easterling, R.W. Knight, P.B. Jamason, K.J.
4521	Hennessy, R. Suppiah, Ch.M. Page, J. Wibig, K. Fortuniak, V.N. Razuvaev, A.
4522	Douglas, E. Førland, and PM. Zhai, 1999: Changes in the probability of heavy
4523	precipitation: Important indicators of climatic change. <i>Climatic Change</i> , 42, 243-
4524	283.
4525	
4526	Groisman, P.Ya. R.W. Knight, and T.R. Karl, 2001: Heavy precipitation and high
4527	streamflow in the contiguous United States: Trends in the 20 th century. Bull.
4528	Amer. Meteorol. Soc., 82, 219-246.
4529	
4530	Groisman, P. Ya., R. W. Knight, and T. R. Karl, D. R. Easterling, B. Sun and J.
4531	H. Lawrimore, 2004: Contemporary changes of the hydrological cycle over the
4532	contiguous United States: Trends derived from in situ observations, Journal of
4533	Hydrometeorology, 5 , 64–85.
4534	
4535	Groisman, P.Ya, R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl and V.
4536	N. Razuvaev, 2005: Trends in intense precipitation in the climate record. Journal
4537	of Climate, 18 , 1326–1350.
4538	
4539	Groisman, P.Ya. and R.W. Knight, 2007: Prolonged dry episodes over the conterminous
4540	United States: New tendencies emerged during the last 40 years. J. Climate,
4541	submitted.
4542	

4543	Groisman, P.Ya., B.G. Sherstyukov, V.N. Razuvaev, R.W. Knight, J.G. Enloe, N.S.
4544	Stroumentova, P. H. Whitfield, E. Førland, I. Hannsen-Bauer, H. Tuomenvirta, H.
4545	Aleksandersson, A. V. Mescherskaya, and T.R. Karl, 2007a: Potential forest fire
4546	danger over Northern Eurasia: Changes during the 20 th century. Global and
4547	<i>Planetary Change</i> , 56 , issue 3-4, 371-386.
4548	
4549	Groisman, P. Ya., R. W. Knight, R. W. Reynolds, A. B. Smith, T.R. Karl, and O. N.
4550	Bulygina, 2007b: Tropical Cyclone Related Precipitation over the Southeastern
4551	United States. (to be submitted)
4552	
4553	Gulev S. K. and V. Grigorieva, 2004: Last century changes in ocean wind wave height
4554	from global visual wave data. Geophys. Res. Lett., 31, L24302,
4555	doi:10.1029/2004GL021040.
4556	
4557	Gumbel, E.J., 1958: Statistics of Extremes. Columbia University Press.
4558	
4559	Guttman, N.B., 1998: Comparing the Palmer Drought Index and the Standardized
4560	Precipitation Index. Journal of the American Water Resources Association 34.
4561	113–121, doi:10.1111/i.1752-1688.1998.tb05964.
4562	,
4563	Hallack-Alegria, M., and D. W. Watkins Jr., 2007: Annual and warm season drought
4564	intensity-duration-frequency analysis for Sonora, Mexico. Journal of Climate, 20,
4565	1897-1909.
4566	
4567	Harman, J.R., R. Rosen, and W. Corcoran, 1980: Winter cyclones and circulation
4568	patterns on the western Great Lakes. <i>Phys. Geogr.</i> , 1, 28–41.
4569	
4570	Harnik N. and E.K.M. Chang, 2003: Storm track variations as seen in radiosonde
4571	observations and reanalysis data. Journal of Climate, 16, 480-495.
4572	
4573	Harper B. A. and J. Callaghan, 2006: On the importance of reviewing historical tropical
4574	cyclone intensities. American Meteorological Society, 27th Conference on
4575	Hurricanes and Tropical Meteorology, 2C.1, Monterey, Apr.
4576	
4577	Hartmann, D.L. and E.D. Maloney, 2001: The Madden-Julian Oscillation, barotropic
4578	dynamics, and North Pacific tropical cyclone formation. Part II: Stochastic
4579	barotropic modeling, Journal of Atmospheric Sciences, 58, 2559-2570.
4580	
4581	Heim Jr., R.R., 2002: A review of Twentieth-Century drought indices used in the United
4582	States. Bulletin of the American Meteorological Society, 83, 1149–1165.
4583	
4584	Herweijer, C., R. Seager and E.R. Cook, 2006: North American droughts of the mid-to-
4585	late nineteenth century: a history, simulation and implication for mediaeval
4586	drought. The Holocene, 16, 159-171.
4587	·····

4588 4580	Herweijer, C., R. Seager, E.R. Cook and J. Emile-Geay, 2007: North American droughts
4309	Climate in press
4501	Cumate, in press.
4502	Higgins P.W. V. Chen and A.V. Douglas, 1000: Interannual Variability of the North
4593	American Warm Season Precipitation Regime. J. Climate, 12 , 653-680.
4594	
4595	
4596 4597	Hirsch, M. E., A. T. DeGaetano and S. J. Colucci, 2001: An East Coast winter storm climatology. <i>Journal of Climate</i> , 14 (5), 882-899.
4598	
4599	Hobbins, M.T., A. Dai, M. L. Roderick, and G. D. Farquhar, 2007: Back to basics:
4600 4601	Revisiting potential evapotranspiration as a driver of water balance trends. Geophysical Research Letters, submitted.
4602	Cooping stear research Letters, submitted.
4603	Hoegh-Guldberg O. 2005: Low coral cover in a high-CO ₂ world. Journal of
4604	Geophysical Research 110, C09S06, doi:10.1029/2004JC002528
4605	200 ph/ shear research, 110, 200 b00, aon 101029/200 h 20020201
4606	Holland , G.J., 2007: Misuse of landfall as a proxy for Atlantic tropical cyclone activity.
4607	EOS (in press).
4608	
4609	Holland, G. J., and P. J. Webster, 2007: Heightened tropical cyclone activity in the North
4610	Atlantic: natural variability or climate trend? <i>Phil. Trans. R. Soc. A</i> ,
4611	doi:10.1098/rsta.2007.2083.
4612	
4613	Hoyos, C. D., P. A. Agudelo, P. J. Webster and J. A. Curry, 2006: Deconvolution of the
4614	factors contributing to the increase in global hurricane intensity. Science, 312: 94-
4615	97.
4616	
4617	Hsu, S.A., Martin, M.F., and Blanchard, B.W., 2000: An evaluation of the USACE's
4618	deepwater wave prediction techniques under hurricane conditions during Georges in
4619	1998. Journal of Coastal Research, 16 , 823-829.
4620	
4621	Huschke, R. E. (editor) (1959) Glossary of Meteorology, American Meteorological Society,
4622	Boston, Massachusetts, USA, pgs. 106 and 419.
4623	
4624	IPCC , 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to
4625	the Third Assessment Report of the Intergovernmental Panel on Climate Change
4626	[Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K.
4627	Maskell, and C.A. Johnson (eds.)]. Cambridge University Press, Cambridge, United
4628	Kingdom and New York, NY, USA, 881pp.
4629	
4630	Jarvinen, B. R., C. J. Neumann and M. A. S. Davis, 1984: A tropical cyclone data tape
4631	for the North Atlantic Basin, 1886-1983. Contents, limitations and uses. Tech.
4632	Memo. NWS NHC-22, 21pp. NOAA, Washington DC.
4633	

4634	Jones, G.V., and R.E. Davis, 1995: Climatology of Nor'easters and the 30 kPa jet. J.
4635	<i>Coastal Res.</i> , 11 (3), 1210-1220.
4636	

- 4637 Jones P.D. and A. Moberg, 2003: Hemispheric and large-scale surface air temperature
 4638 variations: an extensive revision and an update to 2001. *J Climate* 16: 206-223.
 4639
- Jones, P.D., T.J. Osborn, and K.R. Briffa, 2003: Pressure-based measures of the North
 Atlantic Oscillation (NAO): A comparison and an assessment of changes in the
 strength of the NAO and in its influence on surface climate parameters. In: *The North Atlantic Oscillation: Climatic Significance and Environmental Impact*[Hurrell, J.W., et al. (eds.)].
- Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S.
 Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, B. Reynolds, M. Chelliah, W.
 Ebisuzaki, W. Higgins, J. Janowiak, K. Mo, C. Ropelewski, J. Wang, R. Jenne,
 and D. Joseph, 1996: The NCEP/NCAR 40-Year reanalysis project. *Bull. Amer. Meteor. Soc.*, 77, 437–471.
- 4652 Kamahori, H. N. Yamazaki, N. Mannoji, and K. Takahashi, 2006: Variability in intense
 4653 tropical cyclone days in the western North Pacific. SOLA, 2, 104-107,
 4654 doi:10.2151/sola.2006-027.
- 4656 Karl, T.R.; and R.W. Knight. 1985. Atlas of Monthly Palmer Hydrological Drought
 4657 Indices (1931–1983) for the Contiguous United States. Historical Climatology
 4658 Series 3–7, National Climatic Data Center, Asheville, North Carolina.
- 4660 Karl, T.R. and R. W. Knight, 1998: Secular Trends of Precipitation Amount, Frequency,
 4661 and Intensity in the United States. *Bulletin of the American Meteorological*4662 Society, 79, 231–241
- 4664 Keetch, J.J. and G.M. Byram, 1968: A drought index for forest fire control. U.S.D.A.
 4665 Forest Service Research Paper SE-38. 35 pp. [Available from: http://www.srs.fs.fed.us/pubs/]
- 4668 Key, J. R. and A. C. K. Chan, 1999: Multidecadal global and regional trends in 1000 mb
 4669 and 500 mb cyclone frequencies. *Geophysical Research Letters*, 26 2035-2056.
- 4671 Kharin, V.V., and F.W. Zwiers, 2000: Changes in the extremes in an ensemble of
 4672 transient climate simulation with a coupled atmosphere-ocean GCM. *Journal of*4673 *Climate*, 13, 3760-3788.
- 4675 Kharin, V. V., F. W. Zwiers, X. Zhang, and G. C. Hegerl, 2007: Changes in temperature
 4676 and precipitation extremes in the IPCC ensemble of global coupled model
 4677 simulations. *Journal of Climate, accepted*.

4645

4651

4655

4659

4663

4667

4670

4674

4679 4680	Kim , T-W., J. B. Valdes, and J. Aparicio, 2002: Frequency and spatial characteristics of droughts in the Conchos river basin Mexico. International Water Resources
4681	27(3), 420-430.
4682 4683 4684	Klotzbach, P. J., 2006: Trends in global tropical cyclone activity over the past twenty years (1986-2005). <i>Geophysical Research Letters</i> , 33 , L10805,
4685 4686	doi:10.1029/2006GL025881.
4687	Knaff, J. A and C. R. Sampson, 2006: Reanalysis of West Pacific tropical cyclone
4688 4689 4690	intensity 1966-1987. Proceedings of 27 AMS Conference on Hurricanes and Tropical Meteorology, #5B.5. Available online at: http://ams.confex.com/ams/pdfpapers/108298.pdf
4691	
4692 4693 4694	Kocin, P. J., P. N. Schnumacher, R. F. Morales Jr. and L.W.Uccellini, 1995: Overview of the 12-14 March 1993 Superstorm. <i>Bulletin of the American Meteorological</i> Society 76 (2), 165-182
4695	<i>Society,</i> 70 (2), 105 102.
4696 4697	Komar, P.D. and J.C. Allan, 2007a: Higher waves along U.S. East Coast linked to hurricanes. <i>EOS, Transactions, American Geophysical Union</i> , 88, 301.
4698 4699 4700	Komar , P.D., and J.C. Allan, 2007b: Increasing wave heights along the U.S. Atlantic coast due to the intensification of hurricanes. <i>Journal of Coastal Research</i> in
4701 4702	press.
4703 4704 4705	Kossin, J. P., K. R. Knapp, D. J. Vimont, R. J. Murnane, and B. A. Harper, 2007a: A globally consistent reanalysis of hurricane variability and trends. Geophys. Res. Lett. 34, L04815, doi:10.1029/2006GL028836
4706	Lea., 54, Lo4015, doi:10.1027/20000L020050.
4707 4708	Kossin, J. P., J. A. Knaff, H. I. Berger, D. C. Herndon, T. A. Cram, C. S. Velden, R. J. Murnane, and J. D. Hawkins, 2007b: Estimating hurricane wind structure in the
4709 4710	absence of aircraft reconnaissance. Wea. Forecasting, 22, 89-101
4711 4712	Kossin , J. P., and D. J. Vimont, 2007: A more general framework for understanding Atlantic hurricane variability and trends. Bull. Amer. Meteor. Soc. in press.
4713	Attainte numerale variability and tiends. Buil. Amer. Metcor. 50c., in press.
4714 4715	Kunkel, K.E., 2003: North American trends in extreme precipitation. <i>Natural Hazards</i>, 29, 291-305.
4716	Kunkal K.E. S.A. Changnon and I.P. Angol 1004: Climatic aspects of the 1003 Upper
4717 4718	Mississippi River basin flood. <i>Bull. Amer. Meteor. Soc.</i> , 75 , 811-822.
4720	Kunkel K E K Andsager and D R Easterling 1999. Long-term trends in extreme
4721	precipitation events over the conterminous United States and Canada. <i>Journal of</i>
4722 4723	<i>Climate</i> , 12 , 2515-2527.
., 25	

4724 4725	Kunkel , K.E., N.E. Westcott, and D.A.R. Kristovich, 2002: Assessment of potential effects of climate change on heavy lake-effect spowstorms near Lake Frie. <i>I</i>
4726	Great Lakes Res., 28, 521-536.
4727	
4728 4729	Kunkel , K. E., D. R. Easterling, K. Redmond and K. Hubbard, 2003: Temporal variations of extreme precipitation events in the United States: 1895-2000.
4730 4731	Geophysical Research Letters, 30 , 1900, 10.1029/2003GL018052.
4732 4733 4734 4735	Kunkel, K.E., D.R. Easterling, K. Redmond, and K. Hubbard, 2004: Temporal variations in frost-free season in the United States: 1895–2000, <i>Geophys. Res. Lett.</i> , 31, L03201, doi:10.1029/2003GL018624.
4736 4737 4738 4739	Kunkel , K.E., T.R. Karl, and D.R. Easterling, 2007a: A Monte Carlo assessment of uncertainties in heavy precipitation frequency variations. <i>J. Hydrometeor.</i> , in press.
4740 4741 4742 4743	Kunkel , K. E., R. A. Pielke, Jr. and S. A. Changnon, 1999: Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: A review. <i>Bulletin of the American Meteorological Society</i> , 80 , 1077-1098.
4743 4744 4745	Kunkel , K.E., K.E., M. Palecki, L. Ensor, D. Robinson, K.Hubbard, D. Easterling, and K. Redmond. 2007b: Trends in 20 th Century U.S. snowfall using a quality-
4746 4747 4748	controlled data set. Proceedings, 75 th Annual Meeting, Western Snow Conference, in press.
4749 4750 4751 4752	Landsea, C. W., et al, 2004: The Atlantic hurricane database re-analysis project: Documentation for the 1851-1910 alterations and additions to the HURDAT database. In Hurricanes and Typhoons: Past, Present and Future, R. J. Murnane and KB. Liu, Eds., Columbia University Press.
4753 4754 4755 4756	Landsea, C. W., 2005: Hurricanes and global warming. <i>Nature</i> , 438 , doi:10.1038/nature04477.
4750 4757 4758 4759	Landsea, C. (2007), Counting Atlantic tropical cylones back in time. EOS, 88(18), 197-203.
4760 4761 4762	Landsea, C.W., B.A. Harper, K. Hoarau and J.A. Knaff, 2006: Can we detect trends in extreme tropical cyclones? <i>Science</i> . 313 , 452-454.
4762 4763 4764 4765	Lemke, P., et al. 2007: Observations: Changes in Snow, Ice and Frozen Ground., Chapter 4, Report of Working Group I, Intergovernmental Panel on Climate Change, Fourth Assessment Report, in press.
4767 4768 4769	Lewis , P.J., 1987: Severe storms over the Great Lakes: a catalogue summary for the period 1957–1985. Canadian Climate Center Report No. 87–13, Atmospheric Environment Service, Downsview, ON, Canada, 342 pp.

4770	
4771	Liu, K-b., 2004: Paleotempestology: Principles, methods, and examples from Gulf Coast
4772	lake sediments. In: Hurricanes and Typhoons: Past, Present, and Future, R.J.
4773	Murnane, R. J. and K-b. Liu, Eds., Columbia University Press, pp. 13-57.
4774	
4775	Liu, K-b. and M. L. Fearn, 1993: Lake-sediment record of late holocene hurricane
4776	activities from coastal Alabama. Geology, 21, 793-796.
4777	
4778	Liu, K-b. and M. L. Fearn, 2000: Reconstruction of prehistoric landfall frequencies of
4779	catastrophic hurricanes in northwestern Florida from lake sediment records.
4780	Quaternary Research, 54, 238-245.
4781	
4782	Liu, K-b., C. Shen, C. and K. S. Louie, 2001: A 1,000-year history of typhoon landfalls
4783	in Guangdong, southern China, reconstructed from Chinese historical
4784	documentary records. Annals of the Association of American Geographers, 91,
4785	453-464.
4786	
4787	Louie, K.S. and Kb. Liu, 2003: Earliest historical records of typhoons in China. <i>Journal</i>
4788	of Historical Geography, 29 , 299-316.
4789	
4790	Louie, K.S. and Kb. Liu, 2004: Ancient records of typhoons in Chinese historical
4791	documents. In: Hurricanes and Typhoons: Past, Present, and Future, R.J.
4792	Murnane, R. J. and K-b. Liu, Eds., Columbia University Press, pp. 222-248.
4793	
4794	Ludlam, D.M., 1963: Early American hurricanes, 1492-1870. American Meteorological
4795	Society.
4796	
4797	Madden, R. and P. Julian, 1971: Detection of a 40-50 day oscillation in the zonal wind in
4798	the tropical Pacific, <i>Journal of the Atmospheric Sciences</i> , 28 , 702-708.
4799	
4800	Madden, R. and P. Julian, 1972: Description of global-scale circulation cells in the
4801	tropics with a 40-50 day period, <i>Journal of the Atmospheric Sciences</i> , 29 , 1109-
4802	1123.
4803	
4804	Magnuson, J. J., D.M. Robertson, B. J. Benson, R. H. Wynne, D.M. Livingston, T. Arai,
4805	R. A. Assel, R. G. Barry, V. Card, E. Kuusisto, N.G. Granin, T. D. Prowse, K. M.
4806	Stewart, and V. S. Vuglinski, 2000: Historical trends in lake and river ice cover in
4807	the Northern Hemisphere. Science, 289 , 1743–1746.
4808	
4809	Maloney, E. D. and D.L. Hartmann, 2000a: Modulation of eastern North Pacific
4810	nurricanes by the Madden-Julian Oscillation, <i>Journal of Climate</i> , 13 , 1451-1460.
4811	
4812	Maloney, E. D. and D.L. Hartmann, 2000b: Modulation of hurricane activity in the Gulf
4813	of Mexico by the Madden-Julian Oscillation, Science, 287, 2002-2004.
4814	

4815	Maloney, E. D. and D.L. Hartmann, 2001: The Madden-Julian Oscillation, barotropic
4816	dynamics, and North Pacific tropical cyclone formation. Part I: Observations,
4817	Journal of the Atmospheric Sciences, 58, 2545-2558.
4818	
4819	Mann, M. E. and K. Emanuel, 2006: Atlantic hurricane trends linked to climate change.
4820	EOS, 87 , 233-241.
4821	
4822	Mann, M.E. and J. Park, 1994: Global-scale modes of surface temperature variability on
4823	interannual to century timescales, Journal of Geophysical Research, 99, 25819-
4824	25833.
4825	
4826	Mann M.E., K.A. Emanuel, G.J. Holland and P.J. Webster. 2007: Atlantic tropical
4827	cyclones revisited <i>EOS</i> (in press)
4828	cyclones revisited. Los (in press).
4829	Mann M.F. T.A. Sabbatelli and U. Neu 2007: Evidence for a modest undercount bias
4830	in early historical Atlantic tropical cyclone counts. <i>Nature</i> (submitted)
4831	in early instonear relative repretere events. <i>Trature</i> (sublinited).
4832	Manning D M and R E Hart 2007. Evolution of North Atlantic ERA40 tropical
4833	cyclone representation Geophys Res Lett 34 105705
4834	doi:10.1029/2006GL 028266
4835	doi.10.1029/2000GL020200.
4836	Mather I.R. R.T. Field and G.A. Yoskioka (1967) Storm bazard damage along the
4837	East Coast of the U.S. I Appl Meteor 6 20-30
4838	Last Coast of the O.S., <i>J. Appl. Meteor.</i> , 0 , 20-30.
4030	Mana P. N. and P. F. Hart. 2007: Comment on "Low frequency variability in globally
4840	integrated tropical cyclope power dissipation" by Ryan Sriver and Matthew
4040	Huber Coophys Pag Latt 34 I 05705 doi:10.1020/2006GI 028266
4041	1100cl. <i>Geophys. Res. Lett.</i> , 34 , L03705. doi:10.1029/20000L028200.
4042	McCabe G. J. M. P. Clark and M. C. Serreze, 2001: Trends in Northern Hemisphere
4043	surface cyclone frequency and intensity. <i>Journal of Climate</i> 14, 2763-2768
4044	surface cyclone frequency and mensity. <i>Journal of Climate</i> , 14 , 2705-2708.
4045	McCarthy D W I T Schaefer and R Edwards 2006: What are we doing with (or to)
4847	the E-ycale? Prenrints 23rd Conference on Severe Local Storms St. Louis
1818	Missouri American Meteorological Society Conference CD (Available online at
4040	http://ams.confey.com/ams/ndfnaners/115260.ndf)
4049	http://ams.comex.com/ams/purpapers/115200.pdf.)
4050	Makes T. D. N. I. Dessken and I. Klaist 1002; Drought monitoring with multiple
4051	timescales. Departments of the Eight Conference on Applied Climateleasy. Applein
4052	California
4833 1051	Camornia.
4854 1955	Michaela D.L. D.C. Knonnenhengen O.W. Ensurenfeld and D.E. Davis 2004. Then do in
4833	ivincinaeis, P.J., P.C. Knappenberger, O. w. Frauenfeid, and K.E. Davis, 2004: Irends in
4850	precipitation on the wettest days of the year across the contiguous USA. Int. J.
4857	Cumatol. 24: 18/3–1882.
4858	
4859	
4860	

4861	Millas, J.C., 1968: Hurricanes of the Caribbean and adjacent regions, 1492-1800.
4862	Academy of the Arts and Sciences of the Americas.
4863	
4864	Miller, A.J., Cayan, D., T. Barnett, N. Graham, and J. Oberhuber, 1994: The 1976-77
4865	climate shift of the Pacific Ocean, OCEANOGRAPHY, 1, 21-26.
4866	
4867	Miller, D. L., Mora, C. I., Grissino-Mayer, H. D., Uhle, M. E. and Sharp, Z., 2006: Tree-
4868	ring isotope records of tropical cyclone activity. Proc. Nat. Acad. Sci., 103,
4869	14294-14297.
4870	
4871	Mo, K.C. and R.E. Livezey, 1986: Tropical-extratropical geopotential height
4872	teleconnections during the northern hemisphere winter, Mon. Wea. Rev., 114,
4873	2488-2515, 1986.
4874	
4875	Mock, C.J., 2004: Tropical cyclone reconstructions from documentary records: examples
4876	for South Carolina, United States. In: Hurricanes and Typhoons: Past, Present,
4877	and Future, R.J. Murnane, R. J. and K-b. Liu, Eds., Columbia University Press, p.
4878	121-148.
4879	
4880	Moon, I.J., I. Ginis, T. Hara, H.L. Tolman, C.W. Wright, and E.J. Walsh (2003),
4881	Numerical simulation of sea surface directional wave spectra under hurricane
4882	wind forcing, J. Phys. Ocean., 33, 1680-1706.
4883	
4884	Mueller K.J., M. DeMaria, J. Knaff, et al., 2006: <u>Objective estimation of tropical cyclone</u>
4885	Wind structure from infrared satellite data. Weather and Forecasting, 21, 990-
4880	1005.
4007	Netromune H 1002: Midmintor suppression of herealinia wave activity in the Desifie L
4000 1880	Atmos Sci 10 1620 1642
4889	Almos. Sci., 47 , 1027–1042.
4891	Neelin I.D. M. Munnich, H. Su, et al. 2006: Tropical drying trends in global warming
4892	models and observations. Proceedings of the National Academy of Sciences of the
4893	United States of America, 103, 6110-6115
4894	
4895	Nicholas, R. and D. S. Battisti, 2006. Drought recurrence and seasonal rainfall prediction
4896	in the Vacui basin Mexico, <i>Journal Applied Meteorology and</i>
4897	
TU2/	<i>Climatology</i> .accepted.
4898	Climatology, accepted.
4898 4899	<i>Climatology</i> , accepted. Noel , J., and D. Changnon, 1998: A Pilot Study Examining U.S. Winter Cyclone
4898 4899 4900	 Noel, J., and D. Changnon, 1998: A Pilot Study Examining U.S. Winter Cyclone Frequency Patterns Associated with Three ENSO Parameters. J. Climate, 11,
4898 4899 4900 4901	 Noel, J., and D. Changnon, 1998: A Pilot Study Examining U.S. Winter Cyclone Frequency Patterns Associated with Three ENSO Parameters. J. Climate, 11, 2152–2159.
4898 4899 4900 4901 4902	 Noel, J., and D. Changnon, 1998: A Pilot Study Examining U.S. Winter Cyclone Frequency Patterns Associated with Three ENSO Parameters. J. Climate, 11, 2152–2159.
4898 4899 4900 4901 4902 4903	 Noel, J., and D. Changnon, 1998: A Pilot Study Examining U.S. Winter Cyclone Frequency Patterns Associated with Three ENSO Parameters. <i>J. Climate</i>, 11, 2152–2159. Nyberg, J., B. A. Malmgren, A. Winter, M. R. Jury, K. Halimeda Kilbourne, and T. M.
4898 4899 4900 4901 4902 4903 4904	 Noel, J., and D. Changnon, 1998: A Pilot Study Examining U.S. Winter Cyclone Frequency Patterns Associated with Three ENSO Parameters. <i>J. Climate</i>, 11, 2152–2159. Nyberg, J., B. A. Malmgren, A. Winter, M. R. Jury, K. Halimeda Kilbourne, and T. M. Quinn, 2007: Low Atlantic hurricane activity in the 1970s and 1980s compared to
4898 4899 4900 4901 4902 4903 4904 4905	 Noel, J., and D. Changnon, 1998: A Pilot Study Examining U.S. Winter Cyclone Frequency Patterns Associated with Three ENSO Parameters. <i>J. Climate</i>, 11, 2152–2159. Nyberg, J., B. A. Malmgren, A. Winter, M. R. Jury, K. Halimeda Kilbourne, and T. M. Quinn, 2007: Low Atlantic hurricane activity in the 1970s and 1980s compared to the past 270 years. <i>Nature</i>, 447, 698-702.

4907 4908 4909	Paciorek, C.J., J.S. Risbey, V. Ventura, and R.D. Rosen, 2002: Multiple indices of Northern Hemisphere cyclone activity, Winters 1949–99. J. Climate, 15, 1573– 1590.
4910 4911 4912	Palmer , W. C. 1965. Meteorological drought. Research Paper No. 45, U.S. Department of Commerce Weather Bureau, Washington, D.C
4913 4914 4915 4016	Palmer , W.C. 1968. Keeping track of crop moisture conditions, nationwide: The new Crop Moisture Index. <i>Weatherwise</i> 21:156–161.
4916 4917 4918	Pavia E.G. and A. Badan, 1998: <u>ENSO modulates rainfall in the Mediterranean</u> <u>Californias</u> . <i>GEOPHYSICAL RESEARCH LETTERS</i> , 25, 3855-3858
4919 4920 4921 4922	Peterson, T. C. et al. 2002: Recent changes in the climate extemes in the Caribbean region. <i>Journal of Geophysical Research</i> , 107 , NO.D21, 4601, doi:10.1029/2002JD002251,2002.
4923 4924 4925 4926	Peterson , T. C., X. Zhang, M. Brunet India, J. L. Vázquez Aguirre, 2007: Changes in North American extremes derived from daily weather data. <i>Proceedings of the</i> <i>National Academy of Science</i> , submitted.
4927 4928 4929 4920	Pickands , J. (1975), Statistical inference using extreme order statistics. <i>Annals of Statistics</i> 3 , 119-131.
4930 4931 4932	Pielke, R. A., Jr., 2005: Are there trends in hurricane destruction? <i>Nature</i> , 438, E11.
4933 4934 4935 4935	Robeson , S. M., 2004: Trends in time-varying percentiles of daily minimum and maximum temperature over North America," <i>Geophysical Research Letters</i> , 31, L04203, doi:10.1029/2003GL019019.
4930 4937 4938	Ropelewski, C., 1999: The great El Niño of 1997-1998: Impacts on precipitation and temperature. <i>Consequences</i> , 5 (2).
4939 4940 4941 4042	Robinson, D.A., K.F. Dewey, and R.R. Heim Jr., 1993: Global snow cover monitoring: an update. <i>Bull. Am. Meteorol. Soc.</i> , 74 , 1689–1696.
4942 4943 4944	Sanders, F., and J.R. Gyakum, 1980: Synoptic-dynamic climatology of the "bomb". <i>Mon. Wea. Rev.</i> , 108 , 1589–1606.
4945 4946 4947	Schlesinger, M.E. and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. <i>Nature</i> , 367, 723–726.
4948 4949 4950 4951	SEMARNAP , 2000: Programa nacional contra incendios forestales. Resultados 1995-2000. Mexico, 263 pp.

4952	Semenov VA, Bengtsson L, 2002: Secular trends in daily precipitation characteristics:
4953	greenhouse gas simulation with a coupled AOGCM. CLIMATE DYNAMICS, 19,
4954	123-140
4955	
4956	Serreze, M. C., F. Arse, R. G. Barry and J. C. Rogers, 1997: Iclandic low cyclone
4957	activity. Climatological features, linkages with the NAO, and relationships with
4958	recent changes in the Northern Hemisphere circulation. Journal of Climate, 10
4959	(3), 453-464.
4960	
4961	Sevmour, R. J., R. R. Strange, D. R. Cavan and R. A. Nathan, 1984: Influence of El
4962	Niños on California's wave climate. <i>Proceedings</i> 19 th International Conference
4963	on Coastal Engineering, Amer. Soc. Civil Engrs., 577-592.
4964	
4965	Shabbar, A. and W. Skinner, 2004; Summer drought patterns in Canada and the
4966	relationship to global sea surface temperatures <i>L Climate</i> 17 2866–2880
4967	
4968	Shein K A ed 2006: State of the climate in 2005 <i>Bulletin of the American</i>
4969	Meteorological Society 87 1-S102
4970	meleororogical society, or, 1 5102.
4971	Simmonds I and K Keav 2000: Variability of Southern Hemisphere extra-tropical
4972	cyclone behavior 1958–97 <i>I Climate</i> 13 550–561
4073	cyclone benavior, 1996–97. 9. Cumule, 19 , 990–901.
4973	Simmonds I and K Keav 2002: Surface fluxes of momentum and mechanical energy
4974	Similarity, 1. and K. Keay, 2002. Surface fluxes of momentum and mechanical energy
4975	Division 90 , 1, 19
4970	T hysics, 80 , 1-18.
4977	Sime A. P. D. D. S. Nivogi and S. Paman 2002: Adopting drought indices for
4970	sins, A. F., D. D. S. Nyogi and S. Kallan, 2002. Adopting drought indices for
4979	Lattere 20, 1182
4980	Letters, 29, 1185.
4981	Smith D. I. 2002. Statistics of autromas with applications in anyironment insurance
4962	Sintu, K.L., 2005. Statistics of extremes, with applications in environment, insurance
4985	and finance. Chapter 1 of <i>Extreme values in Finance, Telecommunications and</i>
4984	the Environment, earlied by B. Finkenstaat and H. Rootzen, Chapman and
4985	Hall/CRC Press, London, pp. 1-78.
4980	
4987	Smith, R.L., C. Tebaldi, D. Nychka and L.O. Mearns, 2007: Bayesian modeling of
4988	uncertainty in ensembles of climate models. Journal of the American Statistical
4989	Association, under revision.
4990	
4991	Soja, A.J., N. M. Ichebakova, N. H.F. French, M. D. Flannigan, H. H. Shugart, B. J.
4992	Stocks, A. I. Sukhinin, E.I. Parfenova, F. S. Chapin III and Jr., and P. W.
4993	Stackhouse, 2007: Climate-induced boreal forest change: Predictions versus
4994	current observations. Global and Planetary Change, in press.
4995	
4996	
4997	

4998 4999	Sriver, R. and M. Huber, 2006: Low frequency variability in globally integrated tropical evolution power dissipation. <i>Geophysical Research Letters</i> 33 , L 11705
4999 5000	doi:10.1020/2006GL 026167
5000	doi.10.102)/20000E02010/.
5001	Stabl K R D Moore I.G. McKendry 2006: Climatology of winter cold spells in
5002	relation to mountain nine beetle mortality in British Columbia Canada <i>Climate</i>
5003	Research 32, 13-23
5005	Research, 52 , 15-25.
5005	Stable D W E R Cook M K Cleaveland M D Therrell D M Meko H D
5007	Grissino-Mayer, E. Watson, and B. H. Luckman, 2000: Tree-ring data document
5008	16th century megadrought over North America. <i>Eos Trans. AGU</i> , 81, 121.
5009	Tour contary mogaarought over roral rineriea, 205 rouns, rie e, er, 121.
5010	Stone, D.A., A.J. Weaver and F.W. Zwiers, 2000: Trends in Canadian precipitation
5011	intensity. Atmosphere-Ocean. 38, 321-347
5012	
5013	Sun B.M. and P.Y. Groisman, 2004: Variations in low cloud cover over the United States
5014	during the second half of the twentieth century. JOURNAL OF CLIMATE, 17.
5015	1883-1888.
5016	
5017	Therrell, M. D., D. W. Stahle, M. K. Cleaveland, and J. Villanueva-Diaz, 2002; Warm
5018	season tree growth and precipitation in Mexico. <i>Journal of Geophysical Research</i> .
5019	107 (D14). 4205.
5020	
5021	Tolman, H.L., B. Balasubramaniyan, L.D. Burroughs, D. Chalikov, Y.Y. Chao, H.S.
5022	Chen, and V.M. Gerald (2002), Development and implementation of wind-
5023	generated ocean surface wave models at NCEP, Wea. Forecasting, 17, 311-333.
5024	
5025	Trenberth, K.E., 1990: Recent observed interdecadal climate changes in the Northern
5026	Hemisphere. Bull. Amer. Meteor. Soc., 71, 988–993.
5027	
5028	Trenberth, K.E. and J.W. Hurrell, 1994: Decadal atmospheric-ocean variations in the
5029	Pacific. Climate Dynamics, 9, 303-319
5030	
5031	Trenberth, K.E. and D.J. Shea, 2006: Atlantic hurricanes and natural variability in 2005.
5032	Geophysical Research Letters, 33, doi:10.1029/2006GL026894.
5033	
5034	Trenberth, K.E., et al., 2002: The evolution of ENSO and global atmospheric
5035	temperatures. J. Geophys. Res., 107, 4065, doi:10.1029/2000JD000298.
5036	
5037	Uppala, S.M., Kållberg, P.W., Simmons, A.J., Andrae, U., da Costa Bechtold, V.,
5038	Fiorino, M., Gibson, J.K., Haseler, J., Hernandez, A., Kelly, G.A., Li, X., Onogi,
5039	K., Saarinen, S., Sokka, N., Allan, R.P., Andersson, E., Arpe, K., Balmaseda,
5040	M.A., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Caires, S.,
5041	Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann,
5042	S., Hólm, E., Hoskins, B.J., Isaksen, L., Janssen, P.A.E.M., Jenne, R., McNally,
5043	A.P., Mahfouf, JF., Morcrette, JJ., Rayner, N.A., Saunders, R.W., Simon, P.,

5044 5045 5046	Sterl, A., Trenberth, K.E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J. 2005: The ERA-40 re-analysis. <i>Quart. J. R. Meteorol. Soc.</i> , 131 , 2961-3012 (doi:10.1256/qj.04.176).
5047 5048 5049 5050	Vecchi, G. A., and T. R. Knutson, 2007: On estimates of historical North Atlantic tropical cyclone activity. <i>J. Climate</i> , submitted.
5050 5051 5052 5053	Verbout, S. M., H.E. Brooks, L. M. Leslie, and D. M. Schultz, 2006: Evolution of the US tornado database: 1954-2003. Weather and Forecasting, 21, 86-93.
5055 5054 5055 5056	Vimont, D. J., and J. P. Kossin, 2007: The Atlantic meridional mode and hurricane activity. <i>Geophysical Research Letters</i> , in press.
5050 5057 5058 5059	Vincent, L. A. and E. Mekis, 2006: Changes in daily and extreme temperature and precipitation indices for Canada over the 20 th century. <i>Atmoshere-Ocean</i> , 44 , 177-193.
5060 5061 5062 5063	Wang, D. W., D. A. Mitchell, W. J. Teague, E. Jarosz and M.S. Hulbet, 2005: Extreme waves under Hurricane Ivan. <i>Science</i> , 309, 896.
5065 5064 5065 5066	Wang, W. L. and V. R. Swail, 2001: Changes of extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes. <i>Journal of Climate</i> , 14, 2201-2204.
5067 5068 5069 5070	Wang, X. L., V. R. Swail and F. W. Zwiers, 2006a: Climatology and changes of extratropical storm tracks and cyclone activity. Comparison of ERA-40 with NCEP/NCAR reanalysis for 1958-2001. <i>Journal of Climate</i> , 19 , 3145-3166.
5071 5072 5073 5074	Wang, X. L., H. Wan and V. R. Swail, 2006b: Observed changes in cyclone activity in Canada and their relationships to major circulation regimes. <i>Journal of Climate</i>, 19, 895-916.
5075 5076 5077 5078	Webster, P. J., G. J. Holland, J. A. Curry and HR. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. <i>Science</i> , 309 , 1844-1846.
5079 5080 5081 5082	Wehner, M.F., Predicted 21 st century changes in seasonal extreme precipitation events in the Parallel Climate Model, <i>J. Climate</i> 17 (2004) 4281-4290
5082 5083 5084 5085	Wehner, M., Changes in daily precipitation and surface air temperature extremes in the IPCC AR4 models. <i>US CLIVAR Variations</i> , 3 , (2005) pp 5-9. LBNL-61594
5086 5087 5088	Westerling, A.L., H.G. Hidalgo, and D.R. Cayan, 2006. Warming and earlier spring increases in western U.S. forest wildfire activity. <i>Science</i> 313:940-943.

5089	Woodhouse, C.A. and J. T. Overpeck, 1998: 2000 Years of Drought Variability in the
5090	Central United States. Bulletin of the American Meteorological Society, 79, 2693-
5091	2714.
5092	
5093	Wu, L., B. Wang, and S. Geng, 2005: Growing typhoon influence on east Asia,
5094	Geophysical Research Letters, 32, L18703, doi:10.1029/2005GL022937.
5095	
5096	Wu, C.C., K.H. Chou, Y.Q. Wang, et al., 2006: <u>Tropical cyclone initialization and</u>
5097	prediction based on four-dimensional variational data assimilation. JOURNAL OF
5098	THE ATMOSPHERIC SCIENCES, 63, 2383-2395.
5099	
5100	Xie, L., L. J. Pietrafesa, J. M. Morrison, and T. Karl, 2005: Climatological and
5101	interannual variability of North Atlantic hurricane tracks. Journal of Climate, 18,
5102	5370-5381.
5103	
5104	Zhang, R., T. L. Delworth, and I. M. Held, 2007: Can the Atlantic Ocean drive the
5105	observed multidecadal variability in Northern Hemisphere mean temperature?
5106	Geophysical Research Letters, 34, L02709, doi:10.1029/2006GL028683.
5107	
5108	Zhang, X., W. D. Hogg, and E. Mekis, 2001: Spatial and temporal characteristics of
5109	heavy precipitation events over Canada. Journal of Climate, 14, 19231936.
5110	
5111	Zhang, X., J. E. Walsh, J. Zhang, U. S. Bhatt and M. Ikeda, 2004: Climatology and inter-
5112	annual variability of Arctic cyclone activity. 1948-2002. Journal of Climate, 17,
5113	2300-2317.
5114	
5115	Zwiers, F. W., and V. V. Kharin, 1998: Changes in the extremes of the climate simulated
5116	by CCC GCM2 under CO ₂ doubling. Journal of Climate, 11 , 2200-2222

5117 Table 2.1 Regressions for the decadal trends of increasing wave heights measured off the

5118 Washington coast (NDBC buoy #46005). [after Allan and Komar (2006)]

5121 (m/yr) Annual Average 5122	Significance* SS SS
5122 5123 Annual Average 0.024 1.0 5124 Winter Average 0.032 1.3 5125 Five Largest 0.095 4.0 5126 Three Largest 0.103 4.3	SS SS
5123 Annual Average 0.024 1.0 5124 Winter Average 0.032 1.3 5125 Five Largest 0.095 4.0 5126 Three Largest 0.103 4.3	SS SS
5124 Winter Average 0.032 1.3 5125 Five Largest 0.095 4.0 5126 Three Largest 0.103 4.3	SS
5125 Five Largest 0.095 4.0 5126 Three Largest 0.103 4.3	
5126 Three Largest 0.103 4.3	SS
	NSS
5127 Maximum 0.108 4.5	NSS
5128 100-yr Projection ≈ 0.13 ≈ 5.5	estimate
5129	

SS = statistically significant at the 0.05 level; NSS = not statistically significant.

5134 Figure 2.1 Changes in the percent of days in a year above three thresholds for North5135 America for daily high temperature (top) and daily low temperature (bottom) from

5136 Peterson et al. (2007).

5137 Trends in Number of Days With Unusually Warm Daily Low 5138 Temperature

- 5139
- 5140

5141 **Figure 2.2** Trends in the number of days in a year when the daily low is unusually warm

- (ie. In the top 10% of warm nights for the 1950-2004 period). Grid boxes with green
- 5143 squares are statistically significant at the p=0.05 level, (from Peterson et al. 2007). A
- trend of 1.8 days/decade translates to a trend of 9.9 days over the entire 55-year (1950-
- 5145 2004) period, meaning that 10 days more a year will have unusually warm nights.

5148

Figure 2.3 Time series of (a) annual values of a U.S. national average "heat wave"
index. Heat waves are defined as warm spells of 4 days in duration with mean
temperature exceeding the threshold for a 1 in 10 year event. (updated from Kunkel et al.
1999); (b)Area of the U.S. (in percent) with much above normal daily high temperatures
in summer; (c) Area of the U.S. (in percent) with much above normal daily low
temperatures in summer. Blue vertical bars give values for individual seasons while red
lines are smoothed (9-yr running) averages.

5158 **Figure 2.4** Change in the length of the frost free season averaged over the U.S. (from

5159 Kunkel et al. 2003). The frost-free season is at least 10 days longer on average than the5160 long-term average.

temperature range reflects hotter daily summer highs. The time series represents theaverage DTR taken over the four temperature regions of Mexico as defined in Englehart

5191 and Douglas, 2004. Trend line (red) based on LOWESS smoothing (*n*=30).

US and North American Drought Comparison

5192 5193

5194 Figure 2.6 the area (in percent) of area in severe to extreme drought as measured by the

- 5195 Palmer Drought Severity Index for the U.S. (red) from 1900 to present and for North
- 5196 America (blue) from 1950 to present.

Regions of N. America where Heavy and Very Heavy Precipitation has Increased

5223 5224

5225 Figure 2.8 Regions where disproportionate increases in heavy and very heavy 5226 precipitation during the past decades were documented compared to the change in the 5227 annual and/or seasonal precipitation. Because these results come from different studies, 5228 the definitions of extreme precipitation vary. (a) annual anomalies (% departures) of 5229 heavy precipitation for northern Canada. (b) as (a), but for southeastern Canada. (c) the 5230 top 0.3% of daily rain events over the central United States and the trend (22%/113 yrs) 5231 (updated from Groisman et al. 2005). (d) as for (c), but for southern Mexico. (e) change 5232 of intensity of the upper 5% of daily rain events in the core monsoon region of Mexico, 5233 relative to the 1961-1990 base period. (Cavazos et al., 2007) (f) upper 5%, top points, and 5234 upper 0.3%, bottom points, of daily precipitation events and linear trends for British 5235 Columbia south of 55°N. (g) upper 5% of daily precipitation events and linear trend for 5236 Alaska south of 62°N.

Increase in the Occurence of Periods of Heavy Rainfall Lasting at Least 90 Days

5239 Figure 2.9 Frequency (expressed as a percentage anomaly from the period of record

5240 average) of excessive precipitation periods of 90 day duration exceeding a 1-in-20-year

5241 event threshold for the U.S. Annual values have been smoothed with a 9-yr running

5242 average filter. The black line shows the trend (a linear fit) for the annual values.

- 5246 Figure 2.10 Average (median) percentage of warm season rainfall (May-November)
- 5247 from Hurricanes and tropical storms affecting Mexico and the Gulf Coast of the United
- 5248 States. Figure updated from Englehart and Douglas 2001.

Changes in Monsoon Rainfall for Mexico

5249 5250

5251Figure 2.11Variations and linear trend in various characteristics of the summer5252monsoon in southern Sonora, Mexico, including (a) the mean start date June 1 = Day 15253on the graph; (b) the mean wet spell length defined as the mean number of consecutive5254days with mean regional precipitation ≥ 1 mm; and (c) the mean daily rainfall intensity for

5255 wet days defined as the regional average rainfall for all days with rainfall ≥ 1 mm.

Figure 2.12 Trends in hurricane/tropical storm rainfall statistics at Manzanillo, Mexico, including (a) the total warm season rainfall from hurricanes/tropical storms; (b) the ratio of hurricane/tropical storm rainfall to total summer rainfall; and (c) the number of days each summer with a hurricane or tropical storm within 550km of the stations

Relationship Between Sea Surface Temperatures and Hurricane Power in the North Atlantic Ocean

5262 5263

Figure 2.13 Sea surface temperatures (blue) correlated with the Power Dissipation Index
for North Atlantic hurricanes (Emanuel, 2007). Sea Surface Temperature is from the
Hadley Centre dataset and is for the Main Development Region for tropical cyclones in
the Atlantic, defined as 6-18°N, 20-60°W. The time series have been smoothed using a 13-4-3-1 filter to reduce the effect of interannual variability and highlight fluctuations on
time scales of 3 years and longer.

5270 5271

5272 Figure 2.14 Century changes in the intensity of North Atlantic tropical cyclones,

- 5273 hurricanes and major hurricanes. Also shown are all individual tropical cyclone
- 5274 intensities. (From Holland and Webster 2007).

Figure 2.15 Combined annual numbers of hurricanes and tropical storms for the North
Atlantic (black dots), together with a 9-year running mean filter (black line) and the 9year smoothed sea surface temperature in the eastern North Atlantic (red line). Adapted
from Holland and Webster (2007).

Atlantic Hurricanes/Tropical Storms (Adjusted for Estimated Missing Storms)

5283 Figure 2.16 Atlantic hurricanes and tropical storms for 1878-2006, using the adjustment 5284 method A for missing storms described in the text. Black curve is the adjusted annual 5285 storm count, red is the 5-yr running mean, and solid blue curve is a normalized (same 5286 mean and variance) 5-yr running mean sea surface temperature index for the Main 5287 Development Region of the tropical Atlantic (HadISST, 80-20W, 10-20N; Aug.-Oct.). 5288 Green curves show the adjustment that has been added for missing storms to obtain the 5289 black curve, assuming two simulated ship-storm "encounters" are required for a modern-5290 day storm to be "detected" by a historical ship traffic for a given year. Dashed green 5291 curve is an alternative adjustment sensitivity test requiring just one ship-storm simulated 5292 encounter for detection. Straight lines are least squares trend lines for the adjusted storm 5293 counts. (Adapted from Vecchi and Knutson, 2007).

5296	Figure 2.17 Counts of total North Atlantic basin hurricanes (black), major hurricanes
5297	(red) and U.S. landfalling hurricanes (blue) based on annual data from 1851 to 2006 and
5298	smoothed (using a 5-year running mean). Asterisks on the time series indicate years
5299	where trends beginning in that year and extending through 2005 are statistically
5300	significant (p=0.05) based on annual data; circles indicate non-significant trend results.

Changes in Frequency and Intensity of Winter Storms (Northern Hemisphere)

5301 5302

Figure 2.18 Changes from average (1959-1997) in the number of winter (Nov-Mar)
storms each year in the Northern Hemisphere for (a) high latitudes (60°-90°N), and (b)

- 5305 mid-latitudes (30° - 60° N), and the change from average of winter storm intensity in the
- 5306 Northern Hemisphere each year for (c) high latitudes (60°-90°N), and (d) mid-latitudes
- 5307 (30° - 60° N). [Adapted from McCabe et al. 2001].

Winter Storm Characteristics for the Pacific and Atlantic

Fig. 2.19 Extreme wind speed (meters per second), number of winter storms, and number of intense (\leq 980 hPa) winter storms for the Pacific region (20°-70°N, 130°E-112.5°W; panels a-b-c) and the Atlantic region (20°-70°N, 7.5°E-110°W; panels d-e-f):. The thick smooth lines are the trends determined using a Bayesian spline model, and the thin dashed lines denote the 95% confidence intervals. [Adapted from Paciorek et al. 2002].

Figure 2.20 Cumulative extreme Non-Tide Residuals (NTR) (water level) exceeding the
98th percentile level of hourly NTR levels at San Francisco, during winter months (DecMar), with the 5-yr running mean (red line). Least squares trend estimates for the entire
winter record (light dashed line) and since 1948 (bold dashed line), the period covered by
NCEP reanalysis and ERA-40 data used in most ETC studies. [Adapted from Bromirski
et al. 2003].

Figure 2.21 Seasonal totals (gray line) covering the period of 1951-1997 for (a) all East
Coast Winter Storms (ECWS; top curve) and strong ECWS (bottom curve), (b) northern
ECWS (>35°N), and (c) those ECWS tracking along the full coast. Data points along the
5-yr moving average (black) correspond to the middle year. [Adapted from Hirsch et al.
2001].

5332 Figure 2.22 Track of the October 1991 "Perfect Storm" (PS) center showing the east-to-5333 west retrograde propagation of a non-typical Nor'easter. The massive ETC was 5334 reenergized as it moved southward by absorbing northward propagating remnants of 5335 Hurricane Grace, becoming unnamed Hurricane #8 and giving rise to the name "Perfect 5336 Storm" for this composite storm. Storm center locations with date/hr time stamps at 6-hr 5337 intervals are indicated by stars. Also shown are locations of open ocean NOAA buoys 5338 that measured the extreme waves generated by these storms. [Adapted from Bromirski 5339 2001].

Increase in Hurricane Generated Wave Heights

Figure 2.23 Increases in the summer, hurricane-generated wave heights of 3 meters andhigher significant wave heights (from Komar and Allan 2007, and in review).

Figure 2.24 Number of significant wave heights measured by the Cape Hatteras buoyduring the July-September season, early in its record 1976-1991 and during the recent

decade,1996-2005 (from Komar and Allan 2007a,b).

Number of Significant Wave Events During the Atlantic Hurricane Season

5349

5350

5351 **Figure 2.25** (a) Location of the NOAA Atlantic and Gulf buoys discussed. Bathymetric

5352 contours identify the continental shelf boundary. (b) Total number of significant wave

5353 events per hurricane season. (c) Total number of wave events identified during each

5354 month of the June-November hurricane season for all buoy data available from NOAA's

5355 National Ocean Data Center (NODC) from 1978-2006. Panels (b) and (c) show the

- 5356 number of wave events associated with hurricanes/tropical storms with wave heights that
- 5357 exceeded 3 m at a minimum of one of the buoys in each group. Each event was counted
- 5358 only once, even if observed at multiple buoys in a group. No data were available from
- 5359 NODC for any of the Atlantic buoys during the 1979 hurricane season. [Adapted from
- 5360 Bromirski, 2007b]

5361 5362

Figure 2.26 A measure of the total annual tropical cyclone wave power in the western
North Atlantic and Gulf regions obtained as the mean of the available annual deep water
wave power (the wave power index, WPI). Longer period variability is emphasized by
lowpass filtering the annual data with three iterations of a 1-2-1 smoothing operator,

5367 giving the Atlantic and Gulf region WPI (thick lines). [Adapted from Bromirski, 2007b)

5370 Figure 2.27 The trends of increasing wave heights measured by NOAA's National Data

5371Buoy Center (NDBC) buoy #46005 off the coast of Washington [after Allan and Komar

5372 (2006)]

Reports of Tornadoes

5375 Figure 2.28 Tornado reports in official database in USA from 1954-2004. Open circles 5376 are raw reports, solid line (linear regression) is the trend for raw reports, solid circles are 5377 reports adjusted to 2002 reporting system. The adjusted data show little or no trend in 5378 reported tornadoes. The trend in raw reports reflects an increasing density of population 5379 in tornado-prone areas, and therefore more opportunity for sightings, rather than a real 5380 increase in the occurrences of tornadoes.

- 5381 5382
- 5383 **Figure 2.29** Schematic of the North Atlantic Oscillation (NAO) showing its effect on
- 5384 extremes. Illustrations by Fritz Heidi and Jack Cook, Woods Hole Oceanographic
- 5385 Institution.

	Chapter 3 How well Do we Understand the Causes of
5387	Observed Changes in Extremes, and What Are the
5388	Projected Future Changes?
5389	
5390	Convening Lead Author: William J. Gutowski, Jr., Iowa State Univ.
5391	
5392	Lead Authors: Gabriele C. Hegerl, Duke Univ.; Greg J. Holland, NCAR; Thomas R.
5393	Knutson, NOAA; Linda O. Mearns, NCAR; Ronald J. Stouffer, NOAA; Peter J. Webster,
5394	Ga. Inst. Tech.; Michael F. Wehner, DOE LBNL; Francis W. Zwiers, Environment
5395	Canada
5396	
5397	Contributing Authors: Harold E. Brooks, NOAA; Kerry A. Emanuel, Mass. Inst.
5398	Tech.; Paul D. Komar, Oreg. State Univ.; James P. Kossin, Univ. Wisc., Madison;
5399	Kenneth E. Kunkel, Univ. Ill. Urbana-Champaign, Ill. State Water Survey; Christopher
5400	W. Landsea, NOAA; Ruth McDonald, Met Office, United Kingdom; Gerald A. Meehl,
5401	NCAR; Robert J. Trapp, Purdue Univ.
5402	
5403	KEY FINDINGS
5403 5404	KEY FINDINGS Observed Changes
5403 5404 5405	KEY FINDINGS Observed Changes Changes in some weather and climate extremes are attributable to human-induced
5403 5404 5405 5406	KEY FINDINGS Observed Changes Changes in some weather and climate extremes are attributable to human-induced changes in greenhouse gases.
 5403 5404 5405 5406 5407 	 KEY FINDINGS Observed Changes Changes in some weather and climate extremes are attributable to human-induced changes in greenhouse gases. Human-induced warming has likely caused much of the average temperature increase
 5403 5404 5405 5406 5407 5408 	 KEY FINDINGS Observed Changes Changes in some weather and climate extremes are attributable to human-induced changes in greenhouse gases. Human-induced warming has likely caused much of the average temperature increase in North America over the past 50 years. This affects changes in temperature
 5403 5404 5405 5406 5407 5408 5409 	 KEY FINDINGS Observed Changes Changes in some weather and climate extremes are attributable to human-induced changes in greenhouse gases. Human-induced warming has likely caused much of the average temperature increase in North America over the past 50 years. This affects changes in temperature extremes.
 5403 5404 5405 5406 5407 5408 5409 5410 	 KEY FINDINGS Observed Changes Changes in some weather and climate extremes are attributable to human-induced changes in greenhouse gases. Human-induced warming has likely caused much of the average temperature increase in North America over the past 50 years. This affects changes in temperature extremes. Heavy precipitation events averaged over North America have increased over the past
 5403 5404 5405 5406 5407 5408 5409 5410 5411 	 KEY FINDINGS Observed Changes Changes in some weather and climate extremes are attributable to human-induced changes in greenhouse gases. Human-induced warming has likely caused much of the average temperature increase in North America over the past 50 years. This affects changes in temperature extremes. Heavy precipitation events averaged over North America have increased over the past 50 years, consistent with the increased water holding capacity of the atmosphere in a

5413	٠	It is likely that human activities have caused a discernable increase in sea surface
5414		temperatures in the hurricane formation region of the tropical Atlantic Ocean over the
5415		past 100 years. The balance of evidence suggests that human activity has caused a
5416		discernable increase in tropical storm/hurricane and major hurricane frequency in the
5417		North Atlantic.
5418		
5419	Pro	ojected Changes
5420	٠	Future changes in extreme temperatures will generally follow changes in average
5421		temperature:
5422		- Abnormally hot days and nights and heat waves are very likely to become more
5423		frequent.
5424		- Cold days and cold nights are very likely to become much less frequent.
5425		– The number of days with frost is very likely to decrease.
5426	•	Droughts are likely to become more frequent and severe in some regions as higher air
5427		temperatures increase the potential for evaporation.
5428	٠	Over most regions, precipitation is likely to be less frequent but more intense, and
5429		precipitation extremes are very likely to increase.
5430	•	According to theory and models for North Atlantic and North Pacific hurricanes and
5431		typhoons (both basin-wide and land-falling):
5432		- Hurricane/typhoon core rainfall rates will likely increase by about 6 to 18% per
5433		degree Celsius tropical sea surface warming.
5434		- It is likely that surface wind speeds of the strongest hurricanes/typhoons will
5435		increase by about 2 to 10% per degree Celsius tropical sea surface warming.

5436	- Frequency changes are too uncertain for confident projections.
5437	- The spatial distribution of hurricanes/typhoons will likely change.
5438	- Due to projected sea level rise, the potential for storm surge damage will very
5439	likely increase.
5440	• There are likely to be more frequent deep low-pressure systems (strong storms)
5441	outside the tropics, with stronger winds and more extreme wave heights.

5443 **3.1 Introduction**

5444 Understanding physical mechanisms of extremes involves processes governing the timing 5445 and location of extreme behavior, such as ENSO cycles, as well as the mechanisms of 5446 extremes themselves (e.g., processes producing heavy precipitation). In other words, 5447 processes creating an environment conducive to extreme behavior and processes of the 5448 extreme behavior itself. This includes not only the extreme events but also the factors 5449 governing their timing and location.

5450

5451 A deeper understanding of physical mechanisms is of course important for understanding 5452 why extremes have occurred in the past and for predicting their occurrence in the future. 5453 Understanding physical mechanisms serves a further purpose for projected climate 5454 changes. Because the verification time for climate-change projections can be many 5455 decades into the future, strict verification of projections is not always possible. Other 5456 means of attaining confidence in projections are therefore needed. Confidence in 5457 projected changes in extremes increases when the physical mechanisms producing 5458 extremes in models are consistent with observed behavior. This requires careful analysis 5459 of the observed record as well as model output. Assessment of physical mechanisms is 5460 also necessary to determine the physical realism of changes in extremes. While physical 5461 consistency of simulations with observed behavior is not sufficient evidence for accurate 5462 projection, it is necessary.

5463

5464 **3.2** What Are the Physical Mechanisms of Observed Changes in Extremes?

5465 **3.2.1 Detection and Attribution of Anthropogenic Influences on Climate Extremes**

5466 **Over North America**

5467 Climate change detection, as discussed in this chapter, is distinct from the concept that is

5468 used in Chapter 2. In that chapter, detection refers to the identification of change in a

5469 climate record that is statistically distinguishable from the record's previous

5470 characteristics. A typical example is the detection of a statistically significant trend in a

5471 temperature record. Here, detection and attribution involves the assessment of observed

5472 changes in relation to those that are expected to have occurred in response to external

5473 forcing. Detection of climatic changes in extremes involves demonstrating statistically

5474 significant changes in properties of extremes over time. Attribution further links those

5475 changes with variations in climate forcings, such as changes in greenhouse gases, solar

5476 radiation or frequency of volcanoes. Attribution is a necessary step toward identifying the

5477 physical causes of changes in extremes. Attribution often uses quantitative comparison

5478 between climate-model simulations and observations, comparing expected changes due to

5479 physical understanding integrated in the models with those that have been observed. By

5480 comparing observed changes with those anticipated to result from external forcing,

5481 detection and attribution studies also provide an assessment of the performance of climate

5482	models in simulating climate change. The relationships between observed and simulated
5483	climate change that are diagnosed in these studies also provide an important means of
5484	constraining projections of future change made with those models.
5485	
5486	3.2.1.1 Detection and Attribution of Anthropogenic Changes in Mean Climate That
5487	Affect Climate Extremes
5488	This section discusses the present understanding on the causes of large-scale changes in
5489	the climatic state over North America. Simple statistical reasoning indicates that
5490	substantial changes in the frequency and intensity of extreme events can result from a
5491	relatively small shift in the average of a distribution of temperatures, precipitation or
5492	other climate variables (Katz and Brown 1992). Expected changes in temperature
5493	extremes are largely but not entirely due to changes in seasonal mean temperatures. Some
5494	differences between the two arise because moderate changes are expected in the shape of
5495	the temperature distribution affecting climate extremes, for example, due to changes in
5496	snow cover, soil moisture, and cloudiness (e.g., Hegerl et al., 2004; Kharin et al., 2007).
5497	In contrast, increases in mean precipitation are expected to increase the precipitation
5498	variance, thus increasing precipitation extremes, but decreases in mean precipitation do
5499	not necessarily imply that precipitation extremes will decrease, because of the different
5500	physical mechanisms that control mean and extreme precipitation (e.g., Allen and
5501	Ingram, 2002; Kharin et al., 2007). Therefore, changes in the precipitation background
5502	state are also interesting for interpreting changes in extremes, although more difficult to
5503	interpret (Groisman et al., 1999). Relevant information about mean temperature changes

5504	appeared in Chapter 2. More detailed discussion of historical mean changes appears in
5505	CCSP Synthesis and Assessment Products 1-1, 1-2 and 1-3.

5507 Global-scale analyses using space-time detection techniques have robustly identified the

5508 influence of anthropogenic forcing on the 20^{th} century near-surface temperature changes.

5509 This result is robust to applying a variety of statistical techniques and using many

5510 different climate simulations (Hegerl et al., 2007). Detection and attribution analyses also

5511 indicate that over the past century there has likely been a cooling influence from aerosols

and natural forcings counteracting some of the warming influence of the increasing

5513 concentrations of greenhouse gases. Spatial information is required in addition to

temporal information to reliably detect the influence of aerosols and distinguish them

5515 from the influence of increased greenhouse gases.

5516

5517 A number of studies also consider sub-global scales. Studies examining North America

5518 find a detectable human influence on 20^{th} century temperature changes, either by

5519 considering the 100-year period from 1900 (Stott 2003) or the 50-year period from 1950

5520 (Zwiers and Zhang 2003, Zhang et al. 2006). Based on such studies, a substantial part of

the warming over North America has been attributed to human influence (Hegerl et al.,

5522 2007).

5523

5524 Further analysis has compared simulations using changes in both anthropogenic

5525 (greenhouse gas and aerosol) and natural (solar flux and volcano eruption) forcings with

5526 others that neglect anthropogenic changes. There is a clear separation in North American

5527	temperature changes of ensembles of simulations including just natural forcings from
5528	ensembles of simulations containing both anthropogenic and natural forcings (Karoly et
5529	al. 2003, IDAG 2005, Karoly and Wu 2005, Wang et al. 2006, Knutson et al. 2006,
5530	Hegerl et al. 2007), especially for the last quarter of the 20 th century, indicating that the
5531	warming in recent decades is inconsistent with natural forcing alone.
5532	
5533	Attribution of observed changes on regional (subcontinental) scales has generally not yet
5534	been accomplished. One reason is that as spatial scales considered become smaller, the
5535	uncertainty becomes larger (Stott and Tett 1998, Zhang et al., 2006) because internal
5536	climate variability is typically larger than the expected responses to forcing on these

5537 scales. Also, small-scale forcings and model uncertainty make attribution on these scales

5538 more difficult. Therefore, interpreting changes on sub-continental scales is difficult (see

discussion in Hegerl et al., 2007). For example, in Alaska warming has been large but

bigh levels of internal variability lead to an overlap of naturally forced and all-forcing

simulations even at the end of the 20th century (Wang et al. 2007). In central North

5542 America, there is a relatively small warming over the 20th century compared to other

regions around the world (Hegerl et al. 2007) and the observed changes lie (just) within

the envelop of changes simulated by models using natural forcing alone. In this context,

analysis of a multi-model ensemble by Kunkel et al. (2006) for a central U.S. region

suggests that the region's warming from 1901to 1940 and cooling from 1940 to 1979

5547 may have been a consequence on unforced internal variability.

5549 Burkholder and Karoly (2007) detected an anthropogenic signal in multidecadal trends of 5550 a U.S. climate extremes index. The observed increase is largely due to an increase in the 5551 number of months with monthly mean daily maximum and daily minimum temperatures 5552 that are much above normal and an increase in the area of the US that experienced a 5553 greater than normal proportion of their precipitation from extreme one-day events. 5554 Twentieth century simulations from coupled climate models show a similar, significant 5555 increase in the same US climate extremes index for the late twentieth century. There is 5556 some evidence of an anthropogenic signal in regions a few hundred kilometers across 5557 (Karoly and Wu 2005, Knutson et al. 2006, Zhang et al. 2006, Burkholder and Karoly 5558 2007), suggesting the potential for progress in regional attribution if careful attention is 5559 given to the choice of appropriate time scales, region sizes and fields analyzed and if all 5560 relevant forcings are considered.

5561

5562 Warming from greenhouse gas increases is expected to increase the moisture content of 5563 the atmosphere and lead to a small increase in global mean precipitation. More important, 5564 the increase in water holding capacity of the atmosphere is expected to affect more 5565 strongly changes in heavy precipitation, for which the Clausius-Clapeyron relation 5566 provides an approximate physical constraint (e.g., Allen and Ingram, 2002). Observed 5567 changes in moisture content and mean and extreme precipitation are generally consistent 5568 with these expectations (Chapter 2 of this document, Trenberth et al. 2007). In addition, 5569 greenhouse gas increases are also expected to cause enhanced horizontal transport of 5570 water vapor that is expected to lead to a drying of the subtropics and parts of the tropics

5571	(Kumar et al., 2004; Neelin et al., 2006), and a further increase in precipitation in the
5572	equatorial region and at high latitudes (Emori and Brown, 2005; Held and Soden, 2006).
5573	
5574	Several studies have demonstrated that simulated global land mean precipitation in
5575	climate model integrations including both natural and anthropogenic forcings is
5576	significantly correlated with that observed (Allen and Ingram, 2002; Gillett et al., 2004b;
5577	Lambert et al., 2004), thereby detecting external influence in observations of
5578	precipitation. This external influence on global land mean precipitation during the 20 th
5579	century is dominated by volcanic forcing. Anthropogenic influence on the spatial
5580	distribution of global land precipitation, as represented by zonal-average precipitation
5581	changes, has also been detected (Zhang et al. 2007). Both changes are significantly larger
5582	in observations than simulated in climate models, raising questions about whether models
5583	underestimate the response to external forcing in precipitation changes (see also Wentz et
5584	al 2007). Changes in North American continental-mean rainfall have not yet been
5585	attributed to anthropogenic influences. A large part of North America falls within the
5586	latitude band identified by Zhang et al. (2007) where the model simulated response to
5587	forcing is not in accord with the observed response. However, both models and
5588	observations show a pattern of wetting north of 50N and drying between 0-30N, and this
5589	together with agreement on moistening south of the equator provides support for the
5590	detection of a global anthropogenic influence.
5591	

5592 **3.2.1.2 Detection and Attribution of Other Modes of Climate-system Behavior**

5593 Affecting Climate Extremes

- 5594 North American extreme climate is also substantially affected by changes in atmospheric
- 5595 circulation (e.g., Thompson and Wallace 2001). Natural low frequency variability of the
- 5596 climate system is dominated by a small number of large-scale circulation patterns such as
- the El Niño Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), and the
- 5598 Northern Annular Mode (NAM). The impact of these modes on terrestrial climate on
- annual to decadal time scales can be profound. In particular, there is considerable
- 5600 evidence that the state of these modes affects substantially the risk of extreme
- temperature (Thompson and Wallace 2002, Kenyon and Hegerl 2007), droughts
- 5602 (Hoerling and Kumar 2003), and short-term precipitation extremes (e.g., Gershunov and
- 5603 Cayan 2003, Eichler and Higgins 2006) over North America.
- 5604
- 5605 Some evidence of anthropogenic influence on these modes appears in surface-pressure

5606 analyses. Gillett et al. (2003, 2005, 2006) and Wang et al. (2007) diagnosed

- anthropogenic influence on Northern Hemisphere sea level pressure change, although the
- 5608 model-simulated change is not as large as has been observed. Model-simulated changes
- 5609 in extremes related to circulation changes may therefore be affected. The change in sea
- 5610 level pressure largely manifests itself through an intensification of the Northern and
- 5611 Southern Annular Modes with reduced pressure above both poles and equatorward
- 5612 displacement of mass. However, apart from these modes, the extent to which modes of
- 5613 variability are excited or altered by external forcing remains uncertain. While some
- 5614 modes might be expected to change as a result of anthropogenic effects such as the

5615 enhanced greenhouse effect, there is little a priori expectation about the direction or
5616 magnitude of such changes. In addition, models may not simulate well the behavior of
5617 these modes in some regions and seasons.

5618

5619 ENSO is the leading mode of variability in the tropical Pacific, and it has impacts on

5620 climate around the globe (Trenberth et al. 2007, see also Chapter 1 of this report). There

5621 have been multi-decadal oscillations in the ENSO index throughout the 20th century, with

5622 more intense El Niño events since the late 1970s, which may reflect in part a mean

5623 warming of the eastern equatorial Pacific (Mendelssohn et al., 2005). There is presently

5624 no clear consensus on the possible impact of anthropogenic forcing on observed ENSO

5625 variability (Merryfield 2006, Meehl et al. 2007).

5626

5627 Decadal variability in the North Pacific is characterised by variations in the strength of

the Aleutian Low coupled to changes in North Pacific SST. The leading mode of decadal

5629 variability in the North Pacific is usually termed the Pacific Decadal Oscillation (PDO)

and has a spatial structure in the atmosphere and upper North Pacific Ocean similar to the

5631 pattern that is associated with ENSO. Pacific Decadal variability can also be

5632 characterized by changes in sea level pressure in the North Pacific, termed the North

5633 Pacific Index (Deser et al., 2004). One recent study showed a consistent tendency

towards the positive phase of the PDO in observations and model simulations that

5635 included anthropogenic forcing (Shiogama et al., 2005), though differences between the

5636 observed and simulated PDO patterns, and the lack of additional studies, limit confidence

5637 in these findings.

5639 ENSO and Pacific decadal variability affect the mean North American climate and its 5640 extremes (e.g., Kenvon and Hegerl, 2007), particularly when both are in phase, at which 5641 time considerable energy is propagated from tropical and northern Pacific sources 5642 towards the North American land mass (Yu et al. 2007, Zwiers and Yu 2007). 5643 5644 The Northern Annular Mode (NAM) is an approximately zonally symmetric mode of 5645 variability in the Northern Hemisphere (Thompson and Wallace, 1998, Chapter 1 of this 5646 report), and the North Atlantic Oscillation (NAO) (Hurrell, 1996) may be viewed as its 5647 Atlantic counterpart. The NAM index exhibited a pronounced trend towards its positive 5648 phase between the 1960s and the 1990s, corresponding to a decrease in surface pressure 5649 over the Arctic and an increase over the subtropical North Atlantic (e.g., Hurrell, 1996; 5650 Thompson et al., 2000; Gillett et al., 2003a). Several studies have shown this trend to be 5651 inconsistent with simulated internal variability (Osborn et al., 1999; Gillett et al., 2000; 5652 Gillett et al., 2002b; Osborn, 2004; Gillett, 2005) and similar to, although larger than, simulated changes in coupled climate models in response to 20th century forcing, 5653 5654 particularly, greenhouse gas forcing and ozone depletion (Gillett et al., 2002b, Osborn, 5655 2004, Gillet 2005, Hegerl et al. 2007). The mechanisms underlying Northern Hemisphere 5656 circulation changes also remain open to debate (see e.g., Hoerling et al., 2005; Hurrell et 5657 al., 2005, Scaife et al. 2005). 5658 5659 Over the period 1968–1997, the trend in the NAM was associated with approximately

5660 50% of the winter surface warming in Eurasia, a decrease in winter precipitation over

- Southern Europe and an increase over Northern Europe, due the northward displacement
 of the storm track (Thompson et al., 2000). Such a change would have substantial
 influence on North America, too, reducing the probability of cold extremes in winter
 even over large areas (for example, Thompson and Wallace, 2001; Kenyon and Hegerl,
 2007), although part of the northeastern U.S. tends to show a tendency for more cold
 extremes with the NAO trend (Wettstein and Mearns, 2002).
 32.2 Changes in Temperature Extremes
- 5669 As discussed in Chapter 2, observed changes in temperature extremes are consistent with
- the observed warming of the climate (Alexander et al., 2006). Globally, there has been a
- 5671 widespread reduction in the number of frost days in mid-latitude regions in recent
- 5672 decades, an increase in the number of warm extremes, particularly warm nights, and a
- 5673 reduction in the number of cold extremes, such as cold nights.
- 5674
- 5675 There is now evidence that anthropogenic forcing has likely affected extreme
- temperatures. Christidis et al. (2005) analyzed a new dataset of gridded daily
- temperatures (Caesar et al., 2006) using the indices shown by Hegerl et al. (2004) to have
- 5678 potential for attribution, namely the average temperature of the most extreme 1, 5, 10 and
- 5679 30 days of the year. Christidis et al. (2005) detected robust anthropogenic changes in a
- 5680 global analysis of indices of extremely warm nights using fingerprints from the HadCM3
- 5681 model, with some indications that the model over-estimates the observed warming of
- 5682 warm nights. Human influence on cold days and nights was also detected, but in this case
- the model underestimated the observed changes, significantly so in the case of the coldest
day of the year. Anthropogenic influence was not detected in observed changes in
extremely warm days. Tebaldi et al. (2006) find that changes simulated by an ensemble
of eight global models that include anthropogenic and natural forcing changes agrees well
with observed global trends in heat waves, warm nights and frost days over the last four
decades.

5689

5690 North American observations also show a general increase in the number of warm nights, 5691 but with a decrease in the center of the continent that models generally do not reproduce 5692 (e.g., Christidis et al 2005). However, analysis for North America of models (Table 3.1) 5693 used by Tebaldi et al. (2006) shows reasonable agreement between observed and 5694 simulated changes in the frequency of warm nights, number of frost days and growing season length over the latter half of the 20th century when averaged over the continent 5695 5696 (Fig. 3.1a,b,c). There is also good agreement between the observed and ensemble mean 5697 simulated spatial pattern of change in frost days (Fig.3.2a,b) over the latter half of the 5698 20th century. Note that the observational estimate has a much greater degree of temporal 5699 (Fig. 3.1) and spatial (Fig. 3.2) variability than the model result. The model result is 5700 derived from an ensemble of simulations produced by many models, some of which 5701 contributed multiple realizations. Averaging over many simulations reduces much of the 5702 spatial and temporal variability that arises from internal climate variability. The 5703 variability of individual model realizations is comparable to the single set of 5704 observations, which is well bounded by the two standard deviation confidence interval 5705 about the model ensemble average. Furthermore, Meehl et al. (2007b) demonstrate that 5706 ensemble simulations using two coupled climate models driven with human and natural

5707	forcings approximate well the observed changes, but when driven with natural forcings
5708	only cannot reproduce the observed changes, indicating a human contribution to observed
5709	changes in heat waves, frost days and warm nights. Output from one of these ensembles,
5710	produced by the Parallel Climate Model, also shows significant trends in the Karl-Knight
5711	heat-wave index (Karl and Knight, 1997) in the eastern half of the U.S. for 1961-1990
5712	that are similar to observed trends (Fig. 3.3).
5713	
5714	There have also been some methodological advances whereby it is now possible to
5715	estimate the impact of external forcing on the risk of a particular extreme event. For
5716	example, Stott et al (2004), assuming a model-based estimate of temperature variability,
5717	estimate that past human influence may have more than doubled the risk of European
5718	mean summer temperatures as high as those recorded in 2003. Such a methodology has
5719	not yet been applied to North American extremes, though Hoerling et al. (2007) have
5720	used the method to conclude that the very hot 2006 in the United States was primarily
5721	due to human influences.
5722	
5723	3.2.3 Changes in Precipitation Extremes

- 5724 **3.2.3.1 Heavy Precipitation**
- 5725 Allen and Ingram (2002) suggest that while global annual mean precipitation is
- 5726 constrained by the energy budget of the troposphere, extreme precipitation is constrained
- 5727 by the atmospheric moisture content, as governed by the Clausius-Clapeyron equation,
- though this constraint may be most robust in extratropical regions and seasons where the
- 5729 circulation's fundamental dynamics are not driven by latent heat release (Pall et al. 2007).
- 5730 For a given change in temperature the constraint predicts a larger change in extreme

5731 precipitation than in mean precipitation, which is consistent with changes in precipitation 5732 extremes simulated by the ensemble of GCMs available for the IPCC Fourth Assessment 5733 Report (Kharin et al, 2007). Emori and Brown (2005) discuss physical mechanisms 5734 governing changes in the dynamic and thermodynamic components of mean and extreme 5735 precipitation and conclude that changes related to the dynamic component (i.e., that due 5736 to circulation change) are secondary factors in explaining the larger increase in extreme 5737 precipitation than mean precipitation seen in models. On the other hand, Meehl et al. 5738 (2005) demonstrate that while tropical precipitation intensity increases are related to 5739 water vapour increases, mid-latitude intensity increases are related to circulation changes 5740 that affect the distribution of increased water vapor. 5741 5742 Climatological data show that the most intense precipitation occurs in warm regions 5743 (Easterling et al., 2000) and diagnostic analyses have shown that even without any 5744 change in total precipitation, higher temperatures lead to a greater proportion of total 5745 precipitation in heavy and very heavy precipitation events (Karl and Trenberth, 2003). In 5746 addition, Groisman et al. (1999) have demonstrated empirically, and Katz (1999) 5747 theoretically, that as total precipitation increases a greater proportion falls in heavy and 5748 very heavy events if the frequency of raindays remains constant. Trenberth et al. (2005) 5749 point out that a consequence of a global increase in precipitation intensity should be an 5750 offsetting global decrease in the duration or frequency of precipitation events, though 5751 some regions could have differing behavior, such as reduced total precipitation or 5752 increased frequency of precipitation.

5754 Simulated changes in globally averaged annual mean and extreme precipitation appear to 5755 be quite consistent between models. The greater and spatially more uniform increases in 5756 heavy precipiation as compared to mean precipitation may allow extreme precipitation 5757 change to be more robustly detectable (Hegerl et al., 2004).

5758

5759 Evidence for changes in observations of short-duration precipitation extremes varies with 5760 the region considered (Alexander et al., 2006) and the analysis method that is employed 5761 (e.g., Trenberth et al., 2007). Significant increases in observed extreme precipitation have been reported over the United States, where the increase is qualitatively similar to 5762 5763 changes expected under greenhouse warming (e.g., Karl and Knight, 1998; Semenov and 5764 Bengtsson, 2002; Groisman et al., 2005). However, a quantitative comparison between 5765 area-based extreme events simulated in models and station data remains difficult because 5766 of the different scales involved (Osborn and Hulme, 1997, Kharin et al. 2005) and the 5767 pattern of changes does not match observed changes. Part of this difference is expected 5768 since most current GCMs do not simulate small-scale (< 100 km) variations in 5769 precipitation intensity, as occurs with convective storms. Nevertheless, when compared 5770 with a gridded reanalysis product (ERA40), the ensemble of currently available 5771 AOGCMs reproduces observed precipitation extremes reasonably well over North 5772 America (Kharin et al., 2007). An attempt to detect anthropogenic influence on 5773 precipitation extremes using global data based on the Frich et al. (2002) indices used 5774 fingerprints from atmospheric model simulations with prescribed sea surface temperature 5775 (Kiktev et al., 2003). This study found little similarity between patterns of simulated and 5776 observed rainfall extremes. This is in contrast to the qualitative similarity found in other

5777 studies (Semenov and Bengtsson, 2002; Groisman et al., 2005; Fig. 3.4). Tebaldi et al. (2006) reported that an ensemble of eight global climate models simulating the 20^{th} 5778 century showed a general tendency toward more frequent heavy-precipitation events over 5779 5780 the past four decades, most coherently in the high latitudes of the Northern Hemisphere, 5781 broadly consistent with observed changes (Groisman et al., 2005). This is also seen when 5782 analyzing these models for North America (Fig. 3.1d). The pattern similarity of change in 5783 precipitation extremes over this period is more difficult to assess, particularly on 5784 continental and smaller scales.

5785

5786 3.2.3.2 Runoff and Drought

5787 Changes in runoff have been observed in many parts of the world, with increases or 5788 decreases corresponding to changes in precipitation. Climate models suggest that runoff 5789 will increase in regions where precipitation increases faster than evaporation, such as at 5790 high Northern latitudes (Milly et al., 2005; Wu et al., 2005). Gedney et al. (2006a) attributed increased continental runoff in the latter decades of the 20th century in part to 5791 5792 suppression of transpiration due to CO₂-induced stomatal closure. However, their result is 5793 subject to considerable uncertainty in the runoff data (Peel and McMahon, 2006; Gedney 5794 et al. 2006b). Qian et al. (2006) simulate observed runoff changes in response to observed temperature and precipitation alone, and Milly et al. (2005) demonstrate that 20th century 5795 5796 runoff trends simulated by several global climate models are significantly correlated with 5797 observed runoff trends. Wu et al. (2005) find that observed increases in Arctic river 5798 discharge are simulated in a global climate model with anthropogenic and natural forcing, 5799 but not in the same model with natural forcings only. Anthropogenic changes in runoff

may be emerging, but attribution studies specifically on North American runoff are notavailable.

5802

5803	Mid-latitude summer drying is another anticipated response to greenhouse gas forcing
5804	(Meehl et al., 2006) and drying trends have been observed in the both the Northern and
5805	Southern hemispheres since the 1950's (Trenberth et al., 2006). Burke et al. (2006), using
5806	the HadCM3 model with all natural and anthropogenic external forcings and a global
5807	Palmer Drought Severity Index (PDSI) dataset compiled from observations by Dai et al.
5808	(2004), detect the influence of anthropogenic forcing in the observed global trend
5809	towards increased drought in the second half of the 20 th century, although the model trend
5810	was weaker than observed and the relative contributions of natural external forcings and
5811	anthropogenic forcings was not assessed. Nevertheless, this supports the conclusion that
5812	anthropogenic forcing has influenced the global occurrence of drought. However, the
5813	spatial pattern of observed PDSI change over North America is dissimilar to that in the
5814	coupled model, so no anthropogenic influence has been detected for North America
5815	alone.
5816	
5017	Nevertheless, the long term trands in the presiding patterns over North America are

5818 well reproduced in atmospheric models driven with observed changes in sea-surface

temperatures (Schubert et al., 2003; Seager et al., 2005), indicating the importance of sea-

5820 surface temperatures in determining North American drought (see also, for example,

5821 Hoerling and Kumar, 2003). Specifically, Schubert et al. (2003) and Seager et al. (2005),

5822 using AGCMs forced with observed SSTs, show that some SST anomaly patterns,

5823	particularly in the tropical Pacific, can produce drought over North America. Using the
5824	observed SST anomalies, both studies successfully reproduce many aspects of the 1930's
5825	drought. Only the Seager et al. (2005) model simulates the 1950's drought over North
5826	America, indicating that more modelling studies of this kind are needed.
5827	
5828	3.2.4 Tropical Cyclones
5829	Long-term (multidecadal to century) scale observational records of tropical cyclone
5830	activity (frequency, intensity, power dissipation, etc.) were described in Chapter 2. Here
5831	discussion focuses on whether the any changes can be attributed to particular causes,
5832	including anthropogenic forcings. Tropical cyclones respond to their environment in
5833	quite different manners for initial development, intensification, determination of overall
5834	size, and motion. Therefore this section begins with a brief summary of the major
5835	physical mechanisms and understanding.
5836	
5837	3.2.4.1 Development Criteria and Mechanisms
5838	Gray (1968) drew on a global analysis of tropical cyclones and a large body of earlier
5839	work to arrive at a set of criteria for tropical cyclone development, which he called
5840	Seasonal Genesis Parameters:
5841	• Sufficient available oceanic energy for the cyclone to develop, usually defined as
5842	a requirement for ocean temperatures > 26 °C down to a depth of 60 m;
5843	• Sufficient cyclonic (counterclockwise in Northern Hemisphere, clockwise in
5844	Southern Hemisphere) rotation to enhance the capacity for convective heating to
5845	accelerate the vertical winds,

5846	• A small change in horizontal wind with height (weak shear) so that the upper
5847	warming can become established over the lower vortex.
5848	• A degree of atmospheric moist instability to enable convective clouds to develop;
5849	• A moist mid-level atmosphere to inhibit the debilitating effects of cool
5850	downdrafts; and
5851	• Some form of pre-existing disturbance, such as an easterly wave, capable of
5852	development into a tropical cyclone.
5853	
5854	A more recent study by Camargo et al. (2007) has developed a new genesis index, which
5855	is based on monthly mean values of 850 hPa relative vorticity, 700 hPa humidity, 850-
5856	250 hPa wind shear, and Potential Intensity (Bister and Emanuel, 1998). Some skill has
5857	been demonstrated in applying it to re-analysis data and global climate models to
5858	estimate the frequency and location of storms.
5859	
5860	In the North Atlantic, the bulk of tropical cyclone developments arise from easterly
5861	waves, though such development is a relatively rare event, with only around 10-20% of
5862	waves typically developing into a tropical cyclone (Dunn 1940, Frank and Clarke 1980,
5863	Pasch et al 1998, Thorncroft and Hodges 2001). Thus, any large-scale mechanism that
5864	can help produce more vigorous easterly waves leaving Africa or provide an environment
5865	to enhance their development is of importance. ENSO is a major influence; during El
5866	Nino years, tropical cyclone development is suppressed by a combination of associated
5867	increased vertical wind shear, general drying of the mid-levels and oceanic cooling (e.g.,
5868	Gray 1984). The Madden-Julian Oscillation (MJO) influences cyclogenesis in the Gulf of

5869	Mexico region on 1-2 month time scales (Maloney and Hartmann 2000). Approximately
5870	half of the North Atlantic tropical cyclone developments are associated with upper-level
5871	troughs migrating into the tropics (e.g. Pasch et al 1998; Davis and Bosart, 2001; 2006).
5872	The large scale zonal wind flow may also modulate development of easterly wave
5873	troughs into tropical cyclones (Holland 1995, Webster and Chang 1988). The easterly
5874	wave development process is particularly enhanced in the wet, westerly phase of the
5875	MJO.
5876	
5877	The eastern and central North Pacific experience very little subtropical interaction and
5878	appear to be dominated by easterly wave development (e.g. Frank and Clarke 1980). The
5879	two major environmental influences are the ENSO and MJO, associated with the same
5880	effects as described for the North Atlantic. The MJO is a particularly large influence,
5881	being associated with a more than 2:1 variation in tropical cyclone frequency between the
5882	westerly-easterly phases (Liebmann et al 1994, Molinari and Vollaro 2000).
5883	
5884	Suitable conditions in the western Pacific development region are present throughout the
5885	year. Developments in this region are associated with a variety of influences, including
5886	easterly waves, monsoon development and mid-latitude troughs (e.g. Ritchie and Holland
5887	1999). The dominant circulation is the Asiatic monsoon, and tropical cyclones typically
5888	form towards the eastern periphery of the main monsoonal trough, or further eastwards
5889	(Holland, 1995), though development can occur almost anywhere (e.g. Lander 1994).
5890	ENSO has a major impact, but it is opposite to that in the eastern Pacific and Atlantic,

- with western Pacific tropical cyclone development being enhanced during the El Ninophase (Chan 1985, Lander 1994, Wang and Chan 2002).
- 5893
- 5894 *Mesoscale influences* include those that occur on scales similar to, or smaller than the
- 5895 tropical cyclone circulation and seem to be operative in some form or other to all ocean
- 5896 basins. These influences include interactions amongst the vorticity fields generated by
- 5897 Mesoscale Convective Complexes (MCCs), which may enhance cyclogenesis under
- 5898 suitable atmospheric conditions, but also may introduce a stochastic element in which the
- 5899 interactions may also inhibit short-term development (Houze 1977; Zipser 1977; Ritchie
- and Holland 1997; Simpson et al. 1997; Ritchie 2003; Bister and Emanuel 1997;
- 5901 Hendricks et al. 2004; Montgomery et al. 2006) and inherent barotropic instability (e.g.

5902 Schubert et al. 1991; Ferreira and Schubert 1997).

5903

5904 **3.2.4.1.1 Factors Influencing Intensity and Duration**

- 5905 Once a cyclone develops it proceeds through several stages of intensification. The
- 5906 maximum achievable intensity of a tropical cyclone appears to be limited by the available
- 5907 energy in the ocean and atmosphere. This has led to various thermodynamic assessments
- 5908 of the Potential Intensity (PI) that can be achieved by a cyclone for a given
- thermodynamic state (Emanuel 1987, 1995, 2000, Holland 1997, 1995, 2000, Holland 1997,
- 5910 Tonkin et al 1999, Rotunno and Emanuel 1987). The basis for these assessments is
- 5911 characteristically the sea surface temperature and the thermodynamic structure of the
- 5912 near-cyclone atmospheric environment, with particular emphasis on the temperature at
- 5913 the outflow level of air ascending in the storm core.

5915	In most cases tropical cyclones do not reach this thermodynamic limit, due to a number
5916	of processes that have a substantial negative influence on intensification. Major negative
5917	impacts may include: vertical shear of the horizontal wind (Frank and Ritchie 1999,
5918	DeMaria 1995), oceanic cooling by cyclone-induced mixing of cool water from below
5919	the mixed layer to the surface (Price 1981, Bender and Ginis 2000, Schade and Emanuel
5920	1999); potential impacts of sea spray on the surface exchange process (Wang et al. 2001,
5921	Andreas and Emanuel 2001); processes that force the cyclone into an asymmetric
5922	structure (Wang 2002, Corbosiero and Molinari 2003); ingestion of dry air, perhaps also
5923	with suspended dust (Neal and Holland 1976, Dunion and Velden 2004); and internal
5924	processes. Since many of these factors tend to be transitory in nature, the longer a
5925	cyclone can spend in a region with plentiful thermodynamic energy, the better its chances
5926	of approaching the PI. This is reflected in, for example, the observation that over 80% of
5927	major hurricanes in the North Atlantic occur in systems that formed at low latitudes in the
5928	eastern region, the so-called Cape Verde storms.
5929	

A weakening tropical cyclone may merge with an extratropical system, or it may redevelop into a baroclinic system (Jones et al. 2003). Since the system carries some of its tropical vorticity and moisture, it can produce extreme rains and major flooding. The transition is also often accompanied by a rapid acceleration in translation speed, which leads to an asymmetric wind field with sustained winds that may be of hurricane force on the right (left) side of the storm track in the northern (southern) hemisphere, despite the overall weakening of the cyclone circulation.

E027
141
5751

5938 3.2.4.1.2 Movement Mechanisms

5940	also propagate relative to this mean flow due to dynamical effects (H	Holland 1984,	Fiorino

Tropical cyclones are steered by the mean flow in which they are embedded, but they

and Elsberry 1989). This combination leads to the familiar hyperbolic (recurving) track

5942 of tropical cyclones as storms initially move westward, embedded in the low-latitude

solution easterly flow, then more poleward and eventually eastward as they encounter the mid-

5944 latitude westerlies.

5945

5946 An important result of this pattern of movement is that storms affecting the Caribbean,

5947 Mexico, Gulf States, Lower Eastern Seaboard and Pacific Trust Territories have mostly

5948 developed in low-latitudes (which also comprise the most intense systems). Eastern

5949 Pacific cyclones tend to move away from land, and those that recurve are normally

5950 suffering from combined negative effects of cold water and vertical shear. Upper Eastern

5951 US Seaboard and Atlantic Canada cyclones are typically recurving and undergoing

5952 various stages of extratropical transition.

5953

5954 3.2.4.2 Attribution Preamble

5955 Determining the causal influences on the observed changes in tropical cyclone

5956 characteristics is currently subject to vigorous community debate. Chief amongst the

5957 more contentious topics are data deficiencies in early years, natural variability on decadal

time scales, and trends associated with greenhouse warming. A summary of the published

5959 contributions to this debate at the end of 2006 is contained in a report and accompanying

5960	statement that was put together by the attendees at a World Meteorological Society
5961	Workshop on Tropical Cyclones held in November 2006 (WMO 2006, Knutson et al
5962	2006b). Of direct relevance in the WMO statement are the following:
5963	• Though there is evidence both for and against the existence of a detectable
5964	anthropogenic signal in the tropical cyclone climate record to date, no firm
5965	conclusion can be made on this point.
5966	• It is likely that some increase in tropical cyclone intensity and rainfall will occur
5967	if the climate continues to warm. Model studies and theory project a 3-5%
5968	increase in wind speed per degree increase of tropical sea surface temperatures.
5969	• No individual tropical cyclone can be directly attributed to climate change.
5970	• Some studies of the observational record conclude that the reported global
5971	increase in tropical cyclone activity is questionable owing to data problems, since
5972	tropical cyclone monitoring has improved continuously.
5973	• There is an observed multi-decadal variability of Atlantic hurricanes whose
5974	causes, whether natural, anthropogenic or a combination, are currently being
5975	debated. This variability makes detecting any long-term trends in tropical cyclone
5976	activity difficult.
5977	• Current theories and computer models predict an increase in wind speed and
5978	rainfall of tropical cyclones in a warmer climate.
5979	• Recent climate model simulations project a decrease or no change in global
5980	tropical cyclone numbers in a warmer climate, although there is low confidence in
5981	this projection.
5982	

5983	We note that these were consensus views, and no attempt was made to assign likely
5984	probabilities to the possible outcomes. The International Panel for Climate Change
5985	(IPCC) arrived at similar findings, but also focused on the observed changes in the North
5986	Atlantic (IPCC 2007):
5987	
5988	• There is observational evidence for an increase of intense tropical cyclone
5989	activity in the North Atlantic since about 1970, correlated with increases of
5990	tropical sea surface temperatures.
5991	• There are also suggestions of increased intense tropical cyclone activity in
5992	some other regions where concerns over data quality are greater.
5993	• Multi-decadal variability and the quality of the tropical cyclone records prior
5994	to routine satellite observations in about 1970 complicate the detection of
5995	long-term trends in tropical cyclone activity.
5996	• There is no clear trend in the annual global numbers of tropical cyclones.
5997	
5998	The IPCC also made the following probability assessments on intense tropical cyclone
5999	activity:
6000	• Likely that increases have occurred in some regions since 1970;
6001	• More likely than not a human contribution to the observed trend;
6002	• Likely that there will be future trends in tropical cyclone intensity and heavy
6003	precipitation associated with ongoing increases of tropical SSTs;
6004	• Less confidence in projections of a global decrease in the numbers of tropical
6005	cyclones.

6007	Emanuel (2005) and Webster et al. (2005) showed a clear increase in the more intense
6008	Northwest Pacific cyclones (as shown by category 4 and 5 frequency or PDI) since the
6009	commencement of the satellite era. These increases have been closely related to
6010	concomitant changes in SSTs in this region. On the other hand there are also concerns
6011	about the quality of the data (WMO 2006) and there has been little focused research on
6012	attributing the changes in this region. For these reasons this report accepts the overall
6013	findings of WMO (2006) and IPCC (2007) as they relate to the North Pacific.
6014	
6015	One area where there is consensus is on tropical cyclone rainfall. WMO (2007) and IPCC
6016	(2007) concur on there being a likely increase in heavy rainfall associated with tropical
6017	cyclones, though the actual level of increase is not clear.
6018	
6019	The remainder of the attribution section on tropical cyclones concentrates on attribution
6020	in the North Atlantic, where the available data and published work enables more detailed
6021	attribution analysis compared to other basins.
6022	
6023	3.2.4.3 Attribution of North Atlantic Changes
6024	Chapter 2 provides an overall summary of the observed variations and trends in storm
6025	frequency, section 3.3.9.6 considers future scenarios, and Holland and Webster (2007)
6026	present a detailed analysis of the changes in North Atlantic tropical cyclones, hurricanes

and major hurricanes over the past century, together with a critique of the potential

- attribution mechanisms. Here we examine these changes in terms of the potentialcausative mechanisms.
- 6030

6031 **3.2.4.3.1 Storm Intensity**

There has been no distinct trend in the mean intensity of all storms, hurricanes, or major
hurricanes (Chapter 2). Holland and Webster (2007) also found that there has been a

6034 marked oscillation in major hurricane proportions, which has no observable trend. The

attribution of this oscillation has not been adequately defined, but it is known that it is

associated with a similar oscillation in the proportion of hurricanes that develop in low

6037 latitudes and thus experience environmental conditions that are more conducive to

6038 development into an intense system than those at more poleward locations. The lack of a

6039 mean intensity trend or a trend in major hurricane proportions is in agreement with

modeling and theoretical studies that predict a relatively small increase of around 1 to 7%

for the observed 0.5 to 0.7°C trend in tropical North Atlantic SSTs (Henderson-Sellers et

al 1998, Knutson et al 1998; 2001; Knutson and Tuleya 2004; 2007).

6043

6044 Multidecadal increases of maximum intensity due to multidecadal increases of SST may

6045 play a relatively small role in increases of overall hurricane activity, and increases in

- frequency (discussed in the next section), for which variations in duration due to large-
- scale circulation changes may be the dominant factors. The relationship between SST,
- 6048 circulation patterns, and hurricane activity variability is not as well understood as the

6049 thermodynamic relationships that constrain maximum intensity.

6051 **3.2.4.3.2 Storm Frequency and Integrated Activity Measures**

6052 Emanuel (2005a; 2007a) examined a Power Dissipation Index (PDI), which combines the 6053 frequency, lifetime and intensity, and is related to the cube of the maximum winds 6054 summed over the lifetime of the storm. In Chapter 2, it was concluded that there has been 6055 a substantial increase in tropical cyclone activity, as measured by the Power Dissipation 6056 Index (PDI), since about 1970, strongly correlated with low-frequency variations in 6057 tropical Atlantic SSTs. It is likely that hurricane activity (PDI) has increased substantially 6058 since the 1950s and 60s in association with warmer Atlantic SSTs. It is also likely that 6059 PDI has generally tracked SST variations on multidecadal time scales in the tropical Atlantic since 1950. Holland and Webster (2007) have shown that the PDI changes have 6060 6061 arisen from a combination of increasing frequency of tropical cyclones of all categories: 6062 tropical storms, hurricanes and major hurricanes; and a multi-decadal oscillation in the 6063 proportion of major hurricanes. They found no evidence of a trend in the major hurricane 6064 proportions or in overall intensity, but a marked trend in frequency. 6065

6066 While there is a close statistical relationship between low frequency variations of tropical

6067 cyclone activity (e.g., the PDI and storm frequency) and SSTs (Ch. 2), this almost

6068 certainly arises from a combination of factors, including joint relationships to other

atmospheric process that effect cyclone development, such as vertical windshear (Shapiro

6070 1982, Kossin and Vitmer 2007, Goldenberg et al 2001, Shapiro and Goldenberg 1998). It

- 6071 is also notable that the recent SST increases have been associated with a concomitant
- 6072 shift towards increased developments in low latitudes and the eastern Atlantic, regions

- where the conditions are normally more conducive to cyclogenesis and intensification(Holland and Webster 2007, Ch. 2).
- 6075

6076	Low-frequency variations in Atlantic tropical cyclone activity have previously been
6077	attributed to a natural variability in Atlantic SSTs associated with the Atlantic Multi-
6078	decadal Oscillation (Bell and Chelliah 2006, Goldenberg et al. 2001). However, these
6079	studies either did not consider the trends over the 20 th century in SST (Goldenberg et al.
6080	2001) or did not cover a long enough period to confidently distinguish between
6081	oscillatory (internal climate variability) behavior and radiatively forced variations or
6082	trends. For example, the multi-decadal AMM2 mode in Bell and Chelliah (2006) first
6083	obtains substantial amplitude around 1970. Their circulation-based indices are of
6084	insufficient length to determine whether they have a cyclical or trend-like character, or
6085	some combination thereof.

6087 While there is undoubtedly a natural variability component to the observed tropical 6088 Atlantic SSTs, it is also likely that a discernable warming trend, due to greenhouse gases, 6089 has occurred, especially over the past 30-40 years. For example, Santer et al. (2006; see 6090 also Gillett et al. 2007) have shown that the observed trends in Atlantic tropical SSTs are 6091 unlikely to be caused entirely by internal climate variability, and that the pronounced 6092 Atlantic warming since around 1970 that is reproduced in their model is predominantly 6093 due to increased greenhouse gases. These conclusions are supported by several other 6094 studies that use different methodologies (e.g., Knutson et al. 2006; Trenberth and Shea 6095 2006; Mann and Emanuel 2006; Karoly and Wu 2005). There is also evidence for a

6096	detectable greenhouse gas-induced SST increase in the NW Pacific tropical cyclogenesis
6097	region (Santer et al. 2006, Gillett et al. 2007; see also Knutson et al. 2006 and Karoly and
6098	Wu 2005).

6100	We conclude that there l	nas been an c	bserved SST increa	ase of 0.5-0.7°C	C over the past
------	--------------------------	---------------	--------------------	------------------	-----------------

6101 century in the main development region for tropical cyclones in the Atlantic. Based on

6102 comparison of observed SST trends and corresponding trends in climate models with and

6103 without external forcing, it is likely that increased greenhouse gases have caused a

6104 discernible increase in SSTs both the North Atlantic and the NW Pacific tropical storm

6105 basins over the past 100 yrs and also for the period since about 1950.

6106

6107 Chapter 2 also concludes that it is likely that there has been an increase in tropical 6108 storm/hurricane and major hurricane frequency in the North Atlantic over the past 6109 century or so, a time during which tropical Atlantic SSTs also increased. Ongoing efforts 6110 to reconstruct a complete record of Atlantic tropical cyclone counts back to 1900 or the 6111 late 1800s find evidence (in several analyses) for a statistically significant increasing 6112 trend since 1900. The evidence is much less compelling for significant positive trends 6113 beginning in the late 1800s, although there is increasing uncertainty in the data as one 6114 proceeds further back in time. There has not been a significant trend in U.S. landfalling 6115 activity since the late 1880s as the overall impacts of the increasing trend in North 6116 Atlantic tropical cyclones appear to have been to some extent ameliorated by concomitant 6117 shifts into eastern North Atlantic developments, which are less likely to directly affect US 6118 coastal regions.

6120	Attribution of these past changes in tropical storm/hurricane activity (e.g., PDI) and
6121	frequency to various climate forcings is hampered by the lack of adequate model
6122	simulations of tropical cyclone climatologies. In the case of global scale temperature
6123	increase formal detection-attribution studies have detected strong evidence for the
6124	presence of the space-time pattern of warming expected due to greenhouse gas increases.
6125	These studies find that other plausible explanations, such as solar and volcanic forcing
6126	together with climate variability alone, fail to explain the observed changes sufficiently.
6127	The relatively good agreement between observed and simulated trends based on climate
6128	model experiments with estimated past forcings lends substantial confidence to
6129	attribution statements for SST. However, since adequate model-based reconstructions of
6130	historical tropical cyclone variations are not currently available, we do not have estimates
6131	of expected changes in tropical cyclone variations due to a complete representation of the
6132	changes in the physical system that would have been caused by greenhouse gas increases
6133	and other forcing changes. We therefore must rely on statistical analyses and expert
6134	judgement to make attribution assessments. Further discussion of these issues is
6135	contained in section 3.3.9.6 (Reconciliation of Future Projections and Past Variations).
6136	
6137	The strong relationship with SST—and particularly the large increase in both tropical
6138	cyclone activity (PDI) and SST since 1970, along with the observed increases in tropical
6139	storm/hurricane and major hurricane frequency and SSTs over the past century or so-
6140	provides evidence in support of a discernible impact of anthropogenic forcing on Atlantic

6141 tropical cyclone activity. Although there is evidence both for and against this

interpretation (e.g., lack of trend in U.S. landfalling hurricanes), the balance of evidence
now suggests that human activity has caused a discernible increase in tropical storm,
hurricane and major hurricane frequency. It is more difficult to judge whether
anthropogenic forcing will cause further increases in activity as the climate continues to
warm, since the precise physical reasons for the relationship have not been fully
elucidated. It is noted that relevant anthropogenic forcing includes increasing greenhouse
gases, as well as changes in aerosol forcing, and possibly decreasing stratospheric ozone
and other factors associated with cooling upper atmospheric (~100mb) temperatures in
recent decades (Emanuel 2007a).
This assessment is consistent with the IPCC (2007) conclusion that it is more likely than
not that there has been a human contribution to the observed increase in intense tropical
cyclone activity. It is further supported by several recent related studies, including
Trenberth and Shea (2006), Mann and Emanuel (2006), Santer et al (2006), Elsner
(2006), Emanuel (2007a), Gillett et al. (2007), Kossin and Vitmer (2007), Vitmer and
Kossin (2007), Vecchi and Knutson (2007), and Holland and Webster (2007a).
3.2.4.3.3 Storm lifetime, Track and Extratropical Transition
There has been insufficient work done on the changes, or otherwise, in these important
aspects of tropical cyclones to arrive at any firm conclusions.

6163 **3.2.5 Extratropical Storms**

6164 Chapter 2 documents changes in strong extratropical storms during the twentieth century, 6165 especially for oceanic storm track bordering North America. Changes include altered 6166 intensity and tracks of intense storms (Wang et al. 2006, Caires and Sterl 2005). Analysis 6167 of physical mechanisms is lacking. Natural cycles of large-scale circulation affect 6168 variability, through the North Atlantic Oscillation (e.g., Lozano and Swail, 2002, Caires 6169 and Sterl 2005) or the related Northern Annular Mode (Hurrell 1995, Ostermeier and 6170 Wallace 2003). Changes in sea-surface temperature (Graham and Diaz 2001) and 6171 baroclinicity (Fyfe 2003) may also play a role. Analysis of a multi-century GCM 6172 simulation by Fischer-Bruns et al. (2005) suggests that changes in solar activity and 6173 volcanic activity have negligible influence on strong-storm activity. However, it is likely 6174 that anthropogenic influence has contributed to extratropical circulation change during the latter half of the 20th century (Hegerl et al, 2007; see also Gillett et al., 2003, 2005, 6175 6176 2006; Wang et al 2007), which would have influenced storm activity. There is also some 6177 evidence that anthropogenic forcing has affected related variables such as geostrophic 6178 wind energy and significant wave height (Wang et al 2007) during the latter half of the 20th century, although as with sea-level pressure change, the model simulated response to 6179 6180 forcing is not as large as observed. On the other hand, the WASA Group (1998), using 6181 long records of station data, suggest that observed changes in storminess in Northern Europe over the latter part of the 20th century are not inconsistent with natural internal 6182 6183 low-frequency variability. However, analyses based on direct observations suffer from 6184 incomplete spatial and temporal coverage, especially in storm-track regions over adjacent 6185 oceans, and generally cover regions that may be too small to allow detection of externally

6186	forced signals (Hegerl et al., 2007). Studies of global reanalysis products generally cover
6187	less than 50 years. While 50-year records are generally considered adequate for detection
6188	and attribution research (Hegerl et al, 2007), a difficulty with reanalysis products is that
6189	they are affected by inhomogeneities resulting from changes over time in the type and
6190	quantity of data that is available for assimilation (e.g., Trenberth et al. 2005).
6191	
6192	A number of investigations have considered the climate controls on the storm intensities
6193	or on the decadal trends of wave heights generated by those storms. Most of this attention
6194	has been on the North Atlantic, and as noted above the important role of the North
6195	Atlantic Oscillation has been recognized (e.g., Neu, 1984; WASA, 1998; Gulev and
6196	Grignorieva, 2004). Fewer investigations have examined the climate controls on the
6197	storms and waves in the North Pacific, and with less positive conclusions (Graham and
6198	Diaz, 2001; Gulev and Grignorieva, 2004). In particular, definite conclusions have not
6199	been reached concerning the climate factor producing the progressive increase seen in
6200	wave heights, apparently extending at least back to the 1960s. However, Wang et al.
6201	(2007) indicate that anthropogenically forced circulation change may have been an
6202	important factor in changes of significant wave heights.
6203	
6204	A definite control on the wave conditions experienced along the west coast of North

America is occurrences of major El Niños such as those in 1982-83 and 1997-98. Both of

6206 these events in particular brought extreme wave conditions to south-central California,

attributed primarily to the more southerly tracks of the storms compared with non-El

6208 Niño years. Allan and Komar (2006) found a correlation between the winter-averaged

6209	wave heights measured along the west coast and the multivariate ENSO index (MEI),
6210	showing that while the greatest increase during El Niños takes place at the latitudes of
6211	south-central California, some increase occurs along the entire west coast, evidence that
6212	the storms are stronger as well as having followed more southerly tracks. The wave
6213	climates of the west coast therefore have been determined by the decadal increase found
6214	by Allan and Komar (2000, 2006), but further enhanced during occurrences of major El
6215	Niños.
6216	
6217	3.2.6 Convective Storms
6218	Trenberth et al. (2005) point out that since the amount of moisture in the atmosphere is
6219	likely to rise much faster as a consequence of rising temperatures than the total
6220	precipitation, this should lead to an increase in the intensity of storms, offset by decreases
6221	in duration or frequency of events. Environmental conditions that are most likely
6222	associated with severe and tornadic thunderstorms have been derived from reanalysis
6223	data (Brooks et al. 2003b). Brooks and Dotzek (2007) applied those relationships to count
6224	the frequency of favorable environments for significant severe thunderstorms (hail of at
6225	least 5 cm diameter, wind gusts of at least 33 m s ⁻¹ , and/or a tornado of F2 or greater
6226	intensity) for the area east of the Rocky Mountains in the US for the period 1958-1999.
6227	The count of favorable environments decreased by slightly more than 1% per year from
6228	1958 until the early-to-mid 1970s, and increased by approximately 0.8% per year from
6229	then until 1999, so that the frequency was approximately the same at both ends of the
6230	analyzed period. They went on to show that the time series of the count of reports of very
6231	large hail (7 cm diameter and larger) shows an inflection at about the same time as the

6232	inflection in the counts of favorable environments. A comparison of the rate of increase
6233	of the two series suggested that the change in environments could account for
6234	approximately 7% of the change in reports from the mid-1970s through 1999, with the
6235	rest coming from non-meteorological sources.
6236	
6237	3.3 Projected Future Changes in Extremes, Their Causes, Mechanisms, and
6238	Uncertainties
6239	Projections of future changes of extremes are relying on an increasingly sophisticated set
6240	of models and statistical techniques. Studies assessed in this section rely on multi-
6241	member ensembles (3 to 5 members) from single models, analyses of multi-model
6242	ensembles ranging from 8 to 15 or more AOGCMs, and a perturbed physics ensemble
6243	with a single mixed layer model with over 50 members. The discussion here is intended
6244	to identify the characteristics of changes of extremes in North America and set in the
6245	broader global context.
6246	
6247	3.3.1 Temperature
6248	The IPCC Third Assessment Report concluded there was a very likely risk of increased
6249	high temperature extremes (and reduced risk of low temperature extremes), with more
6250	extreme heat episodes in a future climate. This latter result has been confirmed in
6251	subsequent studies (e.g., Yonetani and Gordon, 2001). An ensemble of more recent
6252	global simulations projects marked increase in the frequency of very warm daily-
6253	temperature minima (Fig. 3.1a). Kharin and Zwiers (2005) show in a single model that
6254	future increases in temperature extremes follow increases in mean temperature over most

6255	of the world including North America. They show a large reduction in the wintertime
6256	cold temperature extremes in regions where snow and sea ice decrease due to changes in
6257	the effective heat capacity and albedo of the surface. They also show that summertime
6258	warm temperature extremes increase in regions where the soil dries due to a smaller
6259	fraction of surface energy used for evaporation. Furthermore, that study showed that in
6260	most instances warm-extreme changes are similar in magnitude to the increases in daily
6261	maximum temperature, but cold extremes shift to warmer temperatures faster than daily
6262	minimum temperatures, though this result is less consistent when model parameters are
6263	varied in a perturbed physics ensemble where there are increased daily temperature
6264	maxima for nearly the whole land surface. However, the range in magnitude of increases
6265	was substantial indicating a sensitivity to model formulations (Clark et al., 2006).
6266	
6267	Events that are rare could become more commonplace. Recent studies using both
6268	individual models (Kharin and Zwiers, 2005) and an ensemble of models (Wehner 2006,
6269	Kharin, et al 2007) show that events that currently reoccurr on average once every 20
6270	years (i.e., have a 5% chance of occurring in a given year) will become significantly more
6271	frequent over North America. For example, by the middle of the 21 st century, in
6272	simulations of the SRES A1B scenario, the recurrence period (or expected average
6273	waiting time) for the current 20-year extreme in daily average surface-air temperature
6274	reduces to three years over most of the continental United States and five years over most
6275	of Canada (Kharin, et al 2007). By the end of the century (Fig. 3.5a), the average
6276	reoccurrence time may further reduce to every other year or less (Wehner, 2006).
6277	

6278	Similar behavior occurs for seasonal average temperatures. For example, Weisheimer and
6279	Palmer (2005) examined changes in extreme seasonal (DJF and JJA) temperatures in 14
6280	models for 3 scenarios. They showed that by the end of 21 st century, the probability of
6281	such extreme warm seasons is projected to rise in many areas including North America.
6282	Over the North American region, an extreme seasonal temperature event that occurs 1 out
6283	of 20 years in the present climate becomes a 1 in 3 year event in the A2 scenario by the
6284	end of this century. This result is consistent with that from the perturbed physics
6285	ensemble of Clark et al. (2006) where, for nearly all land areas, extreme JJA temperatures
6286	were at least 20 times and in some areas 100 times more frequent compared to the control
6287	ensemble mean, making these changes greater than the ensemble spread.
6288	
6289	Others have examined possible future cold-air outbreaks. Vavrus et al. (2006) analysed 7
6290	AOGCMs run with the A1B scenario, and defined a cold air outbreak as 2 or more
6291	consecutive days when the daily temperatures were at least 2 standard deviations below
6292	the present-day winter-time mean. For a future warmer climate, they documented a
6293	decline in frequency of 50 to 100% in NH winter in most areas compared to present-day,
6294	with some of the smallest reductions occurring in western North America due to
6295	atmospheric circulation changes (blocking and ridging on West Coast) associated with
6296	the increase of GHGs.
6297	
6298	Several recent studies have addressed explicitly possible future changes in heat waves
6299	(very high temperatures over a sustained period of days), and found that in a future
6300	climate there is an increased risk of more intense, longer-lasting and more frequent heat

6301 waves (Meehl and Tebaldi, 2004; Schär et al., 2004; Clark et al., 2006). Meehl and 6302 Tebaldi (2004) related summertime heat waves to circulation patterns in the models and 6303 observations. They found that the more intense and frequent summertime heat waves 6304 over the southeast and western U.S. were related in part to base state circulation changes 6305 due to the increase in GHGs. An additional factor for extreme heat is drier soils in a 6306 future warmer climate (Brabson et al., 2005; Clark et al., 2006). The "Heat Index", a 6307 measure of the apparent temperature felt by humans that includes moisture influences, 6308 was projected in a GFDL model study to increase substantially more than the air 6309 temperature in a warming climate in many regions (Delworth et al. 1999). The regions 6310 most prone to this effect included humid regions of the tropics and summer hemisphere 6311 extratropics, including the Southeast U.S. and Caribbean. A multi-model ensemble showed that simulated heat waves increase during the latter part of the 20th century, and 6312 6313 are projected to increase globally and over most regions including North America 6314 (Tebaldi et al., 2006), though different model parameters can influence the range in the 6315 magnitude of this response (Clark et al., 2006). 6316 6317 Warm episodes in ocean temperatures can stress marine ecosystems, causing impacts 6318 such as coral bleaching (e.g., Liu et al. 2006). Key factors appear to be clear skies, low

- 6319 winds and neap tides occurring near annual maximum temperatures since they promote
- 6320 heating with little vertical mixing of warm waters with cooler, deeper layers (Strong et al.
- 6321 2006). At present, widespread bleaching episodes do not appear to be related to

6322 variability such as ENSO cycles (Arzayus and Skirving 2004) or Pacific Decadal

6323 Oscillation (Strong et al. 2006). The 2005 Caribbean coral bleaching event has been

6324	linked to warm ocean temperatures that appear to have been partially due to long-term
6325	warming associated with anthropogenic forcing and not a manifestation of unforced
6326	climate variability alone (Donner et al. 2007). Warming trends in the ocean increase the
6327	potential for temperatures to exceed thresholds for mass coral bleaching, and thus may
6328	greatly increase the frequency of bleaching events in the future, depending on the ability
6329	of corals and their symbionts to adapt to increasing water temperatures (see Donner et al.
6330	2007 and references therein).
6331	
6332	A decrease in diurnal temperature range in most regions in a future warmer climate was
6333	reported in Cubasch et al. (2001) and is substantiated by more recent studies (e.g., Stone
6334	and Weaver, 2002), which are assessed in the 2007 IPCC report (Meehl et al. 2007a,
6335	Christensen et al. 2007). However, noteworthy departures from this tendency have been
6336	found in the western portion of the US (particularly the Southwest), where increased
6337	diurnal temperature ranges occur in several regional (e.g., Bell et al. 2004, Leung et al.
6338	2004) and global (Christensen et al., 2007) climate-change simulations. Increased diurnal
6339	temperature range often occurs in areas that experience drying in the summer.
6340	

6341 3.3.2 Frost

6342 As the mean climate warms, the number of frost days are expected to decrease (Cubasch

6343 et al. 2001). Meehl et al (2004a) have shown that there would indeed be decreases in frost

6344 days in a future warmer climate in the extratropics, particularly along the northwest coast

of North America, with the pattern of the decreases dictated by the changes in

6346 atmospheric circulation from the increase in GHGs. Results from a multi-model ensemble

6347	show simulated and observed decreases in frost days for the 20 th century continuing into
6348	the 21 st century over North America and most other regions (Meehl et al. 2007a, Fig.
6349	3.1b). By then end of the 21 st century, the number of frost days averaged over North
6350	America has decreased by about 1 month in the 3 future scenarios considered here.
6351	
6352	In both the models and the observations, the number of frost days is decreasing over the
6353	20 th century (Fig. 3.1b). This decrease is generally related to warming climate, although
6354	the pattern of the warming and pattern of the frost-days changes (Fig. 3.2) are not well
6355	correlated. The decrease in the number of frost days per year is biggest in the Rockies
6356	and along the west coast of North America. The 21 st century frost day pattern of change
6357	is similar to the 20 th century pattern, just much larger in magnitude. In some places by
6358	2100, the number of frost days decrease by more than 2 months.
6359	
6360	These changes would have a large impact on biological activity both positive and
6361	negative (See chapter 1 for more discussion). An example of a positive change is that
6362	there would be increase in growing season length directly related to the decrease in frost
6363	days per year. A negative example is fruit trees, which need a certain number of frost
6364	periods per winter season to set their buds. In places, this threshold would no longer be
6365	exceeded. Note also that changes in wetness and CO ₂ content of the air would also impact
6366	the biological changes.
6367	
6368	

6370 **3.3.3 Growing Season Length**

6372 Northern Hemisphere, is growing season length as defined by Frich et al. (2002), and this

A quantity related to frost days in many mid and high latitude areas, particularly in the

- 6373 has been projected to increase in future climate in most areas (Tebaldi et al., 2006). This
- 6374 result is also shown in a multi-model ensemble where the simulated increase in growing
- 6375 season length in the 20th century continues into the 21st century over North America and
- 6376 most other regions (Meehl et al. 2007a, Fig. 3.1c). The growing season length has
- 6377 increased by about 1 week over the 20th century when averaged over all of North
- 6378 America in the models and observations. By the end of the 21st century, the growing
- 6379 season is on average more than 2 weeks longer than present day. (For more discussion on

6380 the reasons these changes are important, see chapter 1)

6381

6371

6382 3.3.4 Snow Cover and Sea Ice

6383 Warming generally leads to reduced snow and ice cover (Meehl et al. 2007a). Reduction 6384 in perennial sea ice may be large enough to yield a summertime, ice-free Arctic Ocean by the end of the 21st century (Arzel et al. 2006; Zhang and Walsh 2006). Summer Arctic 6385 6386 Ocean ice also may undergo substantial, decadal-scale abrupt changes rather than smooth 6387 retreat (Holland et al. 2006). The warming may also produce substantial reduction in the 6388 duration of seasonal ice in lakes across Canada and the U.S. (Hodgkins et al. 2002, Gao 6389 and Stefan 2004, Williams et al. 2004, Morris et al. 2005) and in rivers (Hodgkins et al. 6390 2003, Huntington et al. 2003). Reduced sea ice in particular, may produce more strong 6391 storms over the ocean (Section 3.3.10). Reduced lake ice may alter the occurrence of 6392 heavy lake-effect snowfall (Section 3.3.8). The annual cycle of snow cover and river

runoff may be substantially altered in western U.S. basins (Miller et al. 2003, Leung et al.
2004), affecting water-resource management and potentially exacerbating the impacts of
droughts.

6396

6397 3.3.5 Precipitation

6398 Climate models continue to confirm the earlier results that in a future climate warmed by 6399 increasing GHGs, precipitation intensity (i.e., precipitation amount per event) is projected 6400 to increase over most regions (Wilby and Wigley, 2002; Kharin and Zwiers, 2005; Meehl et al., 2005a; Barnett et al., 2006), and the increase of precipitation extremes is greater 6401 6402 than changes in mean precipitation (Kharin and Zwiers, 2005). Rare events precipitation 6403 events could become more commonplace in North America (Wehner, 2006, Kharin et al. 2007). For example, by the middle of the 21st century, in simulations of the SRES A1B 6404 6405 scenario, the recurrence period (or expected average waiting time) for the current 20-year 6406 extreme in daily total precipitation reduces to between 12 and 15 years over much of 6407 North America (Kharin, et al 2007). By the end of the century (Fig. 3.5b), the expected 6408 average reoccurrence time may further reduce to every six to eight years (Wehner, 2006, 6409 Kharin, et al 2007). Note the area of little change in expected average reoccurrence time 6410 in the central United States in Fig. 3.5b. 6411

6412 As discussed in section 3.2.3 of this chapter and in Hegerl et al. (2007), the substantial

6413 increase in precipitation extremes is related to the fact that the energy budget of the

6414 atmosphere constrains increases of large-scale mean precipitation, but extreme

6415 precipitation responds to increases in moisture content and thus the nonlinearities

6416	involved with the Clausius-Clapeyron relationship. This behavior means that for a given
6417	increase in temperature, increases in extreme precipitation can be relatively larger than
6418	the mean precipitation increase (e.g., Allen and Ingram, 2002), so long as the character of
6419	the regional circulation does not change substantially (Pall et al., 2007). Additionally,
6420	timescale can play a role whereby increases in the frequency of seasonal mean rainfall
6421	extremes can be greater than the increases in the frequency of daily extremes (Barnett et
6422	al., 2006). The increase of mean and extreme precipitation in various regions has been
6423	attributed to contributions from both dynamic (circulation) and thermodynamic (moisture
6424	content of the air) processes associated with global warming (Emori and Brown, 2005)
6425	although the precipitation mean and variability changes are largely due to the
6426	thermodynamic changes over most of North America. Changes in circulation also
6427	contribute to the pattern of precipitation intensity changes over northwest and northeast
6428	North America (Meehl et al., 2005a). Kharin and Zwiers (2005) showed that changes to
6429	both the location and scale of the extreme value distribution produced increases of
6430	precipitation extremes substantially greater than increases of annual mean precipitation.
6431	An increase in the scale parameter from the gamma distribution represents an increase in
6432	precipitation intensity, and various regions such as the Northern Hemisphere land areas in
6433	winter showed particularly high values of increased scale parameter (Semenov and
6434	Bengtsson, 2002; Watterson and Dix, 2003). Time slice simulations with a higher
6435	resolution model ($\sim 1^{\circ}$) show similar results using changes in the gamma distribution,
6436	namely increased extremes of the hydrological cycle (Voss et al., 2002).
6437	

6439 **3.3.6 Flooding and Dry Days**

6440 Changes in the precipitation extremes have a large impact on both flooding and the
6441 number of precipitation free days. The discussion of both is combined because their
6442 changes are related, in spite of the apparent contradiction.

6443

6444 A number of studies have noted that increased rainfall intensity may imply increased

flooding. McCabe et al. (2001) and Watterson (2005) showed there was an increase in

6446 extreme rainfall intensity in extratropical surface lows, particularly over Northern

6447 Hemisphere land. However, analyses of climate changes from increased greenhouse

6448 gases gives mixed results, with increased or decreased risk of flooding depending on the

6449 model analyzed (Arora and Boer 2001, Milly et al. 2002, Voss et al. 2002).

6450

6451 Global and North American averaged time series of the Frich et al. (2002) indices in the

6452 multi-model analysis of Tebaldi et al. (2006) show simulated increases in heavy

6453 precipitation during the 20^{th} century continuing through the 21^{st} century (Meehl et al.

6454 2007a, Fig. 3.1d), along with a somewhat weaker and less consistent trend for increasing

6455 dry periods between rainfall events for all scenarios (Meehl et al. 2007a). Part of the

6456 reason for these results is that precipitation intensity increases almost everywhere, but

6457 particularly at mid and high latitudes, where mean precipitation increases (Meehl et al.,

6458 2005a).

6459

6460 There are regions of increased runs of dry days between precipitation events in the

subtropics and lower midlatitudes, but a decreased number of consectutive dry days at

6462	higher midlatitudes and high latitudes where mean precipitation increases. Since there are
6463	areas of both increases and decreases of consecutive dry days between precipitation
6464	events in the multi-model average, the global mean trends are smaller and less consistent
6465	across models. Consistency of response in a perturbed physics ensemble with one model
6466	shows only limited areas of increased frequency of wet days in July, and a larger range of
6467	changes of precipitation extremes relative to the control ensemble mean in contrast to the
6468	more consistent response of temperature extremes (discussed above), indicating a less
6469	consistent response for preciptitation extremes in general compared to temperature
6470	extremes (Barnett et al., 2006).
6471	
6472	Associated with the risk of drying is a projected increase in chance of intense
6473	precipitation and flooding. Though somewhat counter-intuitive, this is because
6474	precipitation is projected to be concentrated into more intense events, with longer periods
6475	of little precipitation in between. Therefore, intense and heavy episodic rainfall events
6476	with high runoff amounts are interspersed with longer relatively dry periods with
6477	increased evapotranspiration, particularly in the subtropics (Frei et al., 1998; Allen and
6478	Ingram, 2002; Palmer and Räisänen, 2002; Christensen and Christensen, 2003; Beniston,
6479	2004; Christensen and Christensen, 2004; Pal et al., 2004; Meehl et al., 2005a). However,
6480	increases in the frequency of dry days do not necessarily mean a decrease in the
6481	frequency of extreme high rainfall events depending on the threshold used to define such
6482	events (Barnett et al., 2006). Another aspect of these changes has been related to the
6483	mean changes of precipitation, with wet extremes becoming more severe in many areas
6484	where mean precipitation increases, and dry extremes becoming more severe where the

6485	mean precipitation decreases (Kharin and Zwiers, 2005; Meehl et al., 2005a; Räisänen,
6486	2005a; Barnett et al., 2006). However, analysis of a 53-member perturbed-physics
6487	ensemble indicates that the change in the frequency of extreme precipitation at an
6488	individual location can be difficult to estimate definitively due to model parameterization
6489	uncertainty (Barnett et al., 2006).
6490	
6491	3.3.7 Drought
6492	A long-standing result from global coupled models noted in Cubasch et al. (2001) has
6493	been a projected increase of summer drying in the midlatitudes in a future warmer
6494	climate, with an associated increased risk of drought. The more recent generation of
6495	models continues to show this behavior (Burke et al., 2006; Meehl et al., 2006b, 2007a;
6496	Rowell and Jones, 2006). For example, Wang (2005) analyzed 15 recent AOGCMs to
6497	show that in a future warmer climate, the models simulate summer dryness in most parts
6498	of northern subtropics and midlatitudes, but there is a large range in the amplitude of
6499	summer dryness across models. Hayhoe et al. (2007) found in an ensemble of AOGCMs
6500	an increased frequency of droughts lasting a month or longer in the northeastern U.S.
6501	Droughts associated with summer drying could result in regional vegetation die-offs
6502	(Breshears et al., 2005) and contribute to an increase in the percentage of land area
6503	experiencing drought at any one time. For example, extreme drought increases from 1%
6504	of present day land area (by definition) to 30% by the end of the century in the Hadley
6505	Centre AOGCM's A2 scenario (Burke et al., 2006). Drier soil conditions can also
6506	contribute to more severe heat waves as discussed above (Brabson et al., 2005).
6507	
6508	A recent analysis of Milly et al. (2005) shows that several AOGCMs project greatly
------	--
6509	reduced annual water availability over the southwest US and northern Mexico in the
6510	future (Fig. 3.6). In the historical context, this area is subject to very severe and long
6511	lasting droughts (Cook et al. 2004). The tree-ring record indicates that the late 20 th
6512	century was a time of greater than normal water availability. However, the consensus of
6513	most climate models is for a reduction of cool season precipitation across the Southwest
6514	and northwest Mexico (Christensen et al., 2007). This is consistent with a recent 10-year
6515	shift to shorter and weaker winter rainy seasons and an observed northward shift in
6516	northwest Pacific winter storm tracks (Yin, 2005). Reduced cool season precipitation
6517	promotes drier summer conditions by reducing the amount of soil water available for
6518	evapotranspiration in summer.
6519	
6520	The model projections of reduced water availability over the southwest US and Mexico
6521	in the future needs further study. The uncertainty associated with these projections is
6522	related to the ability of models to simulate the precipitation distribution and variability in
6523	the present climate and to correctly predict the response to future changes. For example,

- the uncertainty associated with the ENSO response to climate change (Zelle et al. 2005,
- 6525 Meehl et al. 2007a) also impacts the projections of future water availability in southwest
- US and northern Mexico (e.g., Meehl and Tebaldi 2007). See Chapter 1 for more
- 6527 discussion on the importance of drought.

- 6529
- 6530

6531 3.3.8 Snowfall

6532 Extreme snowfall events could change as a result of both precipitation and temperature 6533 change. Although reductions in North American snow depth and areal coverage have 6534 been projected (Frei and Gong, 2005; Bell and Sloan, 2006; Déry and Wood, 2006), there 6535 appears to be little analysis of changes in extreme snowfall. An assessment of possible 6536 future changes in heavy lake-effect snowstorms (Kunkel et al. 2002) from the Laurentian 6537 Great Lakes found that surface air temperature increases are likely to be the dominant 6538 factor. They examined simulations from 2 different climate models and found that 6539 changes in the other factors favorable for heavy snow events were relatively small. In the 6540 snowbelts south of Lakes Ontario, Erie and Michigan, warming decreases the frequency 6541 of temperatures in the range of -10 °C to 0 °C that is favorable for heavy lake-effect 6542 snowfall. Thus, decreases in event frequency are likely in these areas. However, in the 6543 northern, colder snowbelts of the Great Lakes, such as the Upper Peninsula of Michigan, 6544 moderate increases in temperature have minor impacts on the frequency of favorable 6545 temperatures because in the present climate temperatures are often too cold for very 6546 heavy snow; warming makes these days more favorable, balancing the loss of other days 6547 that become too warm. Thus, the future frequency of heavy events may change little in 6548 the northern snowbelts.

6549

Increased temperature suggests that heavy snow events downwind of the Great Lakes will
begin later in the season, and on most lakes end earlier. Also, increased temperature with
concomitant increased atmospheric moisture implies that in central and northern Canada,

Alaska, and other places cold enough to snow (e.g., high mountains) the intensity ofheavy snow events may increase.

6555

6556 **3.3.9 Tropical Storms**

6557 3.3.9.1 Introduction

In response to future anthropogenic climate warming (IPCC 2001) tropical cyclones

6559 could potentially change in a number of important ways, including frequency, intensity,

6560 size, duration, tracks, area of genesis or occurrence, precipitation, and storm surge

6561 characteristics.

6562

6563 Overarching sources of uncertainty in future projections of hurricanes include

6564 uncertainties in future emission scenarios for climatically important radiative forcings,

6565 global-scale climate sensitivity to these forcings and the limited capacity of climate

models to adequately simulate intense tropical cyclones. The vulnerability to storm surge

flooding from future hurricanes will very likely be enhanced to some degree due to

6568 continuing global sea level rise associated with anthropogenic warming, modulated by

6569 local sea level changes due to other factors such as local land elevation changes and

6570 regionally varying sea level rise patterns. These related topics are covered in more detail

6571 in other CCSP Synthesis and Assessment Products 2-1, 3-2, and 4-1, or IPCC Fourth

6572 Assessment Report chapters on climate sensitivity, future emission scenarios, and sea

6573 level rise. An assessment of the state of understading of tropical cyclones and climate

6574 change as of 2006 has been prepared by the tropical cyclone community (IWTC VI,

6575 2006; section 3.2.4 of this document). Although not published in the literature as yet, the

- 6576 full summary statement and condensed summary are available online at
- 6577 http://www.wmo.ch/web/arep/arep-home.html.
- 6578

6579 Future projections of hurricanes will depend upon not only on global mean climate

- 6580 considerations, but also on regional-scale projections of a number of aspects of climate
- that can potentially affect tropical cyclone behavior. These include:
- The local potential intensity (Emanuel 2005a; 2006a, Holland 1997), which
 depends on sea surface temperatures, atmospheric temperature and moisture
 profiles, and near-surface ocean temperature stratification;
- Influences of vertical wind shear, large-scale vorticity, and other circulation
 features (Gray 1968; 1984; Goldenberg et al. 2001; Bell and Chelliah 2006); and,
- The characteristics of precursor disturbances such as easterly waves and their
 interaction with the environment (Dunn 1940, Frank and Clarke 1980, Pasch et al
 1998, Thorncroft and Hodges 2001).

6590 Details of future projections in regions remote from the tropical storm basin in question

- may also be important. For example, El Nino fluctuations in the Pacific influence
- Atlantic basin hurricane activity (Chapter 2, Section 3.2 of this chapter). West African
- monsoon activity has been correlated with Atlantic hurricane activity (Gray 1990), as

have African dust outbreaks (Evans et al. 2006). Zhang and Delworth (2006) show how a

- 6595 warming of the northern tropical Atlantic SST relative to the southern tropical Atlantic
- 6596 produces atmospheric circulation features, such as reduced vertical wind shear of the
- 6597 mean wind field, that are correlated with low-frequency variations in major hurricane
- 6598 activity (Goldenberg et al. 2001).

6600	The high sensitivity of tropical storm and hurricane activity in the Atlantic basin to
6601	modest environmental variations suggests the possibility of strong sensitivity of hurricane
6602	activity to anthropogenic climate change, though the nature of such changes remains to
6603	be determined. Confidence in any future projections of anthropogenic influence on
6604	Atlantic hurricanes will depend on the reliability of future projections of the local
6605	thermodynamic state (e.g., potential intensity) as well as circulation changes driven by
6606	both local and remote influences, as described above. Projected effects of global warming
6607	on El Niño remain uncertain (Timmermann, 1999; Zelle et al., 2005; Meehl et al. 2007a).
6608	There is climate model-based evidence that the time-mean climate late in the 21 st century
6609	will be characterized by higher tropical-cyclone potential intensity in most tropical-
6610	cyclone regions, and also tend toward having a decreased east-west overturning
6611	circulation in the Pacific sector in the 21 st century, with likely consequences for vertical
6612	wind shear and other characteristics in the tropical Atlantic (Vecchi and Soden 2007).
6613	
6614	Even assuming that the climate factors discussed above can be projected accurately,
6615	additional uncertainties in hurricane future projections arise from uncertainties in
6616	understanding and modeling the response of hurricanes to changing environmental
6617	conditions. This is exacerbated by projections that the large-scale conditions for some
6618	factors, such as decadal means and seasonal extremes of SSTs, will be well outside the
6619	range of historically experienced values. This raises questions of the validity of statistical
6620	models trained in the present day climate (Ryan et al. 1992; Royer et al. 1998), thus the
6621	emphasis here is placed on physical models and inferences as opposed to statistical

6622 methods and extrapolation. Thus, we consider projections based on global and regional 6623 nested modeling frameworks as well as more idealized modeling or theoretical 6624 frameworks developed specifically for hurricanes. The idealized approaches include 6625 potential intensity theories as well as empirical indices which attempt to relate tropical 6626 cyclone frequency to large-scale environmental conditions. Global and regional nested 6627 models simulate the development and life cycle of tropical storm-like phenomena that are 6628 typically much weaker and with a larger spatial scale than observed tropical cyclones. 6629 These model storms are identified and tracked using automated storm tracking 6630 algorithms, which typically differ in detail between studies but include both intensity and 6631 "warm-core" criteria which must be satisfied. Models used for existing studies vary in 6632 horizontal resolution, with the low-resolution models having a grid spacing of about 300 6633 km, medium resolution with grid spacing of about 120 km, and high resolution with grid 6634 spacing of 20-50 km.

6635

6636 3.3.9.2 Tropical Cyclone Intensity

6637 Henderson-Sellers et al. (1998), in an assessment of tropical cyclones and climate 6638 change, concluded that the warming resulting from a doubling of CO_2 would cause the 6639 potential intensity of tropical cyclones to remain the same or increase by 10 to 20%. 6640 (Their estimate was given in terms of central pressure fall; all other references to intensity 6641 in this section will refer to maximum surface winds, except where specifically noted 6642 otherwise.) They also noted limitations of the potential intensity theories, such as sea 6643 spray influences and ocean interactions. Further studies using a high resolution hurricane 6644 prediction model for case studies or idealized experiments under boundary conditions

6645	provided from high CO ₂ conditions (Knutson et al. 1998; Knutson and Tuleya 1999;
6646	2004; 2007) have provided additional model-based evidence to support these theoretical
6647	assessments. For a CO ₂ -induced tropical SST warming of 1.75C, they found a 14%
6648	increase in central pressure fall (Fig. 3.7) and a 6% increase in maximum surface wind or
6649	a maximum wind speed sensitivity of about 4% per degree Celsius (Knutson and Tuleya
6650	2007). In a related study, Knutson et al. (2001) demonstrated that inclusion of an
6651	interactive ocean in their idealized hurricane model did not significantly affect the
6652	percentage increase in hurricane intensity associated with CO2-induced large-scale SST
6653	warming. Caveats to these idealized studies are the simplified climate forcing (CO ₂ only
6654	versus a mixture of forcings in the real world) and neglect of potentially important factors
6655	such as vertical wind shear and changes in tropical cyclone distribution.
6656	

Global climate model experiments have historically been performed at resolutions which 6658 precluded the simulation of realistic hurricane intensities (e.g., major hurricanes). To 6659 date, the highest resolution tropical cyclone/climate change experiment published is that 6660 of Oouchi et al. (2006). Under present climate conditions, they simulated tropical 6661 cyclones with central pressures as low as about 935 hPa and surface wind speeds as high 6662 as about 53 m/sec. Oouchi et al. report a 14% increase in the annual maximum tropical 6663 cyclone intensity globally and a 20% increase in the Atlantic, both in response to a 6664 greenhouse-warming experiment with global SSTs increasing by about 2.5°C. A notable 6665 aspect of their results is the finding that the occurrence rate of the most intense storms 6666 increased despite a large reduction in the global frequency of tropical cyclones. 6667 Statistically significant intensity increases in their study were limited to two of six basins

6668	(North Atlantic and South Indian Ocean). Bengtsson et al. (2007) also find a slightly
6669	reduced tropical storm frequency in the Atlantic coupled with an increase in the
6670	intensities (measured in terms of relative vorticity) of the most intense storms. The latter
6671	finding only became apparent at relative high model resolution (~30-40 km grid).
6672	
6673	Other studies using comparatively lower resolution models have reported tropical-
6674	cyclone intensity results. However, the simulated response of intensity to changes in
6675	climate in lower resolution models may not be reliable as they have not been able to
6676	simulate the marked difference in achievable tropical-cyclone intensities for different
6677	SST levels (e.g., Yoshimura et al. 2006) as documented for observed tropical cyclones
6678	(DeMaria and Kaplan 1994; Whitney and Hobgood 1997; Baik and Paek 1998). Given
6679	this important caveat, the lower resolution model results for intensity are mixed: Tsutsui
6680	(2002) and McDonald et al. (2005) report intensity increases under warmer climate
6681	conditions, while Sugi et al. (2002), Bengtsson et al. (2006), and Hasegawa and Emori
6682	(2005; western North Pacific only), and Chauvin et al. (2006; North Atlantic only) found
6683	either no increase or a decrease of intensity.
6684	

- 6685 Vecchi and Soden (2007) present maps of projected late 21st century changes in
- 6686 Emanuel's potential intensity, vertical wind shear, vorticity, and mid-tropospheric
- relative humidity as obtained from the latest (IPCC AR4, 2007) climate models (Fig.
- 6688 3.8). While their results indicate an increase in potential intensity in most tropical cyclone
- 6689 regions, the Atlantic basin in particular displays a mixture with about two-thirds of the
- area showing increases and about one-third slight decreases. In some regions, they also

6691	found a clear tendency for increased vertical wind shear and reduced mid-tropospheric
6692	relative humidity – factors that are detrimental for tropical storm development. In the
6693	Gulf of Mexico and closer to the U.S. and Mexican coasts the potential intensity
6694	generally increases. The net effect of these composite changes remains to be modelled in
6695	detail, although existing global modelling studies (Oouchi et al. 2006; Bengtsson et al.
6696	2007) suggest increases in the intensities and frequencies of the strongest storms. In the
6697	Eastern Pacific, the potential intensity is predicted to increase across the entire basin,
6698	although the vertical wind shear increases may counteract this to some extent.
6699	
6700	A more recent idealized calculation by Emanuel et al. (2006) finds that artificially
6701	increasing the modelled potential intensity by 10% leads to a marked increase in the
6702	occurrence rate of relatively intense hurricanes (Fig. 3.9a), and to a 65% increase in the
6703	PDI. Increasing vertical wind shear by 10% leads to a much smaller decrease in the
6704	occurrence rate of relatively intense hurricanes (Fig. 3.9b) and a 12% reduction in the
6705	PDI. This suggests that increased potential intensity in a CO ₂ -warmed climate implies a
6706	much larger percentage change in potential destructiveness of storms from wind damage
6707	than the percentage change in wind speed itself.
6708	

6709 In summary, theory and high-resolution idealized models indicate increasing intensity

6710 and frequency of the strongest hurricanes/typhoons in a CO₂-warmed climate. Parts of the

6711 Atlantic basin may have small decreases in the upper limit intensity, according to one

6712 multi-model study of theoretical potential intensity. Expected changes in tropical cyclone

6713 intensity and their confidence is therefore assessed as follows: in the Atlantic and North

6714	Pacific basins, some increase of maximum surface wind speeds of the strongest
6715	hurricanes and typhoons is likely. We estimate the likely range for the intensity change
6716	(in terms of maximum surface winds) to be $+2\%$ to $+10\%$ per degree Celsius tropical sea
6717	surface warming over most tropical storm regions. This range is based on our subjective
6718	judgement that the likely range is from about half to twice the sensitivity found in current
6719	hurricane models and theory. Furthermore, the balance of evidence suggests that
6720	maximum intensities may decrease in some regions, particularly in parts of the Atlantic
6721	basin, even though sea surfaces are expected to warm in all regions.
6722	
6723	This assessment assumes that there is no change in geographical distribution of the
6724	storms (i.e. the storms move over the same locations, but with a generally warmer
6725	climate). On the other hand, there is evidence (Holland and Webster 2007a) that changes
6726	in distribution (e.g. tropical-cyclone development occurring more equatorward, or
6727	poleward of present day) have historically been associated with large changes in the
6728	proportion of major hurricanes. It is uncertain how such distributions will change in the
6729	future (see below), but such changes potentially could strongly modify the projections
6730	reported here.

6732 **3.3.9.3 Tropical Cyclone Frequency and Area of Genesis**

6733 In contrast to the case for tropical-cyclone intensity, the existing theoretical frameworks6734 for relating tropical-cyclone frequency to global climate change are relatively less well-

6735 developed. Gray (1979) developed empirical relationships that model the geographical

6736 variation of tropical-cyclone genesis in the present climate relatively well, but several

6737 investigators have cautioned against the use of these relationships in a climate change 6738 context (Ryan et al. 1992, Royer et al. 1998). Royer et al. proposed a modified form of 6739 the Gray relationships based on a measure of convective rainfall as opposed to SST or 6740 oceanic heat content, but this alternative has not been widely tested. They showed that 6741 tropical-cyclone frequency results for a future climate scenario depended strongly on 6742 whether the modified or unmodified genesis parameter approach was used. More 6743 recently, Emanuel and Nolan (2004) and Nolan et al. (2006) have developed a new 6744 empirical scheme designed to be more appropriate for climate change application (see 6745 also Camargo et al. 2006), but tropical-cyclone frequency/climate change scenarios with 6746 this framework have not been published to date. 6747

6748 Vecchi and Soden (2007) have assessed the different components of the Emanuel and 6749 Nolan (2004) scheme using outputs from the IPCC AR4 models. Their results suggest 6750 that a decrease in tropical cyclone frequency may occur over some parts of the Atlantic 6751 basin associated with a SW-NE oriented band of less favorable conditions for tropical 6752 cyclogenesis and intensification, including enhanced vertical wind shear, reduced mid-6753 tropospheric relative humidity, and slight decrease in potential intensity. The enhanced 6754 vertical shear feature (present in about 14 of 18 models in the Caribbean region) also 6755 extends into the main cyclogenesis region of the Eastern Pacific basin. Physically, this 6756 projection is related to the weakening of the east-west oriented Walker Circulation in the 6757 Pacific region, similar to that occurring during El Nino events. During El Nino conditions 6758 in the present-day climate, hurricane activity is reduced, as occurred for example in the 6759 latter part of the 2006 season. While this projection may appear at odds with

6760	observational evidence for an increase in Atlantic tropical storm counts during the past
6761	century (Holland and Webster 2007a; Vecchi and Knutson 2007), there is evidence that
6762	this has occurred in conjunction with a regional decreasing trend in storm occurrence and
6763	formation rates in the western part of the Caribbean and Gulf of Mexico (Vecchi and
6764	Knutson 2007; Holland 2007). Earlier, Knutson and Tuleya (2004) had examined the
6765	vertical wind shear of the zonal wind component for a key region of the tropical Atlantic
6766	basin using nine different coupled models from the CMIP2+ project. Their analysis
6767	showed a slight preference for increased vertical shear under high CO2 conditions if all
6768	of the models are considered, and a somewhat greater preference for increased shear if
6769	only the six models with the most realistic present-day simulation of shear in the basin
6770	are considered. Note that these studies are based on different sets of models, and that a
6771	more idealized future forcing scenario was used in the earlier Knutson and Tuleya study.
6772	

6773 Alternative approaches to the empirical analysis of large-scale fields are the global and 6774 regional climate simulations, in which the occurrence of model tropical cyclones can be 6775 tracked. Beginning with the early studies of Broccoli and Manabe (1990), Haarsma et al. 6776 (1993), and Bengtsson et al. (1996), a number of investigators have shown that global 6777 models can generate tropical storm-like disturbances in roughly the correct geographical 6778 locations with roughly the correct seasonal timing. The annual occurrence rate of these 6779 systems can be quite model dependent (Camargo et al. 2005) and is apparently sensitive 6780 to various aspects of model physics (e.g., Vitart et al. 2001).

6782	The notion of using global models to simulate the climate change response of tropical
6783	cyclone counts is given some support by several studies showing that such models can
6784	successfully simulate certain aspects of interannual to interdecadal variability of tropical-
6785	cyclone occurrence seen in the real world (Vitart et al. 1997; Carmargo et al. 2005; Vitart
6786	and Anderson 2001). A recent regional model dynamical downscaling study (Knutson et
6787	al. 2007) with an18 km grid model, and a more idealized modelling approach (Emanuel
6788	et al. 2007) both indicate that the increase in hurricane activity in the Atlantic from 1980-
6789	2005 can be reproduced in a model using specified SSTs and large-scale historical
6790	atmospheric information from reanalyses.
6791	
6792	Since tropical storms are relatively rare events and can exhibit large interannual to
6793	interdecadal variability, large samples sizes (i.e. many seasons) are typically required to
6794	test the significance of any changes in a model simulation against the model's "natural
6795	variability".
6796	
6797	The most recent future projection results obtained from medium and high resolution (120
6798	km-20 km) GCMs are summarized in Table 3.2. Among these models, the higher
6799	resolution ones indicate a consistent signal of fewer tropical cyclones globally in a
6800	warmer climate, while two lower resolution models find essentially no change. There are,
6801	however, regional variations in the sign of the changes, and these vary substantially
6802	between models (Table 3.2). For the North Atlantic in particular, more tropical storms are
6803	projected in some models, despite a large reduction globally (Sugi et al. 2002; Oouchi et
6804	al. 2006), while fewer Atlantic tropical cyclones are projected by other models (e.g.,

6805 McDonald et al. 2005; Bengtsson et al. 2007). It is not clear at present how the Sugi et al. 6806 (2002) and Oouchi et al. (2006) results for the Atlantic reconciles with the tendency for 6807 increased vertical wind shear projected for parts of that basin by most recent models 6808 (Vecchi and Soden 2007). For example, Oouchi et al. (2006) did not analyze how 6809 Atlantic vertical wind shear changed in their warming experiment. However, their results 6810 suggest that a future increase in tropical cyclone frequency in the Atlantic is at least 6811 plausible, based on current models. Chauvin et al. (2006) and Emanuel et al. (2007) find, 6812 in multi-model experiments, that the sign of the changes in tropical cyclone frequency in 6813 the north Atlantic basin depends on the climate model used. All of these results cited 6814 here should be treated with some caution, as it is not always clear that these changes are 6815 greater than the model's natural variability, or that the natural variability or the tropical-6816 cyclone genesis process are being properly simulated in the models. 6817

From the above summarized results, it is not clear that current models provide a confident assessment of even the sign of change of tropical storm frequency in the Atlantic, East Pacific, or Northwest Pacific basins. From an observational perspective, recent studies (Chapter 2) report that there has been a long term increase in Atlantic tropical-cyclone counts since the late 1800s, although the magnitude and in some cases statistical significance of the trend depends on adjustments for missing storms early in the record.

6824

6825 Based on the above available information, we assess that it is unknown how late 21^{st}

6826 century tropical cyclone frequency in the Atlantic and North Pacific basins will change,

6827 compared to the historical period (~1950-2006).

6828 **3.3.9.4 Tropical Cyclone Precipitation**

The notion the tropical cyclone precipitation rates could increase in a warmer climate is 6830 based on the hypothesis that moisture convergence into tropical cyclones will be

- 6831 enhanced by the increased column integrated water vapor – with the increased water
- 6832 vapor being extremely like to accompany a warming of tropical SSTs. The increased
- 6833 moisture convergence would then be expected to lead to enhanced precipitation rates.
- 6834 This mechanism has been discussed in the context of extreme precipitation in general by
- 6835 Trenberth (1999), Allen and Ingram (2002), and Emori and Brown (2005). In contrast to
- 6836 the near-storm or storm core precipitation rate, accumulated rainfall at a locality along the
- 6837 storm's path is strongly dependent upon the speed of the storm, and there is little
- 6838 guidance at present on whether any change in this factor is likely in a future warmed

6839 climate.

6840

6841 An enhanced near-storm tropical rainfall rate for high CO2 conditions has been 6842 simulated, for example, by Knutson and Tuleya (2004, 2007) based on an idealized 6843 version of the GFDL hurricane model. The latter study reported an increase of 21.6% for 6844 a 1.75°C tropical SST warming (Fig. 3.10), or about 12% per degree Celsius SST 6845 increase. Using a global model, Hasegawa and Emori (2005) found an increase in 6846 tropical-cyclone-related precipitation in a warmer climate in the western North Pacific 6847 basin, despite a decrease in tropical-cyclone intensity there in their model. Chauvin et al 6848 (2006) found a similar result in the North Atlantic in their model, and Yoshimura et al. 6849 (2006) found a similar result on a global domain. There are issues with all of these 6850 modelling studies as they are of course resolution and thus generally depend on

6851	parameterization of much of the rainfall within the grid box. Further there is a tendency
6852	towards tropical cyclone rainfall simulations that have a high bias in core rainfall rates
6853	(e.g. Marchok et al. 2007). Nevertheless, the consistent result of an increased rainfall with
6854	greenhouse warming over a number of models, together with the theoretical expectations
6855	that this will occur lends credibility to there being a real trend.
6856	
6857	Based on the modeling studies to date, the relatively straightforward proposed physical
6858	mechanism, and the observed increases in extremely heavy rainfall in the U.S. (although
6859	not established observationally for hurricane-related rainfall (Groismann et al. 2004)) we
6860	assess the projections that hurricane related rainfall (per storm) will increase in the 21 st
6861	century as likely. Note that if the frequency of tropical cyclones decreases, the total
6862	rainfall from tropical cyclones may decrease. The expected general magnitude of the
6863	change for storm core rainfall rates is about +6% to +18% per degree Celsius increase in
6864	tropical sea surface temperature.
6865	
6866	3.3.9.5 Tropical Cyclone Size, Duration, Track, Storm Surge, and Regions of
6867	Occurrence
6868	In this section, other possible impacts of greenhouse gas induced climate warming on
6869	tropical cyclones are briefly assessed. The assessment is highly preliminary and the
6870	discussion for these relatively brief owing to the lack of detailed studies on these possible
6871	impacts at this time.
6872	

Wu and Wang (2004) explored the issue of tropical cyclone track changes in a climate
change context. Based on experiments derived from one climate model, they found some
evidence for inferred track changes in the NW Pacific, although the pattern of changes
was fairly complex.

6877

6878 Concerning storm duration, using an idealized hurricane simulation approach in which

the potential intensity of a large sample of Atlantic basin storms with synthetically

6880 generated storm tracks was artificially increased by 10%, Emanuel (2006b) found that the

average storm lifetime of all storms increased by only 3%, whereas the average duration

at hurricane intensity for those storms that attained hurricane intensity increased by 15%.

6883 However, in the Atlantic and NE Pacific, future changes in duration are quite uncertain,

6884 owing to the uncertainties in formation locations and potential circulation changes

6885 mentioned previously.

6886

Few studies have attempted to assess possible future changes in hurricane size. Knutson
and Tuleya (1999) noted that the radius of hurricane-force winds increased a few percent
in their experiments in which the intensities also increased a few percent.

6890

6891 An important question for regions along the periphery of tropical cyclone basins is

6892 whether regions with have never or only infrequently experienced tropical cyclones in

6893 recorded history may experience them more frequently in the future owing to climate

6894 change. Little guidance is available at present on this important question.

6896	Storm surge depends on many factors, including storm intensity, size and track, local
6897	bathymetry and the structure of coastal features such as wetlands and river inlets.
6898	Unknowns in storm frequency, tracks, size and future changes to coastal features lead to
6899	considerable uncertainty in assessing storm surge changes. However, the high confidence
6900	of there being future sea level rise as well as the likely increase of intensity of the
6901	strongest hurricanes, leads to an assessment that the potential for storm surge damage
6902	(per hurricane) is very likely to increase.
6903	
6904	In summary, tropical cyclone size, duration, track and regions of occurrence are
6905	important questions that need to be addressed. However, based on available published
6906	work and previous assessments, it is unknown how these will change in the future
6907	(IWTC-VI 2006). Storm surge damage (per hurricane) is likely to rise.
6908	
6909	3.3.9.6 Reconciliation of Future Projections and Past Variations
6910	In this section, we attempt to reconcile the future projections discussed above with the
6911	past observed variations in TC activity. The balance of evidence suggests that human
6912	activity has caused a discernible increase in tropical storm/hurricane and major hurricane
6913	frequency in the North Atlantic. U.S. landfalling hurricane frequency has not increased.
6914	However, it is more difficult to judge whether anthropogenic forcing will cause further
6915	increases in basin-wide activity as the climate continues to warm, since the precise
6916	physical reasons for the observed increases have not been fully elucidated. It is noted that
6917	relevant anthropogenic forcing includes increasing greenhouse gases, as well as changes
6918	in aerosol forcing, and possibly decreasing stratospheric ozone and other factors

6919	associated with cooling upper atmospheric (~100mb) temperatures in recent decades
6920	(Emanuel 2007a). A recent modeling study (Knutson et al. 2007) indicates that the
6921	increase in hurricane activity in the Atlantic from 1980-2005 can be reproduced using a
6922	high-resolution nested regional model downscaling approach. However the various
6923	changes in the large-scale atmospheric and SST forcings used to drive their regional
6924	model were prescribed from observations.
6923 6924	changes in the large-scale atmospheric and SST forcings used to drive their region model were prescribed from observations.

6926 No published model study has directly simulated a substantial century-scale rise in 6927 Atlantic tropical cyclone counts similar to those reported for the observations (e.g., Ch. 2). In fact the 20th century behavior in TC frequency has not yet been documented for 6928 6929 existing models. One exception is Bengtsson et al. (2007) who simulate little change in 6930 tropical storm frequencies comparing the late 1800s and late 1900s. Given the future 6931 regional climate projections arising from the models, including the multi-model 6932 consensus increase of vertical wind shear in the IPCC AR4 models (Vecchi and Soden 6933 2007), the substantial variability among existing models of such projected characteristics 6934 as Atlantic vertical wind shear and the differing mixtures of climate forcings that may be 6935 relevant in the two periods, we anticipate that it would be difficult to confidently extrapolate the strong increasing trend in 20th century storm counts using future 6936 6937 consensus projections available from existing models. Nonetheless, a significant trend (or 6938 anthropogenic signal, whether trend-like or not) detected in observed tropical cyclone 6939 activity and attributed to increasing greenhouse gases could imply that a future increase 6940 in tropical cyclone frequency in the Atlantic is much more likely than assessed here. 6941

6942 **3.3.10 Extratropical Storms**

- 6943 Scientists have used a variety of methods for diagnosing extratropical storms in GCM
- 6944 projections of future climate. These include sea-level pressure (Lambert and Fyfe 2006),
- 6945 strong surface winds (Fischer-Bruns et al. 2005), lower atmosphere vorticity (Bengtsson
- 6946 et al. 2006) and significant wave heights (Wang et al. 2004; Caires et al. 2006).
- 6947 Consequently, there are no consistent definitions used to diagnose extreme extratropical
- 6948 storms. Some analyses do not, for example, determine events in extreme percentiles but
- 6949 rather consider storms that deepen below a threshold sea-level pressure (e.g., Lambert
- and Fyfe, 2006), though such thresholds may effectively select the most extreme
- 6951 percentiles.

6952

- 6953 Wave heights of course indicate strong storms only over oceans, but the strongest
- 6954 extratropical storms typically occur in ocean storm tracks, so all three methods focus on
- 6955 similar regions. Ocean storms in the North Atlantic and North Pacific are relevant for this
- 6956 study because they affect coastal areas and shipping to and from North America. GCMs
- 6957 projecting climate change can supply sea-level pressure and surface winds, but they
- 6958 typically do not compute significant wave heights. Rather, empirical relationships (Wang
- 6959 et al. 2004; Caires et al. 2006) using sea-level pressure anomalies and gradients provide
- 6960 estimates of significant wave heights.

- 6962 Despite the variety of diagnoses, some consistent changes emerge in analyses of
- 6963 extratropical storms under anthropogenic greenhouse warming. Projections of future
- climate indicate strong storms will be more frequent (Fig. 3.11; Wang et al. 2004,

6965 Fischer-Bruns et al. 2005, Bengtsson et al. 2006, Caires et al. 2006, Lambert and Fyfe 6966 2006, Pinto et al. 2007), though the overall number of storms may decrease. These 6967 changes are consistent with observed trends over the last half of the twentieth century 6968 (Paciorek et al. 2002). More frequent strong storms may reduce the frequency of all 6969 extratropical storms by increasing the stability of the atmosphere (Lambert and Fyfe 6970 2006). Analyses of strong winds (Fischer-Bruns et al. 2005, Pinto et al. 2007), lower 6971 atmosphere vorticity (Bengtsson et al. 2006) and significant wave heights (Wang et al. 6972 2004; Caires et al. 2006) from single models suggest increased storm strength in the 6973 northeast Atlantic, but this increase is not apparent an analysis using output from multiple 6974 GCMs (Lambert and Fyfe 2006). Differences may be due to the focus on cold season 6975 behavior in the wind and wave analyses, whereas Lambert and Fyfe's (2006) analysis 6976 includes the entire year.

6977

The warming projected for the 21st century is largest in the high latitudes due to a 6978 6979 poleward retreat of snow and ice resulting in enhanced warming (Meehl et al. 2007a). 6980 Projected seasonal changes in sea ice extent show summertime ice area declining much 6981 more rapidly than wintertime ice area and that sea ice thins largest where it is initially the thickest, which is consistent with observed sea ice thinning in the late 20th century (Meehl 6982 6983 et al. 2007a). Increased storm strength the northeast Atlantic found by some may be 6984 linked to the poleward retreat of arctic ice (Fischer-Bruns et al. 2005) and a tendency 6985 toward less frequent blocking and more frequent positive phase of the Northern Annular 6986 mode (Pinto et al. 2007), though further analysis is needed to diagnose physical 6987 associations with ice line, atmospheric temperature and pressure structures and storm

6988	behavior. Whether or not storm strength increases, the retreat of sea ice together with
6989	changing sea levels will likely increase the exposure of arctic coastlines to damaging
6990	waves and erosion produced by strong storms (Lynch et al. 2004, Brunner et al. 2004,
6991	Cassano et al. 2006), continuing an observed trend of increasing coastal erosion in arctic
6992	Alaska (Mars and Houseknecht, 2007). Rising sea levels, of course, may expose all
6993	coastlines to more extreme wave heights (e.g., Cayan et al., 2007).
6994	
6995	3.3.11 Convective Storms
6996	Conclusions about possible changes in convective precipitating storms (CPSs) and
6997	associated severe-weather hazards under elevated greenhouse gas concentrations have
6998	remained elusive. Perhaps the most important reason for this is the mesoscale (10s of km)
6999	and smaller dynamics that control behavior of these storms, particularly the initiation of
7000	storms. Marsh et al. (2007) and Trapp et al. (2007) have evaluated changes in the
7001	frequency of environments that are favorable for severe thunderstorms in GCM
7002	simulations of greenhouse-enhanced climates. In both cases, increases in the frequency of
7003	environments favorable to severe thunderstorms are seen, but the absence of the
7004	mesoscale details in the models means that the results are preliminary. Nevertheless, the
7005	approach and the use of nested models within the GCMs show promise for yielding
7006	estimates of changes in extreme convective storms.

7007	Chapter 3 References
7008	
7009	Allan, J. C., and Komar, P. D., 2000: Are ocean wave heights increasing in the eastern
7010	North Pacific? EOS, Transaction of the American Geophysical Union, 47, 561-
7011	567.
7012	
7013	Allan, J. C., and Komar, P. D., 2006: Climate controls on US West Coast erosion
7014	processes: Journal of Coastal Research, 22, 511-529.
7015	
7016	Allen, M. and W. Ingram, 2002: Constraints on future changes in climate and the
7017	hydrological cycle, <i>Nature</i> , 419 , 224-232.
7018	
7019	Arora, V.K., and G.J. Boer, 2001: Effects of simulated climate change on the hydrology
7020	of major river basins. J. Geophys. Res., 106, 3335-3348.
7021	
7022	Arzayus, L. F., and W. J. Skirving, 2004: Correlations between ENSO and coral reef
7023	bleaching. Tenth International Coral Reef Symposium, Okinawa.
7024	
7025	Arzel, O., T. Fichefet, H. Goosse, 2006: Sea ice evolution over the 20th and 21st
7026	centuries as simulated by current AOGCMs. <i>Oc. Modelling</i> , 12 , 401-415.
7027	
7028	Baik , JJ., and JS. Paek, 1998: A climatology of sea surface temperature and the
7029	maximum intensity of western North Pacific tropical cyclones. J. Meteor. Soc.
7030	<i>Japan</i> , 76 , 129-137.
7031	
7032	Barnett, D.N., S.J. Brown, J.M. Murphy, D.M.H. Sexton, and M.J. Webb, 2006:
7033	Quantifying uncertainty in changes in extreme event frequency in response to
7034	doubled CO_2 using a large ensemble of GCM simulations. <i>Clim. Dyn.</i> , online
7035	1432-0894.
7036	
7037	Barnett, T. P., D.W. Pierce, K. M. AchutaRao, P. J. Gleckler, B. D. Santer, J. M.
7038	Gregory, and W. M. Washington, 2006: Penetration of human-induced warming
7039	into the world's oceans. Science, 309 , 284-287.
7040	
7041	Bell, G. D., and M. Chelliah, 2006: Leading tropical modes associated with interannual
7042	and multidecadal fluctuations in North Atlantic hurricane activity. J. Climate, 19,
7043	590-612.
7044	
7045	Bell, J.L., and L.C. Sloan, 2006: CO ₂ Sensitivity of extreme climate events in the
7046	western United States. Earth Int., 10, Paper No. 15.
7047	
7048	Bengtsson, L., M. Botzet, and M. Esch, 1995: Hurricane-type vortices in a general
7049	circulation model. Tellus 47A: 175-196
7050	

7051	Bengtsson, L., M. Botzet, and M. Esch, 1996: Will greenhouse gas-induced warming
7052	over the 50 years lead to a higher frequency and greater intensity of hurricanes?
7053	<i>Tellus</i> , 48A , 57-73.
7054	
7055	Bengtsson, L., K. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J.
7056	<i>Climate</i> , 19 , 3518-3543.
7057	
7058	Bengtsson, L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, JJ. Luo, and T.
7059	Yamagata, 2007: How may tropical cyclones change in a warmer climate.
7060	<i>Tellus</i> , 59A , 539-561.
7061	
7062	Beniston, M., 2004: The 2003 heat wave in Europe: A shape of things to come? An
7063	analysis based on Swiss climatological data and model simulations. <i>Geophys. Res.</i>
7064	<i>Lett.</i> , 31 , L02202.
7065	
7066	Boos, W. R., J. R. Scott and K. A. Emanuel, 2004: Transient diapycnal mixing and the
7067	meridional overturning circulation. J. Phys. Ocean., 34, 334-341
7068	
7069	Brabson, B.B., D.H. Lister, P.D. Jones, and J.P. Palutikof, 2005: Soil moisture and
7070	predicted spells of extreme temperatures in Britain. J. Geophys. Res., 110,
7071	D05104.
7072	
7073	Breshears, D.D., et al., 2005: Regional vegetation die-off in response to global-change-
7074	type drought. Proc. Natl. Acad. Sci. USA, 102 , 15144-15148.
7075	
7076	Broccoli, A. J., and S. Manabe, 1990: Can existing climate models be used to study
7077	anthropogenic changes in tropical cyclone climate? Geophys. Res. Lett., 17,
7078	1917-1920.
7079	
7080	Brooks , H.E., J.W. Lee, and J.P. Craven, 2003: The spatial distribution of severe
7081	thunderstorm and tornado environments from global reanalysis data. Atmos. Res.,
7082	67. 73-94.
7083	
7084	Brooks. H. E., and N. Dotzek, 2007: The spatial distribution of severe convective storms
7085	and an analysis of their secular changes. <i>Climate Extremes and Society</i> . H. F.
7086	Diaz and R. Murnane, Eds., Cambridge University Press, in press.
7087	
7088	Brunner, R.D., A.H. Lynch, J.C. Pardikes, E.N. Cassano, L.R. Lestak, J.M. Vogel.
7089	2004: An Arctic disaster and its policy implications. Arctic. 57. 336-346
7090	mphono assister and he poney imphonotone. mono, er, eeo e lo.
7091	Burke, E.J., S.J. Brown, and N. Christidis, 2006. Modelling the recent evolution of
7092	global drought and projections for the 21st century with the Hadley Centre
7093	climate model J. Hydrometeor, 7, 1113-1125
7094	
7094	

7095	Burkholder, B.A., and D.J. Karoly, 2007: Assessment of US climate variations using the
7096	US Climate Extremes Index. Nineteenth Conference on Climate Variability and
7097	Change, paper 2B.9
7098	
7099	Caires, S., and A. Sterl, 2005: 100-year return value estimates for wind speed and
7100	significant wave height from the ERA-40 data. Journal of Climate, 18, 1032–
7101	1048.
7102	
7103	Caires, S., V.R. Swail, and X.L. Wang, 2006: Projection and analysis of extreme wave
7104	climate. Journal of Climate, 19, 5581-5605.
7105	
7106	Camargo, S., A. G. Barnston, and S. E. Zebiak, 2005: A statistical assessment of
7107	tropical cyclone activity in atmospheric general circulation models. <i>Tellus</i> 57A :
7108	589-604, DOI: 10.1111/j.1600-0870.2005.00117.
7109	
7110	Camargo, S., K. A. Emanuel, and A. H. Sobel, 2006: ENSO and genesis potential index
7111	in reanalysis and AGCMs. Proc. 27 th AMS Conf. on Hurr. and Trop. Meteor.,
7112	abstract #15C.2. http://ams.confex.com/ams/pdfpapers/108038.pdf
7113	
7114	Camp, J. P., and M. T. Montgomery, 2001: Hurricane maximum intensity: past and
7115	present. Mon. Wea. Rev., 129 , 1704-1717.
7116	
7117	Cassano, E.N., A.H. Lynch, J.J. Cassano, and M.R. Koslow, 2006: Classification of
7118	synoptic patterns in the western Arctic associated with extreme events at Barrow,
7119	Alaska, USA. Clim. Res., 30, 83-97.
7120	
7121	Cayan, D.R., P.D. Bromirski, K. Hayhoe, M. Tyree, M.D. Dettinger, and R.E. Flick,
7122	2007: Climate change projections of sea level extremes along the California
7123	coast. Climatic Change (accepted).
7124	
7125	Chan, J.C. L., 1985: Tropical cyclone activity in the northwest Pacific in relation to the
7126	El Niño / Southern Oscillation phenomenon. Mon. Wea. Rev., 113: 599-606
7127	
7128	Chan, J. C. L., 2006: Comment on "Changes in Tropical Cyclone Number, Duration, and
7129	Intensity in a Warming Environment, Science, v. 311, p. 1713.
7130	
7131	Chan, J. C. L., and K. S. Liu, 2004: Global warming and Western North Pacific typhoon
7132	activity from an observational perspective. J. Climate, 17, 4590-4602.
7133	
7134	Chan, S., and J. L. Evans, 2002: Comparison of the structure of the ITCZ in the West
7135	Pacific during the boreal summers of 1989-1993 using AMIP simulations and
7136	ECMWF reanalysis. J. Climate, 15, 3549-3568.
7137	
7138	Chauvin, F., JF. Royer and M. Déqué, 2006: Response of hurricane-type vortices to
7139	global warming as simulated by ARPEGE-Climat at high resolution. Clim. Dyn.,
7140	27 , 377-399.

7141	
7142	Christensen, J.H., and O.B. Christensen, 2003: Severe summertime flooding in Europe.
7143	Nature, 421 , 805-806.
7144	
7145	Christensen, J.H., B. Hewitson, A. Busuioc, A. Chen, X. Gao, I. Held, R. Jones, WT.
7146	Kwon, R. Laprise, V. Magaña, L. Mearns, C. Menendez, J. Räisänen, A. Rinke,
7147	R. K. Kolli, A. Sarr, and P. Whetton, 2007: Regional Climate Projections. In: S.
7148	Solomon et al. (ed.) Climate Change 2007. The Fourth Scientific Assessment,
7149	Intergovernmental Panel on Climate Change (IPCC), in press.
7150	
7151	Christensen, O.B., and J.H. Christensen, 2004: Intensification of extreme European
7152	summer precipitation in a warmer climate. Glob. Planet. Change, 44, 107-117.
7153	
7154	Clark, R., S. Brown, and J. Murphy, 2006: Modelling northern hemisphere summer heat
7155	extreme changes and their uncertainties using a physics ensemble of climate
7156	sensitivity experiments. J. Climate, 19, 4418-4435.
7157	
7158	Cubasch, U., G.A. Meehl, G.J. Boer, R.J. Stouffer, M. Dix, A. Noda, C.A. Senior, S.
7159	Raper, and K.S. Yap, 2001: Projections of future climate change. In: <i>Climate</i>
7160	Change 2001: The Scientific Basis. Contribution of Working Group I to the Third
7161	Assessment Report of the Intergovernmental Panel on Climate Change [J.T.
7162	Houghton, et al. (eds.)]. Cambridge University Press, Cambridge, pp. 525-582.
7163	
7164	Delworth , T. L., J. D. Mahlman, and T. R. Knutson, 1999: Changes in heat index
7165	associated with CO2 -induced global warming. <i>Climatic Change</i> , 43 (2), 369-386.
7166	
7167	Delworth , T. L., and T. R. Knutson, 2000: Simulation of early 20 th Century global
7168	warming. Science, 287 (5461), 2246-2250.
7169	
/1/0	Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability
/1/1	in the Northern Hemisphere. Clim. Dyn., 16(9), 661-676.
/1/2	D-M-44 C A and D A D-4-11 2004. Observed an infinite of the nicely second
/1/3	Deviott , C. A., and D. A. Randall, 2004: Observed variations of tropical convective
/1/4	doi:10.1020/2003 D002784
7176	d01.10.1029/2005JD005784.
/1/0	Down S.L. and F.F. Wood 2006. Analysis of anony in the 20th and 21st contumy
/1//	Dery, S.J., and E.F. Wood, 2000. Analysis of show in the 20th and 21st century
/1/8	Geophysical Fluid Dynamics Laboratory coupled climate model simulations. J. Coophys. Reg. 111 Art. No. D10112 doi:10.1020/2005/D006020
719	<i>Geophys. Res.</i> , 111 , Alt. No. D19115, doi:10.1029/2005jD000920.
7181	Deser C A S Phillins and I.W. Hurrell 2004: Pacific decadal interdecadal alimate
7182	variability: I inkages between the tropics and the North Pacific during boreal
7182	winter since 1900 I Clim 17 3109-3124
718/	winter since 1700. J. Cunt., 17, 5107-5124.
7185	Donnelly I.P.S.S. Bryant I. Butler I. Dowling I. Fan N. Hausmann P. Newby R
7186	Shuman, J. Stern, K. Westover, and T. Webb, III, 2001a: A 700 yr sedimentary

7187	record of intense hurricane landfalls in southern New England. Geol. Soc. Amer.
7188	<i>Bull.</i> , 113, 714-727.
7189	
7190	Donnelly , J. P., S. Roll, M. Wengren, J. Butler, R. Lederer, and T. Webb, III, 2001b:
7191	Sedimentary evidence of intense hurricane strikes from New Jersey. <i>Geology</i> , 29,
7192	615-618.
7193	
7194	Donnelly, J. P. and T. Webb, III, 2004: Backbarrier sedimentary records of intense
7195	hurricane landfalls in the northeastern United States. In: Hurricanes and
7196	Typhoons: Past, Present, and Future (eds. R.J. Murnane, R. J. and K-b. Liu), p.
7197	58-95. Columbia University Press.
7198	
7199	Donnelly, J.P., J. Butler, S. Roll, M. Wengren, and T. Webb, III, 2004. A backbarrier
7200	overwash record of intense storms from Brigantine, New Jersey. Marine Geology,
7201	210, 107-121.
7202	
7203	Donnelly, J P. 2005. Evidence of past intense tropical cyclones from backbarrier salt
7204	pond sediments: a case study from Isla de Culebrita, Puerto Rico, USA. J. Coastal
7205	<i>Res.</i> , 42 , 201-210.
7206	
7207	Donner, S. D., T. R. Knutson, and M. Oppenheimer, 2007: Model-based assessment of
7208	the role of human-induced climate change in the 2005 Caribbean coral bleaching
7209	event. Proc. Nat. Acad. Sci., 104 (13), 5483-5488.
7210	
7211	Dutton, J. F., C. J. Poulsen, and J. L. Evans, 2000: The effect of global climate change
7212	on the regions of tropical convection in CSM1. <i>Geophysical Research Letters</i> , 27,
7213	3049.
7214	
7215	Eichler, T. and W. Higgins, 2006: Climatology and ENSO-related variability of North
7216	American extratropical cyclone activity. J. Climate, 10, 2076-2093.
7217	
7218	Elsner, J. B., 2006: Evidence in support of the climate change-Atlantic hurricane
7219	hypothesis. <i>Geophys. Res. Lett.</i> , 33 , L16705, doi:10.1029/2006GL026869.
7220	
7221	Elsner, J. B., K-b. Liu, and B. L. Kocher, 2000: Spatial variations in major U.S.
7222	hurricane activity: Statistics and a physical mechanism. <i>J. Climate</i> 13 , 2293-
7223	2305
7224	
7225	Elsner I B R I Murnane and T H lagger 2006: Forecasting U.S. hurricanes 6
7226	months in advance. Geophys Res Lett. accepted for publication Available
7227	online at: http://garnet.acns.fsu.edu/~ielsner/PDF/Research/LongLead.pdf
7228	omme un <u>mapa, gamenanononou o qu</u> jeisner i Di / Researen/ DongDeud.pui.
7220	Elsner I B A A Tsonis and T H Jagger 2006. High-frequency variability in
7230	hurricane nower dissination and its relationship to global temperature Rull
7230	Amer. Meteor. Soc. 87, 763-768
7737	1 mer. mercor. 50c., 01 , 105-100.
1434	

7233 7234 7235	Emanuel , K.A., 1987: The dependence of hurricane intensity on climate. <i>Nature</i> , 326 , 483-485.
7236 7237 7238	Emanuel , K. A., 1999: Thermodynamic control of hurricane intensity. <i>Nature</i> , 401 , 665-669.
7239 7240	Emanuel, K., 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 1139-1152.
7241 7242 7243 7244	Emanuel, K.A., 2001: The contribution of tropical cyclones to the oceans' meridional heat transport. J. Geophys. Res., 106, D14, 14,771-14,781.
7244 7245 7246	Emanuel , K. A., 2005a: Increasing destructiveness of tropical cyclones over the past 30 years. <i>Nature</i> , 436 , 686-688.
7247 7248 7249	Emanuel, K. A., 2005b: Emanuel replies. Nature, 438, doi:10.1038/nature04427.
7250 7251 7252 7253	Emanuel , K., 2006: Environmental influences on tropical cyclone variability and trends. Proc. 27 th AMS Conf. on Hurr. and Trop. Meteor., #4.2. Available online at: <u>http://ams.confex.com/ams/pdfpapers/107575.pdf</u> .
7254 7255 7256	Emanuel , K., S. Ravela, E. Vivant, and C. Risi. 2006: A statistical deterministic approach to hurricane risk assessment. <i>Bull. Amer. Meteor. Soc.</i> ,: 87 , 299–314.
7257 7258 7259	Emanuel , K. and D. S. Nolan, 2004: Tropical cyclone activity and the global climate system. Proc. 26 th AMS Conf. on Hurr. and Trop. Meteor., #10A.2, p. 240-241.
7260 7261 7262 7262	Emanuel , K., R. Sundararajan, and J. Williams, 2007: Hurricanes and global warming: results from downscaling IPCC AR4 simulations. <i>Bull. Am. Meteor. Soc.</i> , submitted.
7263 7264 7265 7266 7267	Emori, S., A. Hasegawa, T. Suzuki and K. Dairaku, 2005: Validation, parameterization dependence, and future projection of daily precipitation simulated with a high- resolution atmospheric GCM. <i>Geophys. Res. Lett.</i> , 32 , L06708, doi:10.1029/2004GL022306.
7268 7269 7270 7271 7272	Emori, S. and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. <i>Geophys. Res. Lett.</i> , 32 , L17706, doi:10.1029/2005GL023272.
7273 7274 7275 7276 7277 7278	Enfield , D.B., and A.M. Mestas-Nuñez, 2000: Global modes of ENSO and non-ENSO SST variability and their associations with climate. In: <i>El Niño and the Southern Oscillation: Multiscale Variability and Global and Regional Impacts</i> , H.F. Diaz and V. Markgraf, Eds., Cambridge University Press (ISBN 0521621380), p. 89-112.

7279	Fernandez-Partagas, J., and H. F. Diaz, 1996: Atlantic hurricanes in the second half of
7280	the nineteenth century, Bull, Amer. Meteor. Soc., 77, 2899-2906.
7281	, , , , , , , , , , , , , , , , , , ,
7282	Fischer-Bruns, L. H. Von Storch, J.F. Gonzalez-Rouco, and E. Zorita, 2005: Modelling
7283	the variability of midlatitude storm activity on decadal to century time scales
7284	Climate Dynamics, 25, 461-476
7285	
7286	Frannier A.B. Sahagian D. Carpenter S.I. Gonzalez I.A. and Frannier B.R. 2006
7287	A stalagmite stable isotope record of recent tropical cyclone events <i>Geology</i> (in
7288	review)
7289	
7290	Free M M Bister and K Emanuel 2004: Potential intensity of tropical cyclones:
7291	comparison of results from radiosonde and reanalysis data <i>L Climate</i> 17 1722-
7291	1727
7292	1/2/.
7293	Frei C C Schär D Lüthi and H C Davies 1998: Heavy precipitation processes in a
7295	warmer climate Geophys Res Lett 25 1431-1434
7296	warmer enniae. Geophys. Res. Lett., 23, 1431-1434.
7290	Frei A and G Gong 2005: Decadal to century scale trends in North American snow
7208	extent in coupled atmosphere-ocean general circulation models. <i>Geophys. Res</i>
7200	L_{ett} 32 L 18502 doi:10.1029/2005GL 02339/
7200	Leii., 52, L16502, doi:10.1027/2005GE025574.
7300	Frich P. I. V. Alevander, P. Della-Marta, B. Gleason, M. Havlock, A.M.G.K. Tank
7302	T Deterson 2002: Observed coherent changes in climatic extremes during the
7302	second half of the twentieth century <i>Clim Ras</i> 19 193-212
7303	second han of the twentieth century. <i>Cum. Res.</i> , 19 , 195-212.
7305	Fyfe I.C. G.I. Boer and G.M. Elato 1999: The Arctic and Antarctic Oscillations and
7306	their projected changes under global warming <i>Geophysical Research Letters</i> 26
7307	1601_1604
7308	1001-1004.
7300	Fyfe I.C. 2003: Extratronical southern hemisphere cyclones: Harbingers of climate
7310	change? I Climate 16 2802-2805
7310	enange: <i>J. Cumule</i> , 10, 2002-2003.
7312	Cao S.B. and H.G. Stefan 2004: Potential climate change effects on ice covers of five
7312	freshwater lakes L Hydrol Eng. 0 226 234
7313	neshwater lakes. J. Hydrol. Eng., 9, 220-254.
7314	Carcia Harrora P. I. Gimano P. Dibara and F. Harnandaz 2005 New records of
7315	Atlantic hurricanes from Spanish documentary sources L Geophys Res 110.
7310	Do2100
7210	D05109.
7210	Causia Hannana D. E. Dubia D. Wheeler, E. Hannander, M. D. Drieta and I. Cimara
1319	Garcia nerrera, K., F. Kubio, D. wheeler, E. Hernandez, M. K. Prieto, and L. Gimero,
7320 7201	Atlantia humiaana ingidanga in historial times. L. H. in the investigation of
1521	Auanuc nurricane incidence in nistorical times. In: <i>Hurricanes and Typhoons:</i>
1522	Past, Present, and Future (eds. K.J. Murnane, K. J. and K-b. Liu), p. 149-176.
1525	Columbia University Press.
1324	

7325 7326	Gedney, N., P.M. Cox, R.A. Betts, O. Boucher, C. Huntingford, and P.A. Stott, 2006a: Detection of a direct carbon dioxide effect in continental river runoff records.
7327	Nature, 439 , 835-838.
7328	
7329 7330	Gedney, N., P.M. Cox, R.A. Betts, O. Boucher, C. Huntingford, and P.A. Stott, 2006b: Continental runoff - A quality-controlled global runoff data set - Reply. <i>Nature</i> ,
7331	444, E14-15 (doi:10.1038/nature05481).
7332	Carshunov A and D. R. Cayan 2003: Heavy Daily Precipitation Frequency over the
7334	Contiguous United States: Sources of Climatic Variability and Seasonal
7335	Predictability. J. Climate, 16, 2752-2765.
7550	Cattalanan A. D. I. Saidal M. C. Witaalan and D. I. Daar 2002. Matkida adal (mada in
7338	tropical convective available potential energy. J. Geophys. Res., 107, 4606.
7339	doi:10.1029/2001JD001082.
7340	
7341	Gillett, N.P., G.C. Hegerl, M.R. Allen, and P.A. Stott, 2000: Implications of changes in
7342	the Northern Hemispheric circulation for the detection of anthropogenic climate
7343	change. Geophysical Research Letters, 27, 993-996.
7344	Gillett, N.P., et al., 2002b: How linear is the Arctic Oscillation response to greenhouse
7346	gases? Journal of Geophysical Research, 107, doi: 10.1029/2001JD000589.
7347	
7348	Gillett, N.P., H.F. Graf, and T.J. Osborn, 2003a: Climate change and the North Atlantic
7349	Oscillation. [Y.K. J. Hurrell, G. Ottersen and M. Visbeck (ed). American
7350	Geophysical Union, Washington, DC.
7351	CHI-H ND ALW
7352	Gillett, N.P., A.J. Weaver, F.W. Zwiers, and M.F. Wenner, 2004b: Detection of volcanic influence on global precipitation. <i>Geophysical Research Letters</i> , 31(12), 1 12217
7354	doi:10.1029/2004GL020044.
7355	
7356	Gillett, N.P., 2005: Northern Hemisphere circulation. Nature, 437, 496
7357	
7358	Gillett, N. P., P. A. Stott, and B. D. Santer, 2007: Attribution of Cyclonogenesis Region
7359	Sea Surface Temperature Change to Anthropogenic Influence. Geophysical
7360	Research Letters (submitted).
7301	
7362	Giorgi, F., B. Hewitson, J. Christensen, M. Hulme, H. Von Storch, P. Whetton, R. Jones,
7363	L. Mearns, and C. Fu, 2001: Regional climate information - evaluation and
7364	projections. In <i>Climate Change 2001: The Scientific Basis</i> . Contribution of
1365	working Group I to the Third Assessment Report of the Intergovernmental Panel
7366	on Climate Change. [Houghton JT, Ding Y, Griggs DJ, Noguer M, van der
/36/	Linden PJ, Dai X, Maskell K and Johnson CA, eds.] 881 pp. Cambridge
7368	University Press, Cambridge, United Kingdom and New York, NY, USA.
/369	

7370	Goldenberg, S. B., C. W. Landsea, A.M. Mesta-Nuñez, and W. M. Gray, 2001: The
13/1	recent increase in Atlantic numcane activity. Causes and implications. <i>Science</i> ,
1312	293 , 474-479.
1313	Creation NE and H.E. Dia 2001. Esidence for intervition of North Decific
7374	winter cyclones since 1948. Bull. Amer. Meteor. Soc., 82, 1869-1893.
7376	~
7377	Gray, W. M., 1979: Hurricanes: their formation, structure, and likely role in the tropical
7378 7379	circulation. In <i>Meteorology over the tropical oceans</i> . Ed., D. B. Shaw, Roy. Meteor. Soc., 155-218.
7380	
7381 7382	Gray, W. M., 1990: Strong association between West African rainfall and U.S. landfall of intense hurricanes. <i>Science</i> , 249 , 1251-1256.
7383	
7384 7385	Groisman, P. Y., R. W. Knight, T. R. Karl, D. R. Easterling, B. Sun, and J. H. Lawrimore, 2004: Contemporary changes of the hydrological cycle over the
7386	contiguous United States: trends derived from <i>in situ</i> observations. J.
7387	<i>Hydormeteor.</i> , 5 , 64-85.
7388	
7389	Gulev, S.K., and V. Grigorieva, 2004: Last century changes in ocean wind wave height
7390	from global visual wave data. Geophys. Res. Lett., 31, Art. No. L24302.
7391	
7392	Hart, R. E., 2006: The winter impact of recurving tropical cyclones. 27 th AMS
7393	Conference on Hurricanes and Tropical Meteorology, 24-28 April 2006,
7394	Monterey, CA.
7395	
7396	Hart, R. E., L. F. Bosart, and C. Hosler, 2006: The possible hemispheric impacts of
7397	anomalous recurving tropical cyclone frequency. Submitted to Mon. Wea. Rev.,
7398	August 2006.
7399	
7400	Hasegawa, A. and S. Emori, 2005: Tropical cyclones and associated precipitation over
7401	the Western North Pacific: T106 atmospheric GCM simulation for present-day
7402	and doubled CO2 climates. SOLA, 1, 145-148, SOI:10.2151/sola.2005-038.
7403	
7404	Hayhoe, K, C.P. Wake, T.G. Huntington, L.F. Luo, M.D. Schwartz, J. Sheffield, E.
7405	Wood, B. Anderson, J. Bradbury, A. DeGaetano, T.J. Troy, D. Wolfe, 2007: Past
7406	and future changes in climate and hydrological indicators in the US Northeast.
7407	<i>Clim. Dyn.</i> , 28 , 381-407.
7408	
7409	Hayne, M. and J. Chappell. 2001. Cyclone frequency during the last 5,000 years from
7410	Curacoa Island, Queensland. Palaeogeography, Palaeoclimatology,
7411	Palaeoecology, 168 , 201-219.
7412	
7413	Hegerl, G.C., F.W. Zwiers, V.V. Kharin, and P.A. Stott. 2004: Detectability of
7414	anthropogenic changes in temperature and precipitation extremes. <i>Journal of</i>
7415	<i>Climate</i> , 17, 3683-3700.

7416	
7417	Hegerl, G. C., F. W. Zwiers, P. Braconnot, N. P. Gillett, Y. Luo, J. Marengo, N.
7418	Nicholls, J. E. Penner and P. A, Stott: Understanding and Attributing Climate
7419	Change. In: S. Solomon et al. (ed.) Climate Change 2007. The Fourth Scientific
7420	Assessment, Intergovernmental Panel on Climate Change (IPCC), in press.
7421	
7422	Held, I. M., T. L. Delworth, J. Lu, K. L. Findell, and T. R. Knutson, 2005: Simulation of
7423	Sahel drought in the 20 th and 21 st centuries. <i>Proc. Nat. Acad. Sci.</i> , 102 (50), 17891-
7424	17896.
7425	
7426	Held. I.M., and B.J. Soden, 2006: Robust Responses of the Hydrological Cycle to Global
7427	Warming. Journal of Climate. in press.
7428	the animage of the and the press.
7429	Henderson-Sellers A H Zhang G Berz K Emanuel W Grav C Landsea
7430	G Holland I Lighthill S-L Shieh P Webster and K McGuffie 1998: Tropical
7431	cyclones and global climate change: a post-IPCC assessment. <i>Bull Amer. Meteor.</i>
7432	Soc. 79 , 19-38
7433	500, 79, 19 50.
7434	Hodokins G.A. I.C. James and T.G. Huntington 2002: Historical changes in lake ice-
7435	out dates as indicators of climate change in New England 1850-2000 Int I
7436	Climatology 22, 1819-1827
7/37	<i>Cumatology</i> , 22 , 1019–1027.
7/38	Hodgkins GA RW Dudley and T. G. Huntington 2003: Changes in the timing of
7/30	high river flows in New England over the 20 th century I Hydrololay 278 244-
7437	252
7440	252.
7441 7/1/2	Hoarling M. P. and A. Kumar 2003: The perfect ocean for drought Science 200 691
7//3	for mig, w. r., and W. Kumar, 2005. The perfect ocean for drought. Science, 299, 091–
7443	094.
7444	Hoerling M. I. Fischeid X. Quan, T.V. Xu. 2007: Explaining the Record US Warmth
7446	of 2006 Geonbus Res Lett (submitted)
7447	of 2000. <i>Geophys. Res. Lett.</i> (Sublinted).
7448	Holland I Lighthill S-I. Shieh P. Webster and K. McGuffie 1998: Tropical cyclones
7//9	and global climate change: a post-IPCC assessment Bull Amer Mateor Soc. 79
7450	10_38
7451	17-50.
7452	Holland G. L. 1007: The maximum potential intensity of tropical cyclones. I Atmos
7452	S_{oi} 54 2510 2541
7454	$\mathcal{D}(\mathcal{U}, \mathbf{J}^{\mathbf{T}}, \mathcal{L}\mathcal{J}^{\mathbf{T}})^{-\mathcal{L}\mathcal{J}^{\mathbf{T}}}$
7455	Holland G. I. and P. I. Webster 2007: Heightened tropical evolone activity in the
7456	North Atlantic: natural variability or alignet trand? Did Trang D See A
7450	doi:10.1002/reto 2007.2022
14J1 7150	u01.10.1070/18ta.2007.2003.
1438 7450	Hollond MM CM Ditz D Trombley 2006. Entrance about an directions in the entrance
1439 7160	Arotic coopies Coophys Bog Lett 23 Art No L 22502
740U	AICUC sea ice. Geophys. Kes. Lett., 33, Art. No. L23303.
/401	

7462	Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on southern hemisphere storm
7463	tracks. J. Climate, 18, 4108-4129.
7464	
7465	Hoyos, C. D., P. A. Agudelo, P. J. Webster, and J. A. Curry, 2006: Deconvolution of the
7466	factors contributing to the increase in global hurricane intensity. <i>Science</i> , 312:
7467	94-97.
7468	
7469	Huntington, T.G., G.A. Hodgkins, and R.W. Dudley, 2003: Historical trend in river ice
7470	thickness and coherence in hydroclimatological trends in Maine. <i>Clim. Change</i> ,
7471	61, 217-236.
7472	
7473	Hurrell, J.W., 1995: Decadal Trends in the North-Atlantic Oscillation - Regional
7474	Temperatures and Precipitation. Science, 269 , 676-679.
7475	
7476	Hurrell, J.W., 1996: Influence of variations in extratropical wintertime teleconnections
7477	on Northern Hemisphere temperature. Geophysical Research Letters, 23, 665-
7478	668.
7479	
7480	IPCC , 2001. Climate Change 2001: The Scientific Basis. Contribution of Working
7481	Group I to the Third Assessment Report of the Intergovernmental Panel on
7482	Climate Change [Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der
7483	Linden, X. Dai, K. Maskell, and C. A. Johnson (eds.)]. Cambridge University
7484	Press, Cambridge, United Kingdom and New York, NY, USA, 881pp.
7485	
7486	International Ad Hoc Detection and Attribution Group (IADAG), 2005: Detecting
7487	and attributing external influences on the climate system: a review of recent
7488	advances. J. Climate, 18, 1291-1314.
7489	
7490	International Workshop on Tropical Cyclones VI (IWTC-VI), 2006: Statement on
7491	tropical cyclones and climate change. Available at:
7492	http://www.wmo.ch/web/arep/arep-home.html.
7493	
7494	Kamahori, H. N. Yamazaki, N. Mannoji, and K. Takahashi, 2006: Variability in intense
7495	tropical cyclone days in the western North Pacific. SOLA, 2, 104-107,
7496	doi:10.2151/sola.2006-027.
7497	
7498	Karl, T.R., and R.W. Knight, 1997: The 1995 Chicago heat wave: How likely is a
7499	recurrence? Bulletin of the Am. Meteor. Soc., 78, 1107-1119.
7500	
7501	Karoly, D.J., et al., 2003: Detection of a human influence on North American climate.
7502	Science, 302, 1200-1203.
7503	
7504	Karoly, D. J., and Q. Wu, 2005: Detection of regional surface temperature trends. J.
7505	<i>Climate</i> , 18 , 4337-4343.
7506	

7507 7508	Katz , R.W., and B.G. Brown, 1992: Extreme events in a changing climate: Variability is more important than averages. <i>Climatic Change</i> 21 , 289–302
7500	more important than averages. Cumatic Change, 21, 269–302.
7510 7511	Kenyon , J., and G.C. Hegerl, 2007: Influence of modes of climate variability on global temperature extremes <i>L Clim</i> , submitted
7512	temperature entremest et etana, suchinitedi
7513 7514	Kharin , V.V., and F.W. Zwiers, 2005: Estimating extremes in transient climate change simulations <i>J. Clim.</i> 18 , 1156-1173.
7515	
7516	Kharin , V. F. W. Zwiers, X. Zhang and G. C. Hegerl. 2007: Changes in temperature and
7517 7518	precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, in press.
7519	
7520	Kiktev, D., D. Sexton, L. Alexander, C. Folland, 2003: Comparison of modelled and
7521	observed trends in indices of daily climate extremes. <i>Journal of Climate</i> , 16 , 2560, 2571
7522	3560-3571.
7523	
7524	Klotzbach , P. J., 2006: Trends in global tropical cyclone activity over the past twenty
7525	years (1980-2005), Geophys. Res. Lett., 55 , L10805, DOI:10.1020/2006CL 025881
7520	DOI:10.1029/2000GL023881.
7528	Knoff I. A. and C. P. Sampson 2006: Pagnalysis of Wast Pagific tropical evaluation
7520	intensity 1966-1987 Proceedings of 27 th AMS Conference on Hurricanes and
7529	Tropical Meteorology #5B 5 Available online at:
7531	http://ams.confex.com/ams/pdfpapers/108208.pdf
7532	http://ans.comex.com/ans/purpapers/108298.pur
7533	Knight I.R. R. I. Allan, C. K. Folland, M. Vellinga, and M. E. Mann. 2005. A
7534	signature of persistent natural thermohaline circulation cycles in observed climate
7535	Geophys Res Lett. 32. L 20708. doi:10.1029/2005GL024233
7536	
7537	Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic
7538	Multidecadal Oscillation. Geophys. Res. Lett., 33, 17, L17706
7539	http://dx.doi.org/10.1029/2006GL026242.
7540	
7541	Knutson, T. R., T. L. Delworth, K. W. Dixon, I. M. Held, J. Lu, V. Ramaswamy, D.
7542	Schwarzkopf, G. Stenchikov, and R. J. Stouffer, 2006. Assessment of twentieth-
7543	century regional surface temperature trends using the GFDL CM2 coupled
7544	models. J. Climate, 19(9), 1624-1651.
7545	
7546	Knutson, T. R., and R. E. Tuleya, 2004: Impact of CO2-induced warming on simulated
7547	hurricane intensity and precipitation: sensitivity to the choice of climate model
7548	and convective parameterization. J. Climate, 17, 3477-3495.
7549	
7550	Knutson, T. R., and R. E. Tuleya, 2005: Reply. J. Climate, 18, 5183-5187.
7551	

7552 7553	Knutson, T. R., and R. E. Tuleya, 2007: Tropical cyclones and climate change: Revisiting recent studies at GFDL. In <i>Climate Extremes and Society</i> , H. Diaz.
7554	and R. Murnane eds. New York: Columbia Univ. Press. accepted for
7555	nublication
7556	puoliculon
7557	Knutson T R R F Tuleva W Shen and I Ginis 2001: Impact of CO ₂ -induced
7558	warming on hurricane intensities as simulated in a hurricane model with ocean
7559	counling I Climate 14 2458-2468
7560	couping. <i>9. cumule</i> , 14 , 2100 2100.
7561	Knutson T R R F Tuleya and Y Kurihara 1998: Simulated increase of hurricane
7562 7563	intensities in a CO2-warmed climate. <i>Science</i> , 279 (5353), 1018-1020.
7564	Kumar A. F. Vang I. Goddard and S. Schubert 2004: Differing Trends in the
7565	Tropical Surface Temperatures and Precipitation over Land and Oceans <i>Journal</i>
7566	of Climate 17, 653, 664
7567	<i>of Cumule</i> , 17, 055-004.
7568	Kunkel K.F. N.F. Westcott and D.A.R. Kristovich 2002: Assessment of potential
7560	effects of climate change on heavy lake effect snowstorms near I are Frie I Gt
7570	Lakes Res. 28, 521-536
7571	Lukes Res., 26 , 521-550.
7572	Kunkel K.F. X -7 Liang I. Zhu and Y. Lin. 2006: Can CGCMS simulate the
7573	twentieth century "warming hole" in the central United States? <i>Journal of</i>
7574	Climate in press
7575	Cumule, in press.
7576	Lambert, FH PA Stott MR Allen and MA Palmer 2004. Detection and attribution
7577	of changes in 20 th century land precipitation. <i>Geophysical Research Letters</i>
7578	31(10), L10203.
7579	
7580	Lambert, S.J., and J.C. Fyfe, 2006: Changes in winter cyclone frequencies and strengths
7581	simulated in enhanced greenhouse warming experiments: results from the models
7582	participating in the IPCC diagnostic exercise. <i>Climate Dynamics</i> , online:
7583	10.1007/s00382-006-0110-3.
7584	
7585	Landman, W. A., A. Seth, and S. J. Camargo, 2005: The effect of regional climate
7586	model domain choice on the simulation of tropical cyclone-like vortices in the
7587	Southwestern Indian Ocean. J. Climate, 18, 1253-1274, DOI:
7588	10.1175/JCLI3324.1
7589	
7590	Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon.
7591	Wea. Rev., 121 , 1703-1713.
7592	
7593	Landsea, C. W., C. Anderson, N. Charles, G. Clark, J. Dunion, J. Fernandez-Partagas, P.
7594	Hungerford, C. Neumann, and M. Zimmer, 2004: The Atlantic hurricane database
7595	re-analysis project: Documentation for the 1851-1910 alterations and additions to
7596	the HURDAT database. In: Hurricanes and Typhoons: Past, Present and Future,
7597	R. J. Murname and KB. Liu, Eds., Columbia University Press, p. 177-221.

7598	
7599	Landsea, C. W., 2005: Hurricanes and global warming, <i>Nature</i> , 438 .
7600	doi:10.1038/nature04477.
7601	
7602	Landsea C W B A Harper K Hoarau and I A Knaff 2006. Can we detect trends in
7603	extreme tropical cyclones? Science 313 , 452-454
7604	
7605	Lawrence I R and S D Gedzelman 1996. Low stable isotone ratios of tronical
7606	cyclone rains Geophys Res Lett 23 527-530
7607	<i>cyclone rams. Ccophys. Res. Len.</i> , 20, 527 550.
7608	Leung L.R. Y. Oian X.D. Bian W.M. Washington, I.G. Han, and I.O. Roads, 2004.
7609	Mid-century ensemble regional climate change scenarios for the western United
7610	States Climatic Change 62, 75-113
7611	States. Cumune Change, 02 , 75 115.
7612	Lin G A F Strong W Skirving I F Arzavus 2006: Overview of NOAA Coral Reef
7612	Watch Program's near-real-time satellite global coral bleaching monitoring
7614	ectivities Proceedings of the 10th International Coral Reaf Symposium p 1783
7615	1703
7616	1775.
7617	Lin K-b 2004: Paleotempestology: Principles Methods and Examples from Gulf Coast
7618	Lake Sediments In: Hurricanes and Typhoons: Past Present and Euture R I
7610	Murrana P. J. and K. b. Liu. Eds. Columbia University Press, p. 12-57
7620	Wullhane, R. J. and R-0. Eld, Eds., Columbia Oniversity (1888, p. 15-57.
7620	Lin K b and M L Fearn 1003. Lake sediment record of late Holocene hurricane
7621	activities from coastal Alabama <i>Caolomy</i> 21 703 706
7622	activities from coastal Alabama. <i>Geology</i> , 21 , 735-730.
7623	Lin K-b and M. I. Fearn 2000: Reconstruction of prohistoric landfall frequencies of
7625	catastrophic hurricanes in northwestern Elorida from lake sediment records
7625	Quaternary Research 54, 238, 245
7620	Qualernary Research, 54 , 258-245.
7627	Lin K-b, C. Shen, C. and K. S. Louie. 2001: A 1000-year history of typhoon landfalls
7620	in Guangdong, southern China, reconstructed from Chinase historical
7620	documentary records. Annals of the Association of American Geographers 01
7631	A52 A6A
7632	455-404.
7632	Louis KS and K b Liu 2003: Farliest historical records of typhoons in China L
7637	Historical Geography 20 200 316
7635	<i>Historicai Geography</i> , 29 , 299-510.
7636	Louis KS and K b Liu 2004: Ancient records of typhoons in Chinese historical
7637	documents In: Hurricanos and Typhoons: Past Present and Future D I
7629	Murnana P I and K h Liu Eda Columbia University Dress n 222 249
7620	Mumane, R. J. and R-0. Liu, Eus., Columbia Oniversity Fless, p. 222-248.
7670	Lozono I and V Swail 2002. The link between were bright verificative in the North
70 4 0 7641	Atlantic and the storm track activity in the last four decades. Atmos. Oc. 40, 277
7041 7642	Attained and the storm track activity in the fast four decades. AlmosOc., 40, 577-
7042 7612	500.
1043	
7644 7645	Lynch, A.H., J.A. Curry, R.D. Brunner, J.A. Maslanik, 2004: Toward an integrated
---------------------------	--
70 4 5 7646	Amore Motoon Soc. 95 , 200, 221
7040	Amer. Meleor. Soc., 63 , 209-221.
/04/	Marro Mand K. Ensenal 2006. Adaptic harrisons (made links days diverse shares
7648 7649	<i>EOS</i> , 87 , 233-241.
7650	
7651 7652	Marchok, T., R. Rogers, and R. Tuleya, 2007: Validation schemes for tropical cyclone quantitative precipitation forecasts: Evaluation of operational models for U.S.
7653 7654	landfalling cases. Wea. Forecast., 22, 726-746.
7655	Mars, J.C., D.W. Houseknecht, 2007: Quantitative remote sensing study indicates
7656 7657	doubling of coastal erosion rate in past 50 yr along a segment of the Arctic coast of Alaska. <i>Geology</i> , 35 , 583-586.
7658	
7659	Marsh, P. T., H. E. Brooks, and D. J. Karoly, 2007: Assessment of the severe weather
7660	environment in North America simulated by a global climate model. Atmos. Sci.
7661	Letters, in review.
7662	
7663	Marshall, G. J., P. A. Stott, J. Turner, W. M. Connolley, J. C. King, T. A. Lachlan-Cope,
7664	2004: Causes of exceptional atmospheric circulation changes in the Southern
7665	Hemisphere. Geophys. Res. Lett., 31 (14), L14205,doi:10.1029/2004GL019952.
7666	
7667 7668	surface cyclone frequency and intensity, J. Clim., 14, 2763-2768.
/669	
/0/0	McDonald , R. E., D. G. Bleaken, D. R. Cresswell, V. D. Pope, and C. A. Senior, 2005:
7672	of climate change. <i>Clim. Dyn.</i> , 25: 19-36, DOI: 10.1007/s00382-004-0491-0.
1013	Many C. A. and F. I. Wantz. 2005. The affect of diversal connection on satellite derived
7675	lower tropospheric temperature. <i>Science</i> , 309 , 1548-1551.
/0/0	Machl C A and C Tabaldi 2004. More interest more frequent and langer lesting best
7678	waves in the 21st century. <i>Science</i> , 305 , 994-997.
7679	
7680	Meehl, G.A., C. Tebaldi, and D. Nychka, 2004: Changes in frost days in simulations of
7681	twentyfirst century climate. <i>Clim. Dyn.</i> , 23 , 495-511.
7682	
/683	Meeni, G. M., W. M. Washingon, C. M. Amman, J. M. Arblaster, I. M. L. Wigley, and
/084	C. Lebaldi, 2004: Combinations of natural and anthropogenic forcings in
1085	twentieth-century climate. J. Climate, 17, 3/21-3/2/.
/080	$\mathbf{M} = \mathbf{h} = \mathbf{C} = \mathbf{M} = $
1081	Meeni, G. M., and Coautnors. 200/a: Global Climate Projections. In: S. Solomon et al.
7689 7689	Panel on Climate Change (IPCC), in press.

7690	
7691	Meehl, G.A., J.M. Arblaster, and C. Tebaldi, 2007b: Contributions of natural and
7692	anthropogenic forcing to changes in temperature extremes over the U.S. <i>Geophys.</i>
7693	Res. Lett. (submitted).
7694	
7695	Meehl, G.A., and C. Tebaldi, 2007: Extremes and El Nino, <i>Geophys. Res. Lett.</i>
7696	(submitted)
7697	
7698	Mendelssohn, R. S.I. Bograd, F.B. Schwing and D.M. Palacios, 2005: Teaching old
7699	indices new tricks: A state-space analysis of Fl Niño related climate indices
7700	Geophysical Research Letters 32 I 07709
7701	Geophysical Research Leners, 52, Lorroy.
7702	Merryfield W.I. 2006: Changes to FNSO under CO2 doubling in the IPCC AR4
7703	coupled climate models. <i>Journal of Climate</i> in press
7704	coupled enhate models. <i>Journal of etimate</i> , in press.
7704	Michaels P. J. P. C. Knappenberger and C. Landsea. 2005: Comments on "Impacts of
7706	CO2 induced warming on simulated hurricane intensity and precipitation:
7700	Sonsitivity to the choice of climate model and convective scheme " I Climate
7708	18 5170 5182
7700	10, 5179-5162.
7710	Michaels D. J. D. C. Knonnenharger and P. E. Davis 2006: See surface temperatures
7711	and troical evaluations in the Atlantic basin Coophys Res Lett. 23 L 00708
7712	and troical cyclones in the Atlantic basin. <i>Geophys. Res. Lett.</i> , 55 , L09708,
7712	dol:10.1029/2000GL025/5/.
7714	Miller D. L. C. I. Mars. H. D. Crissing Mayor, C. I. Mask and M. E. Uhla 2002.
7715	Miller, D. L., C. I. Mora, H. D. Grissino-Mayer, C. J. Mock, and M. E. Unie, 2005:
7710	tropical cyclone activity and chimate fluctuations captured by oxygen isotopes in
//10	tree-ring cellulose from the Southeastern U.S. Abstracts, American Geophysical
//1/	Union Fall 2003 Meeting.
//18	
//19	Miller, N.L., K. E. Bashford, and E. Strem, 2003: Potential impacts of climate change on
7720	California hydrology. Journal of the American Water Resources Association, 39 ,
7721	//1-/84.
7722	
7723	Milly, P.C.D., K.A. Dunne, and A.V. Vecchia, 2005: Global pattern of trends in
7724	streamflow and water availability in a changing climate. <i>Nature</i> , 438 , 347-350.
7725	
7726	Mock , C.J., 2004: Tropical cyclone reconstructions from documentary records:
7727	examples for South Carolina, United States. In: Hurricanes and Typhoons: Past,
7728	Present, and Future, R.J. Murnane, R. J. and K-b. Liu, Eds., Columbia University
7729	Press, p. 121-148.
7730	
7731	Morris, K., M. Jeffries, and C. Duguay, 2005: Model simulation of the effects of climate
7732	variability and change on lake ice in central Alaska, USA. Ann. Glaciology, 40,
7733	113-118.
7734	

7735	Neelin, J.D., M. Münnich, H. Su, J.E. Meyerson, and C. Holloway, 2006: Tropical drying
7736	trends in global warming models and observations. Proceedings of the National
7737	Academy of Sciences, accepted.
7738	
7739	Neu, H. J. A., 1984: Interannual variations and longer-term changes in the sea state of the
7740	North Atlantic from 1970 to 1982: Journal of Geophysical Research, 89: 6397-
7741	6402.
7742	
7743	Nolan, D. S., E. D. Rappin, and K. A. Emanuel, 2006: Could hurricanes form from
7744	random convection in a warmer world? Preprints, 27th AMS Meeting on
7745	Hurricanes and Tropical Meteorology, Monterey, CA. Available online at:
7746	http://ams.confex.com/ams/pdfpapers/107936.pdf.
7747	
7748	Nott. J. and M. Havne. 2001. High frequency of "super-cyclones" along the Great Barrier
7749	Reef over the past 5.000 years, <i>Nature</i> , 413 , 508-512.
7750	
7751	Nguven, K. C., and K. J. E. Walsh, 2001: Interannual, decadal, and transient greenhouse
7752	simulation of tropical cyclone-like vortices in a regional climate model of the
7753	South Pacific I Climate 14, 3043-3054
7754	
7755	Osborn , T.I. K.R. Briffa, S.F.B. Tett, P.D. Jones and R.M. Trigo, 1999: Evaluation of
7756	the North Atlantic Oscillation as simulated by a coupled climate model <i>Climate</i>
7757	Dynamics 15 685-702
7758	Dynamics, 15, 005 702.
7759	Osborn T.I. 2004: Simulating the winter North Atlantic Oscillation: the roles of internal
7760	variability and greenhouse gas forcing <i>Climate Dynamics</i> 22 605-623
7761	variability and greenhouse gas foreing. Cumate Dynamics, 22, 005 025.
7762	Ostermeier G.M. and I.M. Wallace 2003: Trends in the North Atlantic Oscillation-
7763	Northern Hemisphere annular mode during the twentieth century <i>I Climate</i> 16
7764	336-3/1
7765	550-5-1.
7766	Oouchi K. I.Voshimura H. Voshimura P. Mizuta, S. Kusunoki and A. Noda 2006:
7767	Tropical cyclone climatology in a global warming climate as simulated in a
7768	20km mash global atmospheric model: frequency and wind intensity analysis.
7760	Mateorol Soc. Japan 84 259 276
7709	Meleoroi. Soc. Jupan, , 64 , 259-270.
1110	Designal , C.I. I.S. Dishay, V. Vantura, P.D. Dasan (2002) Multipla indians of Northern
11/1	Paciorek , C.J., J.S. Risbey, V. Ventura, R.D. Rosen (2002). Multiple indices of Normerin
1114 2772	memsphere cyclone activity, winters 1949-99, J. Climate, 13 , 1575-1590.
1113	Dall D. M. D. Allon and D. A. Stone 2007. Testing the Clausing Clauser statist
1114 7775	ran , r., M. K. Allen, and D. A. Stone, 2007: Testing the Clausius–Clapeyron constraint
1115	on changes in extreme precipitation under CO_2 warming . Clim. Dyn., 28, 351–
///6	303.
1111	
///8	Peel, M.C., and T.A. McMahon, 2006: A quality-controlled global runoff data set.
7779	<i>Nature</i> , 444 , E14 (doi:10.1038/nature05480).
7780	

7781 7782 7783	Peterson, T.C., X. Zhang, M.B. India, and J.L.V. Aguirre, 2007: Changes in North American extremes derived from daily weather data. Proc. Nat. Acad. Science (submitted).
7784	(
7785 7786 7787	Pezza , A. B., and I. Simmonds, 2005: The first South Atlantic hurricane: unprecedented blocking, low shear, and climate change. Geophys. Res. Lett., 32, L15712, doi:10.1029/2005GL023390.
//88	
7789	Pielke, R. A., Jr., 2005: Are there trends in hurricane destruction? <i>Nature</i> , 438 , E11.
7790	
7791 7792 7793 7794	Pinto, J.G T. Spangehl, U. Ulbrich and P. Speth, 2006: Assessment of winter cyclone activity in a transient ECHAM4-OPYC3 GHG experiment. <i>Meteor. Ziet.</i> , 15, 279-291.
7794	P : 4. I.C. H. Illheith, C.C. Lashaharah, T. Caranahi, M. Darras, and C. Zasharian
7796 7797	2007: Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. <i>Climate Dynamics</i> , 29 , 195–
7798	210 (DOI 10.1007/s00382-007-0230-4).
7799	
7800	Rotstavn L and U Lohmann 2002: Tropical rainfall trends and the indirect aerosol
7801	effect J Climate 15, 2103-2116
7802	
7803	Rover L-F F Chauvin B Timbal P Araspin and D Grimal 1998: A GCM study of
7804 7805	the impact of greenhouse gas increase on the frequency of occurrence of tropical cvclones, <i>Clim. Change</i> , 38 , 307-343.
7806	
7807	Rvan , B.F., I. G. Watterson, and J. L. Evans, 1992: Tropical cyclones frequencies
7808	inferred from Gray's yearly genesis parameter: validation of GCM tropical
7809	climate, <i>Geophys. Res. Lett.</i> , 19 , 1831-1834.
7810	
7811	Santer , B. D., and Coauthors, 2005: Amplification of surface temperature trends and
7812	variability in the tropical atmosphere. <i>Science</i> 309 , 1551-1556
7813	
7814	Santer B. D. and Coauthors 2006: Forced and unforced ocean temperature changes in
7815	Atlantic and Pacific tropical cyclogenesis regions Proc Nat Acad Sci 103
7816	13005 13010 10 1073/ppag 0602861103
7010	13903-13910, 10.1075/pilas.0002801105.
/01/	Soundars M. A. and A. S. Les. 2005. Second and disting of humisons activity
/818	Saunders, M. A., and A. S. Lea, 2005: Seasonal prediction of nurricane activity
/819	reaching the coast of the United States. <i>Nature</i> , 434 , 1005-1008.
/820	
7821	Schar, C., P.L. Vidale, D. Lüthi, C. Frei, C. Häberli, M.A. Liniger, and C. Appenzeller,
7822	2004: The role of increasing temperature variability in European summer heat
7823	waves. <i>Nature</i> , 427 , 332-336.
7824	
7825	Schubert, S. D., M. J. Suarez, P. J. Region, R. D. Koster, and J. T. Bacmeister, 2004:
7826	Causes of long term drought in the U. S. Great Plains. <i>J Climate</i> , 17 , 485-503.

7827	
7828	Seager, R. Y. Kushnir, C. Herweijer, N. Naik, and J. Velez, 2005: Modeling of tropical
7829	forcing of persistent droughts and pluvials over western North America: 1856-
7830	2000. J Climate, 18, 4065-4088.
7831	
7832	Selten, F.M., Branstator, G. W.Dijkstra, and M. Kliphuis, 2004: Tropical origins for
7833	recent and future Northern Hemisphere climate change. <i>Geophysical Research</i>
7834	Letters, 31, L21205.
7835	
7836	Shen, W., R.E. Tuleva, and I. Ginis, 2000: A sensitivity study of the thermodynamic
7837	environment on GFDL model hurricane intensity: implications for global
7838	warming. J. Climate, 13 , 109-121.
7839	
7840	Sherwood, S. C., J. R. Lanzante, and C. L. Mever, 2005: Radiosonde davtime biases and
7841	late-20 th century warming. Science, 309, 1556-1559.
7842	
7843	Shiogama, H., M. Watanabe, M. Kimoto, and T. Nozawa, 2005: Anthropogenic and
7844	natural forcing impacts on ENSO-like decadal variability during the second half
7845	of the 20th century. <i>Geophysical Research Letters</i> , 32, L21714.
7846	
7847	Sriver, R. and M. Huber, 2006: Low frequency variability in globally integrated tropical
7848	cyclone power dissipation. <i>Geophys. Res. Lett.</i> , 33 , L11705.
7849	doi:10.1029/2006GL026167.
7850	
7851	Stott. P.A., 2003: Attribution of regional-scale temperature changes to anthropogenic and
7852	natural causes. <i>Geophysical Research Letters</i> , 30. doi:10.1029/2003GL017324.
7853	
7854	Stott, P.A., and S.F.B. Tett. 1998: Scale-dependent detection of climate change. <i>Journal</i>
7855	of Climate, 11, 3282-3294.
7856	
7857	Stott, P. A., S. F. B. Tett, G. S. Jones, M. R. Allen, J. F. B. Mitchell, and G. J. Jenkins,
7858	2000: External control of 20^{th} century temperature by natural and anthropogenic
7859	forcings. <i>Science</i> , 290 , 2133-2137.
7860	
7861	Strong, A.E., F. Arzayus, W. Skirving, and S.F. Heron, 2006: Identifying coral
7862	bleaching remotely via coral reef watch – improved integration and implications
7863	for changing climate, in <i>Corals and Climate Change: Science and Management</i> .
7864	Coastal and Estuarine Studies. 61. 163-180.
7865	
7866	Sugi, M., A. Noda, and N. Sato, 2002: Influence of global warming on tropical cyclone
7867	climatology: an experiment with the JMA global model. J. Meteorol. Soc. Japan
7868	80 : 249-272. DOI:10.2151/imsi.80.249
7869	
7870	Sugi M. and I. Yoshimura 2004: A mechanism of tropical precipitation change due to
7871	CO2 increase. J. Climate. 17. 238-243
7872	

7873	Tang, B. H., and J. D. Neelin, 2004: ENSO influence on Atlantic hurricanes via
7874	tropospheric warming. Geophys. Res. Lett., 31, L24204,
7875	doi:10.1029/2004GL021072.
7876	
7877	Tebaldi , C., K. Havhoe, J.M. Arblaster, and G.A. Meehl, 2006: Going to the extremes.
7878	<i>Clim. Change</i> , 79 , 185-211.
7879	
7880	Thompson , D.W.J., and J.M. Wallace, 1998: The Arctic Oscillation signature in the
7881	wintertime geopotential height and temperature fields. <i>Geophysical Research</i>
7882	Letters. 25. 1297-1300.
7883	
7884	Thompson , D., J.M. Wallace, and G.C. Hegerl. 2000: Annular modes in the extratropical
7885	circulation: Part II. Trends. <i>Journal of Climate</i> , 13, 1018-1036.
7886	
7887	Tonkin , H., G. J. Holland, N. Holbrook, and A. Henderson-Sellers, 2000: An evaluation
7888	of thermodynamic estimates of climatological maximum potential tropical
7889	cyclone intensity. <i>Mon. Wea. Rev.</i> , 128. 746-762.
7890	
7891	Tonkin, H., G. Holland, C. Landsea, and S. Li, 1997: Tropical cyclones and climate
7892	change: a preliminary assessment. In Assessing Climate Change: Results from
7893	the Model Evaluation and Consortium for Climate Assessments, W. Howe and A.
7894	Henderson-Sellers, eds., Taylor and Francis Group, plc., London, 327-360.
7895	
7896	Trapp. R. J., N. S. Diffenbaugh, H. E. Brooks, M. E. Baldwin, E. D. Robinson, and J. S.
7897	Pal. 2007: Changes in severe thunderstorm frequency during the 21st century due
7898	to anthropogenically enhanced global radiative forcing. <i>Proc. National Acad. Sci.</i>
7899	in review.
7900	
7901	Trenberth , K., 1999: Conceptual framework for changes of extremes of the hydrological
7902	cycle with climate change. <i>Clim. Change</i> , 42 , 327-339.
7903	
7904	Trenberth , K., 2005: Uncertainty in hurricanes and global warming. <i>Science</i> , 308 ,
7905	1753-1754.
7906	
7907	Trenberth, K. E., J. Fasullo, and L. Smith, 2005: Trends and variability in column-
7908	integrated atmospheric water vapor. <i>Clim. Dyn.</i> , 24: 741-758.
7909	
7910	Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in
7911	2005. Geophys. Res. Lett., 33, L12704, doi:10.1029/2006GL026894.
7912	
7913	Trenberth, K. E., and Coauthors, 2007: Chapter 3: Observations: Surface and
7914	Atmospheric Climate Chang. In: S. Solomon et al. (ed.) Climate Change 2007.
7915	The Fourth Scientific Assessment, Intergovernmental Panel on Climate Change
7916	(IPCC), in press.
7917	
7910 7911	Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. <i>Geophys. Res. Lett.</i> , 33 , L12704, doi:10.1029/2006GL026894.
7911	2005. Geophys. Res. Lett., 33, L12704, doi:10.1029/2006GL026894.
7912	
7014	Atmospheric Olimete Obs. J. G. G. J. Mapler 5: Observations: Surface and
1714 7015	The Fourth Scientific Assessment Intergovernmental Danal on Olimete Charge
7016	(IPCC) in press
7917	(m 00), m pross.

7918	Tsutsui, J., 2002: Implications of anthropogenic climate change for tropical cyclone
7919	activity: a case study with the NCAR CCM2. J. Meteorol. Soc. Japan, 80, 45-65,
7920	DOI:10.2151/jmsj.80.45
7921	
7922	Tsutsui , J., and A. Kasahara, 1996: Simulated tropical cyclones using the National
7923	Center for Atmospheric Research community climate model. J. Geophys. Res.
7924	101 , 15013-15032.
7925	
7926	Tuleva , R. E., M. DeMaria, and R. J. Kuligowski, 2007: Evaluation of GFDL and simple
7927	statistical model rainfall forecasts for U.S. landfalling tropical storms. <i>Weather</i>
7928	and Forecasting. 22, 56-70.
7929	
7930	Uhlhorn , E. W. and P. G. Black. 2003: Verification of remotely sensed sea surface winds
7931	in hurricanes. J. Atmos. and Ocean. Tech., 20, 99-116.
7932	
7933	Vayrus, S.J., J.E. Walsh, W.L. Chapman, and D. Portis, 2006: The behavior of extreme
7934	cold air outbreaks under greenhouse warming Int J Clim in press
7935	eora an outoreans anaer greennouse warming. nur et ettini, in pressi
7936	Vecchi G A and B I Soden 2007: Increased tropical Atlantic wind shear in model
7937	projections of global warming Geophys Res Lett 34 1 08702
7938	doi:10.1029/2006GL.028905
7939	doi.10.102)/2000GE020/03.
7940	Vecchi G A B I Soden A T Wittenberg I M Held A Leetmaa and M I
7941	Harrison 2006: Weakening of the tropical Pacific atmospheric circulation due to
7942	anthropogenic forcing Nature 441 73-76 doi:10.1038/nature/04744
7943	
7944	Vitart F. I. L. Anderson and W. F. Stern 1997: Simulation of inter-annual variability
7945	of tropical storm frequency in an ensemble of GCM integrations I Climate 10
7946	745-760
7947	
7948	Vitart E and I. I. Anderson 2001: Sensitivity of Atlantic tropical storm frequency to
7949	FNSO and interdecadal variability of SSTs in an ensemble of AGCM
7950	integrations I Climate $14(4)$ 533-545
7951	integrations. <i>J. Cumate</i> , 14 (+), 555 5+5.
7952	Vitart F I I Anderson I Signitis R F Tuleya 2001: Sensitivity of tropical storms
7953	simulated by a general circulation model to changes in cumulus parametrization
7957	Quart L Roy Meteorol Soc 127 25-51
7055	Quart. 5 . Roy. Meleorot. 500. 12 7, 25-51.
7955	Walsh K 2004: Tropical evelopes and climate change: upresolved issues Clim Ras
7957	77 77_83
7058	<i>ш</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
7050	Wolsh K I F K C Nauvan and I I McGragor 2004: Fina resolution regional
7060	climate model simulations of the impact of climate change on tropical evaluations
7061	non Australia Clim Dyn. 22 47 56 DOI: 10.1007/200222.002.0262.0
7062	neai Ausuana. C <i>um. Dyn., 22</i> , 47-30, DOI: 10.1007/800382-003-0302-0.
1902	

7963	Walsh, K. J. E. and B. F. Ryan, 2000: Tropical cyclone intensity increase near Australia
7964	as a result of climate change. J. Climate, 13, 3029-3036.
7965	
7966	Walsh, K. J. E., M. Fiorino, C. W. Landsea, and K. McInnes, 2006: Objectively-
7967	determined resolution-dependent threshold criteria for the detection of tropical
7968	cyclones in climate models and reanalyses. J. Climate, (in press).
7969	
7970	Wang, X.L., F.W. Zwiers, and V.R. Swail, 2004: North Atlantic ocean wave climate
7971	change scenarios for the twenty-first century. <i>Journal of Climate</i> , 17 , 2368-2383.
7972	
7973	Wang X.L., V.R. Swail, and F.W. Zwiers, 2006: Climatology and changes of extra-
7974	tropical storm tracks and cyclone activity: Comparison of ERA-40 with
7975	NCEP/NCAR Reanalysis for 1958–2001. J. Climate, 19 , 3145-3166.
7976	
7977	Wang, X.L., V.R. Swail, X. Zhang, F.W. Zwiers, and Y. Feng, 2007: Detection of human
7978	influence on trends of atmospheric storminess and northern oceans wave heights.
7979	<i>Clim. Dvn.</i> (in preparation).
7980	
7981	WASA. 1998: Changing waves and storms in the northeast Atlantic? Bull. Amer. Meteor.
7982	<i>Soc.</i> , 79 , 741-760.
7983	
7984	Watterson, J. G., J. L. Evans, and B. F. Rvan, 1995: Seasonal and inter-annual variability
7985	of tropical cyclogenesis: diagnostics from large-scale fields. J. Climate, 8, 3052-
7986	3066
7987	
7988	Webster, P. J., G. J. Holland, J. A. Curry, and HR. Chang. 2005: Changes in tropical
7989	cyclone number, duration, and intensity in a warming environment. <i>Science</i> , 309 .
7990	1844-1846
7991	
7992	Webster P. L. J. A. Curry, J. Liu, and G. J. Holland, 2006: Response to comment on
7993	"Changes in tropical cyclone number duration and intensity in a warming
7994	environment" Science 311 , 1713c
7995	
7996	Wehner M 2005: Changes in daily precipitation and surface air temperature extremes
7997	in the IPCC AR4 models US CLIVAR Variations 3 5-9
7998	in the first enders. Of the variations, 5, 5 y.
7999	Weisheimer A and T.N. Palmer 2005: Changing frequency of occurrence of extreme
8000	seasonal-mean temperatures under global warming <i>Geophys Res Lett</i> 32
8001	I 20721
8002	
8002	Wentz F I I Ricciardulli K Hilburn and C Mears 2007. How much more rain will
8003	global warming bring? Science 317 233 235 doi: 10.1126/science 11/07/6
8004	giobal warming bring: science, 317 , 235-235, doi: 10.1120/science.1140/40.
800 <i>3</i>	Wattstoin II and I O Mearns 2002. The influence of the North Atlantic Arctic
8000	Oscillation on mean variance and extremes of temperature in the northeestern
0007 0000	United States and Consider L Climate 15, 2596, 2600
0000	United States and Canada. J. Climate, 13, 5360-3000.

8009	
8010	Williams, G., K.L. Layman, H.G. Stefan, 2004: Dependence of lake ice covers on
8011	climatic, geographic and bathymetric variables. Cold Reg. Sci. Tech., 40, 145-
8012	164
8013	
8014	Wittenherg A T A Rosati N -C Lau and I I Ploshav 2006: GEDL's CM2 global
8015	coupled climate models - Part 3: Tropical Pacific climate and FNSO 1 Climate
8016	19(5) 698-722
8017	17(5), 090 722.
8018	Wu I and B Wang 2004: Assessing impacts of global warming on tropical cyclone
8010	tracks I Climate 17 1686-1698
8020	uacks. <i>J. Cumule</i> , 17 , 1000-1070.
8020	Wu I P Wang and S Gang 2005: Growing typhoon influence on east Asia Geophys
8021	\mathbf{Vu} , L., D. Wang, and S. Geng, 2005. Growing typhoon influence on east Asia, Geophys.
0022 0022	Kes. Leu., 52, L18705, doi:10.1029/20050L022957.
8023 8024	Way DL D Wood and D Statt 2005. Human influence on increasing Arctic river
8024 8025	discharges, Coording Post Lett. 22 Art. No. L 02702
8025	discharges. Geophys. Res. Lett., 32 , Art. No. L02705.
8026	
8027	YIN , J.H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st
8028	century climate. Geophys. Res. Lett., 32, L18/01.
8029	
8030	Yonetani, T., and H.B. Gordon, 2001: Simulated changes in the frequency of extremes
8031	and regional features of seasonal/annual temperature and precipitation when
8032	atmospheric CO2 is doubled. J. Clim., 14, 1765-1779.
8033	
8034	Yoshimura , J. and M. Sugi, 2005: Tropical cyclone climatology in a high-resolution
8035	AGCM - impacts of SST warming and CO2 increase. SOLA, 1, 133-136, DOI:
8036	10.2151/sola.2005-035.
8037	
8038	Yoshimura, J., M. Sugi and A. Noda, 2006: Influence of greenhouse warming on
8039	tropical cyclone frequency. J. Meteor. Soc. Japan, 84, 405-428.
8040	
8041	Zelle, H., G.J. Van Oldenborgh, G. Burgers, and H. Dijkstra, 2005: El Nino and
8042	greenhouse warming: Results from ensemble simulations with the NCAR CCSM.
8043	J. Climate, 18, 4669-4683.
8044	
8045	Zeng, Z., Y. Wang, and CC. Wu, 2006: Environmental dynamical control of tropical
8046	cyclone intensity-An observational study. Mon. Wea. Rev., (in press).
8047	
8048	Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on
8049	India/Sahel rainfall and Atlantic hurricanes. <i>Geophys. Res. Lett.</i> , 33. L17712.
8050	doi:10.1029/2006GL026267
8051	
8052	Zhang, X., F.W. Zwiers, and P.A. Stott. 2006: Multi-model multi-signal climate change
8053	detection at regional scale <i>Journal of Climate</i> in press
8054	contraction at regional sould bournan of contract, in pross.
~~~ !	

<b>Zhang,</b> X., F. W. Zwiers, G. C. Hegerl, N. Gillett, H. Lambert, and S. Solomon, 2007: Detection of human Influence on 20 th century precipitation trends. <i>Nature</i> , in
press.
Zhang, X.D., and J.E. Walsh, 2006: Toward a seasonally ice-covered Arctic Ocean:
Scenarios from the IPCC AR4 model simulations. J. Climate, 19, 1730-1747.
Zwiers, F.W., and X. Zhang, 2003: Toward regional scale climate change detection.
Journal of Climate, 16, 793-797.

8065 Table 3.1 Models and scenarios used for computing the Frich et al. (2002) indices

Scenario	Models
SRES A1B	ccsm3.0
	cnrm
	gfdl2.0
	gfdl2.1
	inmcm3
	ipsl
	miroc3_2_medres
	miroc3_2_hires
	mri_cgcm2_3_2a
SRES A2	cnrm
	gfd2.0
	gfdl2.1
	inmcm3
	ipsl
	miroc3_2_medre
	mri_cgcm2_3_2a
SRES B1	ccsm3.0
	cnrm
	gfdl2.0
	gfdl2.1
	inmcm3
	ipsl
	miroc3_2_medres
	miroc3_2_hires

8066 for North America that appear in this document.

## 8068 **Table 3.2 Summary of tropical storm frequency, expressed as a percent of present**

#### 8069 day levels, as simulated by several climate GCMs under global warming conditions.

Model	Resolution	Experiment				
				N	NW	NE
			Global	Atlantic	Pacific	Pacific
JMA	T106 L21	10y	<u>66</u>	<u>161</u>	<u>34</u>	33
timeslice	(~120km)	1xCO2, 2xCO2				
NCAR	T42 L18	10y	102	86	111	91
CCM2		1xCO2				
		2xCO2 from				
		115y CO2 1% pa				
HadAM3	N144 L30	15y IS95a	<u>94</u>	<u>75</u>	<u>70</u>	<u>180</u>
timeslice	(~100km)	1979-1994				
		2082-2097				
CCSR/NIES	T106 L56	5x20y at 1xCO2			96	
/FRCGC	(~120km)	7x20y at 2xCO2				
timeslice						
JMA	T106 L21	10y	<u>85</u>			
timeslice	(~120km)	1xCO2, 2xCO2				
ECHAM5-	T63 L31	A1B 3 members	94			
ОМ	1.5° L40	30y 20C and 21C				
MRI/JMA	TL959 L60	10y A1B	<u>70</u>	<u>134</u>	<u>62</u>	<u>66</u>
timeslice	(~20km)	1982-1993				
	Model JMA timeslice NCAR CCM2 HadAM3 timeslice CCSR/NIES /FRCGC timeslice JMA timeslice ECHAM5- OM MRI/JMA timeslice	Model Resolution JMA T106 L21 timeslice (~120km) NCAR T42 L18 CCM2 T42 L18 CCM2 (~100km) timeslice (~100km) timeslice (~100km) timeslice JMA T106 L56 /FRCGC (~120km) timeslice (~120km) timeslice 1.5° L40 MRI/JMA TL959 L60 timeslice (~20km)	ModelResolutionExperimentJMAT106 L2110yimeslice(~120km)1xCO2, 2xCO2NCART42 L1810yCCM21xCO22xCO2 fromHadAM3N144 L3015y IS95atimeslice(~100km)1979-19942082-20972082-2097CCSR/NIEST106 L565x20y at 1xCO2/FRCGC(~120km)7x20y at 2xCO2JMAT106 L2110ytimeslice(~120km)1xCO2, 2xCO2ECHAM5-T63 L31A1B 3 membersOM1.5° L4030y 20C and 21CMRI/JMATL959 L6010y A1Btimeslice(~20km)1982-1993	Model         Resolution         Experiment         Global           JMA         T106 L21         10y         66           timeslice         (~120km)         1xCO2, 2xCO2         102           NCAR         T42 L18         10y         102           CCM2         T42 L18         10y         102           HadAM3         N144 L30         15y IS95a         94           timeslice         (~100km)         1979-1994         2082-2097           CCSR/NIES         T106 L56         5x20y at 1xCO2         Income           /FRCGC         (~120km)         7x20y at 2xCO2         Income           JMA         T106 L21         10y         85           timeslice         (~120km)         1xCO2, 2xCO2         Income           JMA         T106 L21         10y         85           timeslice         (~120km)         1xCO2, 2xCO2         Income           JMA         T106 L21         10y         85           timeslice         (~120km)         30y 20C and 21C         Income           GMA         1.5° L40         30y 20C and 21C         Income         Income           MRI/JMA         TL959 L60         10y A1B         70         Income	ModelResolutionExperimentImage: Image Internation of the second stress of the secon	ModelResolutionExperimentNNWImage: ResolutionSeptember (September (Septembe

			2080-2099			
Chauvin et al.	ARPEGE-	Stretched	10y			
2006	Climat time	non-uniform	CNRM SRES-B2:	118		
	slice	grid (~50	Hadley SRES-A2:	<u>75</u>		
		km)				
Bengtsson et al.	ECHAM5	up to T319	20yr, A1B scenario	 <u>87</u>	<u>72</u>	<u>107</u>
2007	time slice	(down to				
		~30-40 km				
		grid)				

- 8071 **<u>Bold</u>** = significantly <u>more</u> tropical storms in the future simulation
- 8072 <u>Italic</u> = significantly <u>fewer</u> tropical storms in the future simulation
- 8073 Plain text = not significant or significance level not tested







- 8084 from an ensemble of simulations that used the A1B, A2 or B1 scenarios^{*}. The bounds are
- 8085 the max (or min) standard deviation plus (or minus) signal over all three scenarios. The
- 8086 model plots are obtained from the CMIP-3 multi-model data set at PCMDI and the
- 8087 observations are from Peterson et al. (2007).

^{*3} future emission scenarios from the IPCC Special Report on Emissions Scenarios:

B1 blue line: emissions increase very slowly for a few more decades, then level off and decline

A2 black line: emissions continue to increase rapidly and steadily throughout this century

A1B red line: emissions increase rapidly until 2050 and then decline.

There are more details on these emission scenarios in the glossary.



#### Decrease in Number of Frost Days Per Year



simulations and observations: a) 20th century trend for model ensemble, b) Observed 20th 8090

- century trend and c) 21st century trend for emission scenario A2 from model ensemble. 8091
- The model plots are obtained from the CMIP-3 multi-model data set at PCMDI and the 8092
- 8093 observations are from Peterson et al. (2007).



8096 Figure 3.3 Trends in the Karl-Knight heat-wave index (Karl and Knight, 1997) for 1961-

- 8097 1990 in observations (top panel) and in an ensemble of climate simulations by the
- 8098 Parallel Climate Model (bottom panel). Dots mark trends that are significant at the 95%
- 8099 level.



Projected Increase in Very Heavy Rainfall Events

8100

8101

8102 **Figure 3.4** Comparison between regions with disproportionate trends in the number of

8103 exceedances of the heaviest rainfall events (99.7th percentile) in two climate models at the

8104 time of CO2 doubling. See figure 2.8 for areas of N. America which show observed

8105 increases in very heavy rainfall Model 1 is the CGCM2 and model 2 is the HadCM3.

8106 After Groisman et al. (2005).



### Projected Increase in Occurrence of a 1-in-20 Year Event

8107

8108 Figure 3.5 Simulations for 2090-2099 indicating how currently rare extremes (a 1-in-20-8109 year event) are projected to become more commonplace. a) Temperature - a day so hot 8110 that it is currently experienced once every 20 years would occur every other year or more 8111 by the end of the century, (b) daily total precipitation events that occur on average every 8112 20 years in the present climate would, for example, occur once in every 4-6 years for 8113 N.E. North America. These results are based on a multi-model ensemble of global 8114 climate models simulating the midrange A1B emission scenario*. (from Wehner 2005). 8115 [units: years].



## Percentage Change in Annual Runoff (2090-2099)

- 8118 **Figure 3.6** Change in annual runoff (%) for the period 2090-2099, relative to 1980-1999.
- 8119 Values are obtained from the median in a multi-model dataset that used the A1B emission
- scenario. White areas are where less than 66% of the models agree in the sign of change
- and stippled areas are where more than 90% models agree in the sign of change. [Derived
- 8122 from the analysis of Milly et al. (2005)]



8124

Figure 3.7 Frequency histograms of hurricane intensities in terms of central pressure (mb) aggregated across all idealized hurricane experiments in the Knutson and Tuleya (2004) study. The light curve shows the histogram from the experiments with present-day conditions, while the dark curve is for high  $CO_2$  conditions (after an 80 yr warming trend in a +1%/yr  $CO_2$  experiment). The results indicate that hurricanes in a  $CO_2$ -warmed climate will have significantly higher intensities (lower central pressures) than hurricanes in the present climate.



Changes in Aspects of Climate that Regulate Hurricane Development

- 8133
- 8134

Figure 3.8 Percent changes in June-November ensemble mean a) vertical wind shear, b)
mid-tropospheric relative humidity, and c) maximum potential intensity of tropical
cyclones for the period 2081-2100 minus the period 2001-2021 for an ensemble of 18

- 8138 GCMs, available in the IPCC AR4 archive, using the A1B scenario. The percentage
- 8139 changes are normalized by the global surface air temperature increase projected by the
- 8140 models. From Vecchi and Soden (2007).



#### Influence of Climatic Factors that Contribute to Hurricane Development

8143





8151



- 8154 precipitation rate for the 102 model grid points (32,700 km² area) with highest
- 8155 accumulated rainfall over the last 6 hours of the 5-day idealized hurricane experiments in
- 8156 Knutson and Tuleya (2004). The results indicate that hurricanes in a CO2-warmed
- 8157 climate will have substantially higher core rainfall rates than those in the present climate.
- 8158 (From Knutson and Tuleya, 2007).



8161 Figure 3.11 The projected change in intense low pressure systems (strong storms) during

- the cold season for the Northern Hemisphere for various emission scenarios* (adapted
- 8163 from Lambert and Fyfe; 2006). Storms counted have central pressures less than 970 mb
- and occur poleward of  $30^{\circ}$ N during 120-day season starting November 15. Adapted from
- 8165 Lambert and Fyfe (2006).

# 8166 **Chapter 4** Recommendations for Improving our

8167 Understanding

8168

8169 Convening Lead Author: David R. Easterling, NOAA

8170

8171 Lead Authors: David M. Anderson, NOAA; William J. Gutowski, Iowa State Univ.;

8172 Greg J. Holland, NCAR; Kenneth E. Kunkel, Univ. Ill. Urbana-Champaign, Ill. State

8173 Water Survey; Thomas C. Peterson, NOAA; Roger S. Pulwarty, NOAA; Michael F.

8174 Wehner, DOE LBNL

8175

8176 In this chapter we provide a set of key recommendations for improving our understanding

8177 that stem from the previous three chapters. Many of these findings and recommendations

8178 are consistent with previous reports, especially the CCSP 1.1 report on reconciling

8179 temperature trends between the surface and free atmosphere.

8180

8181 Many types of extremes, such as excessively hot and cold days, drought, and heavy

8182 precipitation show changes over North America consistent with observed warming of the

8183 climate. Regarding future changes, model projections show large changes in warm and

8184 cold days consistent with projected warming of the climate by the end of the 21st century.

8185 However, there remains uncertainty in both observed changes, due to the quality and

8186 homogeneity of the observations, and in model projection, due to constraints in model

8187 formulation, in a number of other types of climate extremes, including tropical cyclones,

8188 extratropical cyclones, tornadoes, and thunderstorms.

8190	4.1 The continued establishment and maintenance of high quality climate observing
8191	systems to monitor climate variability and change should be of the highest priority.
8192	Recently, more emphasis has been placed on the development of true climate observing
8193	networks that adhere to the Global Climate Observing System (GCOS) Climate
8194	Monitoring Principles. This is exemplified by the establishment in the U.S. of the Climate
8195	Reference Network, in Canada of the Reference Climate Network, and recent efforts in
8196	Mexico to establish a climate observing network. Stations in these networks are carefully
8197	sited and instrumented and are designed to be benchmark observing systems adequate to
8198	detect the true climate signal for the region being monitored.
8199	
8200	Similar efforts to establish a high-quality, global upper-air reference network have been
8201	undertaken under the auspices of GCOS. However, this GCOS Reference Upper-air
8202	Network (GRUAN) is dependent on the use of current and proposed new observing
8203	stations, whose locations will be determined through observing system simulation
8204	experiments (OSSEs) that use both climate model simulations and observations to
8205	determine where best to locate new observing stations
8206	
8207	However, at the present these efforts generally are restricted to a few countries and large
8208	areas of the world, even large parts of North America remain under observed. A
8209	commitment to developing climate observing networks, especially in areas that
8210	traditionally have not had long-term climate observations, is critical for monitoring and
8211	detecting future changes in climate, including extremes.

#### 8212 **4.2 Efforts to digitize, homogenize and analyze long-term observations in the**

#### 8213 instrumental record should be expanded.

Research using homogeneity-adjusted observations will provide a better understanding of climate system variability in extremes. Observations of past climate have, by necessity, relied on observations from weather observing networks established for producing and verifying weather forecasts. In order to make use of these datasets in climate analyses, non-climatic changes in the data, such as changes due to station relocations, land use change, instrument changes, and observing practices must be accounted for through data

adjustment schemes.

8221

8222 The intent of these data adjustments is to approximate homogeneous time series where

the variations are only due to variations in climate and not due to the non-climatic

8224 changes discussed above. However, the use of these adjustment schemes introduces

another layer of uncertainty into the results of analyses of climate variability and change.

8226 Thus, research into both the methods and quantifying uncertainties introduced through

8227 use of these methods is critical for understanding observed changes in climate.

8228

8229 Even with the recent efforts to develop true climate observing networks, an

8230 understanding of natural and anthropogenic effects on historical weather and climate

8231 extremes is best achieved through study of very long (century-scale) records because of

the presence of multi-decadal modes of variability in the climate system. For many of the

8233 extremes discussed here, including temperature and precipitation extremes, storms, and

8234	drought, there are significant challenges in this regard because long-term, high quality,
8235	homogeneous records are not available. For example, recent efforts have been made in
8236	the U.S. to digitize surface climate data for the 19 th Century; however, using these data
8237	poses several problems. The density of stations is considerably less than in the $20^{\text{th}}$
8238	Century. Equipment and observational procedures were quite variable and different than
8239	the standards established within the U.S. Cooperative Network (COOP). Thus, the raw
8240	data are not directly comparable to COOP data. However, initial efforts to homogenize
8241	these data have been completed and analysis shows interesting features, including high
8242	frequencies of extreme precipitation and low frequencies of heat waves for the 1850-1905
8243	period over the conterminous U.S.

8245 In some cases, heterogeneous records of great length are available and useful information 8246 has been extracted. However, there are many opportunities where additional research 8247 may result in longer and better records to better characterize the historical variations. For 8248 example, the ongoing uncertainty and debate about tropical cyclone trends is rooted in the 8249 heterogeneous nature of the observations and different approaches toward approximating 8250 homogeneous time series. Therefore, efforts to resolve the existing uncertainties in 8251 tropical cyclone frequency and intensity should continue by re-examining the 8252 heterogeneous records, and paleotempestological studies should be pursued to better 8253 understand variations on multi-century time scales.

4.3 Current weather observing systems should adhere to standards of observation
that are consistent with the needs of both the climate and the weather forecasting
communities.

8258 Smaller-scale storms, such as thunderstorms and tornadoes are particularly difficult to 8259 observe since historical observations have been highly dependent on population density. 8260 For example, the U.S. record of tornadoes shows a questionable upward trend that 8261 appears to be due mainly to increases in population density in tornado-prone regions. 8262 With more people in these regions, tornadoes that may have gone unobserved in earlier 8263 parts of the record are now being recorded, thus hampering any analysis of true climate 8264 trends of these storms. Since many of the observations of extreme events are collected in 8265 support of operational weather forecasting, changes in policies and procedures regarding 8266 those observations need to take climate change questions into account, in order to collect 8267 high-quality, consistently collected data over time and space. Therefore, consistent 8268 standards of collection of data about tornadoes and severe thunderstorms need to be 8269 developed and applied. Included in this process is a need for the collection of information 8270 about reports that allows users to know the confidence levels that can be applied to 8271 reports.

- 8272
- 8273 However, in the absence of homogeneous observations of extremes, such as

thunderstorms and tornadoes, one promising method to infer changes is through the use

- 8275 of surrogate measures. For example, since the data available to study past trends in these
- 8276 kinds of storms suffer from the problems outlined above an innovative way to study past
- 8277 changes lies in techniques that relate environmental conditions to the occurrence of

8278	thunderstorms and tornadoes. Studies along these lines could then produce better
8279	relationships, than presently exist, between favorable environments and storms. Those
8280	relationships could then be applied to past historical environmental observations and
8281	reanalysis data to make improved estimates of long-term trends.
8282	
8283	4.4 Efforts to extend reanalysis products using surface observations should be
8284	pursued.
8285	Studies of the temporal variations in the frequency of strong extratropical cyclones have
8286	typically examined the past 50 years and had to rely on reanalysis fields due to
8287	inconsistencies with the historical record. But a much longer period is desirable to gain a
8288	better understanding of possible multi-decadal variability in strong storms. There are
8289	surface pressure observations extending back to the 19 th Century and, although the spatial
8290	density of stations decreases backwards in time, it may be possible to identify strong
8291	extratropical cyclones and make some deductions about long-term variations.
8292	Additionally, efforts to extend reanalysis products back to the early 20 th Century using
8293	only surface observations have recently begun. These efforts should continue since they
8294	provide physically-consistent depictions of climate behavior and will contribute to an
8295	understanding of causes of observed changes in climate extremes.
8296	

- 8297 4.5 Research is needed to create annually-resolved, regional-scale reconstructions of
  8298 the climate for the past 2,000 years.
- 8299 The development of a wide-array of climate reconstructions for the last two millennia,
- such as temperature, precipitation, and drought will provide the longer baseline needed to

analyze infrequent extreme events, such as those occurring once a century or less. This
and other paleoclimatic research can also answer the question of how extremes change
when the global climate was warmer and colder than today.

8304

8305 The instrumental record of climate is generally limited to the past 150 years or so. 8306 Although there are observations of temperature and precipitation as recorded by 8307 thermometers and rain gauges for some locations prior to the early to mid-1800s, they are 8308 few and contain problems due to inconsistent observing practices thus their utility is 8309 limited. However, the paleoclimate record covering the past 2,000 years and beyond 8310 reveals extremes of greater amplitude and longer duration compared to events observed 8311 in the instrumental record of the past 100 years (e.g. Woodhouse and Overpeck 1998). 8312 The paleoclimate record also reveals that some events occur so infrequently that they 8313 may be observed only once, or even not at all during the instrumental period. An 8314 improved array of paleo time series is essential to understanding the repeat frequency of 8315 rare events, for example events occurring only once a century. 8316 8317 The frequency of some extremes appears tied to the background climate state, according 8318 to some paleoclimate records. For example, century-scale changes in the position of the 8319 subtropical high may have affected hurricane tracks and the frequency of hurricanes in 8320 the Gulf of Mexico (Elsner, et al., 2000). Throughout the western United States, the area 8321 exposed to drought may have been elevated for four centuries from 900-1300 AD, 8322 according the Palmer Drought Severity Index reconstructed from tree rings (Cook, et al., 8323 2004). The period from 900-1300 AD was a period when the global mean temperature

8324	was above average (Mann et al. 1999), consistent with the possibility that changes in the
8325	background climate state can affect some extremes. The paleoclimatic record can be used
8326	to further understand the possible changes in extremes during warmer and colder climates
8327	of the past.

# 4.6 Research efforts to improve our understanding of the mechanisms that govern hurricane intensity should be increased.

8331 A major limitation of our current knowledge lies in the understanding of hurricane

8332 intensity together with surface wind structure and rainfall, and particularly how these

8333 relate to a combination of external forcing from the ocean and surrounding atmosphere,

and potentially chaotic internal processes. This lack of understanding and related low

8335 predictive capacity has been recognized by several expert committees set up in the wake

8336 of the disastrous 2005 Atlantic hurricane season:

8337

8338	•	The National Science Board recommended that the relevant Federal agencies
8339		commit to a major hurricane research program to reduce the impacts of hurricanes
8340		and encompassing all aspects of the problem: physical sciences, engineering,
8341		social, behavioral, economic and ecological (NSB 2006);

The NOAA Science Advisory Board established an expert Hurricane Intensity
 Research Working Group that recommended specific action on hurricane intensity
 and rainfall prediction (NOAA SAB 2006);

8345	• The American Geophysical Union convened a meeting of scientific experts to
8346	produce a white paper recommending action across all science-engineering and
8347	community levels (AGU 2006)]; and,
8348	• A group of leading hurricane experts convened several workshops to develop
8349	priorities and strategies for addressing the most critical hurricane issues (HiFi
8350	2006).
8351	
8352	While much of the focus for these groups was on the short-range forecasting and impacts
8353	reduction aspects of hurricanes, the research recommendations also apply to longer term
8354	projections. Understanding the manner in which hurricanes respond to their immediate
8355	atmospheric and oceanic environment is critical to prediction on all scales.
8356	
8357	A critical issue common to all of these expert findings is the need for understanding and
8358	parameterization of the complex interactions occurring at the high wind oceanic interface
8359	and for very high model resolution in order for forecast models to be able to capture the
8360	peak intensity and fluctuations in intensity of major hurricanes. Climate models are
8361	arriving at the capacity to resolve regional structures but not relevant details of the
8362	hurricane core region. As such, some form of statistical inference will be required to fully
8363	assess future intensity projections.
8364	
8365	4.7 Substantial increases in computational and human resources should be made
8366	available to fully investigate the ability of climate models to recreate the recent past
8367	as well as make projections under a variety of future forcing scenarios.

8368	The continued development and improvement of numerical climate models, and
8369	observational networks for that matter, is highly related to funding levels of these
8370	activities. A key factor, which is often overlooked, is the recruitment and retention of
8371	people necessary to perform the analysis of models and observations. For the
8372	development and analysis of models, scientists are drawn to institutions with
8373	supercomputing resources which require large sources of funding to sustain them. For
8374	example, the high resolution global simulations of Oouchi, et al. (2006) to predict future
8375	hurricane activity are currently beyond the reach of US tropical cyclone research
8376	scientists. This limitation is also true for other smaller-scale storm systems, such as
8377	severe thunderstorms and tornadoes. Yet, to understand how these extreme events might
8378	change in the future it is critical that climate models are developed that can realistically
8379	resolve these types of weather systems. Given sufficient computing resources current
8380	U.S. climate models can achieve very high horizontal resolution. Current generation high
8381	performance computing (HPC) platforms are also sufficient provided that enough access
8382	to computational cycles is made available. Furthermore, many other aspects of the
8383	climate system relevant to extreme events, such as extra-tropical cyclones, would be
8384	much better simulated in such integrations than they are at typical global model
8385	resolutions of today.

Even atmospheric models at ~20 kilometer horizontal resolution are still not finely
resolved enough to simulate the high wind speeds and low pressure centers of the most
intense hurricanes (Category 5 on the Saffir-Simpson scale). Realistically capturing

8390 details of such intense hurricanes, such as the inner eye-wall structure, will require
8391	models up to one kilometer horizontal resolution. Such ultra-high resolution global
8392	models will require very high computational rates to be viable (Wehner, et al 2006). This
8393	is not beyond the reach of next generation HPC platforms but will need significant
8394	investments in both model development (human resources) as well as in dedicated
8395	computational infrastructure (Randall, 2005).
8396	
8397	4.8 Modeling groups should make available high temporal resolution data (daily,
8398	hourly) from climate model simulations both of the past and for the future to allow
8399	the investigation of potential changes in weather and climate extremes.
8400	In order to achieve high levels of statistical confidence in analyses of climate extremes
8401	using methods such as those based on generalized extreme value theory, lengthy
8402	stationary datasets are required. Although climate model output is well suited to such
8403	analysis, the datasets are often unavailable to the research community at large. Many of
8404	the models utilized for the Intergovernmental Panel on Climate Change Fourth
8405	Assessment Report (IPCC AR4) were integrated as ensembles permitting more robust
8406	statistical analysis. The simulations were made available at the Program for Climate
8407	Model Diagnostics and Intercomparison (PCMDI) at Lawrence Livermore National
8408	Laboratory. However, the higher temporal resolution data necessary to analyze extreme
8409	events is quite incomplete in the PCMDI database with only four models represented in
8410	the daily averaged output sections with ensemble sizes greater than three realizations and
8411	many models not represented at all. Lastly, a critical component of this work is the
8412	development of enhanced data management and delivery capabilities such as those in the
8413	NOAA Operational Model Archive and Distribution System (NOMADS), not only for

- archive and delivery of model simulations, but for reanalysis and observational data setsas well (NRC 2006).
- 8416

## 8417 **4.9 Research needs to move beyond purely statistical analysis and focus more on**

## 8418 linked physical processes that produce extremes and their changes with climate.

- 8419 Analyses should include attribution of probability distribution changes to natural or
- 8420 anthropogenic influences, comparison of individual events in contemporary and projected
- 8421 climates and the synoptic climatology of extremes and its change in projected climates.
- 8422 The ultimate goal should be a deeper understanding of the physical basis for changes in
- 8423 extremes that improves modeling and thus lends confidence in projected changes.
- 8424

8425 Literature is lacking that analyzes the physical processes producing extremes and their

8426 changes as climate changes. One area that is particularly sparse is analysis of so-called

- 8427 "compound extremes", events that contain more than one type of extreme such as drought
- 8428 and extremely high temperatures occurring simultaneously.
- 8429

A substantial body of work has emerged on attribution of changes, with a growing subset

- 8431 dealing with attribution of changes in extremes. Such work shows associations between
- 8432 climate forcing mechanisms and changes in extremes, which is an important first step
- toward understanding what changes in extremes are attributable to climate change.
- 8434 However, such work typically does not examine the coordinated physical processes

8435 linking the extreme behavior to the climate in which it occurs.

8437	More effort should be dedicated to showing how the physical processes producing
8438	extremes are changing. Good examples are studies by Meehl and Tebaldi (2004) on
8439	severe heat waves, Meehl et al. (2004) on changes in frost days and Meehl and Hu (2006)
8440	on megadroughts. Each of these examples involves diagnosing a coherent set of climate-
8441	system processes that yield the extreme behavior. An important aspect of the work is
8442	demonstrating correspondence between observed and simulated physical processes that
8443	yield extremes and, in some of these cases, evaluation of changes in the physical
8444	processes in projected climates.
8445	
8446	More broadly, the need is for greater analysis of the physical climatology of the climate
8447	system leading to extremes. Included in this are further studies of the relationship in
8448	projected future climates between slow oscillation modes, such as PDO and AO, and
8449	variation in extremes (e.g., Thompson and Wallace 2001). Methods of synoptic
8450	climatology (e.g., Cassano et al. 2006, Lynch et al. 2006) could also provide deeper
8451	physical insight into the processes producing extremes and their projected changes. Also
8452	the development and use of environmental proxies for smaller storm systems such as
8453	severe thunderstorms and tornadoes from regional and nested climate models is
8454	encouraged. Finally, more probability analysis of the type applied by Stott et al. (2004) to
8455	the 2003 European heat wave is needed to determine how much the likelihood of
8456	individual extreme events has been altered by human influences on climate.
8457	
8458	

# **4.10 Communication between the science community and the user community**

## 8460 should be enhanced in both directions.

8461 Because extremes can have major impacts on socio-economical and natural systems, 8462 changes in climate extremes will affect the ability of states, provinces and local 8463 communities to cope with rare weather events. The process of adaptation to climate 8464 change begins with addressing existing vulnerabilities to current and near-term climatic 8465 extremes and is directly linked to disaster risk management. Research and experience 8466 have shown that mitigating the impacts of extremes and associated complex multiple-8467 stress risks, involve improvements in early warning systems, information for better land-8468 use planning and resource management, building codes, and, coordination of contingency 8469 planning for pre- and post-event mitigation and response.

8470

8471 Many adaptations can be implemented at low cost, but comprehensive estimates of 8472 adaptation costs and benefits are currently limited partly because detailed information 8473 about costs of extreme events are not adequately archived and made available to 8474 researchers. To address this problem, guidelines should be developed to improve the 8475 methods to collect, archive and quality control detailed information on impacts of 8476 extreme events and sequences of extremes, including costs, loss estimates, loss of life, 8477 and ecological damage as well as the effectiveness of post event responses. Additionally, 8478 networks of systematic observations of key elements of physical, biological, and socio-8479 economical systems affected by climate extremes should be developed, particularly in 8480 regions where such networks are already known to be deficient.

8482	Because the links between impacts and changes in extremes can be complex, unexpected
8483	and highly nonlinear, especially when modified by human interventions over time,
8484	research into these linkages should be strengthened to better understand system
8485	vulnerabilities and capacity, to develop a portfolio of best practices, and to implement
8486	better response options. But best practices guidelines do not do any good unless they are
8487	adequately communicated to the relevant people. Therefore, mechanisms for
8488	collaboration and exchange of information among climate scientists, impacts researchers,
8489	decision makers (including resources managers, insurers, emergency officials and
8490	planners) and the public should be developed and supported. Such mechanisms would
8491	involve multi-way information exchange systems and pathways. Better communication
8492	between these groups would help communities and individuals make the most
8493	appropriate responses to changing extremes. As climate changes, making the
8494	complexities of climate risk management explicit can transform event to event response
8495	into a learning process for informed proactive management. In such learning-by-doing
8496	approaches, the base of knowledge is enhanced through the accumulation of practical
8497	experience for risk scenario development and disaster mitigation and preparedness.
8498	
8499	4.11 Summary

8500 Figure 4.1 shows the complex interrelationships between the different sections and

8501 recommendations in this chapter. Enhanced observing systems and data sets allow better

analyses of the observed climate record for patterns of observed variability and change.

8503 This provides information for the climate modeling community to verify that their models

8504 produce realistic simulations of the observed record, providing increased confidence in

8505	simulations of future climate. Both of these activities help improve our physical
8506	understanding of the climate which, linked with model simulations through observing
8507	system simulation experiments (OSSEs), helps understand where we need better
8508	observations, and leads to better formulation of model physics through process studies of
8509	observations. This link between observed and modeling patterns of climate change also
8510	provides the basis for establishing the cause and effect relationships critical for attribution
8511	of climate change to human activities. Since the ultimate goal of this assessment is to
8512	provide better information to policy and decision makers, a better understanding of the
8513	relationships between climate extremes and their impacts is critical information for
8514	reducing the vulnerability of societal and natural systems to climate extremes.

8515	Chapter 4 References
8516	
8517	AGU, 2006: Hurricanes and the U.S. Gulf Coast: Science and Sustainable Rebuilding
8518	www.agu.org/report/hurricanes/
8519	
8520	Cassano, J.J., P. Uotila, and A. Lynch, 2006: Changes in synoptic weather patterns in the
8521	polar regions in the 20th and 21st centuries, Part 1: Arctic. Int. J. Clim., in press.
8522	
8523	Cook, E., C.A. Woodhouse, C.M. Eakin, D.M. Meko, and D.W. Stahle, 2004: Long-
8524	Term Aridity Changes in the Western United States. Science, <b>306</b> , 1015-1018.
8525	
8526	Elsner, J.B., K-B. Liu and B. Kocher, 2000: Spatial variations in major U.S. hurricane
8527	activity: Statistics and a physical mechanism. <i>Journal of Climate</i> , <b>13</b> , 2293-2305.
8528	
8529	HiFi, 2006: HiFi Science Strategy
8530	http://www.nova.edu/ocean/hifi/hifi_science_strategy.pdf
8531 8522	<b>Lynch</b> A. D. Hotila and I.I. Cassano, 2006; Changes in synaptic weather patterns in the
0332 0522	Lynch, A., F. Ootha, and J.J. Cassano, 2000. Changes in synoptic weather patients in the
8531	polar regions in the 20th and 21st centuries, Fart 2. Antarctic. Int. J. Cum., in
8535	press.
8536	Mann M.F. R. Bradley and M. Hughes 1999: Northern Hemisphere temperatures
8537	during the past millennium: inferences uncertainties and limitations <i>Geophys</i>
8538	$R_{es}$ Letts 26 759-762
8539	Tes. Lens., <b>20</b> , 107 102.
8540	Meehl, G.A., and C. Tebaldi, 2004; More intense, more frequent, and longer lasting heat
8541	waves in the 21st century. Science, <b>305</b> , 994-997.
8542	
8543	Meehl, G.A., C. Tebaldi, and D. Nychka, 2004a: Changes in frost days in simulations of
8544	twenty-first century climate. Clim. Dyn., 23, 495-511.
8545	
8546	Meehl, G. A., and A. Hu, 2006: Megadroughts in the Indian monsoon region and
8547	southwest North America and a mechanism for associated multi-decadal Pacific
8548	sea surface temperature anomalies. Journal of Climate, 19, 1605–1623.
8549	
8550	National Research Council (NRC) of the National Academies, Board of Atmospheric
8551	Science and Climate, (2006), "Completing the Forecast: Characterizing and
8552	Communicating Uncertainty for Better Decisions Using Weather and Climate
8553	Forecasts", Recommendation 3.4, pp76, October 2006 pre-publication, National
8554	Academies Press
8555	
8556	NOAA SAB, 2006: HIRWG Final Report
8557	http://www.sab.noaa.gov/Reports/HIRWG_final73.pdf
8558	
8559	<b>NSB</b> , 2006: Hurricane Warning: The Critical Need for a National Hurricane Research
8560	Initiative www.nsf.gov/nsb/committees/hurricane/pre_publication.pdf
8561	

8562	Oliker, L., J. Carter, M. Wehner, A. Canning, S. Ethier, B. Govindasamy, A. Mirin, D.
8563	Parks, P. Worley, S. Kitawaki, Y. Tsuda, 2005: Leading Computational Methods
8564	on Scalar and Vector HEC Platforms, 2005 SuperComputer Conference
8565	Proceedings LBNL-58053
8566	
8567	<b>Oouchi</b> , K., Yoshimura, J., Yoshimura, H., Mizuta, R., Kusunoki, S., and Noda, A. 2006:
8568	Tropical cyclone climatology in a global-warming climate as simulated in a
8569	20km–mesh global atmospheric model: frequency and wind intensity analyses, J.
8570	Meteorol. Soc. Japan, <b>84</b> , 259–276.
8571	
8572	Randall, D., 2005: Counting the clouds., 2005 SciDAC Meeting Proceedings, San
8573	Francisco, CA, June 26-30, 2005. www.scidac.org
8574	
8575	Stott, P.A., D.A. Stone, and M.R. Allen, 2004: Human contribution to the European
8576	heatwave of 2003. <i>Nature</i> , <b>432</b> , 610-614
8577	
8578	Thompson, D.W.J. and J.M. Wallace, 2001: Regional climate impacts of the Northern
8579	Hemisphere annular mode and associated climate trends, <i>Science</i> , <b>293</b> , 85-89.
8580	
8581	Wehner, M., L. Oliker, and J. Shalf, "Towards Ultra-High Resolution Models of Climate
8582	and Weather", International Journal of High Performance Computing
8583	Applications., in press.
8584	
8585	Woodhouse, C., and J. Overpeck, 1998: 2000 years of drought variability in the Central
8586	Unites States, Bull. Amer. Meteor. Soc., 79, 2693-2714.



## Mitigation of adverse impacts through better planning and decision making

8588 8589

8590 Figure 4.1 Interrelationships between recommendations. Thick arrows indicate major 8591 linkages included in this assessment. Better observing systems result in improved 8592 analyses which helps improve modeling, physical understanding, and impacts through 8593 clearer documentation of observed patterns in climate. Similarly, improved modeling 8594 helps improve physical understanding and together can point to deficiencies in observing 8595 systems as well as helping to understand future impacts. Lastly, a better understanding of 8596 the relationships between climate extremes and impacts can help improve observations 8597 by identifying deficiencies in observations (e.g. under-observed areas), and improve 8598 modeling efforts by identifying specific needs from model simulations for use in impacts 8599 studies.

## 8600 Appendix A Statistical Trend Analysis

8601

## 8602 Author: Richard L. Smith, Univ. N.C., Chapel Hill

8603

In many places in this report, but especially Chapter 2, trends have been calculated, either

8605 based directly on some climatic variable of interest (e.g. hurricane or cyclone counts) or

8606 from some index of extreme climate events. Statistical methods are used in determining

the form of a trend, estimating the trend itself along with some measure of uncertainty

8608 (e.g. a standard error), and in determining the statistical significance of a trend. A broad-

8609 based introduction to these concepts has been given by Wigley (2006). The present

8610 review extends Wigley's by introducing some of the more advanced statistical methods

that involve time series analysis.

8612

8613 Some initial comments are appropriate about the purpose, and also the limitations, of 8614 statistical trend estimation. Real data rarely conform exactly to any statistical model, such 8615 as a normal distribution. Where there are trends, they may take many forms. For example, 8616 a trend may appear to follow a quadratic or exponential curve rather than a straight line, 8617 or it may appear to be superimposed on some cyclic behavior, or there may be sudden 8618 jumps (also called changepoints) as well or instead of a steadily increasing or decreasing 8619 trend. In these cases, assuming a simple linear trend (equation (1) below) may be 8620 misleading. However, the slope of a linear trend can still represent the most compact and 8621 convenient method of describing the overall change in some data over a given period of 8622 time.

8624	In this appendix, we first outline some of the modern methods of trend estimation that
8625	involve estimating a linear or non-linear trend in a correlated time series. Then, the
8626	methods are illustrated on a number of examples related to climate and weather extremes.
8627	
8628	The basic statistical model for a linear trend can be represented by the equation
8629	
8630	(1) $y_t = b_0 + b_1 t + u_t$
8631	
8632	where t represents the year, $y_t$ is the data value of interest (e.g. temperature or some
8633	climate index in year t), $b_0$ and $b_1$ are the intercept and slope of the linear regression, and
8634	$u_t$ represents a random error component. The simplest case is when $u_t$ are uncorrelated
8635	error terms with mean 0 and a common variance, in which case we typically apply the
8636	standard ordinary least squares (OLS) formulas to estimate the intercept and slope,
8637	together with their standard errors. Usually the slope $(b_1)$ is interpreted as a trend so this
8638	is the primary quantity of interest.
8639	
8640	The principal complication with this analysis in the case of climate data is usually that the
8641	data are autocorrelated, in other words, the terms cannot be taken as independent. This
8642	brings us within the field of statistics known as time series analysis, see e.g. the book by
8643	Brockwell and Davis (2002). One common way to deal with this is to assume the values
8644	form an autoregressive, moving average process (ARMA for short). The standard
8645	ARMA(p,q) process is of the form
8646	

8647 (2) 
$$u_t - \varphi_1 u_{t-1} - \dots - \varphi_p u_{t-p} = \varepsilon_t + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q}$$

8649	where $\phi_1\phi_p$ are the autoregressive coefficients, $\theta_1\theta_q$ are the moving average
8650	coefficients and the $\boldsymbol{\epsilon}_t$ terms are independent with mean 0 and common variance. The
8651	orders p and q are sometimes determined empirically or sometimes through more formal
8652	model-determination techniques such as the Akaike Information Criterion (AIC) or the
8653	Bias-Corrected Akaike Information Criterion (AICC). The autoregressive and moving
8654	average coefficients may be determined by one of several estimation algorithms
8655	(including maximum likelihood) and the regression coefficients $b_0$ and $b_1$ by the
8656	algorithm of generalized least squares or GLS. Typically, the GLS estimates are not very
8657	different from the OLS estimates that arise when autocorrelation is ignored, but the
8658	standard errors can be very different. It is quite common that a trend that appears to be
8659	statistically significant when estimated under OLS regression is not statistically
8660	significant under GLS regression, because of the larger standard error that is usually
8661	though not invariably associated with GLS. This is the main reason why it is important to
8662	take autocorrelation into account.
8663	
8664	An alternative model which is an extension of (1) is
8665	
8666	(3) $y_t = b_0 + b_1 x_{t1} + \ldots + b_k x_{tk} + u_t$
8667	
8668	where $x_{t1}x_{tk}$ are k regression variables (covariates) and $b_1b_k$ are the associated
8669	coefficients. A simple example is polynomial regression, where $x_{tj}=t^{j}$ for $j=1,,k$ .

8670	However, a polynomial trend, when used to represent a non-linear trend in a climatic
8671	dataset, often has the disadvantage that it behaves unstably at the endpoints, so alternative
8672	representations such as cubic splines are usually preferred. These can also be represented
8673	in the form of (3) with suitable $x_{t1}x_{tk}$ . As with (1), the $u_t$ terms can be taken as
8674	uncorrelated with mean 0 and common variance, in which case OLS regression is again
8675	appropriate, but it is also common to consider the $u_t$ as autocorrelated.

8677 There are, by now, several algorithms available that fit these models in a semi-automatic 8678 fashion. The book by Davis and Brockwell (2002) includes a CD containing a time series 8679 program, ITSM, that among many other features, will fit a model of the form (1) or (3) in 8680 which the u_t terms follow an ARMA model as in (2). The orders p and q may be specified 8681 by the user or selected automatically via AICC. Alternatively, the statistical language R 8682 (R Development Core Team, 2007) contains a function "arima" which allows for fitting 8683 these models by exact maximum likelihood. The inputs to the arima function include the 8684 time series, the covariates, and the orders p and q. The program calculates maximum 8685 likelihood/GLS estimates of the ARMA and regression parameters, together with their 8686 standard errors, and various other statistics including AIC. Although R does not contain 8687 an automated model-selection procedure, it is straightforward to write a short subroutine 8688 that fits the time series model for various values of p and q (for example, all values of p 8689 and q between 0 and 10) and then identifies the model with minimum AIC. This method 8690 has been routinely used for several of the following analyses.

8692	However, it is not always necessary to search through a large set of ARMA models. In
8693	very many cases, the AR(1) model in which p=1, q=0, captures almost all of the
8694	autocorrelation, in which case this would be the preferred approach.
8695	
8696	In other cases, it may be found that there is cyclic behavior in the data corresponding to
8697	large-scale circulation indexes such as the Southern Oscillation Index (SOI – often taken
8698	as an indicator of El Niño) or the Atlantic Multidecadal Oscillation (AMO) or the Pacific
8699	Decadal Oscillation (PDO). In such cases, an alternative to searching for a high-order
8700	ARMA model may be to include SOI, AMO or PDO directly as one of the covariates in
8701	(2).
8702	
8703	Two other practical features should be noted before we discuss specific examples. First,
8704	the methodology we have discussed assumes the observations are normally distributed
8705	with constant variances (homoscedastic). Sometimes it is necessary to make some
8706	transformation to improve the fit of these assumptions. Common transformations include
8707	taking logarithms or square roots. With data in the form of counts (such as hurricanes) a
8708	square root transformation is often made, because count data are frequently represented
8709	by a Poisson distribution, and for that distribution, a square root transformation is a so-
8710	called variance-stabilizing transformation, making the data approximately homoscedastic.
8711	
8712	The other practical feature that occurs quite frequently is that the same linear trend may
8713	not be apparent through all parts of the data. In that case, it is tempting to select the start
8714	and finish points of the time series and recalculate the trend just for that portion of the

8715	series. There is a danger in doing this, because in formally testing for the presence of a
8716	trend, the calculation of significance levels typically does not allow for the selection of a
8717	start and finish point. Thus, the procedure may end up selecting a spurious trend. On the
8718	other hand, it is sometimes possible to correct for this effect, for example using a
8719	Bonferroni correction procedure. An example of this is given in our analysis of the
8720	heatwave index dataset below.
8721	
8722	Example 1: Cold Index Data (Section 2.2.1)
8723	The data consist of the "cold index", 1895-2005. A density plot of the data shows that the
8724	original data are highly right-skewed, but a cube-root transformation leads to a much
8725	more symmetric distribution (Figure A.1).
8726	
8727	We therefore proceed to look for trends in the cube root data.
8728	
8729	A simple OLS linear regression yields a trend of00125 per year, standard error .00068,
8730	for which the 2-sided p-value is .067. Recomputing using the minimum-AIC ARMA
8731	model yields the optimal values p=q=3, trend00118, standard error .00064, p-value
8732	.066. In this case, fitting an ARMA model makes very little difference to the result,

- 8733 compared with OLS. By the usual criterion of a .05 significance level, this is not a
- statistically significant result, but it is close enough that we are justified in concluding
- there is still some evidence of a downward linear trend. Figure A.2 illustrates the fitted
- 8736 linear trend on the cube root data.
- 8737

8738	Example 2: Heat Wave Index Data (Section 2.2.1 and Fig. 2.3(a))
8739	This example is more complicated to analyze because of the presence of several outlying
8740	values in the 1930s which frustrate any attempt to fit a linear trend to the whole series.
8741	However, a density plot of the raw data show that they are very right-skewed, whereas
8742	taking natural logarithms makes the data look much more normal (Figure A.3).
8743	Therefore, for the rest of this analysis we work with the natural logarithms of the heat
8744	wave index.
8745	
8746	In this case there is no obvious evidence of a linear trend, either upwards or downwards.
8747	However, nonlinear trend fits suggest an oscillating pattern up to about 1960, followed by
8748	a steadier upward drift in the last four decades. For example, the solid curve in Figure
8749	A.4, which is based on a cubic spline fit with 8 degrees of freedom, fitted by ordinary
8750	linear regression, is of this form.
8751	
8752	Motivated by this, a linear trend has been fitted by time series regression to the data from
8753	1960-2005 (dashed straight line, Figure A.4). In this case, searching for the best ARMA
8754	model by the AIC criterion led to the ARMA(1,1) model being selected. Under this
8755	model, the fitted linear trend has a slope of 0.031 per year and a standard error of .0035.
8756	This is very highly statistically significant – assuming normally distributed errors, the
8757	probability that such a result could have been reached by chance, if there were no trend,
8758	is of the order $10^{-18}$ .
8759	

8760	We should comment a little about the justification for choosing the endpoints of the linear
8761	trend (in this case, 1960 and 2005) in order to give the best fit to a straight line. The
8762	potential objection to this is that it creates a bias associated with multiple testing.
8763	Suppose, as an artificial example, we were to conduct 100 hypothesis tests based on some
8764	sample of data, with significance level .05. This means that if there were in fact no trend
8765	present at all, each of the tests would have a .05 probability of incorrectly concluding that
8766	there was a trend. In 100 such tests, we would typically expect about 5 of the tests to lead
8767	to the conclusion that there was a trend.
8768	
8769	A standard way to deal with this issue is the Bonferroni correction. Suppose we still
8770	conducted 100 tests, but adjusted the significance level of each test to .05/100=.0005.
8771	Then even if no trend were present, the probability that at least one of the tests led to
8772	rejecting the null hypothesis would be no more than 100 times .0005, or .05. In other
8773	words, with the Bonferroni correction, .05 is still an upper bound on the overall
8774	probability that one of the tests falsely rejects the null hypothesis.
8775	
8776	In the case under discussion, if we allow for all possible combinations of start and finish
8777	dates, given a 111-year series, that makes for 111x110/2=6105 tests. To apply the
8778	Bonferroni correction in this case, we should therefore adjust the significance level of the
8779	individual tests to $.05/6105 = .0000082$ . However, this is still very much larger than $10^{-18}$
8780	The conclusion is that the statistically significant result cannot be explained away as
8781	merely the result of selecting the endpoints of the trend.
8782	

This application of the Bonferroni correction is somewhat unusual – it is rare for a trend to be so highly significant that selection effects can be explained away completely, as has been shown here. Usually, we have to make a somewhat more subjective judgment about what are suitable starting and finishing points of the analysis.

8787

#### 8788 Example 3: 1-day Heavy Precipitation Frequencies (Section 2.1.2.2)

8789 In this example we considered the time series of 1-day heavy precipitation frequencies

8790 for a 20-year return value. In this case, the density plot for the raw data is not as badly

skewed as in the earlier examples (Figure A.5, left plot), but is still improved by taking

square roots (Figure A.5, right plot). Therefore, we take square roots in the subsequent

analysis.

8794

8795 Looking for linear trends in the whole series from 1895-2005, the overall trend is positive

8796 but not statistically significant (Figure A.6). Based on simple linear regression, the

estimated slope is .00023 with a standard error of .00012, which just fails to be

significant at the 5% level. However, time series analysis identifies an ARMA (5, 3)

8799 model, when the estimated slope is still .00023, the standard error rises to .00014, which

8800 is again not statistically significant.

- 8801
- 8802 However, a similar exploratory analysis to that in Example 2 suggested that a better
- 8803 linear trend could be obtained starting around 1935. To be specific, we have considered

the data from 1934-2005. Over this period, time series analysis identifies an ARMA(1,2)

model, for which the estimated slope is .00067, standard error .00007, under which a

8806	formal test rejects the null hypothesis of no slope with a significance level of the order of
8807	$10^{-20}$ under normal theory assumptions. As with Example 2, an argument based on the
8808	Bonferroni correction shows that this is a clearly significant result even allowing for the
8809	subjective selection of start and finish points of the trend.
8810	
8811	Therefore, our conclusion in this case is that there is an overall positive but not
8812	statistically significant trend over the whole series, but the trend post-1934 is much
8813	steeper and clearly significant.
8814	
8815	Example 4: 90-day Heavy Precipitation Frequencies (Section 2.1.2.3 and Fig. 2.9)
8816	This is a similar example based on the time series of 90-day heavy precipitation
8817	frequencies for a 20-year return value. Once again, density plots suggest a square root
8818	transformation (the plots look rather similar to Figure A.5 and are not shown here).
8819	
8820	After taking square roots, simple linear regression leads to an estimated slope of .00044,
8821	standard error .00019, based on the whole data set. Fitting ARMA models with linear
8822	trend leads us to identify the ARMA(3,1) as the best model under AIC: in that case the
8823	estimated slope becomes .00046 and the standard error actually goes down, to .00009.
8824	Therefore, we conclude that the linear trend is highly significant in this case (Figure A.7).
8825 8826	Example 5: Tropical cyclones in the North Atlantic (Section 2.1.3.1)
8827	This analysis is based on historical reconstructions of tropical cyclone counts described in
8828	the recent paper of Vecchi and Knutson (2007). We consider two slightly different
8829	reconstructions of the data, the "one-encounter" reconstruction in which only one

8830	intersection of a ship and storm is required for a storm to be counted as seen, and the
8831	"two-encounter" reconstruction that requires two intersections before a storm is counted.
8832	We focus particularly on the contrast between trends over the 1878-2005 and 1900-2005
8833	time periods, since before the start of the present analysis, Vecchi and Knutson had
8834	identified these two periods as of particular interest.
8835	
8836	For 1878-2005, using the one-encounter dataset, we find by ordinary least squares a
8837	linear trend of .017 (storms per year), standard error .009, which is not statistically
8838	significant. Selecting a time series model by AIC, we identify an ARMA(9,2) model as
8839	best (an unusually large order of a time series model in this kind of analysis), which leads
8840	to a linear trend estimate of .022, standard error .022, which is clearly not significant.
8841	
8842	When the same analysis is repeated from 1900-2005, we find by linear regression a slope
8843	of .047, standard error .012, which is significant. Time series analysis now identifies the
8844	ARMA(5,3) model as optimal, with a slope of .048, standard error .015, very clearly
8845	significant. Thus, the evidence is that there is a statistically significant trend over 1900-
8846	2005, though not over 1878-2005.
8847	
8848	A comment here is that if the density of the data is plotted as in several earlier examples,

this suggests a square root transformation to remove skewness. Of course the numerical

- values of the slopes are quite different if a linear regression is fitted to square root
- 8851 cyclones counts instead of the raw values, but qualitatively, the results are quite similar to

8852	those just cited – significant for 1900-2005, not significant for 1878-2005, after fitting a
8853	time series model. We omit the details of this.
8854	
8855	The second part of the analysis uses the "two-encounter" data set. In this case, fitting an
8856	ordinary least-squares linear trend to the data 1878-2005 yields an estimated slope .014
8857	storms per year, standard error .009, not significant. The time series model (again
8858	ARMA(9,2)) leads to estimated slope .018, standard error .021, not significant.
8859	
8860	When repeated for 1900-2005, ordinary least-squares regression leads to a slope of .042,
8861	standard error .012. The same analysis based on a time series model (ARMA(9,2)) leads
8862	to a slope of .045 and a standard error of .021. Although the standard error is much bigger
8863	under the time series model, this is still significant with a p-value of about .03.
8864	
8865	Example 6: U.S. Landfalling Hurricanes (Section 2.1.3.1)
8866	The final example is a time series of U.S. landfalling hurricanes for 1851-2006 taken
8867	
0007	from the website http://www.aoml.noaa.gov/hrd/hurdat/ushurrlist18512005-gt.txt. The
8868	from the website http://www.aoml.noaa.gov/hrd/hurdat/ushurrlist18512005-gt.txt. The data consist of annual counts and are all between 0 and 7. In such cases a square root
8868 8869	from the website http://www.aoml.noaa.gov/hrd/hurdat/ushurrlist18512005-gt.txt. The data consist of annual counts and are all between 0 and 7. In such cases a square root transformation is often performed because this is a variance stabilizing transformation for
8868 8869 8870	from the website http://www.aoml.noaa.gov/hrd/hurdat/ushurrlist18512005-gt.txt. The data consist of annual counts and are all between 0 and 7. In such cases a square root transformation is often performed because this is a variance stabilizing transformation for the Poisson distribution. Therefore, square roots have been taken here.
8868 8869 8870 8871	from the website http://www.aoml.noaa.gov/hrd/hurdat/ushurrlist18512005-gt.txt. The data consist of annual counts and are all between 0 and 7. In such cases a square root transformation is often performed because this is a variance stabilizing transformation for the Poisson distribution. Therefore, square roots have been taken here.
8868 8869 8870 8871 8872	from the website http://www.aoml.noaa.gov/hrd/hurdat/ushurrlist18512005-gt.txt. The data consist of annual counts and are all between 0 and 7. In such cases a square root transformation is often performed because this is a variance stabilizing transformation for the Poisson distribution. Therefore, square roots have been taken here. A linear trend was fitted to the full series and also for the following subseries: 1861-2006,
8868 8869 8870 8871 8872 8873	from the website http://www.aoml.noaa.gov/hrd/hurdat/ushurrlist18512005-gt.txt. The data consist of annual counts and are all between 0 and 7. In such cases a square root transformation is often performed because this is a variance stabilizing transformation for the Poisson distribution. Therefore, square roots have been taken here. A linear trend was fitted to the full series and also for the following subseries: 1861-2006, 1871-2006 and so on up to 1921-2006. As in preceding examples, the model fitted was
8868 8869 8870 8871 8872 8873 8874	<ul> <li>from the website http://www.aoml.noaa.gov/hrd/hurdat/ushurrlist18512005-gt.txt. The</li> <li>data consist of annual counts and are all between 0 and 7. In such cases a square root</li> <li>transformation is often performed because this is a variance stabilizing transformation for</li> <li>the Poisson distribution. Therefore, square roots have been taken here.</li> <li>A linear trend was fitted to the full series and also for the following subseries: 1861-2006,</li> <li>1871-2006 and so on up to 1921-2006. As in preceding examples, the model fitted was</li> <li>ARMA (p, q) with linear trend, with p and q identified by AIC.</li> </ul>

8875	For 1871-2006, the optimal model was AR(4), for which the slope was00229, standard
8876	error .00089, significant at p=.01.
8877	
8878	For 1881-2006, the optimal model was AR(4), for which the slope was00212, standard
8879	error .00100, significant at p=.03.
8880	
8881	For all other cases, the estimated trend was negative but not statistically significant.
8882	
8883	Appendix A References
8884	
8885	<b>Brockwell</b> , P.J. and Davis, R.A. (2002). Introduction to Time Series and Forecasting
8886	(Second edition). Springer. New York.
8887	
8888	<b>R</b> Development Core Team (2007), R: A language and environment for statistical
8889	computing. R Foundation for Statistical Computing, Vienna, Austria,
8890	http://www.R-project.org.
8891	
8892	Vecchi, G.S. and Knutson, T.R. (2007), On estimates of historical North Atlantic tropical
8893	cyclone activity. Manuscript, submitted for publication.
8894	
8895	Wigley, T.M.L. (2006), Statistical Issues Regarding Trends. Appendix A (pp. 129-139)
8896	of Temperature Trends in the Lower Atmosphere: Steps for Understanding and
8897	Reconciling Differences. Thomas R. Karl, Susan J. Hassol, Christopher D. Miller,
8898	and William L. Murray, editors, 2006. A Report by the Climate Change Science
8899	Program and the Subcommittee on Global Change Research, Washington, DC.
8900	





8903 Figure A.1 Density plot for the cold index data (left), and for the cube roots of the same

data (right).





8907

8908 **Figure A.2** Cube root of cold wave index with fitted linear trend.





8910 8911

8912 Figure A.3 Density plot for the heat index data (left), and for the natural logarithms of

the same data (right).



8916 **Figure A.4** Trends fitted to natural logarithms of heat index. Solid curve: non-linear

spline with 8 degrees of freedom fitted to the whole series. Dashed line: linear trend fitted

8918 to data from 1960-2005.



8921 Figure A.5 Density plot for 1-day heavy precipitation frequencies for a 20-year return

value (left), and for square roots of the same data (right).



8925 Figure A.6 Trend analysis for the square roots of 1-day heavy precipitation frequencies

8926 for a 20-year return value, showing estimated linear trends over 1895-2005 and 1934-

8927 2005.



8930 **Figure A.7** Trend analysis for the square roots of 90-day heavy precipitation

8931 frequencies.