5386	Chapter 3 How Well Do We Understand the Causes of
5387	Observed Changes in Extremes, and What Are the
5388	Projected Future Changes?
5389	
5390	Convening Lead Author: William J. Gutowski, Jr., Iowa State Univ.
5391	
5392	Lead Authors: Gabriele C. Hegerl, Duke Univ.; Greg J. Holland, NCAR; Thomas R.
5393	Knutson, NOAA; Linda O. Mearns, NCAR; Ronald J. Stouffer, NOAA; Peter J. Webster,
5394	Ga. Inst. Tech.; Michael F. Wehner, DOE LBNL; Francis W. Zwiers, Environment
5395	Canada
5396	
5397	Contributing Authors: Harold E. Brooks, NOAA; Kerry A. Emanuel, Mass. Inst.
5398	Tech.; Paul D. Komar, Oreg. State Univ.; James P. Kossin, Univ. Wisc., Madison;
5399	Kenneth E. Kunkel, Univ. Ill. Urbana-Champaign, Ill. State Water Survey; Christopher
5400	W. Landsea, NOAA; Ruth McDonald, Met Office, United Kingdom; Gerald A. Meehl,
5401	NCAR; Robert J. Trapp, Purdue Univ.
5402	
5402 5403	KEY FINDINGS
	KEY FINDINGS Observed Changes
5403	
5403 5404	Observed Changes
5403 5404 5405	Observed Changes Changes in some weather and climate extremes are attributable to human-induced
5403 5404 5405 5406	Observed Changes Changes in some weather and climate extremes are attributable to human-induced changes in greenhouse gases.
5403 5404 5405 5406 5407	Observed Changes Changes in some weather and climate extremes are attributable to human-induced changes in greenhouse gases. • Human-induced warming has likely caused much of the average temperature increase
5403 5404 5405 5406 5407 5408	 Observed Changes Changes in some weather and climate extremes are attributable to human-induced changes in greenhouse gases. Human-induced warming has likely caused much of the average temperature increase in North America over the past 50 years. This affects changes in temperature
5403 5404 5405 5406 5407 5408 5409	 Observed Changes Changes in some weather and climate extremes are attributable to human-induced changes in greenhouse gases. Human-induced warming has likely caused much of the average temperature increase in North America over the past 50 years. This affects changes in temperature extremes.

5413	٠	It is likely that human activities have caused a discernable increase in sea surface
5414		temperatures in the hurricane formation region of the tropical Atlantic Ocean over the
5415		past 100 years. The balance of evidence suggests that human activity has caused a
5416		discernable increase in tropical storm/hurricane and major hurricane frequency in the
5417		North Atlantic.
5418		
5419	Pro	ojected Changes
5420	٠	Future changes in extreme temperatures will generally follow changes in average
5421		temperature:
5422		- Abnormally hot days and nights and heat waves are very likely to become more
5423		frequent.
5424		- Cold days and cold nights are very likely to become much less frequent.
5425		– The number of days with frost is very likely to decrease.
5426	•	Droughts are likely to become more frequent and severe in some regions as higher air
5427		temperatures increase the potential for evaporation.
5428	٠	Over most regions, precipitation is likely to be less frequent but more intense, and
5429		precipitation extremes are very likely to increase.
5430	•	According to theory and models for North Atlantic and North Pacific hurricanes and
5431		typhoons (both basin-wide and land-falling):
5432		- Hurricane/typhoon core rainfall rates will likely increase by about 6 to 18% per
5433		degree Celsius tropical sea surface warming.
5434		- It is likely that surface wind speeds of the strongest hurricanes/typhoons will
5435		increase by about 2 to 10% per degree Celsius tropical sea surface warming.

5436		- Frequency changes are too uncertain for confident projections.
5437		– The spatial distribution of hurricanes/typhoons will likely change.
5438		– Due to projected sea level rise, the potential for storm surge damage will very
5439		likely increase.
5440	•	There are likely to be more frequent deep low-pressure systems (strong storms)
5441		outside the tropics, with stronger winds and more extreme wave heights.

5443 **3.1 Introduction**

5444 Understanding physical mechanisms of extremes involves processes governing the timing 5445 and location of extreme behavior, such as ENSO cycles, as well as the mechanisms of 5446 extremes themselves (e.g., processes producing heavy precipitation). In other words, 5447 processes creating an environment conducive to extreme behavior and processes of the 5448 extreme behavior itself. This includes not only the extreme events but also the factors 5449 governing their timing and location.

5450

5451 A deeper understanding of physical mechanisms is of course important for understanding 5452 why extremes have occurred in the past and for predicting their occurrence in the future. 5453 Understanding physical mechanisms serves a further purpose for projected climate 5454 changes. Because the verification time for climate-change projections can be many 5455 decades into the future, strict verification of projections is not always possible. Other 5456 means of attaining confidence in projections are therefore needed. Confidence in 5457 projected changes in extremes increases when the physical mechanisms producing 5458 extremes in models are consistent with observed behavior. This requires careful analysis 5459 of the observed record as well as model output. Assessment of physical mechanisms is 5460 also necessary to determine the physical realism of changes in extremes. While physical 5461 consistency of simulations with observed behavior is not sufficient evidence for accurate 5462 projection, it is necessary.

5463

5464 **3.2** What Are the Physical Mechanisms of Observed Changes in Extremes?

5465 **3.2.1 Detection and Attribution of Anthropogenic Influences on Climate Extremes**

5466 **Over North America**

5467 Climate change detection, as discussed in this chapter, is distinct from the concept that is

5468 used in Chapter 2. In that chapter, detection refers to the identification of change in a

5469 climate record that is statistically distinguishable from the record's previous

5470 characteristics. A typical example is the detection of a statistically significant trend in a

5471 temperature record. Here, detection and attribution involves the assessment of observed

5472 changes in relation to those that are expected to have occurred in response to external

5473 forcing. Detection of climatic changes in extremes involves demonstrating statistically

5474 significant changes in properties of extremes over time. Attribution further links those

5475 changes with variations in climate forcings, such as changes in greenhouse gases, solar

5476 radiation or frequency of volcanoes. Attribution is a necessary step toward identifying the

5477 physical causes of changes in extremes. Attribution often uses quantitative comparison

5478 between climate-model simulations and observations, comparing expected changes due to

5479 physical understanding integrated in the models with those that have been observed. By

5480 comparing observed changes with those anticipated to result from external forcing,

5481 detection and attribution studies also provide an assessment of the performance of climate

5482	models in simulating climate change. The relationships between observed and simulated
5483	climate change that are diagnosed in these studies also provide an important means of
5484	constraining projections of future change made with those models.
5485	
5486	3.2.1.1 Detection and Attribution of Anthropogenic Changes in Mean Climate That
5487	Affect Climate Extremes
5488	This section discusses the present understanding on the causes of large-scale changes in
5489	the climatic state over North America. Simple statistical reasoning indicates that
5490	substantial changes in the frequency and intensity of extreme events can result from a
5491	relatively small shift in the average of a distribution of temperatures, precipitation or
5492	other climate variables (Katz and Brown 1992). Expected changes in temperature
5493	extremes are largely but not entirely due to changes in seasonal mean temperatures. Some
5494	differences between the two arise because moderate changes are expected in the shape of
5495	the temperature distribution affecting climate extremes, for example, due to changes in
5496	snow cover, soil moisture, and cloudiness (e.g., Hegerl et al., 2004; Kharin et al., 2007).
5497	In contrast, increases in mean precipitation are expected to increase the precipitation
5498	variance, thus increasing precipitation extremes, but decreases in mean precipitation do
5499	not necessarily imply that precipitation extremes will decrease, because of the different
5500	physical mechanisms that control mean and extreme precipitation (e.g., Allen and
5501	Ingram, 2002; Kharin et al., 2007). Therefore, changes in the precipitation background
5502	state are also interesting for interpreting changes in extremes, although more difficult to
5503	interpret (Groisman et al., 1999). Relevant information about mean temperature changes

5504	appeared in Chapter 2. More detailed discussion of historical mean changes appears in
5505	CCSP Synthesis and Assessment Products 1-1, 1-2 and 1-3.

5507 Global-scale analyses using space-time detection techniques have robustly identified the

5508 influence of anthropogenic forcing on the 20^{th} century near-surface temperature changes.

5509 This result is robust to applying a variety of statistical techniques and using many

5510 different climate simulations (Hegerl et al., 2007). Detection and attribution analyses also

5511 indicate that over the past century there has likely been a cooling influence from aerosols

and natural forcings counteracting some of the warming influence of the increasing

5513 concentrations of greenhouse gases. Spatial information is required in addition to

temporal information to reliably detect the influence of aerosols and distinguish them

5515 from the influence of increased greenhouse gases.

5516

5517 A number of studies also consider sub-global scales. Studies examining North America

5518 find a detectable human influence on 20^{th} century temperature changes, either by

5519 considering the 100-year period from 1900 (Stott 2003) or the 50-year period from 1950

5520 (Zwiers and Zhang 2003, Zhang et al. 2006). Based on such studies, a substantial part of

the warming over North America has been attributed to human influence (Hegerl et al.,

5522 2007).

5523

5524 Further analysis has compared simulations using changes in both anthropogenic

5525 (greenhouse gas and aerosol) and natural (solar flux and volcano eruption) forcings with

5526 others that neglect anthropogenic changes. There is a clear separation in North American

5527	temperature changes of ensembles of simulations including just natural forcings from
5528	ensembles of simulations containing both anthropogenic and natural forcings (Karoly et
5529	al. 2003, IDAG 2005, Karoly and Wu 2005, Wang et al. 2006, Knutson et al. 2006,
5530	Hegerl et al. 2007), especially for the last quarter of the 20 th century, indicating that the
5531	warming in recent decades is inconsistent with natural forcing alone.
5532	
5533	Attribution of observed changes on regional (subcontinental) scales has generally not yet
5534	been accomplished. One reason is that as spatial scales considered become smaller, the
5534 5535	been accomplished. One reason is that as spatial scales considered become smaller, the uncertainty becomes larger (Stott and Tett 1998, Zhang et al., 2006) because internal

5537 scales. Also, small-scale forcings and model uncertainty make attribution on these scales

5538 more difficult. Therefore, interpreting changes on sub-continental scales is difficult (see

discussion in Hegerl et al., 2007). For example, in Alaska warming has been large but

bigh levels of internal variability lead to an overlap of naturally forced and all-forcing

simulations even at the end of the 20th century (Wang et al. 2007). In central North

5542 America, there is a relatively small warming over the 20th century compared to other

regions around the world (Hegerl et al. 2007) and the observed changes lie (just) within

the envelop of changes simulated by models using natural forcing alone. In this context,

analysis of a multi-model ensemble by Kunkel et al. (2006) for a central U.S. region

suggests that the region's warming from 1901to 1940 and cooling from 1940 to 1979

5547 may have been a consequence on unforced internal variability.

5548

5549 Burkholder and Karoly (2007) detected an anthropogenic signal in multidecadal trends of 5550 a U.S. climate extremes index. The observed increase is largely due to an increase in the 5551 number of months with monthly mean daily maximum and daily minimum temperatures 5552 that are much above normal and an increase in the area of the US that experienced a 5553 greater than normal proportion of their precipitation from extreme one-day events. 5554 Twentieth century simulations from coupled climate models show a similar, significant 5555 increase in the same US climate extremes index for the late twentieth century. There is 5556 some evidence of an anthropogenic signal in regions a few hundred kilometers across 5557 (Karoly and Wu 2005, Knutson et al. 2006, Zhang et al. 2006, Burkholder and Karoly 5558 2007), suggesting the potential for progress in regional attribution if careful attention is 5559 given to the choice of appropriate time scales, region sizes and fields analyzed and if all 5560 relevant forcings are considered.

5561

5562 Warming from greenhouse gas increases is expected to increase the moisture content of 5563 the atmosphere and lead to a small increase in global mean precipitation. More important, 5564 the increase in water holding capacity of the atmosphere is expected to affect more 5565 strongly changes in heavy precipitation, for which the Clausius-Clapeyron relation 5566 provides an approximate physical constraint (e.g., Allen and Ingram, 2002). Observed 5567 changes in moisture content and mean and extreme precipitation are generally consistent 5568 with these expectations (Chapter 2 of this document, Trenberth et al. 2007). In addition, 5569 greenhouse gas increases are also expected to cause enhanced horizontal transport of 5570 water vapor that is expected to lead to a drying of the subtropics and parts of the tropics

5571	(Kumar et al., 2004; Neelin et al., 2006), and a further increase in precipitation in the
5572	equatorial region and at high latitudes (Emori and Brown, 2005; Held and Soden, 2006).
5573	
5574	Several studies have demonstrated that simulated global land mean precipitation in
5575	climate model integrations including both natural and anthropogenic forcings is
5576	significantly correlated with that observed (Allen and Ingram, 2002; Gillett et al., 2004b;
5577	Lambert et al., 2004), thereby detecting external influence in observations of
5578	precipitation. This external influence on global land mean precipitation during the 20 th
5579	century is dominated by volcanic forcing. Anthropogenic influence on the spatial
5580	distribution of global land precipitation, as represented by zonal-average precipitation
5581	changes, has also been detected (Zhang et al. 2007). Both changes are significantly larger
5582	in observations than simulated in climate models, raising questions about whether models
5583	underestimate the response to external forcing in precipitation changes (see also Wentz et
5584	al 2007). Changes in North American continental-mean rainfall have not yet been
5585	attributed to anthropogenic influences. A large part of North America falls within the
5586	latitude band identified by Zhang et al. (2007) where the model simulated response to
5587	forcing is not in accord with the observed response. However, both models and
5588	observations show a pattern of wetting north of 50N and drying between 0-30N, and this
5589	together with agreement on moistening south of the equator provides support for the
5590	detection of a global anthropogenic influence.
5591	

5592 **3.2.1.2 Detection and Attribution of Other Modes of Climate-system Behavior**

5593 Affecting Climate Extremes

- 5594 North American extreme climate is also substantially affected by changes in atmospheric
- 5595 circulation (e.g., Thompson and Wallace 2001). Natural low frequency variability of the
- 5596 climate system is dominated by a small number of large-scale circulation patterns such as
- the El Niño Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), and the
- 5598 Northern Annular Mode (NAM). The impact of these modes on terrestrial climate on
- annual to decadal time scales can be profound. In particular, there is considerable
- 5600 evidence that the state of these modes affects substantially the risk of extreme
- temperature (Thompson and Wallace 2002, Kenyon and Hegerl 2007), droughts
- 5602 (Hoerling and Kumar 2003), and short-term precipitation extremes (e.g., Gershunov and
- 5603 Cayan 2003, Eichler and Higgins 2006) over North America.
- 5604
- 5605 Some evidence of anthropogenic influence on these modes appears in surface-pressure

5606 analyses. Gillett et al. (2003, 2005, 2006) and Wang et al. (2007) diagnosed

- anthropogenic influence on Northern Hemisphere sea level pressure change, although the
- 5608 model-simulated change is not as large as has been observed. Model-simulated changes
- 5609 in extremes related to circulation changes may therefore be affected. The change in sea
- 5610 level pressure largely manifests itself through an intensification of the Northern and
- 5611 Southern Annular Modes with reduced pressure above both poles and equatorward
- 5612 displacement of mass. However, apart from these modes, the extent to which modes of
- 5613 variability are excited or altered by external forcing remains uncertain. While some
- 5614 modes might be expected to change as a result of anthropogenic effects such as the

5615 enhanced greenhouse effect, there is little a priori expectation about the direction or
5616 magnitude of such changes. In addition, models may not simulate well the behavior of
5617 these modes in some regions and seasons.

5618

5619 ENSO is the leading mode of variability in the tropical Pacific, and it has impacts on

5620 climate around the globe (Trenberth et al. 2007, see also Chapter 1 of this report). There

5621 have been multi-decadal oscillations in the ENSO index throughout the 20th century, with

5622 more intense El Niño events since the late 1970s, which may reflect in part a mean

5623 warming of the eastern equatorial Pacific (Mendelssohn et al., 2005). There is presently

5624 no clear consensus on the possible impact of anthropogenic forcing on observed ENSO

5625 variability (Merryfield 2006, Meehl et al. 2007).

5626

5627 Decadal variability in the North Pacific is characterised by variations in the strength of

the Aleutian Low coupled to changes in North Pacific SST. The leading mode of decadal

5629 variability in the North Pacific is usually termed the Pacific Decadal Oscillation (PDO)

and has a spatial structure in the atmosphere and upper North Pacific Ocean similar to the

5631 pattern that is associated with ENSO. Pacific Decadal variability can also be

5632 characterized by changes in sea level pressure in the North Pacific, termed the North

5633 Pacific Index (Deser et al., 2004). One recent study showed a consistent tendency

towards the positive phase of the PDO in observations and model simulations that

5635 included anthropogenic forcing (Shiogama et al., 2005), though differences between the

5636 observed and simulated PDO patterns, and the lack of additional studies, limit confidence

5637 in these findings.

5639 ENSO and Pacific decadal variability affect the mean North American climate and its 5640 extremes (e.g., Kenvon and Hegerl, 2007), particularly when both are in phase, at which 5641 time considerable energy is propagated from tropical and northern Pacific sources 5642 towards the North American land mass (Yu et al. 2007, Zwiers and Yu 2007). 5643 5644 The Northern Annular Mode (NAM) is an approximately zonally symmetric mode of 5645 variability in the Northern Hemisphere (Thompson and Wallace, 1998, Chapter 1 of this 5646 report), and the North Atlantic Oscillation (NAO) (Hurrell, 1996) may be viewed as its 5647 Atlantic counterpart. The NAM index exhibited a pronounced trend towards its positive 5648 phase between the 1960s and the 1990s, corresponding to a decrease in surface pressure 5649 over the Arctic and an increase over the subtropical North Atlantic (e.g., Hurrell, 1996; 5650 Thompson et al., 2000; Gillett et al., 2003a). Several studies have shown this trend to be 5651 inconsistent with simulated internal variability (Osborn et al., 1999; Gillett et al., 2000; 5652 Gillett et al., 2002b; Osborn, 2004; Gillett, 2005) and similar to, although larger than, simulated changes in coupled climate models in response to 20th century forcing, 5653 5654 particularly, greenhouse gas forcing and ozone depletion (Gillett et al., 2002b, Osborn, 5655 2004, Gillet 2005, Hegerl et al. 2007). The mechanisms underlying Northern Hemisphere 5656 circulation changes also remain open to debate (see e.g., Hoerling et al., 2005; Hurrell et 5657 al., 2005, Scaife et al. 2005). 5658 5659 Over the period 1968–1997, the trend in the NAM was associated with approximately

5660 50% of the winter surface warming in Eurasia, a decrease in winter precipitation over

- Southern Europe and an increase over Northern Europe, due the northward displacement
 of the storm track (Thompson et al., 2000). Such a change would have substantial
 influence on North America, too, reducing the probability of cold extremes in winter
 even over large areas (for example, Thompson and Wallace, 2001; Kenyon and Hegerl,
 2007), although part of the northeastern U.S. tends to show a tendency for more cold
 extremes with the NAO trend (Wettstein and Mearns, 2002).
 32.2 Changes in Temperature Extremes
- 5669 As discussed in Chapter 2, observed changes in temperature extremes are consistent with
- the observed warming of the climate (Alexander et al., 2006). Globally, there has been a
- 5671 widespread reduction in the number of frost days in mid-latitude regions in recent
- 5672 decades, an increase in the number of warm extremes, particularly warm nights, and a
- 5673 reduction in the number of cold extremes, such as cold nights.
- 5674
- 5675 There is now evidence that anthropogenic forcing has likely affected extreme
- temperatures. Christidis et al. (2005) analyzed a new dataset of gridded daily
- temperatures (Caesar et al., 2006) using the indices shown by Hegerl et al. (2004) to have
- 5678 potential for attribution, namely the average temperature of the most extreme 1, 5, 10 and
- 5679 30 days of the year. Christidis et al. (2005) detected robust anthropogenic changes in a
- 5680 global analysis of indices of extremely warm nights using fingerprints from the HadCM3
- 5681 model, with some indications that the model over-estimates the observed warming of
- 5682 warm nights. Human influence on cold days and nights was also detected, but in this case
- the model underestimated the observed changes, significantly so in the case of the coldest

day of the year. Anthropogenic influence was not detected in observed changes in
extremely warm days. Tebaldi et al. (2006) find that changes simulated by an ensemble
of eight global models that include anthropogenic and natural forcing changes agrees well
with observed global trends in heat waves, warm nights and frost days over the last four
decades.

5689

5690 North American observations also show a general increase in the number of warm nights, 5691 but with a decrease in the center of the continent that models generally do not reproduce 5692 (e.g., Christidis et al 2005). However, analysis for North America of models (Table 3.1) 5693 used by Tebaldi et al. (2006) shows reasonable agreement between observed and 5694 simulated changes in the frequency of warm nights, number of frost days and growing season length over the latter half of the 20th century when averaged over the continent 5695 5696 (Fig. 3.1a,b,c). There is also good agreement between the observed and ensemble mean 5697 simulated spatial pattern of change in frost days (Fig.3.2a,b) over the latter half of the 5698 20th century. Note that the observational estimate has a much greater degree of temporal 5699 (Fig. 3.1) and spatial (Fig. 3.2) variability than the model result. The model result is 5700 derived from an ensemble of simulations produced by many models, some of which 5701 contributed multiple realizations. Averaging over many simulations reduces much of the 5702 spatial and temporal variability that arises from internal climate variability. The 5703 variability of individual model realizations is comparable to the single set of 5704 observations, which is well bounded by the two standard deviation confidence interval 5705 about the model ensemble average. Furthermore, Meehl et al. (2007b) demonstrate that 5706 ensemble simulations using two coupled climate models driven with human and natural

5707	forcings approximate well the observed changes, but when driven with natural forcings
5708	only cannot reproduce the observed changes, indicating a human contribution to observed
5709	changes in heat waves, frost days and warm nights. Output from one of these ensembles,
5710	produced by the Parallel Climate Model, also shows significant trends in the Karl-Knight
5711	heat-wave index (Karl and Knight, 1997) in the eastern half of the U.S. for 1961-1990
5712	that are similar to observed trends (Fig. 3.3).
5713	
5714	There have also been some methodological advances whereby it is now possible to
5715	estimate the impact of external forcing on the risk of a particular extreme event. For
5716	example, Stott et al (2004), assuming a model-based estimate of temperature variability,
5717	estimate that past human influence may have more than doubled the risk of European
5718	mean summer temperatures as high as those recorded in 2003. Such a methodology has
5719	not yet been applied to North American extremes, though Hoerling et al. (2007) have
5720	used the method to conclude that the very hot 2006 in the United States was primarily
5721	due to human influences.
5722	
5723	3.2.3 Changes in Precipitation Extremes

- 5724 **3.2.3.1 Heavy Precipitation**
- 5725 Allen and Ingram (2002) suggest that while global annual mean precipitation is
- 5726 constrained by the energy budget of the troposphere, extreme precipitation is constrained
- 5727 by the atmospheric moisture content, as governed by the Clausius-Clapeyron equation,
- though this constraint may be most robust in extratropical regions and seasons where the
- 5729 circulation's fundamental dynamics are not driven by latent heat release (Pall et al. 2007).
- 5730 For a given change in temperature the constraint predicts a larger change in extreme

5731 precipitation than in mean precipitation, which is consistent with changes in precipitation 5732 extremes simulated by the ensemble of GCMs available for the IPCC Fourth Assessment 5733 Report (Kharin et al, 2007). Emori and Brown (2005) discuss physical mechanisms 5734 governing changes in the dynamic and thermodynamic components of mean and extreme 5735 precipitation and conclude that changes related to the dynamic component (i.e., that due 5736 to circulation change) are secondary factors in explaining the larger increase in extreme 5737 precipitation than mean precipitation seen in models. On the other hand, Meehl et al. 5738 (2005) demonstrate that while tropical precipitation intensity increases are related to 5739 water vapour increases, mid-latitude intensity increases are related to circulation changes 5740 that affect the distribution of increased water vapor. 5741 5742 Climatological data show that the most intense precipitation occurs in warm regions 5743 (Easterling et al., 2000) and diagnostic analyses have shown that even without any 5744 change in total precipitation, higher temperatures lead to a greater proportion of total 5745 precipitation in heavy and very heavy precipitation events (Karl and Trenberth, 2003). In 5746 addition, Groisman et al. (1999) have demonstrated empirically, and Katz (1999) 5747 theoretically, that as total precipitation increases a greater proportion falls in heavy and 5748 very heavy events if the frequency of raindays remains constant. Trenberth et al. (2005) 5749 point out that a consequence of a global increase in precipitation intensity should be an 5750 offsetting global decrease in the duration or frequency of precipitation events, though 5751 some regions could have differing behavior, such as reduced total precipitation or 5752 increased frequency of precipitation.

5753

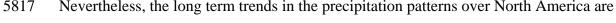
5754 Simulated changes in globally averaged annual mean and extreme precipitation appear to 5755 be quite consistent between models. The greater and spatially more uniform increases in 5756 heavy precipiation as compared to mean precipitation may allow extreme precipitation 5757 change to be more robustly detectable (Hegerl et al., 2004).

5758

5759 Evidence for changes in observations of short-duration precipitation extremes varies with 5760 the region considered (Alexander et al., 2006) and the analysis method that is employed 5761 (e.g., Trenberth et al., 2007). Significant increases in observed extreme precipitation have 5762 been reported over the United States, where the increase is qualitatively similar to 5763 changes expected under greenhouse warming (e.g., Karl and Knight, 1998; Semenov and 5764 Bengtsson, 2002; Groisman et al., 2005). However, a quantitative comparison between 5765 area-based extreme events simulated in models and station data remains difficult because 5766 of the different scales involved (Osborn and Hulme, 1997, Kharin et al. 2005) and the 5767 pattern of changes does not match observed changes. Part of this difference is expected 5768 since most current GCMs do not simulate small-scale (< 100 km) variations in 5769 precipitation intensity, as occurs with convective storms. Nevertheless, when compared 5770 with a gridded reanalysis product (ERA40), the ensemble of currently available 5771 AOGCMs reproduces observed precipitation extremes reasonably well over North 5772 America (Kharin et al., 2007). An attempt to detect anthropogenic influence on 5773 precipitation extremes using global data based on the Frich et al. (2002) indices used 5774 fingerprints from atmospheric model simulations with prescribed sea surface temperature 5775 (Kiktev et al., 2003). This study found little similarity between patterns of simulated and 5776 observed rainfall extremes. This is in contrast to the qualitative similarity found in other

5777 studies (Semenov and Bengtsson, 2002; Groisman et al., 2005; Fig. 3.4). Tebaldi et al. (2006) reported that an ensemble of eight global climate models simulating the 20^{th} 5778 century showed a general tendency toward more frequent heavy-precipitation events over 5779 5780 the past four decades, most coherently in the high latitudes of the Northern Hemisphere, 5781 broadly consistent with observed changes (Groisman et al., 2005). This is also seen when 5782 analyzing these models for North America (Fig. 3.1d). The pattern similarity of change in 5783 precipitation extremes over this period is more difficult to assess, particularly on 5784 continental and smaller scales.

5785


5786 3.2.3.2 Runoff and Drought

5787 Changes in runoff have been observed in many parts of the world, with increases or 5788 decreases corresponding to changes in precipitation. Climate models suggest that runoff 5789 will increase in regions where precipitation increases faster than evaporation, such as at 5790 high Northern latitudes (Milly et al., 2005; Wu et al., 2005). Gedney et al. (2006a) attributed increased continental runoff in the latter decades of the 20th century in part to 5791 5792 suppression of transpiration due to CO₂-induced stomatal closure. However, their result is 5793 subject to considerable uncertainty in the runoff data (Peel and McMahon, 2006; Gedney 5794 et al. 2006b). Qian et al. (2006) simulate observed runoff changes in response to observed temperature and precipitation alone, and Milly et al. (2005) demonstrate that 20th century 5795 5796 runoff trends simulated by several global climate models are significantly correlated with 5797 observed runoff trends. Wu et al. (2005) find that observed increases in Arctic river 5798 discharge are simulated in a global climate model with anthropogenic and natural forcing, 5799 but not in the same model with natural forcings only. Anthropogenic changes in runoff

may be emerging, but attribution studies specifically on North American runoff are notavailable.

5802

5803	Mid-latitude summer drying is another anticipated response to greenhouse gas forcing
5804	(Meehl et al., 2006) and drying trends have been observed in the both the Northern and
5805	Southern hemispheres since the 1950's (Trenberth et al., 2006). Burke et al. (2006), using
5806	the HadCM3 model with all natural and anthropogenic external forcings and a global
5807	Palmer Drought Severity Index (PDSI) dataset compiled from observations by Dai et al.
5808	(2004), detect the influence of anthropogenic forcing in the observed global trend
5809	towards increased drought in the second half of the 20 th century, although the model trend
5810	was weaker than observed and the relative contributions of natural external forcings and
5811	anthropogenic forcings was not assessed. Nevertheless, this supports the conclusion that
5812	anthropogenic forcing has influenced the global occurrence of drought. However, the
5813	spatial pattern of observed PDSI change over North America is dissimilar to that in the
5814	coupled model, so no anthropogenic influence has been detected for North America
5815	alone.
5816	
5817	Nevertheless, the long term trends in the precipitation patterns over North America are

5818 well reproduced in atmospheric models driven with observed changes in sea-surface

temperatures (Schubert et al., 2003; Seager et al., 2005), indicating the importance of sea-

5820 surface temperatures in determining North American drought (see also, for example,

5821 Hoerling and Kumar, 2003). Specifically, Schubert et al. (2003) and Seager et al. (2005),

5822 using AGCMs forced with observed SSTs, show that some SST anomaly patterns,

5823	particularly in the tropical Pacific, can produce drought over North America. Using the
5824	observed SST anomalies, both studies successfully reproduce many aspects of the 1930's
5825	drought. Only the Seager et al. (2005) model simulates the 1950's drought over North
5826	America, indicating that more modelling studies of this kind are needed.
5827	
5828	3.2.4 Tropical Cyclones
5829	Long-term (multidecadal to century) scale observational records of tropical cyclone
5830	activity (frequency, intensity, power dissipation, etc.) were described in Chapter 2. Here
5831	discussion focuses on whether the any changes can be attributed to particular causes,
5832	including anthropogenic forcings. Tropical cyclones respond to their environment in
5833	quite different manners for initial development, intensification, determination of overall
5834	size, and motion. Therefore this section begins with a brief summary of the major
5835	physical mechanisms and understanding.
5836	
5837	3.2.4.1 Development Criteria and Mechanisms
5838	Gray (1968) drew on a global analysis of tropical cyclones and a large body of earlier
5839	work to arrive at a set of criteria for tropical cyclone development, which he called
5840	Seasonal Genesis Parameters:
5841	• Sufficient available oceanic energy for the cyclone to develop, usually defined as
5842	a requirement for ocean temperatures > 26 °C down to a depth of 60 m;
5843	• Sufficient cyclonic (counterclockwise in Northern Hemisphere, clockwise in
5844	Southern Hemisphere) rotation to enhance the capacity for convective heating to
5845	accelerate the vertical winds,

5846	• A small change in horizontal wind with height (weak shear) so that the upper
5847	warming can become established over the lower vortex.
5848	• A degree of atmospheric moist instability to enable convective clouds to develop;
5849	• A moist mid-level atmosphere to inhibit the debilitating effects of cool
5850	downdrafts; and
5851	• Some form of pre-existing disturbance, such as an easterly wave, capable of
5852	development into a tropical cyclone.
5853	
5854	A more recent study by Camargo et al. (2007) has developed a new genesis index, which
5855	is based on monthly mean values of 850 hPa relative vorticity, 700 hPa humidity, 850-
5856	250 hPa wind shear, and Potential Intensity (Bister and Emanuel, 1998). Some skill has
5857	been demonstrated in applying it to re-analysis data and global climate models to
5858	estimate the frequency and location of storms.
5859	
5860	In the North Atlantic, the bulk of tropical cyclone developments arise from easterly
5861	waves, though such development is a relatively rare event, with only around 10-20% of
5862	waves typically developing into a tropical cyclone (Dunn 1940, Frank and Clarke 1980,
5863	Pasch et al 1998, Thorncroft and Hodges 2001). Thus, any large-scale mechanism that
5864	can help produce more vigorous easterly waves leaving Africa or provide an environment
5865	to enhance their development is of importance. ENSO is a major influence; during El
5866	Nino years, tropical cyclone development is suppressed by a combination of associated
5867	increased vertical wind shear, general drying of the mid-levels and oceanic cooling (e.g.,
5868	Gray 1984). The Madden-Julian Oscillation (MJO) influences cyclogenesis in the Gulf of

5869	Mexico region on 1-2 month time scales (Maloney and Hartmann 2000). Approximately
5870	half of the North Atlantic tropical cyclone developments are associated with upper-level
5871	troughs migrating into the tropics (e.g. Pasch et al 1998; Davis and Bosart, 2001; 2006).
5872	The large scale zonal wind flow may also modulate development of easterly wave
5873	troughs into tropical cyclones (Holland 1995, Webster and Chang 1988). The easterly
5874	wave development process is particularly enhanced in the wet, westerly phase of the
5875	MJO.
5876	
5877	The eastern and central North Pacific experience very little subtropical interaction and
5878	appear to be dominated by easterly wave development (e.g. Frank and Clarke 1980). The
5879	two major environmental influences are the ENSO and MJO, associated with the same
5880	effects as described for the North Atlantic. The MJO is a particularly large influence,
5881	being associated with a more than 2:1 variation in tropical cyclone frequency between the
5882	westerly-easterly phases (Liebmann et al 1994, Molinari and Vollaro 2000).
5883	
5884	Suitable conditions in the western Pacific development region are present throughout the
5885	year. Developments in this region are associated with a variety of influences, including
5886	easterly waves, monsoon development and mid-latitude troughs (e.g. Ritchie and Holland
5887	1999). The dominant circulation is the Asiatic monsoon, and tropical cyclones typically
5888	form towards the eastern periphery of the main monsoonal trough, or further eastwards
5889	(Holland, 1995), though development can occur almost anywhere (e.g. Lander 1994).
5890	ENSO has a major impact, but it is opposite to that in the eastern Pacific and Atlantic,

- with western Pacific tropical cyclone development being enhanced during the El Ninophase (Chan 1985, Lander 1994, Wang and Chan 2002).
- 5893
- 5894 *Mesoscale influences* include those that occur on scales similar to, or smaller than the
- 5895 tropical cyclone circulation and seem to be operative in some form or other to all ocean
- 5896 basins. These influences include interactions amongst the vorticity fields generated by
- 5897 Mesoscale Convective Complexes (MCCs), which may enhance cyclogenesis under
- 5898 suitable atmospheric conditions, but also may introduce a stochastic element in which the
- 5899 interactions may also inhibit short-term development (Houze 1977; Zipser 1977; Ritchie
- and Holland 1997; Simpson et al. 1997; Ritchie 2003; Bister and Emanuel 1997;
- 5901 Hendricks et al. 2004; Montgomery et al. 2006) and inherent barotropic instability (e.g.

5902 Schubert et al. 1991; Ferreira and Schubert 1997).

5903

5904 **3.2.4.1.1 Factors Influencing Intensity and Duration**

- 5905 Once a cyclone develops it proceeds through several stages of intensification. The
- 5906 maximum achievable intensity of a tropical cyclone appears to be limited by the available
- 5907 energy in the ocean and atmosphere. This has led to various thermodynamic assessments
- 5908 of the Potential Intensity (PI) that can be achieved by a cyclone for a given
- thermodynamic state (Emanuel 1987, 1995, 2000, Holland 1997, 1995, 2000, Holland 1997,
- 5910 Tonkin et al 1999, Rotunno and Emanuel 1987). The basis for these assessments is
- 5911 characteristically the sea surface temperature and the thermodynamic structure of the
- 5912 near-cyclone atmospheric environment, with particular emphasis on the temperature at
- 5913 the outflow level of air ascending in the storm core.

5915	In most cases tropical cyclones do not reach this thermodynamic limit, due to a number
5916	of processes that have a substantial negative influence on intensification. Major negative
5917	impacts may include: vertical shear of the horizontal wind (Frank and Ritchie 1999,
5918	DeMaria 1995), oceanic cooling by cyclone-induced mixing of cool water from below
5919	the mixed layer to the surface (Price 1981, Bender and Ginis 2000, Schade and Emanuel
5920	1999); potential impacts of sea spray on the surface exchange process (Wang et al. 2001,
5921	Andreas and Emanuel 2001); processes that force the cyclone into an asymmetric
5922	structure (Wang 2002, Corbosiero and Molinari 2003); ingestion of dry air, perhaps also
5923	with suspended dust (Neal and Holland 1976, Dunion and Velden 2004); and internal
5924	processes. Since many of these factors tend to be transitory in nature, the longer a
5925	cyclone can spend in a region with plentiful thermodynamic energy, the better its chances
5926	of approaching the PI. This is reflected in, for example, the observation that over 80% of
5927	major hurricanes in the North Atlantic occur in systems that formed at low latitudes in the
5928	eastern region, the so-called Cape Verde storms.
5929	

A weakening tropical cyclone may merge with an extratropical system, or it may redevelop into a baroclinic system (Jones et al. 2003). Since the system carries some of its tropical vorticity and moisture, it can produce extreme rains and major flooding. The transition is also often accompanied by a rapid acceleration in translation speed, which leads to an asymmetric wind field with sustained winds that may be of hurricane force on the right (left) side of the storm track in the northern (southern) hemisphere, despite the overall weakening of the cyclone circulation.

5027
5751

5938 3.2.4.1.2 Movement Mechanisms

5940	also propagate relative to this mean flow due to dynamical effects (Holland 1984, Fiorino

Tropical cyclones are steered by the mean flow in which they are embedded, but they

and Elsberry 1989). This combination leads to the familiar hyperbolic (recurving) track

5942 of tropical cyclones as storms initially move westward, embedded in the low-latitude

solution easterly flow, then more poleward and eventually eastward as they encounter the mid-

5944 latitude westerlies.

5945

5946 An important result of this pattern of movement is that storms affecting the Caribbean,

5947 Mexico, Gulf States, Lower Eastern Seaboard and Pacific Trust Territories have mostly

5948 developed in low-latitudes (which also comprise the most intense systems). Eastern

5949 Pacific cyclones tend to move away from land, and those that recurve are normally

5950 suffering from combined negative effects of cold water and vertical shear. Upper Eastern

5951 US Seaboard and Atlantic Canada cyclones are typically recurving and undergoing

5952 various stages of extratropical transition.

5953

5954 3.2.4.2 Attribution Preamble

5955 Determining the causal influences on the observed changes in tropical cyclone

5956 characteristics is currently subject to vigorous community debate. Chief amongst the

5957 more contentious topics are data deficiencies in early years, natural variability on decadal

time scales, and trends associated with greenhouse warming. A summary of the published

5959 contributions to this debate at the end of 2006 is contained in a report and accompanying

5960	statement that was put together by the attendees at a World Meteorological Society
5961	Workshop on Tropical Cyclones held in November 2006 (WMO 2006, Knutson et al
5962	2006b). Of direct relevance in the WMO statement are the following:
5963	• Though there is evidence both for and against the existence of a detectable
5964	anthropogenic signal in the tropical cyclone climate record to date, no firm
5965	conclusion can be made on this point.
5966	• It is likely that some increase in tropical cyclone intensity and rainfall will occur
5967	if the climate continues to warm. Model studies and theory project a 3-5%
5968	increase in wind speed per degree increase of tropical sea surface temperatures.
5969	• No individual tropical cyclone can be directly attributed to climate change.
5970	• Some studies of the observational record conclude that the reported global
5971	increase in tropical cyclone activity is questionable owing to data problems, since
5972	tropical cyclone monitoring has improved continuously.
5973	• There is an observed multi-decadal variability of Atlantic hurricanes whose
5974	causes, whether natural, anthropogenic or a combination, are currently being
5975	debated. This variability makes detecting any long-term trends in tropical cyclone
5976	activity difficult.
5977	• Current theories and computer models predict an increase in wind speed and
5978	rainfall of tropical cyclones in a warmer climate.
5979	• Recent climate model simulations project a decrease or no change in global
5980	tropical cyclone numbers in a warmer climate, although there is low confidence in
5981	this projection.
5982	

5983	We note that these were consensus views, and no attempt was made to assign likely
5984	probabilities to the possible outcomes. The International Panel for Climate Change
5985	(IPCC) arrived at similar findings, but also focused on the observed changes in the North
5986	Atlantic (IPCC 2007):
5987	
5988	• There is observational evidence for an increase of intense tropical cyclone
5989	activity in the North Atlantic since about 1970, correlated with increases of
5990	tropical sea surface temperatures.
5991	• There are also suggestions of increased intense tropical cyclone activity in
5992	some other regions where concerns over data quality are greater.
5993	• Multi-decadal variability and the quality of the tropical cyclone records prior
5994	to routine satellite observations in about 1970 complicate the detection of
5995	long-term trends in tropical cyclone activity.
5996	• There is no clear trend in the annual global numbers of tropical cyclones.
5997	
5998	The IPCC also made the following probability assessments on intense tropical cyclone
5999	activity:
6000	• Likely that increases have occurred in some regions since 1970;
6001	• More likely than not a human contribution to the observed trend;
6002	• Likely that there will be future trends in tropical cyclone intensity and heavy
6003	precipitation associated with ongoing increases of tropical SSTs;
6004	• Less confidence in projections of a global decrease in the numbers of tropical
6005	cyclones.

6007	Emanuel (2005) and Webster et al. (2005) showed a clear increase in the more intense
6008	Northwest Pacific cyclones (as shown by category 4 and 5 frequency or PDI) since the
6009	commencement of the satellite era. These increases have been closely related to
6010	concomitant changes in SSTs in this region. On the other hand there are also concerns
6011	about the quality of the data (WMO 2006) and there has been little focused research on
6012	attributing the changes in this region. For these reasons this report accepts the overall
6013	findings of WMO (2006) and IPCC (2007) as they relate to the North Pacific.
6014	
6015	One area where there is consensus is on tropical cyclone rainfall. WMO (2007) and IPCC
6016	(2007) concur on there being a likely increase in heavy rainfall associated with tropical
6017	cyclones, though the actual level of increase is not clear.
6017 6018	cyclones, though the actual level of increase is not clear.
	cyclones, though the actual level of increase is not clear. The remainder of the attribution section on tropical cyclones concentrates on attribution
6018	
6018 6019	The remainder of the attribution section on tropical cyclones concentrates on attribution
6018 6019 6020	The remainder of the attribution section on tropical cyclones concentrates on attribution in the North Atlantic, where the available data and published work enables more detailed
6018 6019 6020 6021	The remainder of the attribution section on tropical cyclones concentrates on attribution in the North Atlantic, where the available data and published work enables more detailed
6018 6019 6020 6021 6022	The remainder of the attribution section on tropical cyclones concentrates on attribution in the North Atlantic, where the available data and published work enables more detailed attribution analysis compared to other basins.
 6018 6019 6020 6021 6022 6023 	The remainder of the attribution section on tropical cyclones concentrates on attribution in the North Atlantic, where the available data and published work enables more detailed attribution analysis compared to other basins. 3.2.4.3 Attribution of North Atlantic Changes

and major hurricanes over the past century, together with a critique of the potential

- attribution mechanisms. Here we examine these changes in terms of the potentialcausative mechanisms.
- 6030

6031 **3.2.4.3.1 Storm Intensity**

There has been no distinct trend in the mean intensity of all storms, hurricanes, or major
hurricanes (Chapter 2). Holland and Webster (2007) also found that there has been a

6034 marked oscillation in major hurricane proportions, which has no observable trend. The

attribution of this oscillation has not been adequately defined, but it is known that it is

associated with a similar oscillation in the proportion of hurricanes that develop in low

6037 latitudes and thus experience environmental conditions that are more conducive to

6038 development into an intense system than those at more poleward locations. The lack of a

6039 mean intensity trend or a trend in major hurricane proportions is in agreement with

modeling and theoretical studies that predict a relatively small increase of around 1 to 7%

for the observed 0.5 to 0.7°C trend in tropical North Atlantic SSTs (Henderson-Sellers et

al 1998, Knutson et al 1998; 2001; Knutson and Tuleya 2004; 2007).

6043

6044 Multidecadal increases of maximum intensity due to multidecadal increases of SST may

6045 play a relatively small role in increases of overall hurricane activity, and increases in

- frequency (discussed in the next section), for which variations in duration due to large-
- scale circulation changes may be the dominant factors. The relationship between SST,
- 6048 circulation patterns, and hurricane activity variability is not as well understood as the

6049 thermodynamic relationships that constrain maximum intensity.

6050

6051 **3.2.4.3.2 Storm Frequency and Integrated Activity Measures**

6052 Emanuel (2005a; 2007a) examined a Power Dissipation Index (PDI), which combines the 6053 frequency, lifetime and intensity, and is related to the cube of the maximum winds 6054 summed over the lifetime of the storm. In Chapter 2, it was concluded that there has been 6055 a substantial increase in tropical cyclone activity, as measured by the Power Dissipation 6056 Index (PDI), since about 1970, strongly correlated with low-frequency variations in 6057 tropical Atlantic SSTs. It is likely that hurricane activity (PDI) has increased substantially 6058 since the 1950s and 60s in association with warmer Atlantic SSTs. It is also likely that 6059 PDI has generally tracked SST variations on multidecadal time scales in the tropical Atlantic since 1950. Holland and Webster (2007) have shown that the PDI changes have 6060 6061 arisen from a combination of increasing frequency of tropical cyclones of all categories: 6062 tropical storms, hurricanes and major hurricanes; and a multi-decadal oscillation in the 6063 proportion of major hurricanes. They found no evidence of a trend in the major hurricane 6064 proportions or in overall intensity, but a marked trend in frequency. 6065

6066 While there is a close statistical relationship between low frequency variations of tropical

6067 cyclone activity (e.g., the PDI and storm frequency) and SSTs (Ch. 2), this almost

6068 certainly arises from a combination of factors, including joint relationships to other

atmospheric process that effect cyclone development, such as vertical windshear (Shapiro

6070 1982, Kossin and Vitmer 2007, Goldenberg et al 2001, Shapiro and Goldenberg 1998). It

- 6071 is also notable that the recent SST increases have been associated with a concomitant
- 6072 shift towards increased developments in low latitudes and the eastern Atlantic, regions

- where the conditions are normally more conducive to cyclogenesis and intensification(Holland and Webster 2007, Ch. 2).
- 6075

6076	Low-frequency variations in Atlantic tropical cyclone activity have previously been
6077	attributed to a natural variability in Atlantic SSTs associated with the Atlantic Multi-
6078	decadal Oscillation (Bell and Chelliah 2006, Goldenberg et al. 2001). However, these
6079	studies either did not consider the trends over the 20 th century in SST (Goldenberg et al.
6080	2001) or did not cover a long enough period to confidently distinguish between
6081	oscillatory (internal climate variability) behavior and radiatively forced variations or
6082	trends. For example, the multi-decadal AMM2 mode in Bell and Chelliah (2006) first
6083	obtains substantial amplitude around 1970. Their circulation-based indices are of
6084	insufficient length to determine whether they have a cyclical or trend-like character, or
6085	some combination thereof.

6087 While there is undoubtedly a natural variability component to the observed tropical 6088 Atlantic SSTs, it is also likely that a discernable warming trend, due to greenhouse gases, 6089 has occurred, especially over the past 30-40 years. For example, Santer et al. (2006; see 6090 also Gillett et al. 2007) have shown that the observed trends in Atlantic tropical SSTs are 6091 unlikely to be caused entirely by internal climate variability, and that the pronounced 6092 Atlantic warming since around 1970 that is reproduced in their model is predominantly 6093 due to increased greenhouse gases. These conclusions are supported by several other 6094 studies that use different methodologies (e.g., Knutson et al. 2006; Trenberth and Shea 6095 2006; Mann and Emanuel 2006; Karoly and Wu 2005). There is also evidence for a

6096	detectable greenhouse gas-induced SST increase in the NW Pacific tropical cyclogenesis
6097	region (Santer et al. 2006, Gillett et al. 2007; see also Knutson et al. 2006 and Karoly and
6098	Wu 2005).

6101 century in the main development region for tropical cyclones in the Atlantic. Based on

6102 comparison of observed SST trends and corresponding trends in climate models with and

6103 without external forcing, it is likely that increased greenhouse gases have caused a

6104 discernible increase in SSTs both the North Atlantic and the NW Pacific tropical storm

6105 basins over the past 100 yrs and also for the period since about 1950.

6106

6107 Chapter 2 also concludes that it is likely that there has been an increase in tropical 6108 storm/hurricane and major hurricane frequency in the North Atlantic over the past 6109 century or so, a time during which tropical Atlantic SSTs also increased. Ongoing efforts 6110 to reconstruct a complete record of Atlantic tropical cyclone counts back to 1900 or the 6111 late 1800s find evidence (in several analyses) for a statistically significant increasing 6112 trend since 1900. The evidence is much less compelling for significant positive trends 6113 beginning in the late 1800s, although there is increasing uncertainty in the data as one 6114 proceeds further back in time. There has not been a significant trend in U.S. landfalling 6115 activity since the late 1880s as the overall impacts of the increasing trend in North 6116 Atlantic tropical cyclones appear to have been to some extent ameliorated by concomitant 6117 shifts into eastern North Atlantic developments, which are less likely to directly affect US 6118 coastal regions.

6120	Attribution of these past changes in tropical storm/hurricane activity (e.g., PDI) and
6121	frequency to various climate forcings is hampered by the lack of adequate model
6122	simulations of tropical cyclone climatologies. In the case of global scale temperature
6123	increase formal detection-attribution studies have detected strong evidence for the
6124	presence of the space-time pattern of warming expected due to greenhouse gas increases.
6125	These studies find that other plausible explanations, such as solar and volcanic forcing
6126	together with climate variability alone, fail to explain the observed changes sufficiently.
6127	The relatively good agreement between observed and simulated trends based on climate
6128	model experiments with estimated past forcings lends substantial confidence to
6129	attribution statements for SST. However, since adequate model-based reconstructions of
6130	historical tropical cyclone variations are not currently available, we do not have estimates
6131	of expected changes in tropical cyclone variations due to a complete representation of the
6132	changes in the physical system that would have been caused by greenhouse gas increases
6133	and other forcing changes. We therefore must rely on statistical analyses and expert
6134	judgement to make attribution assessments. Further discussion of these issues is
6135	contained in section 3.3.9.6 (Reconciliation of Future Projections and Past Variations).
6136	
6137	The strong relationship with SST—and particularly the large increase in both tropical
6138	cyclone activity (PDI) and SST since 1970, along with the observed increases in tropical
6139	storm/hurricane and major hurricane frequency and SSTs over the past century or so-
6140	provides evidence in support of a discernible impact of anthropogenic forcing on Atlantic

6141 tropical cyclone activity. Although there is evidence both for and against this

6142	interpretation (e.g., lack of trend in U.S. landfalling hurricanes), the balance of evidence
6143	now suggests that human activity has caused a discernible increase in tropical storm,
6144	hurricane and major hurricane frequency. It is more difficult to judge whether
6145	anthropogenic forcing will cause further increases in activity as the climate continues to
6146	warm, since the precise physical reasons for the relationship have not been fully
6147	elucidated. It is noted that relevant anthropogenic forcing includes increasing greenhouse
6148	gases, as well as changes in aerosol forcing, and possibly decreasing stratospheric ozone
6149	and other factors associated with cooling upper atmospheric (~100mb) temperatures in
6150	recent decades (Emanuel 2007a).
6151	
6152	This assessment is consistent with the IPCC (2007) conclusion that it is more likely than
6153	not that there has been a human contribution to the observed increase in intense tropical
6154	cyclone activity. It is further supported by several recent related studies, including
6155	Trenberth and Shea (2006), Mann and Emanuel (2006), Santer et al (2006), Elsner
6156	(2006), Emanuel (2007a), Gillett et al. (2007), Kossin and Vitmer (2007), Vitmer and
6157	Kossin (2007), Vecchi and Knutson (2007), and Holland and Webster (2007a).
6158	
6159	3.2.4.3.3 Storm lifetime, Track and Extratropical Transition
6160	There has been insufficient work done on the changes, or otherwise, in these important
6161	aspects of tropical cyclones to arrive at any firm conclusions.

6163 **3.2.5 Extratropical Storms**

6164 Chapter 2 documents changes in strong extratropical storms during the twentieth century, 6165 especially for oceanic storm track bordering North America. Changes include altered 6166 intensity and tracks of intense storms (Wang et al. 2006, Caires and Sterl 2005). Analysis 6167 of physical mechanisms is lacking. Natural cycles of large-scale circulation affect 6168 variability, through the North Atlantic Oscillation (e.g., Lozano and Swail, 2002, Caires 6169 and Sterl 2005) or the related Northern Annular Mode (Hurrell 1995, Ostermeier and 6170 Wallace 2003). Changes in sea-surface temperature (Graham and Diaz 2001) and 6171 baroclinicity (Fyfe 2003) may also play a role. Analysis of a multi-century GCM 6172 simulation by Fischer-Bruns et al. (2005) suggests that changes in solar activity and 6173 volcanic activity have negligible influence on strong-storm activity. However, it is likely 6174 that anthropogenic influence has contributed to extratropical circulation change during the latter half of the 20th century (Hegerl et al, 2007; see also Gillett et al., 2003, 2005, 6175 6176 2006; Wang et al 2007), which would have influenced storm activity. There is also some 6177 evidence that anthropogenic forcing has affected related variables such as geostrophic 6178 wind energy and significant wave height (Wang et al 2007) during the latter half of the 20th century, although as with sea-level pressure change, the model simulated response to 6179 6180 forcing is not as large as observed. On the other hand, the WASA Group (1998), using 6181 long records of station data, suggest that observed changes in storminess in Northern Europe over the latter part of the 20th century are not inconsistent with natural internal 6182 6183 low-frequency variability. However, analyses based on direct observations suffer from 6184 incomplete spatial and temporal coverage, especially in storm-track regions over adjacent 6185 oceans, and generally cover regions that may be too small to allow detection of externally

6186	forced signals (Hegerl et al., 2007). Studies of global reanalysis products generally cover
6187	less than 50 years. While 50-year records are generally considered adequate for detection
6188	and attribution research (Hegerl et al, 2007), a difficulty with reanalysis products is that
6189	they are affected by inhomogeneities resulting from changes over time in the type and
6190	quantity of data that is available for assimilation (e.g., Trenberth et al. 2005).
6191	
6192	A number of investigations have considered the climate controls on the storm intensities
6193	or on the decadal trends of wave heights generated by those storms. Most of this attention
6194	has been on the North Atlantic, and as noted above the important role of the North
6195	Atlantic Oscillation has been recognized (e.g., Neu, 1984; WASA, 1998; Gulev and
6196	Grignorieva, 2004). Fewer investigations have examined the climate controls on the
6197	storms and waves in the North Pacific, and with less positive conclusions (Graham and
6198	Diaz, 2001; Gulev and Grignorieva, 2004). In particular, definite conclusions have not
6199	been reached concerning the climate factor producing the progressive increase seen in
6200	wave heights, apparently extending at least back to the 1960s. However, Wang et al.
6201	(2007) indicate that anthropogenically forced circulation change may have been an
6202	important factor in changes of significant wave heights.
6203	
6204	A definite control on the wave conditions experienced along the west coast of North

America is occurrences of major El Niños such as those in 1982-83 and 1997-98. Both of

6206 these events in particular brought extreme wave conditions to south-central California,

attributed primarily to the more southerly tracks of the storms compared with non-El

6208 Niño years. Allan and Komar (2006) found a correlation between the winter-averaged

6209	wave heights measured along the west coast and the multivariate ENSO index (MEI),
6210	showing that while the greatest increase during El Niños takes place at the latitudes of
6211	south-central California, some increase occurs along the entire west coast, evidence that
6212	the storms are stronger as well as having followed more southerly tracks. The wave
6213	climates of the west coast therefore have been determined by the decadal increase found
6214	by Allan and Komar (2000, 2006), but further enhanced during occurrences of major El
6215	Niños.
6216	
6217	3.2.6 Convective Storms
6218	Trenberth et al. (2005) point out that since the amount of moisture in the atmosphere is
6219	likely to rise much faster as a consequence of rising temperatures than the total
6220	precipitation, this should lead to an increase in the intensity of storms, offset by decreases
6221	in duration or frequency of events. Environmental conditions that are most likely
6222	associated with severe and tornadic thunderstorms have been derived from reanalysis
6223	data (Brooks et al. 2003b). Brooks and Dotzek (2007) applied those relationships to count
6224	the frequency of favorable environments for significant severe thunderstorms (hail of at
6225	least 5 cm diameter, wind gusts of at least 33 m s ⁻¹ , and/or a tornado of F2 or greater
6226	intensity) for the area east of the Rocky Mountains in the US for the period 1958-1999.
6227	The count of favorable environments decreased by slightly more than 1% per year from
6228	1958 until the early-to-mid 1970s, and increased by approximately 0.8% per year from
6229	then until 1999, so that the frequency was approximately the same at both ends of the
6230	analyzed period. They went on to show that the time series of the count of reports of very
6231	large hail (7 cm diameter and larger) shows an inflection at about the same time as the

6232	inflection in the counts of favorable environments. A comparison of the rate of increase
6233	of the two series suggested that the change in environments could account for
6234	approximately 7% of the change in reports from the mid-1970s through 1999, with the
6235	rest coming from non-meteorological sources.
6236	
6237	3.3 Projected Future Changes in Extremes, Their Causes, Mechanisms, and
6238	Uncertainties
6239	Projections of future changes of extremes are relying on an increasingly sophisticated set
6240	of models and statistical techniques. Studies assessed in this section rely on multi-
6241	member ensembles (3 to 5 members) from single models, analyses of multi-model
6242	ensembles ranging from 8 to 15 or more AOGCMs, and a perturbed physics ensemble
6243	with a single mixed layer model with over 50 members. The discussion here is intended
6244	to identify the characteristics of changes of extremes in North America and set in the
6245	broader global context.
6246	
6247	3.3.1 Temperature
6248	The IPCC Third Assessment Report concluded there was a very likely risk of increased
6249	high temperature extremes (and reduced risk of low temperature extremes), with more
6250	extreme heat episodes in a future climate. This latter result has been confirmed in
6251	subsequent studies (e.g., Yonetani and Gordon, 2001). An ensemble of more recent
6252	global simulations projects marked increase in the frequency of very warm daily-
6253	temperature minima (Fig. 3.1a). Kharin and Zwiers (2005) show in a single model that
6254	future increases in temperature extremes follow increases in mean temperature over most

6255	of the world including North America. They show a large reduction in the wintertime
6256	cold temperature extremes in regions where snow and sea ice decrease due to changes in
6257	the effective heat capacity and albedo of the surface. They also show that summertime
6258	warm temperature extremes increase in regions where the soil dries due to a smaller
6259	fraction of surface energy used for evaporation. Furthermore, that study showed that in
6260	most instances warm-extreme changes are similar in magnitude to the increases in daily
6261	maximum temperature, but cold extremes shift to warmer temperatures faster than daily
6262	minimum temperatures, though this result is less consistent when model parameters are
6263	varied in a perturbed physics ensemble where there are increased daily temperature
6264	maxima for nearly the whole land surface. However, the range in magnitude of increases
6265	was substantial indicating a sensitivity to model formulations (Clark et al., 2006).
6266	
6267	Events that are rare could become more commonplace. Recent studies using both
6268	individual models (Kharin and Zwiers, 2005) and an ensemble of models (Wehner 2006,
6268 6269	individual models (Kharin and Zwiers, 2005) and an ensemble of models (Wehner 2006, Kharin, et al 2007) show that events that currently reoccurr on average once every 20
6269	Kharin, et al 2007) show that events that currently reoccurr on average once every 20
6269 6270	Kharin, et al 2007) show that events that currently reoccurr on average once every 20 years (i.e., have a 5% chance of occurring in a given year) will become significantly more
6269 6270 6271	Kharin, et al 2007) show that events that currently reoccurr on average once every 20 years (i.e., have a 5% chance of occurring in a given year) will become significantly more frequent over North America. For example, by the middle of the 21 st century, in
6269 6270 6271 6272	Kharin, et al 2007) show that events that currently reoccurr on average once every 20 years (i.e., have a 5% chance of occurring in a given year) will become significantly more frequent over North America. For example, by the middle of the 21 st century, in simulations of the SRES A1B scenario, the recurrence period (or expected average
 6269 6270 6271 6272 6273 	Kharin, et al 2007) show that events that currently reoccurr on average once every 20 years (i.e., have a 5% chance of occurring in a given year) will become significantly more frequent over North America. For example, by the middle of the 21 st century, in simulations of the SRES A1B scenario, the recurrence period (or expected average waiting time) for the current 20-year extreme in daily average surface-air temperature
 6269 6270 6271 6272 6273 6274 	Kharin, et al 2007) show that events that currently reoccurr on average once every 20 years (i.e., have a 5% chance of occurring in a given year) will become significantly more frequent over North America. For example, by the middle of the 21 st century, in simulations of the SRES A1B scenario, the recurrence period (or expected average waiting time) for the current 20-year extreme in daily average surface-air temperature reduces to three years over most of the continental United States and five years over most

6278	Similar behavior occurs for seasonal average temperatures. For example, Weisheimer and
6279	Palmer (2005) examined changes in extreme seasonal (DJF and JJA) temperatures in 14
6280	models for 3 scenarios. They showed that by the end of 21 st century, the probability of
6281	such extreme warm seasons is projected to rise in many areas including North America.
6282	Over the North American region, an extreme seasonal temperature event that occurs 1 out
6283	of 20 years in the present climate becomes a 1 in 3 year event in the A2 scenario by the
6284	end of this century. This result is consistent with that from the perturbed physics
6285	ensemble of Clark et al. (2006) where, for nearly all land areas, extreme JJA temperatures
6286	were at least 20 times and in some areas 100 times more frequent compared to the control
6287	ensemble mean, making these changes greater than the ensemble spread.
6288	
6289	Others have examined possible future cold-air outbreaks. Vavrus et al. (2006) analysed 7
6290	AOGCMs run with the A1B scenario, and defined a cold air outbreak as 2 or more
6291	consecutive days when the daily temperatures were at least 2 standard deviations below
6292	the present-day winter-time mean. For a future warmer climate, they documented a
6293	decline in frequency of 50 to 100% in NH winter in most areas compared to present-day,
6294	with some of the smallest reductions occurring in western North America due to
6295	atmospheric circulation changes (blocking and ridging on West Coast) associated with
6296	the increase of GHGs.
6297	
6298	Several recent studies have addressed explicitly possible future changes in heat waves
6299	(very high temperatures over a sustained period of days), and found that in a future
6300	climate there is an increased risk of more intense, longer-lasting and more frequent heat

6301 waves (Meehl and Tebaldi, 2004; Schär et al., 2004; Clark et al., 2006). Meehl and 6302 Tebaldi (2004) related summertime heat waves to circulation patterns in the models and 6303 observations. They found that the more intense and frequent summertime heat waves 6304 over the southeast and western U.S. were related in part to base state circulation changes 6305 due to the increase in GHGs. An additional factor for extreme heat is drier soils in a 6306 future warmer climate (Brabson et al., 2005; Clark et al., 2006). The "Heat Index", a 6307 measure of the apparent temperature felt by humans that includes moisture influences, 6308 was projected in a GFDL model study to increase substantially more than the air 6309 temperature in a warming climate in many regions (Delworth et al. 1999). The regions 6310 most prone to this effect included humid regions of the tropics and summer hemisphere 6311 extratropics, including the Southeast U.S. and Caribbean. A multi-model ensemble showed that simulated heat waves increase during the latter part of the 20th century, and 6312 6313 are projected to increase globally and over most regions including North America 6314 (Tebaldi et al., 2006), though different model parameters can influence the range in the 6315 magnitude of this response (Clark et al., 2006). 6316 6317 Warm episodes in ocean temperatures can stress marine ecosystems, causing impacts 6318 such as coral bleaching (e.g., Liu et al. 2006). Key factors appear to be clear skies, low

- 6319 winds and neap tides occurring near annual maximum temperatures since they promote
- 6320 heating with little vertical mixing of warm waters with cooler, deeper layers (Strong et al.
- 6321 2006). At present, widespread bleaching episodes do not appear to be related to

6322 variability such as ENSO cycles (Arzayus and Skirving 2004) or Pacific Decadal

6323 Oscillation (Strong et al. 2006). The 2005 Caribbean coral bleaching event has been

6324	linked to warm ocean temperatures that appear to have been partially due to long-term
6325	warming associated with anthropogenic forcing and not a manifestation of unforced
6326	climate variability alone (Donner et al. 2007). Warming trends in the ocean increase the
6327	potential for temperatures to exceed thresholds for mass coral bleaching, and thus may
6328	greatly increase the frequency of bleaching events in the future, depending on the ability
6329	of corals and their symbionts to adapt to increasing water temperatures (see Donner et al.
6330	2007 and references therein).
6331	
6332	A decrease in diurnal temperature range in most regions in a future warmer climate was
6333	reported in Cubasch et al. (2001) and is substantiated by more recent studies (e.g., Stone
6334	and Weaver, 2002), which are assessed in the 2007 IPCC report (Meehl et al. 2007a,
6335	Christensen et al. 2007). However, noteworthy departures from this tendency have been
6336	found in the western portion of the US (particularly the Southwest), where increased
6337	diurnal temperature ranges occur in several regional (e.g., Bell et al. 2004, Leung et al.
6338	2004) and global (Christensen et al., 2007) climate-change simulations. Increased diurnal
6339	temperature range often occurs in areas that experience drying in the summer.
6340	

6341 3.3.2 Frost

6342 As the mean climate warms, the number of frost days are expected to decrease (Cubasch

6343 et al. 2001). Meehl et al (2004a) have shown that there would indeed be decreases in frost

6344 days in a future warmer climate in the extratropics, particularly along the northwest coast

of North America, with the pattern of the decreases dictated by the changes in

6346 atmospheric circulation from the increase in GHGs. Results from a multi-model ensemble

show simulated and observed decreases in frost days for the 20 th century continuing into
the 21 st century over North America and most other regions (Meehl et al. 2007a, Fig.
3.1b). By then end of the 21 st century, the number of frost days averaged over North
America has decreased by about 1 month in the 3 future scenarios considered here.
In both the models and the observations, the number of frost days is decreasing over the
20 th century (Fig. 3.1b). This decrease is generally related to warming climate, although
the pattern of the warming and pattern of the frost-days changes (Fig. 3.2) are not well
correlated. The decrease in the number of frost days per year is biggest in the Rockies
correlated. The decrease in the number of frost days per year is biggest in the Rockies and along the west coast of North America. The 21 st century frost day pattern of change
and along the west coast of North America. The 21 st century frost day pattern of change
and along the west coast of North America. The 21 st century frost day pattern of change is similar to the 20 th century pattern, just much larger in magnitude. In some places by
and along the west coast of North America. The 21 st century frost day pattern of change is similar to the 20 th century pattern, just much larger in magnitude. In some places by
and along the west coast of North America. The 21 st century frost day pattern of change is similar to the 20 th century pattern, just much larger in magnitude. In some places by 2100, the number of frost days decrease by more than 2 months.
and along the west coast of North America. The 21 st century frost day pattern of change is similar to the 20 th century pattern, just much larger in magnitude. In some places by 2100, the number of frost days decrease by more than 2 months.
and along the west coast of North America. The 21 st century frost day pattern of change is similar to the 20 th century pattern, just much larger in magnitude. In some places by 2100, the number of frost days decrease by more than 2 months. These changes would have a large impact on biological activity both positive and negative (See chapter 1 for more discussion). An example of a positive change is that
and along the west coast of North America. The 21 st century frost day pattern of change is similar to the 20 th century pattern, just much larger in magnitude. In some places by 2100, the number of frost days decrease by more than 2 months. These changes would have a large impact on biological activity both positive and negative (See chapter 1 for more discussion). An example of a positive change is that there would be increase in growing season length directly related to the decrease in frost
and along the west coast of North America. The 21 st century frost day pattern of change is similar to the 20 th century pattern, just much larger in magnitude. In some places by 2100, the number of frost days decrease by more than 2 months. These changes would have a large impact on biological activity both positive and negative (See chapter 1 for more discussion). An example of a positive change is that there would be increase in growing season length directly related to the decrease in frost days per year. A negative example is fruit trees, which need a certain number of frost
and along the west coast of North America. The 21 st century frost day pattern of change is similar to the 20 th century pattern, just much larger in magnitude. In some places by 2100, the number of frost days decrease by more than 2 months. These changes would have a large impact on biological activity both positive and negative (See chapter 1 for more discussion). An example of a positive change is that there would be increase in growing season length directly related to the decrease in frost days per year. A negative example is fruit trees, which need a certain number of frost periods per winter season to set their buds. In places, this threshold would no longer be
and along the west coast of North America. The 21 st century frost day pattern of change is similar to the 20 th century pattern, just much larger in magnitude. In some places by 2100, the number of frost days decrease by more than 2 months. These changes would have a large impact on biological activity both positive and negative (See chapter 1 for more discussion). An example of a positive change is that there would be increase in growing season length directly related to the decrease in frost days per year. A negative example is fruit trees, which need a certain number of frost periods per winter season to set their buds. In places, this threshold would no longer be exceeded. Note also that changes in wetness and CO ₂ content of the air would also impact
tl 3 A L

6370 **3.3.3 Growing Season Length**

6372 Northern Hemisphere, is growing season length as defined by Frich et al. (2002), and this

A quantity related to frost days in many mid and high latitude areas, particularly in the

- 6373 has been projected to increase in future climate in most areas (Tebaldi et al., 2006). This
- 6374 result is also shown in a multi-model ensemble where the simulated increase in growing
- 6375 season length in the 20th century continues into the 21st century over North America and
- 6376 most other regions (Meehl et al. 2007a, Fig. 3.1c). The growing season length has
- 6377 increased by about 1 week over the 20th century when averaged over all of North
- 6378 America in the models and observations. By the end of the 21st century, the growing
- 6379 season is on average more than 2 weeks longer than present day. (For more discussion on

6380 the reasons these changes are important, see chapter 1)

6381

6371

6382 3.3.4 Snow Cover and Sea Ice

6383 Warming generally leads to reduced snow and ice cover (Meehl et al. 2007a). Reduction 6384 in perennial sea ice may be large enough to yield a summertime, ice-free Arctic Ocean by the end of the 21st century (Arzel et al. 2006; Zhang and Walsh 2006). Summer Arctic 6385 6386 Ocean ice also may undergo substantial, decadal-scale abrupt changes rather than smooth 6387 retreat (Holland et al. 2006). The warming may also produce substantial reduction in the 6388 duration of seasonal ice in lakes across Canada and the U.S. (Hodgkins et al. 2002, Gao 6389 and Stefan 2004, Williams et al. 2004, Morris et al. 2005) and in rivers (Hodgkins et al. 6390 2003, Huntington et al. 2003). Reduced sea ice in particular, may produce more strong 6391 storms over the ocean (Section 3.3.10). Reduced lake ice may alter the occurrence of 6392 heavy lake-effect snowfall (Section 3.3.8). The annual cycle of snow cover and river

runoff may be substantially altered in western U.S. basins (Miller et al. 2003, Leung et al.
2004), affecting water-resource management and potentially exacerbating the impacts of
droughts.

6396

6397 3.3.5 Precipitation

6398 Climate models continue to confirm the earlier results that in a future climate warmed by 6399 increasing GHGs, precipitation intensity (i.e., precipitation amount per event) is projected 6400 to increase over most regions (Wilby and Wigley, 2002; Kharin and Zwiers, 2005; Meehl et al., 2005a; Barnett et al., 2006), and the increase of precipitation extremes is greater 6401 6402 than changes in mean precipitation (Kharin and Zwiers, 2005). Rare events precipitation 6403 events could become more commonplace in North America (Wehner, 2006, Kharin et al. 2007). For example, by the middle of the 21st century, in simulations of the SRES A1B 6404 6405 scenario, the recurrence period (or expected average waiting time) for the current 20-year 6406 extreme in daily total precipitation reduces to between 12 and 15 years over much of 6407 North America (Kharin, et al 2007). By the end of the century (Fig. 3.5b), the expected 6408 average reoccurrence time may further reduce to every six to eight years (Wehner, 2006, 6409 Kharin, et al 2007). Note the area of little change in expected average reoccurrence time 6410 in the central United States in Fig. 3.5b. 6411

6412 As discussed in section 3.2.3 of this chapter and in Hegerl et al. (2007), the substantial

6413 increase in precipitation extremes is related to the fact that the energy budget of the

6414 atmosphere constrains increases of large-scale mean precipitation, but extreme

6415 precipitation responds to increases in moisture content and thus the nonlinearities

6416	involved with the Clausius-Clapeyron relationship. This behavior means that for a given
6417	increase in temperature, increases in extreme precipitation can be relatively larger than
6418	the mean precipitation increase (e.g., Allen and Ingram, 2002), so long as the character of
6419	the regional circulation does not change substantially (Pall et al., 2007). Additionally,
6420	timescale can play a role whereby increases in the frequency of seasonal mean rainfall
6421	extremes can be greater than the increases in the frequency of daily extremes (Barnett et
6422	al., 2006). The increase of mean and extreme precipitation in various regions has been
6423	attributed to contributions from both dynamic (circulation) and thermodynamic (moisture
6424	content of the air) processes associated with global warming (Emori and Brown, 2005)
6425	although the precipitation mean and variability changes are largely due to the
6426	thermodynamic changes over most of North America. Changes in circulation also
6427	contribute to the pattern of precipitation intensity changes over northwest and northeast
6428	North America (Meehl et al., 2005a). Kharin and Zwiers (2005) showed that changes to
6429	both the location and scale of the extreme value distribution produced increases of
6430	precipitation extremes substantially greater than increases of annual mean precipitation.
6431	An increase in the scale parameter from the gamma distribution represents an increase in
6432	precipitation intensity, and various regions such as the Northern Hemisphere land areas in
6433	winter showed particularly high values of increased scale parameter (Semenov and
6434	Bengtsson, 2002; Watterson and Dix, 2003). Time slice simulations with a higher
6435	resolution model (~1°) show similar results using changes in the gamma distribution,
6436	namely increased extremes of the hydrological cycle (Voss et al., 2002).
6437	

6439 **3.3.6 Flooding and Dry Days**

6440 Changes in the precipitation extremes have a large impact on both flooding and the
6441 number of precipitation free days. The discussion of both is combined because their
6442 changes are related, in spite of the apparent contradiction.

6443

6444 A number of studies have noted that increased rainfall intensity may imply increased

flooding. McCabe et al. (2001) and Watterson (2005) showed there was an increase in

6446 extreme rainfall intensity in extratropical surface lows, particularly over Northern

6447 Hemisphere land. However, analyses of climate changes from increased greenhouse

6448 gases gives mixed results, with increased or decreased risk of flooding depending on the

6449 model analyzed (Arora and Boer 2001, Milly et al. 2002, Voss et al. 2002).

6450

6451 Global and North American averaged time series of the Frich et al. (2002) indices in the

6452 multi-model analysis of Tebaldi et al. (2006) show simulated increases in heavy

6453 precipitation during the 20^{th} century continuing through the 21^{st} century (Meehl et al.

6454 2007a, Fig. 3.1d), along with a somewhat weaker and less consistent trend for increasing

6455 dry periods between rainfall events for all scenarios (Meehl et al. 2007a). Part of the

6456 reason for these results is that precipitation intensity increases almost everywhere, but

6457 particularly at mid and high latitudes, where mean precipitation increases (Meehl et al.,

6458 2005a).

6459

6460 There are regions of increased runs of dry days between precipitation events in the

subtropics and lower midlatitudes, but a decreased number of consectutive dry days at

6462	higher midlatitudes and high latitudes where mean precipitation increases. Since there are
6463	areas of both increases and decreases of consecutive dry days between precipitation
6464	events in the multi-model average, the global mean trends are smaller and less consistent
6465	across models. Consistency of response in a perturbed physics ensemble with one model
6466	shows only limited areas of increased frequency of wet days in July, and a larger range of
6467	changes of precipitation extremes relative to the control ensemble mean in contrast to the
6468	more consistent response of temperature extremes (discussed above), indicating a less
6469	consistent response for preciptitation extremes in general compared to temperature
6470	extremes (Barnett et al., 2006).
6471	
6472	Associated with the risk of drying is a projected increase in chance of intense
6473	precipitation and flooding. Though somewhat counter-intuitive, this is because
6474	precipitation is projected to be concentrated into more intense events, with longer periods
6475	of little precipitation in between. Therefore, intense and heavy episodic rainfall events
6476	with high runoff amounts are interspersed with longer relatively dry periods with
6477	increased evapotranspiration, particularly in the subtropics (Frei et al., 1998; Allen and
6478	Ingram, 2002; Palmer and Räisänen, 2002; Christensen and Christensen, 2003; Beniston,
6479	2004; Christensen and Christensen, 2004; Pal et al., 2004; Meehl et al., 2005a). However,
6480	increases in the frequency of dry days do not necessarily mean a decrease in the
6481	frequency of extreme high rainfall events depending on the threshold used to define such
6482	events (Barnett et al., 2006). Another aspect of these changes has been related to the
6483	mean changes of precipitation, with wet extremes becoming more severe in many areas
6484	where mean precipitation increases, and dry extremes becoming more severe where the

6485	mean precipitation decreases (Kharin and Zwiers, 2005; Meehl et al., 2005a; Räisänen,
6486	2005a; Barnett et al., 2006). However, analysis of a 53-member perturbed-physics
6487	ensemble indicates that the change in the frequency of extreme precipitation at an
6488	individual location can be difficult to estimate definitively due to model parameterization
6489	uncertainty (Barnett et al., 2006).
6490	
6491	3.3.7 Drought
6492	A long-standing result from global coupled models noted in Cubasch et al. (2001) has
6493	been a projected increase of summer drying in the midlatitudes in a future warmer
6494	climate, with an associated increased risk of drought. The more recent generation of
6495	models continues to show this behavior (Burke et al., 2006; Meehl et al., 2006b, 2007a;
6496	Rowell and Jones, 2006). For example, Wang (2005) analyzed 15 recent AOGCMs to
6497	show that in a future warmer climate, the models simulate summer dryness in most parts
6498	of northern subtropics and midlatitudes, but there is a large range in the amplitude of
6499	summer dryness across models. Hayhoe et al. (2007) found in an ensemble of AOGCMs
6500	an increased frequency of droughts lasting a month or longer in the northeastern U.S.
6501	Droughts associated with summer drying could result in regional vegetation die-offs
6502	(Breshears et al., 2005) and contribute to an increase in the percentage of land area
6503	experiencing drought at any one time. For example, extreme drought increases from 1%
6504	of present day land area (by definition) to 30% by the end of the century in the Hadley
6505	Centre AOGCM's A2 scenario (Burke et al., 2006). Drier soil conditions can also
6506	contribute to more severe heat waves as discussed above (Brabson et al., 2005).
6507	

6508	A recent analysis of Milly et al. (2005) shows that several AOGCMs project greatly
6509	reduced annual water availability over the southwest US and northern Mexico in the
6510	future (Fig. 3.6). In the historical context, this area is subject to very severe and long
6511	lasting droughts (Cook et al. 2004). The tree-ring record indicates that the late 20 th
6512	century was a time of greater than normal water availability. However, the consensus of
6513	most climate models is for a reduction of cool season precipitation across the Southwest
6514	and northwest Mexico (Christensen et al., 2007). This is consistent with a recent 10-year
6515	shift to shorter and weaker winter rainy seasons and an observed northward shift in
6516	northwest Pacific winter storm tracks (Yin, 2005). Reduced cool season precipitation
6517	promotes drier summer conditions by reducing the amount of soil water available for
6518	evapotranspiration in summer.
6519	
6520	The model projections of reduced water availability over the southwest US and Mexico
6521	in the future needs further study. The uncertainty associated with these projections is
6522	related to the ability of models to simulate the precipitation distribution and variability in
6523	the present climate and to correctly predict the response to future changes. For example,

- the uncertainty associated with the ENSO response to climate change (Zelle et al. 2005,
- 6525 Meehl et al. 2007a) also impacts the projections of future water availability in southwest
- US and northern Mexico (e.g., Meehl and Tebaldi 2007). See Chapter 1 for more
- 6527 discussion on the importance of drought.

- 6529
- 6530

6531 3.3.8 Snowfall

6532 Extreme snowfall events could change as a result of both precipitation and temperature 6533 change. Although reductions in North American snow depth and areal coverage have 6534 been projected (Frei and Gong, 2005; Bell and Sloan, 2006; Déry and Wood, 2006), there 6535 appears to be little analysis of changes in extreme snowfall. An assessment of possible 6536 future changes in heavy lake-effect snowstorms (Kunkel et al. 2002) from the Laurentian 6537 Great Lakes found that surface air temperature increases are likely to be the dominant 6538 factor. They examined simulations from 2 different climate models and found that 6539 changes in the other factors favorable for heavy snow events were relatively small. In the 6540 snowbelts south of Lakes Ontario, Erie and Michigan, warming decreases the frequency 6541 of temperatures in the range of -10 °C to 0 °C that is favorable for heavy lake-effect 6542 snowfall. Thus, decreases in event frequency are likely in these areas. However, in the 6543 northern, colder snowbelts of the Great Lakes, such as the Upper Peninsula of Michigan, 6544 moderate increases in temperature have minor impacts on the frequency of favorable 6545 temperatures because in the present climate temperatures are often too cold for very 6546 heavy snow; warming makes these days more favorable, balancing the loss of other days 6547 that become too warm. Thus, the future frequency of heavy events may change little in 6548 the northern snowbelts.

6549

Increased temperature suggests that heavy snow events downwind of the Great Lakes will
begin later in the season, and on most lakes end earlier. Also, increased temperature with
concomitant increased atmospheric moisture implies that in central and northern Canada,

Alaska, and other places cold enough to snow (e.g., high mountains) the intensity ofheavy snow events may increase.

6555

6556 **3.3.9 Tropical Storms**

6557 3.3.9.1 Introduction

In response to future anthropogenic climate warming (IPCC 2001) tropical cyclones

6559 could potentially change in a number of important ways, including frequency, intensity,

6560 size, duration, tracks, area of genesis or occurrence, precipitation, and storm surge

6561 characteristics.

6562

6563 Overarching sources of uncertainty in future projections of hurricanes include

6564 uncertainties in future emission scenarios for climatically important radiative forcings,

6565 global-scale climate sensitivity to these forcings and the limited capacity of climate

models to adequately simulate intense tropical cyclones. The vulnerability to storm surge

flooding from future hurricanes will very likely be enhanced to some degree due to

6568 continuing global sea level rise associated with anthropogenic warming, modulated by

6569 local sea level changes due to other factors such as local land elevation changes and

6570 regionally varying sea level rise patterns. These related topics are covered in more detail

6571 in other CCSP Synthesis and Assessment Products 2-1, 3-2, and 4-1, or IPCC Fourth

6572 Assessment Report chapters on climate sensitivity, future emission scenarios, and sea

6573 level rise. An assessment of the state of understading of tropical cyclones and climate

6574 change as of 2006 has been prepared by the tropical cyclone community (IWTC VI,

6575 2006; section 3.2.4 of this document). Although not published in the literature as yet, the

- 6576 full summary statement and condensed summary are available online at
- 6577 http://www.wmo.ch/web/arep/arep-home.html.
- 6578

6579 Future projections of hurricanes will depend upon not only on global mean climate

- 6580 considerations, but also on regional-scale projections of a number of aspects of climate
- that can potentially affect tropical cyclone behavior. These include:
- The local potential intensity (Emanuel 2005a; 2006a, Holland 1997), which
 depends on sea surface temperatures, atmospheric temperature and moisture
 profiles, and near-surface ocean temperature stratification;
- Influences of vertical wind shear, large-scale vorticity, and other circulation
 features (Gray 1968; 1984; Goldenberg et al. 2001; Bell and Chelliah 2006); and,
- The characteristics of precursor disturbances such as easterly waves and their
 interaction with the environment (Dunn 1940, Frank and Clarke 1980, Pasch et al
 1998, Thorncroft and Hodges 2001).

6590 Details of future projections in regions remote from the tropical storm basin in question

- may also be important. For example, El Nino fluctuations in the Pacific influence
- Atlantic basin hurricane activity (Chapter 2, Section 3.2 of this chapter). West African
- monsoon activity has been correlated with Atlantic hurricane activity (Gray 1990), as

have African dust outbreaks (Evans et al. 2006). Zhang and Delworth (2006) show how a

- 6595 warming of the northern tropical Atlantic SST relative to the southern tropical Atlantic
- 6596 produces atmospheric circulation features, such as reduced vertical wind shear of the
- 6597 mean wind field, that are correlated with low-frequency variations in major hurricane
- 6598 activity (Goldenberg et al. 2001).

6600	The high sensitivity of tropical storm and hurricane activity in the Atlantic basin to
6601	modest environmental variations suggests the possibility of strong sensitivity of hurricane
6602	activity to anthropogenic climate change, though the nature of such changes remains to
6603	be determined. Confidence in any future projections of anthropogenic influence on
6604	Atlantic hurricanes will depend on the reliability of future projections of the local
6605	thermodynamic state (e.g., potential intensity) as well as circulation changes driven by
6606	both local and remote influences, as described above. Projected effects of global warming
6607	on El Niño remain uncertain (Timmermann, 1999; Zelle et al., 2005; Meehl et al. 2007a).
6608	There is climate model-based evidence that the time-mean climate late in the 21 st century
6609	will be characterized by higher tropical-cyclone potential intensity in most tropical-
6610	cyclone regions, and also tend toward having a decreased east-west overturning
6611	circulation in the Pacific sector in the 21 st century, with likely consequences for vertical
6612	wind shear and other characteristics in the tropical Atlantic (Vecchi and Soden 2007).
6613	
6614	Even assuming that the climate factors discussed above can be projected accurately,
6615	additional uncertainties in hurricane future projections arise from uncertainties in
6616	understanding and modeling the response of hurricanes to changing environmental
6617	conditions. This is exacerbated by projections that the large-scale conditions for some
6618	factors, such as decadal means and seasonal extremes of SSTs, will be well outside the
6619	range of historically experienced values. This raises questions of the validity of statistical
6620	models trained in the present day climate (Ryan et al. 1992; Royer et al. 1998), thus the
6621	emphasis here is placed on physical models and inferences as opposed to statistical

6622 methods and extrapolation. Thus, we consider projections based on global and regional 6623 nested modeling frameworks as well as more idealized modeling or theoretical 6624 frameworks developed specifically for hurricanes. The idealized approaches include 6625 potential intensity theories as well as empirical indices which attempt to relate tropical 6626 cyclone frequency to large-scale environmental conditions. Global and regional nested 6627 models simulate the development and life cycle of tropical storm-like phenomena that are 6628 typically much weaker and with a larger spatial scale than observed tropical cyclones. 6629 These model storms are identified and tracked using automated storm tracking 6630 algorithms, which typically differ in detail between studies but include both intensity and 6631 "warm-core" criteria which must be satisfied. Models used for existing studies vary in 6632 horizontal resolution, with the low-resolution models having a grid spacing of about 300 6633 km, medium resolution with grid spacing of about 120 km, and high resolution with grid 6634 spacing of 20-50 km.

6635

6636 3.3.9.2 Tropical Cyclone Intensity

6637 Henderson-Sellers et al. (1998), in an assessment of tropical cyclones and climate 6638 change, concluded that the warming resulting from a doubling of CO_2 would cause the 6639 potential intensity of tropical cyclones to remain the same or increase by 10 to 20%. 6640 (Their estimate was given in terms of central pressure fall; all other references to intensity 6641 in this section will refer to maximum surface winds, except where specifically noted 6642 otherwise.) They also noted limitations of the potential intensity theories, such as sea 6643 spray influences and ocean interactions. Further studies using a high resolution hurricane 6644 prediction model for case studies or idealized experiments under boundary conditions

6645	provided from high CO ₂ conditions (Knutson et al. 1998; Knutson and Tuleya 1999;
6646	2004; 2007) have provided additional model-based evidence to support these theoretical
6647	assessments. For a CO ₂ -induced tropical SST warming of 1.75C, they found a 14%
6648	increase in central pressure fall (Fig. 3.7) and a 6% increase in maximum surface wind or
6649	a maximum wind speed sensitivity of about 4% per degree Celsius (Knutson and Tuleya
6650	2007). In a related study, Knutson et al. (2001) demonstrated that inclusion of an
6651	interactive ocean in their idealized hurricane model did not significantly affect the
6652	percentage increase in hurricane intensity associated with CO2-induced large-scale SST
6653	warming. Caveats to these idealized studies are the simplified climate forcing (CO ₂ only
6654	versus a mixture of forcings in the real world) and neglect of potentially important factors
6655	such as vertical wind shear and changes in tropical cyclone distribution.
6656	

Global climate model experiments have historically been performed at resolutions which 6658 precluded the simulation of realistic hurricane intensities (e.g., major hurricanes). To 6659 date, the highest resolution tropical cyclone/climate change experiment published is that 6660 of Oouchi et al. (2006). Under present climate conditions, they simulated tropical 6661 cyclones with central pressures as low as about 935 hPa and surface wind speeds as high 6662 as about 53 m/sec. Oouchi et al. report a 14% increase in the annual maximum tropical 6663 cyclone intensity globally and a 20% increase in the Atlantic, both in response to a 6664 greenhouse-warming experiment with global SSTs increasing by about 2.5°C. A notable 6665 aspect of their results is the finding that the occurrence rate of the most intense storms 6666 increased despite a large reduction in the global frequency of tropical cyclones. 6667 Statistically significant intensity increases in their study were limited to two of six basins

6668	(North Atlantic and South Indian Ocean). Bengtsson et al. (2007) also find a slightly
6669	reduced tropical storm frequency in the Atlantic coupled with an increase in the
6670	intensities (measured in terms of relative vorticity) of the most intense storms. The latter
6671	finding only became apparent at relative high model resolution (~30-40 km grid).
6672	
6673	Other studies using comparatively lower resolution models have reported tropical-
6674	cyclone intensity results. However, the simulated response of intensity to changes in
6675	climate in lower resolution models may not be reliable as they have not been able to
6676	simulate the marked difference in achievable tropical-cyclone intensities for different
6677	SST levels (e.g., Yoshimura et al. 2006) as documented for observed tropical cyclones
6678	(DeMaria and Kaplan 1994; Whitney and Hobgood 1997; Baik and Paek 1998). Given
6679	this important caveat, the lower resolution model results for intensity are mixed: Tsutsui
6680	(2002) and McDonald et al. (2005) report intensity increases under warmer climate
6681	conditions, while Sugi et al. (2002), Bengtsson et al. (2006), and Hasegawa and Emori
6682	(2005; western North Pacific only), and Chauvin et al. (2006; North Atlantic only) found
6683	either no increase or a decrease of intensity.
6684	
6695	Vacabi and Sadan (2007) present many of projected late 21 st contury abanges in

- 6685 Vecchi and Soden (2007) present maps of projected late 21st century changes in
- 6686 Emanuel's potential intensity, vertical wind shear, vorticity, and mid-tropospheric
- relative humidity as obtained from the latest (IPCC AR4, 2007) climate models (Fig.
- 6688 3.8). While their results indicate an increase in potential intensity in most tropical cyclone
- 6689 regions, the Atlantic basin in particular displays a mixture with about two-thirds of the
- area showing increases and about one-third slight decreases. In some regions, they also

6691	found a clear tendency for increased vertical wind shear and reduced mid-tropospheric
6692	relative humidity – factors that are detrimental for tropical storm development. In the
6693	Gulf of Mexico and closer to the U.S. and Mexican coasts the potential intensity
6694	generally increases. The net effect of these composite changes remains to be modelled in
6695	detail, although existing global modelling studies (Oouchi et al. 2006; Bengtsson et al.
6696	2007) suggest increases in the intensities and frequencies of the strongest storms. In the
6697	Eastern Pacific, the potential intensity is predicted to increase across the entire basin,
6698	although the vertical wind shear increases may counteract this to some extent.
6699	
6700	A more recent idealized calculation by Emanuel et al. (2006) finds that artificially
6701	increasing the modelled potential intensity by 10% leads to a marked increase in the
6702	occurrence rate of relatively intense hurricanes (Fig. 3.9a), and to a 65% increase in the
6703	PDI. Increasing vertical wind shear by 10% leads to a much smaller decrease in the
6704	occurrence rate of relatively intense hurricanes (Fig. 3.9b) and a 12% reduction in the
6705	PDI. This suggests that increased potential intensity in a CO ₂ -warmed climate implies a
6706	much larger percentage change in potential destructiveness of storms from wind damage
6707	than the percentage change in wind speed itself.
6708	

6709 In summary, theory and high-resolution idealized models indicate increasing intensity

6710 and frequency of the strongest hurricanes/typhoons in a CO₂-warmed climate. Parts of the

6711 Atlantic basin may have small decreases in the upper limit intensity, according to one

6712 multi-model study of theoretical potential intensity. Expected changes in tropical cyclone

6713 intensity and their confidence is therefore assessed as follows: in the Atlantic and North

6714	Pacific basins, some increase of maximum surface wind speeds of the strongest
6715	hurricanes and typhoons is likely. We estimate the likely range for the intensity change
6716	(in terms of maximum surface winds) to be $+2\%$ to $+10\%$ per degree Celsius tropical sea
6717	surface warming over most tropical storm regions. This range is based on our subjective
6718	judgement that the likely range is from about half to twice the sensitivity found in current
6719	hurricane models and theory. Furthermore, the balance of evidence suggests that
6720	maximum intensities may decrease in some regions, particularly in parts of the Atlantic
6721	basin, even though sea surfaces are expected to warm in all regions.
6722	
6723	This assessment assumes that there is no change in geographical distribution of the
6724	storms (i.e. the storms move over the same locations, but with a generally warmer
6725	climate). On the other hand, there is evidence (Holland and Webster 2007a) that changes
6726	in distribution (e.g. tropical-cyclone development occurring more equatorward, or
6727	poleward of present day) have historically been associated with large changes in the
6728	proportion of major hurricanes. It is uncertain how such distributions will change in the
6729	future (see below), but such changes potentially could strongly modify the projections
6730	reported here.
(=0.1	

6732 **3.3.9.3 Tropical Cyclone Frequency and Area of Genesis**

6733 In contrast to the case for tropical-cyclone intensity, the existing theoretical frameworks6734 for relating tropical-cyclone frequency to global climate change are relatively less well-

6735 developed. Gray (1979) developed empirical relationships that model the geographical

6736 variation of tropical-cyclone genesis in the present climate relatively well, but several

6737 investigators have cautioned against the use of these relationships in a climate change 6738 context (Ryan et al. 1992, Royer et al. 1998). Royer et al. proposed a modified form of 6739 the Gray relationships based on a measure of convective rainfall as opposed to SST or 6740 oceanic heat content, but this alternative has not been widely tested. They showed that 6741 tropical-cyclone frequency results for a future climate scenario depended strongly on 6742 whether the modified or unmodified genesis parameter approach was used. More 6743 recently, Emanuel and Nolan (2004) and Nolan et al. (2006) have developed a new 6744 empirical scheme designed to be more appropriate for climate change application (see 6745 also Camargo et al. 2006), but tropical-cyclone frequency/climate change scenarios with 6746 this framework have not been published to date. 6747

6748 Vecchi and Soden (2007) have assessed the different components of the Emanuel and 6749 Nolan (2004) scheme using outputs from the IPCC AR4 models. Their results suggest 6750 that a decrease in tropical cyclone frequency may occur over some parts of the Atlantic 6751 basin associated with a SW-NE oriented band of less favorable conditions for tropical 6752 cyclogenesis and intensification, including enhanced vertical wind shear, reduced mid-6753 tropospheric relative humidity, and slight decrease in potential intensity. The enhanced 6754 vertical shear feature (present in about 14 of 18 models in the Caribbean region) also 6755 extends into the main cyclogenesis region of the Eastern Pacific basin. Physically, this 6756 projection is related to the weakening of the east-west oriented Walker Circulation in the 6757 Pacific region, similar to that occurring during El Nino events. During El Nino conditions 6758 in the present-day climate, hurricane activity is reduced, as occurred for example in the 6759 latter part of the 2006 season. While this projection may appear at odds with

6760	observational evidence for an increase in Atlantic tropical storm counts during the past
6761	century (Holland and Webster 2007a; Vecchi and Knutson 2007), there is evidence that
6762	this has occurred in conjunction with a regional decreasing trend in storm occurrence and
6763	formation rates in the western part of the Caribbean and Gulf of Mexico (Vecchi and
6764	Knutson 2007; Holland 2007). Earlier, Knutson and Tuleya (2004) had examined the
6765	vertical wind shear of the zonal wind component for a key region of the tropical Atlantic
6766	basin using nine different coupled models from the CMIP2+ project. Their analysis
6767	showed a slight preference for increased vertical shear under high CO2 conditions if all
6768	of the models are considered, and a somewhat greater preference for increased shear if
6769	only the six models with the most realistic present-day simulation of shear in the basin
6770	are considered. Note that these studies are based on different sets of models, and that a
6771	more idealized future forcing scenario was used in the earlier Knutson and Tuleya study.
6772	

6773 Alternative approaches to the empirical analysis of large-scale fields are the global and 6774 regional climate simulations, in which the occurrence of model tropical cyclones can be 6775 tracked. Beginning with the early studies of Broccoli and Manabe (1990), Haarsma et al. 6776 (1993), and Bengtsson et al. (1996), a number of investigators have shown that global 6777 models can generate tropical storm-like disturbances in roughly the correct geographical 6778 locations with roughly the correct seasonal timing. The annual occurrence rate of these 6779 systems can be quite model dependent (Camargo et al. 2005) and is apparently sensitive 6780 to various aspects of model physics (e.g., Vitart et al. 2001).

6782	The notion of using global models to simulate the climate change response of tropical
6783	cyclone counts is given some support by several studies showing that such models can
6784	successfully simulate certain aspects of interannual to interdecadal variability of tropical-
6785	cyclone occurrence seen in the real world (Vitart et al. 1997; Carmargo et al. 2005; Vitart
6786	and Anderson 2001). A recent regional model dynamical downscaling study (Knutson et
6787	al. 2007) with an18 km grid model, and a more idealized modelling approach (Emanuel
6788	et al. 2007) both indicate that the increase in hurricane activity in the Atlantic from 1980-
6789	2005 can be reproduced in a model using specified SSTs and large-scale historical
6790	atmospheric information from reanalyses.
6791	
6792	Since tropical storms are relatively rare events and can exhibit large interannual to
6793	interdecadal variability, large samples sizes (i.e. many seasons) are typically required to
6794	test the significance of any changes in a model simulation against the model's "natural
6795	variability".
6796	
6797	The most recent future projection results obtained from medium and high resolution (120
6798	km-20 km) GCMs are summarized in Table 3.2. Among these models, the higher
6799	resolution ones indicate a consistent signal of fewer tropical cyclones globally in a
6800	warmer climate, while two lower resolution models find essentially no change. There are,
6801	however, regional variations in the sign of the changes, and these vary substantially
6802	between models (Table 3.2). For the North Atlantic in particular, more tropical storms are
6803	projected in some models, despite a large reduction globally (Sugi et al. 2002; Oouchi et
6804	al. 2006), while fewer Atlantic tropical cyclones are projected by other models (e.g.,

6805 McDonald et al. 2005; Bengtsson et al. 2007). It is not clear at present how the Sugi et al. 6806 (2002) and Oouchi et al. (2006) results for the Atlantic reconciles with the tendency for 6807 increased vertical wind shear projected for parts of that basin by most recent models 6808 (Vecchi and Soden 2007). For example, Oouchi et al. (2006) did not analyze how 6809 Atlantic vertical wind shear changed in their warming experiment. However, their results 6810 suggest that a future increase in tropical cyclone frequency in the Atlantic is at least 6811 plausible, based on current models. Chauvin et al. (2006) and Emanuel et al. (2007) find, 6812 in multi-model experiments, that the sign of the changes in tropical cyclone frequency in 6813 the north Atlantic basin depends on the climate model used. All of these results cited 6814 here should be treated with some caution, as it is not always clear that these changes are 6815 greater than the model's natural variability, or that the natural variability or the tropical-6816 cyclone genesis process are being properly simulated in the models. 6817

From the above summarized results, it is not clear that current models provide a confident assessment of even the sign of change of tropical storm frequency in the Atlantic, East Pacific, or Northwest Pacific basins. From an observational perspective, recent studies (Chapter 2) report that there has been a long term increase in Atlantic tropical-cyclone counts since the late 1800s, although the magnitude and in some cases statistical significance of the trend depends on adjustments for missing storms early in the record.

6824

6825 Based on the above available information, we assess that it is unknown how late 21^{st}

6826 century tropical cyclone frequency in the Atlantic and North Pacific basins will change,

6827 compared to the historical period (~1950-2006).

6828 **3.3.9.4 Tropical Cyclone Precipitation**

The notion the tropical cyclone precipitation rates could increase in a warmer climate is 6830 based on the hypothesis that moisture convergence into tropical cyclones will be

- 6831 enhanced by the increased column integrated water vapor – with the increased water
- 6832 vapor being extremely like to accompany a warming of tropical SSTs. The increased
- 6833 moisture convergence would then be expected to lead to enhanced precipitation rates.
- 6834 This mechanism has been discussed in the context of extreme precipitation in general by
- 6835 Trenberth (1999), Allen and Ingram (2002), and Emori and Brown (2005). In contrast to
- 6836 the near-storm or storm core precipitation rate, accumulated rainfall at a locality along the
- 6837 storm's path is strongly dependent upon the speed of the storm, and there is little
- 6838 guidance at present on whether any change in this factor is likely in a future warmed

6839 climate.

6840

6841 An enhanced near-storm tropical rainfall rate for high CO2 conditions has been 6842 simulated, for example, by Knutson and Tuleya (2004, 2007) based on an idealized 6843 version of the GFDL hurricane model. The latter study reported an increase of 21.6% for 6844 a 1.75°C tropical SST warming (Fig. 3.10), or about 12% per degree Celsius SST 6845 increase. Using a global model, Hasegawa and Emori (2005) found an increase in 6846 tropical-cyclone-related precipitation in a warmer climate in the western North Pacific 6847 basin, despite a decrease in tropical-cyclone intensity there in their model. Chauvin et al 6848 (2006) found a similar result in the North Atlantic in their model, and Yoshimura et al. 6849 (2006) found a similar result on a global domain. There are issues with all of these 6850 modelling studies as they are of course resolution and thus generally depend on

6851	parameterization of much of the rainfall within the grid box. Further there is a tendency
6852	towards tropical cyclone rainfall simulations that have a high bias in core rainfall rates
6853	(e.g. Marchok et al. 2007). Nevertheless, the consistent result of an increased rainfall with
6854	greenhouse warming over a number of models, together with the theoretical expectations
6855	that this will occur lends credibility to there being a real trend.
6856	
6857	Based on the modeling studies to date, the relatively straightforward proposed physical
6858	mechanism, and the observed increases in extremely heavy rainfall in the U.S. (although
6859	not established observationally for hurricane-related rainfall (Groismann et al. 2004)) we
6860	assess the projections that hurricane related rainfall (per storm) will increase in the 21 st
6861	century as likely. Note that if the frequency of tropical cyclones decreases, the total
6862	rainfall from tropical cyclones may decrease. The expected general magnitude of the
6863	change for storm core rainfall rates is about +6% to +18% per degree Celsius increase in
6864	tropical sea surface temperature.
6865	
6866	3.3.9.5 Tropical Cyclone Size, Duration, Track, Storm Surge, and Regions of
6867	Occurrence
6868	In this section, other possible impacts of greenhouse gas induced climate warming on
6869	tropical cyclones are briefly assessed. The assessment is highly preliminary and the
6870	discussion for these relatively brief owing to the lack of detailed studies on these possible
6871	impacts at this time.
6872	

Wu and Wang (2004) explored the issue of tropical cyclone track changes in a climate
change context. Based on experiments derived from one climate model, they found some
evidence for inferred track changes in the NW Pacific, although the pattern of changes
was fairly complex.

6877

6878 Concerning storm duration, using an idealized hurricane simulation approach in which

6879 the potential intensity of a large sample of Atlantic basin storms with synthetically

6880 generated storm tracks was artificially increased by 10%, Emanuel (2006b) found that the

average storm lifetime of all storms increased by only 3%, whereas the average duration

at hurricane intensity for those storms that attained hurricane intensity increased by 15%.

6883 However, in the Atlantic and NE Pacific, future changes in duration are quite uncertain,

6884 owing to the uncertainties in formation locations and potential circulation changes

6885 mentioned previously.

6886

Few studies have attempted to assess possible future changes in hurricane size. Knutson
and Tuleya (1999) noted that the radius of hurricane-force winds increased a few percent
in their experiments in which the intensities also increased a few percent.

6890

6891 An important question for regions along the periphery of tropical cyclone basins is

6892 whether regions with have never or only infrequently experienced tropical cyclones in

6893 recorded history may experience them more frequently in the future owing to climate

6894 change. Little guidance is available at present on this important question.

6896	Storm surge depends on many factors, including storm intensity, size and track, local
6897	bathymetry and the structure of coastal features such as wetlands and river inlets.
6898	Unknowns in storm frequency, tracks, size and future changes to coastal features lead to
6899	considerable uncertainty in assessing storm surge changes. However, the high confidence
6900	of there being future sea level rise as well as the likely increase of intensity of the
6901	strongest hurricanes, leads to an assessment that the potential for storm surge damage
6902	(per hurricane) is very likely to increase.
6903	
6904	In summary, tropical cyclone size, duration, track and regions of occurrence are
6905	important questions that need to be addressed. However, based on available published
6906	work and previous assessments, it is unknown how these will change in the future
6907	(IWTC-VI 2006). Storm surge damage (per hurricane) is likely to rise.
6908	
6909	3.3.9.6 Reconciliation of Future Projections and Past Variations
6909 6910	3.3.9.6 Reconciliation of Future Projections and Past Variations In this section, we attempt to reconcile the future projections discussed above with the
6910	In this section, we attempt to reconcile the future projections discussed above with the
6910 6911	In this section, we attempt to reconcile the future projections discussed above with the past observed variations in TC activity. The balance of evidence suggests that human
6910 6911 6912	In this section, we attempt to reconcile the future projections discussed above with the past observed variations in TC activity. The balance of evidence suggests that human activity has caused a discernible increase in tropical storm/hurricane and major hurricane
6910691169126913	In this section, we attempt to reconcile the future projections discussed above with the past observed variations in TC activity. The balance of evidence suggests that human activity has caused a discernible increase in tropical storm/hurricane and major hurricane frequency in the North Atlantic. U.S. landfalling hurricane frequency has not increased.
 6910 6911 6912 6913 6914 	In this section, we attempt to reconcile the future projections discussed above with the past observed variations in TC activity. The balance of evidence suggests that human activity has caused a discernible increase in tropical storm/hurricane and major hurricane frequency in the North Atlantic. U.S. landfalling hurricane frequency has not increased. However, it is more difficult to judge whether anthropogenic forcing will cause further
 6910 6911 6912 6913 6914 6915 	In this section, we attempt to reconcile the future projections discussed above with the past observed variations in TC activity. The balance of evidence suggests that human activity has caused a discernible increase in tropical storm/hurricane and major hurricane frequency in the North Atlantic. U.S. landfalling hurricane frequency has not increased. However, it is more difficult to judge whether anthropogenic forcing will cause further increases in basin-wide activity as the climate continues to warm, since the precise

6919	associated with cooling upper atmospheric (~100mb) temperatures in recent decades
6920	(Emanuel 2007a). A recent modeling study (Knutson et al. 2007) indicates that the
6921	increase in hurricane activity in the Atlantic from 1980-2005 can be reproduced using a
6922	high-resolution nested regional model downscaling approach. However the various
6923	changes in the large-scale atmospheric and SST forcings used to drive their regional
6924	model were prescribed from observations.

6926 No published model study has directly simulated a substantial century-scale rise in 6927 Atlantic tropical cyclone counts similar to those reported for the observations (e.g., Ch. 2). In fact the 20th century behavior in TC frequency has not yet been documented for 6928 6929 existing models. One exception is Bengtsson et al. (2007) who simulate little change in 6930 tropical storm frequencies comparing the late 1800s and late 1900s. Given the future 6931 regional climate projections arising from the models, including the multi-model 6932 consensus increase of vertical wind shear in the IPCC AR4 models (Vecchi and Soden 6933 2007), the substantial variability among existing models of such projected characteristics 6934 as Atlantic vertical wind shear and the differing mixtures of climate forcings that may be 6935 relevant in the two periods, we anticipate that it would be difficult to confidently extrapolate the strong increasing trend in 20th century storm counts using future 6936 6937 consensus projections available from existing models. Nonetheless, a significant trend (or 6938 anthropogenic signal, whether trend-like or not) detected in observed tropical cyclone 6939 activity and attributed to increasing greenhouse gases could imply that a future increase 6940 in tropical cyclone frequency in the Atlantic is much more likely than assessed here. 6941

6942 **3.3.10 Extratropical Storms**

- 6943 Scientists have used a variety of methods for diagnosing extratropical storms in GCM
- 6944 projections of future climate. These include sea-level pressure (Lambert and Fyfe 2006),
- 6945 strong surface winds (Fischer-Bruns et al. 2005), lower atmosphere vorticity (Bengtsson
- 6946 et al. 2006) and significant wave heights (Wang et al. 2004; Caires et al. 2006).
- 6947 Consequently, there are no consistent definitions used to diagnose extreme extratropical
- 6948 storms. Some analyses do not, for example, determine events in extreme percentiles but
- 6949 rather consider storms that deepen below a threshold sea-level pressure (e.g., Lambert
- and Fyfe, 2006), though such thresholds may effectively select the most extreme
- 6951 percentiles.

6952

- 6953 Wave heights of course indicate strong storms only over oceans, but the strongest
- 6954 extratropical storms typically occur in ocean storm tracks, so all three methods focus on
- 6955 similar regions. Ocean storms in the North Atlantic and North Pacific are relevant for this
- 6956 study because they affect coastal areas and shipping to and from North America. GCMs
- 6957 projecting climate change can supply sea-level pressure and surface winds, but they
- 6958 typically do not compute significant wave heights. Rather, empirical relationships (Wang
- 6959 et al. 2004; Caires et al. 2006) using sea-level pressure anomalies and gradients provide
- 6960 estimates of significant wave heights.

- 6962 Despite the variety of diagnoses, some consistent changes emerge in analyses of
- 6963 extratropical storms under anthropogenic greenhouse warming. Projections of future
- climate indicate strong storms will be more frequent (Fig. 3.11; Wang et al. 2004,

6965 Fischer-Bruns et al. 2005, Bengtsson et al. 2006, Caires et al. 2006, Lambert and Fyfe 6966 2006, Pinto et al. 2007), though the overall number of storms may decrease. These 6967 changes are consistent with observed trends over the last half of the twentieth century 6968 (Paciorek et al. 2002). More frequent strong storms may reduce the frequency of all 6969 extratropical storms by increasing the stability of the atmosphere (Lambert and Fyfe 6970 2006). Analyses of strong winds (Fischer-Bruns et al. 2005, Pinto et al. 2007), lower 6971 atmosphere vorticity (Bengtsson et al. 2006) and significant wave heights (Wang et al. 6972 2004; Caires et al. 2006) from single models suggest increased storm strength in the 6973 northeast Atlantic, but this increase is not apparent an analysis using output from multiple 6974 GCMs (Lambert and Fyfe 2006). Differences may be due to the focus on cold season 6975 behavior in the wind and wave analyses, whereas Lambert and Fyfe's (2006) analysis 6976 includes the entire year.

6977

The warming projected for the 21st century is largest in the high latitudes due to a 6978 6979 poleward retreat of snow and ice resulting in enhanced warming (Meehl et al. 2007a). 6980 Projected seasonal changes in sea ice extent show summertime ice area declining much 6981 more rapidly than wintertime ice area and that sea ice thins largest where it is initially the thickest, which is consistent with observed sea ice thinning in the late 20th century (Meehl 6982 6983 et al. 2007a). Increased storm strength the northeast Atlantic found by some may be 6984 linked to the poleward retreat of arctic ice (Fischer-Bruns et al. 2005) and a tendency 6985 toward less frequent blocking and more frequent positive phase of the Northern Annular 6986 mode (Pinto et al. 2007), though further analysis is needed to diagnose physical 6987 associations with ice line, atmospheric temperature and pressure structures and storm

6988	behavior. Whether or not storm strength increases, the retreat of sea ice together with
6989	changing sea levels will likely increase the exposure of arctic coastlines to damaging
6990	waves and erosion produced by strong storms (Lynch et al. 2004, Brunner et al. 2004,
6991	Cassano et al. 2006), continuing an observed trend of increasing coastal erosion in arctic
6992	Alaska (Mars and Houseknecht, 2007). Rising sea levels, of course, may expose all
6993	coastlines to more extreme wave heights (e.g., Cayan et al., 2007).
6994	
6995	3.3.11 Convective Storms
6996	Conclusions about possible changes in convective precipitating storms (CPSs) and
6997	associated severe-weather hazards under elevated greenhouse gas concentrations have
6998	remained elusive. Perhaps the most important reason for this is the mesoscale (10s of km)
6999	and smaller dynamics that control behavior of these storms, particularly the initiation of
7000	storms. Marsh et al. (2007) and Trapp et al. (2007) have evaluated changes in the
7001	frequency of environments that are favorable for severe thunderstorms in GCM
7002	simulations of greenhouse-enhanced climates. In both cases, increases in the frequency of
7003	environments favorable to severe thunderstorms are seen, but the absence of the
7004	mesoscale details in the models means that the results are preliminary. Nevertheless, the
7005	approach and the use of nested models within the GCMs show promise for yielding
7006	estimates of changes in extreme convective storms.

7007	Chapter 3 References
7008	
7009	Allan, J. C., and Komar, P. D., 2000: Are ocean wave heights increasing in the eastern
7010	North Pacific? EOS, Transaction of the American Geophysical Union, 47, 561-
7011	567.
7012	
7013	Allan, J. C., and Komar, P. D., 2006: Climate controls on US West Coast erosion
7014	processes: Journal of Coastal Research, 22, 511-529.
7015	
7016	Allen, M. and W. Ingram, 2002: Constraints on future changes in climate and the
7017	hydrological cycle, <i>Nature</i> , 419 , 224-232.
7018	
7019	Arora, V.K., and G.J. Boer, 2001: Effects of simulated climate change on the hydrology
7020	of major river basins. J. Geophys. Res., 106, 3335-3348.
7021	
7022	Arzayus, L. F., and W. J. Skirving, 2004: Correlations between ENSO and coral reef
7023	bleaching. Tenth International Coral Reef Symposium, Okinawa.
7024	
7025	Arzel, O., T. Fichefet, H. Goosse, 2006: Sea ice evolution over the 20th and 21st
7026	centuries as simulated by current AOGCMs. Oc. Modelling, 12, 401-415.
7027	
7028	Baik, JJ., and JS. Paek, 1998: A climatology of sea surface temperature and the
7029	maximum intensity of western North Pacific tropical cyclones. J. Meteor. Soc.
7030	<i>Japan</i> , 76 , 129-137.
7031	
7032	Barnett, D.N., S.J. Brown, J.M. Murphy, D.M.H. Sexton, and M.J. Webb, 2006:
7033	Quantifying uncertainty in changes in extreme event frequency in response to
7034	doubled CO ₂ using a large ensemble of GCM simulations. <i>Clim. Dyn.</i> , online
7035	1432-0894.
7036	
7037	Barnett, T. P., D.W. Pierce, K. M. AchutaRao, P. J. Gleckler, B. D. Santer, J. M.
7038	Gregory, and W. M. Washington, 2006: Penetration of human-induced warming
7039	into the world's oceans. Science, 309, 284-287.
7040	
7041	Bell, G. D., and M. Chelliah, 2006: Leading tropical modes associated with interannual
7042	and multidecadal fluctuations in North Atlantic hurricane activity. J. Climate, 19,
7043	590-612.
7044	
7045	Bell , J.L., and L.C. Sloan, 2006: CO ₂ Sensitivity of extreme climate events in the
7046	western United States. <i>Earth Int.</i> , 10 , Paper No. 15.
7047	
7048	Bengtsson, L., M. Botzet, and M. Esch, 1995: Hurricane-type vortices in a general
7049	circulation model. <i>Tellus</i> 47A : 175-196
7050	

7051	Bengtsson, L., M. Botzet, and M. Esch, 1996: Will greenhouse gas-induced warming
7052	over the 50 years lead to a higher frequency and greater intensity of hurricanes?
7053	<i>Tellus</i> , 48A , 57-73.
7054	
7055	Bengtsson, L., K. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J.
7056	<i>Climate</i> , 19 , 3518-3543.
7057	
7058	Bengtsson, L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, JJ. Luo, and T.
7059	Yamagata, 2007: How may tropical cyclones change in a warmer climate.
7060	<i>Tellus</i> , 59A , 539-561.
7061	
7062	Beniston, M., 2004: The 2003 heat wave in Europe: A shape of things to come? An
7063	analysis based on Swiss climatological data and model simulations. <i>Geophys. Res.</i>
7064	<i>Lett.</i> , 31 , L02202.
7065	
7066	Boos, W. R., J. R. Scott and K. A. Emanuel, 2004: Transient diapycnal mixing and the
7067	meridional overturning circulation. J. Phys. Ocean., 34 , 334-341
7068	
7069	Brabson, B.B., D.H. Lister, P.D. Jones, and J.P. Palutikof, 2005: Soil moisture and
7070	predicted spells of extreme temperatures in Britain. J. Geophys. Res., 110,
7071	D05104.
7072	
7073	Breshears, D.D., et al., 2005: Regional vegetation die-off in response to global-change-
7074	type drought. <i>Proc. Natl. Acad. Sci. USA</i> , 102 , 15144-15148.
7075	
7076	Broccoli, A. J., and S. Manabe, 1990: Can existing climate models be used to study
7077	anthropogenic changes in tropical cyclone climate? <i>Geophys. Res. Lett.</i> , 17 ,
7078	1917-1920.
7079	
7080	Brooks, H.E., J.W. Lee, and J.P. Craven, 2003: The spatial distribution of severe
7081	thunderstorm and tornado environments from global reanalysis data. Atmos. Res.,
7082	67, 73-94.
7083	
7084	Brooks, H. E., and N. Dotzek, 2007: The spatial distribution of severe convective storms
7085	and an analysis of their secular changes. <i>Climate Extremes and Society</i> . H. F.
7086	Diaz and R. Murnane, Eds., Cambridge University Press, in press.
7087	
7088	Brunner, R.D., A.H. Lynch, J.C. Pardikes, E.N. Cassano, L.R. Lestak, J.M. Vogel.,
7089	2004: An Arctic disaster and its policy implications. <i>Arctic</i> , 57 , 336-346.
7090	200 The field disuster and its policy implications. There, 27, 550 510.
7091	Burke, E.J., S.J. Brown, and N. Christidis, 2006: Modelling the recent evolution of
7092	global drought and projections for the 21st century with the Hadley Centre
7093	climate model. J. Hydrometeor., 7, 1113-1125.
7094	
/094	

7095	Burkholder, B.A., and D.J. Karoly, 2007: Assessment of US climate variations using the
7096	US Climate Extremes Index. Nineteenth Conference on Climate Variability and
7097	Change, paper 2B.9
7098	
7099	Caires, S., and A. Sterl, 2005: 100-year return value estimates for wind speed and
7100	significant wave height from the ERA-40 data. Journal of Climate, 18, 1032–
7101	1048.
7102	
7103	Caires, S., V.R. Swail, and X.L. Wang, 2006: Projection and analysis of extreme wave
7104	climate. Journal of Climate, 19, 5581-5605.
7105	
7106	Camargo, S., A. G. Barnston, and S. E. Zebiak, 2005: A statistical assessment of
7107	tropical cyclone activity in atmospheric general circulation models. <i>Tellus</i> 57A :
7108	589-604, DOI: 10.1111/j.1600-0870.2005.00117.
7109	
7110	Camargo, S., K. A. Emanuel, and A. H. Sobel, 2006: ENSO and genesis potential index
7111	in reanalysis and AGCMs. Proc. 27 th AMS Conf. on Hurr. and Trop. Meteor.,
7112	abstract #15C.2. http://ams.confex.com/ams/pdfpapers/108038.pdf
7113	
7114	Camp, J. P., and M. T. Montgomery, 2001: Hurricane maximum intensity: past and
7115	present. Mon. Wea. Rev., 129 , 1704-1717.
7116	r
7117	Cassano, E.N., A.H. Lynch, J.J. Cassano, and M.R. Koslow, 2006: Classification of
7118	synoptic patterns in the western Arctic associated with extreme events at Barrow,
7119	Alaska, USA. <i>Clim. Res.</i> , 30 , 83-97.
7120	
7121	Cayan, D.R., P.D. Bromirski, K. Hayhoe, M. Tyree, M.D. Dettinger, and R.E. Flick,
7122	2007: Climate change projections of sea level extremes along the California
7123	coast. <i>Climatic Change</i> (accepted).
7124	
7125	Chan, J.C. L., 1985: Tropical cyclone activity in the northwest Pacific in relation to the
7126	El Niño / Southern Oscillation phenomenon. Mon. Wea. Rev., 113: 599-606
7127	F
7128	Chan, J. C. L., 2006: Comment on "Changes in Tropical Cyclone Number, Duration, and
7129	Intensity in a Warming Environment, <i>Science</i> , v. 311, p. 1713.
7130	, , , , , , , , , , , , , , , , ,
7131	Chan, J. C. L., and K. S. Liu, 2004: Global warming and Western North Pacific typhoon
7132	activity from an observational perspective. J. Climate, 17 , 4590-4602.
7133	
7134	Chan, S., and J. L. Evans, 2002: Comparison of the structure of the ITCZ in the West
7135	Pacific during the boreal summers of 1989-1993 using AMIP simulations and
7136	ECMWF reanalysis. J. Climate, 15, 3549-3568.
7137	
7138	Chauvin, F., JF. Royer and M. Déqué, 2006: Response of hurricane-type vortices to
7139	global warming as simulated by ARPEGE-Climat at high resolution. <i>Clim. Dyn.</i> ,
7140	27 , 377-399.

7141	
7142	Christensen, J.H., and O.B. Christensen, 2003: Severe summertime flooding in Europe.
7143	Nature, 421 , 805-806.
7144	
7145	Christensen, J.H., B. Hewitson, A. Busuioc, A. Chen, X. Gao, I. Held, R. Jones, WT.
7146	Kwon, R. Laprise, V. Magaña, L. Mearns, C. Menendez, J. Räisänen, A. Rinke,
7147	R. K. Kolli, A. Sarr, and P. Whetton, 2007: Regional Climate Projections. In: S.
7148	Solomon et al. (ed.) Climate Change 2007. The Fourth Scientific Assessment,
7149	Intergovernmental Panel on Climate Change (IPCC), in press.
7150	
7151	Christensen, O.B., and J.H. Christensen, 2004: Intensification of extreme European
7152	summer precipitation in a warmer climate. <i>Glob. Planet. Change</i> , 44, 107-117.
7153	
7154	Clark, R., S. Brown, and J. Murphy, 2006: Modelling northern hemisphere summer heat
7155	extreme changes and their uncertainties using a physics ensemble of climate
7156	sensitivity experiments. J. Climate, 19, 4418-4435.
7157	
7158	Cubasch, U., G.A. Meehl, G.J. Boer, R.J. Stouffer, M. Dix, A. Noda, C.A. Senior, S.
7159	Raper, and K.S. Yap, 2001: Projections of future climate change. In: Climate
7160	Change 2001: The Scientific Basis. Contribution of Working Group I to the Third
7161	Assessment Report of the Intergovernmental Panel on Climate Change [J.T.
7162	Houghton, et al. (eds.)]. Cambridge University Press, Cambridge, pp. 525-582.
7163	
7164	Delworth, T. L., J. D. Mahlman, and T. R. Knutson, 1999: Changes in heat index
7165	associated with CO2 -induced global warming. Climatic Change, 43(2), 369-386.
7166	
7167	Delworth , T. L., and T. R. Knutson, 2000: Simulation of early 20 th Century global
7168	warming. Science, 287 (5461), 2246-2250.
7169	
7170	Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability
7171	in the Northern Hemisphere. Clim. Dyn., 16(9), 661-676.
7172	
7173	DeMott , C. A., and D. A. Randall, 2004: Observed variations of tropical convective
7174	available potential energy. J. Geophys. Res., 109, D02102,
7175	doi:10.1029/2003JD003784.
7176	
7177	Dery, S.J., and E.F. Wood, 2006: Analysis of snow in the 20th and 21st century
7178	Geophysical Fluid Dynamics Laboratory coupled climate model simulations. J.
7179	Geophys. Res., 111, Art. No. D19113, doi:10.1029/2005JD006920.
7180	
7181	Deser, C., A.S. Phillips, and J.W. Hurrell, 2004: Pacific decadal interdecadal climate
7182	variability: Linkages between the tropics and the North Pacific during boreal
7183	winter since 1900. J. Clim., 17, 3109-3124.
7184	
7185	Donnelly, J. P., S. S. Bryant, J. Butler, J. Dowling, L. Fan, N. Hausmann, P. Newby, B.
7186	Shuman, J. Stern, K. Westover, and T. Webb, III, 2001a: A 700 yr sedimentary

7187	record of intense hurricane landfalls in southern New England. Geol. Soc. Amer.
7188	<i>Bull.</i> , 113 , 714-727.
7189	
7190	Donnelly, J. P., S. Roll, M. Wengren, J. Butler, R. Lederer, and T. Webb, III, 2001b:
7191	Sedimentary evidence of intense hurricane strikes from New Jersey. Geology, 29,
7192	615-618.
7193	
7194	Donnelly, J. P. and T. Webb, III, 2004: Backbarrier sedimentary records of intense
7195	hurricane landfalls in the northeastern United States. In: Hurricanes and
7196	Typhoons: Past, Present, and Future (eds. R.J. Murnane, R. J. and K-b. Liu), p.
7197	58-95. Columbia University Press.
7198	
7199	Donnelly, J.P., J. Butler, S. Roll, M. Wengren, and T. Webb, III, 2004. A backbarrier
7200	overwash record of intense storms from Brigantine, New Jersey. Marine Geology,
7201	210, 107-121.
7202	
7203	Donnelly, J P. 2005. Evidence of past intense tropical cyclones from backbarrier salt
7204	pond sediments: a case study from Isla de Culebrita, Puerto Rico, USA. J. Coastal
7205	<i>Res.</i> , 42 , 201-210.
7206	
7207	Donner, S. D., T. R. Knutson, and M. Oppenheimer, 2007: Model-based assessment of
7208	the role of human-induced climate change in the 2005 Caribbean coral bleaching
7209	event. Proc. Nat. Acad. Sci., 104(13), 5483-5488.
7210	
7211	Dutton, J. F., C. J. Poulsen, and J. L. Evans, 2000: The effect of global climate change
7212	on the regions of tropical convection in CSM1. Geophysical Research Letters, 27,
7213	3049.
7214	
7215	Eichler, T. and W. Higgins, 2006: Climatology and ENSO-related variability of North
7216	American extratropical cyclone activity. J. Climate, 10, 2076-2093.
7217	
7218	Elsner, J. B., 2006: Evidence in support of the climate change-Atlantic hurricane
7219	hypothesis. <i>Geophys. Res. Lett.</i> , 33 , L16705, doi:10.1029/2006GL026869.
7220	
7221	Elsner, J. B., K-b. Liu, and B. L. Kocher, 2000: Spatial variations in major U.S.
7222	hurricane activity: Statistics and a physical mechanism. J. Climate, 13 , 2293-
7223	2305.
7224	
7225	Elsner, J. B., R. J. Murnane, and T. H. Jagger, 2006: Forecasting U.S. hurricanes 6
7226	months in advance. Geophys. Res. Lett., accepted for publication. Available
7227	online at: <u>http://garnet.acns.fsu.edu/~jelsner/PDF/Research/LongLead.pdf</u> .
7228	omme un <u>mapa, gamenanononou o qu</u> jeisner i Di / Researen/ DongDeud.pui.
7229	Elsner, J. B., A. A. Tsonis, and T. H. Jagger, 2006: High-frequency variability in
7230	hurricane power dissipation and its relationship to global temperature. <i>Bull.</i>
7230	Amer. Meteor. Soc., 87, 763-768.
7232	1 mer. mercor. 50c., 01 , 105-100.
1434	

7233 7234 7235	Emanuel , K.A., 1987: The dependence of hurricane intensity on climate. <i>Nature</i> , 326 , 483-485.
7236 7237 7238	Emanuel , K. A., 1999: Thermodynamic control of hurricane intensity. <i>Nature</i> , 401 , 665-669.
7239 7240	Emanuel, K., 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 1139-1152.
7241 7242 7243 7244	Emanuel, K.A., 2001: The contribution of tropical cyclones to the oceans' meridional heat transport. J. Geophys. Res., 106, D14, 14,771-14,781.
7245 7246	Emanuel , K. A., 2005a: Increasing destructiveness of tropical cyclones over the past 30 years. <i>Nature</i> , 436 , 686-688.
7247 7248 7249	Emanuel, K. A., 2005b: Emanuel replies. Nature, 438, doi:10.1038/nature04427.
7250 7251 7252 7253	Emanuel , K., 2006: Environmental influences on tropical cyclone variability and trends. Proc. 27 th AMS Conf. on Hurr. and Trop. Meteor., #4.2. Available online at: <u>http://ams.confex.com/ams/pdfpapers/107575.pdf</u> .
7254 7255 7256	Emanuel , K., S. Ravela, E. Vivant, and C. Risi. 2006: A statistical deterministic approach to hurricane risk assessment. <i>Bull. Amer. Meteor. Soc.</i> ,: 87 , 299–314.
7257 7258 7259	Emanuel , K. and D. S. Nolan, 2004: Tropical cyclone activity and the global climate system. Proc. 26 th AMS Conf. on Hurr. and Trop. Meteor., #10A.2, p. 240-241.
7260 7261 7262	Emanuel , K., R. Sundararajan, and J. Williams, 2007: Hurricanes and global warming: results from downscaling IPCC AR4 simulations. <i>Bull. Am. Meteor. Soc.</i> , submitted.
7263 7264 7265 7266 7267 7268	Emori, S., A. Hasegawa, T. Suzuki and K. Dairaku, 2005: Validation, parameterization dependence, and future projection of daily precipitation simulated with a high- resolution atmospheric GCM. <i>Geophys. Res. Lett.</i> , 32 , L06708, doi:10.1029/2004GL022306.
7268 7269 7270 7271 7272	Emori, S. and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. <i>Geophys. Res. Lett.</i> , 32 , L17706, doi:10.1029/2005GL023272.
7273 7274 7275 7276 7277 7278	Enfield , D.B., and A.M. Mestas-Nuñez, 2000: Global modes of ENSO and non-ENSO SST variability and their associations with climate. In: <i>El Niño and the Southern Oscillation: Multiscale Variability and Global and Regional Impacts</i> , H.F. Diaz and V. Markgraf, Eds., Cambridge University Press (ISBN 0521621380), p. 89-112.

7279	Fernandez-Partagas, J., and H. F. Diaz, 1996: Atlantic hurricanes in the second half of
7280	the nineteenth century. Bull. Amer. Meteor. Soc., 77, 2899-2906.
7281	, , , , , , , , , , , , , , , , , , ,
7282	Fischer-Bruns, I., H. Von Storch, J.F. Gonzalez-Rouco, and E. Zorita, 2005: Modelling
7283	the variability of midlatitude storm activity on decadal to century time scales.
7284	<i>Climate Dynamics</i> , 25 , 461-476.
7285	
7286	Frappier, A.B., Sahagian, D., Carpenter, S.J., Gonzalez, L.A. and Frappier, B.R., 2006:
7287	A stalagmite stable isotope record of recent tropical cyclone events. <i>Geology</i> , (in
7288	review).
7289	
7290	Free, M., M. Bister, and K. Emanuel, 2004: Potential intensity of tropical cyclones:
7291	comparison of results from radiosonde and reanalysis data. J. Climate, 17, 1722-
7292	1727.
7293	1/2/.
7294	Frei, C., C. Schär, D. Lüthi, and H.C. Davies, 1998: Heavy precipitation processes in a
7295	warmer climate. <i>Geophys. Res. Lett.</i> , 25 , 1431-1434.
7296	warmer enniate. Geophys. Res. Lett., 23, 1431-1434.
7297	Frei, A., and G. Gong, 2005: Decadal to century scale trends in North American snow
7298	extent in coupled atmosphere-ocean general circulation models. <i>Geophys. Res.</i>
7299	<i>Lett.</i> , 32 , L18502, doi:10.1029/2005GL023394.
7300	Leii., 52, L16502, doi:10.1027/2005GE025574.
7301	Frich, P., L.V. Alexander, P. Della-Marta, B. Gleason, M. Haylock, A.M.G.K. Tank,
7302	T. Peterson, 2002: Observed coherent changes in climatic extremes during the
7302	second half of the twentieth century. <i>Clim. Res.</i> , 19 , 193-212.
7304	second han of the twentieth century. <i>Cum. Res.</i> , 19 , 195-212.
7305	Fyfe, J.C., G.J. Boer, and G.M. Flato, 1999: The Arctic and Antarctic Oscillations and
7306	their projected changes under global warming. <i>Geophysical Research Letters</i> , 26,
7307	1601-1604.
7308	1001-1004.
7309	Fyfe, J.C., 2003: Extratropical southern hemisphere cyclones: Harbingers of climate
7310	change? J. Climate, 16, 2802-2805.
7311	enange: <i>J. Cumule</i> , 10, 2002-2003.
7312	Gao, S.B., and H.G. Stefan, 2004: Potential climate change effects on ice covers of five
7312	freshwater lakes. J. Hydrol. Eng., 9, 226-234.
7314	neshwater lakes. J. Hydrol. Eng., 9, 220-254.
7314	Garcia Herrera, R., L. Gimeno, P. Ribera, and E. Hernandez, 2005. New records of
7316	Atlantic hurricanes from Spanish documentary sources. J. Geophys. Res., 110:
7317	D03109.
7318	Causia Hannana D. E. Dubia D. Wheeler, E. Hannander, M. D. Drieta and I. Cimara
7319	Garcia Herrera, R., F. Rubio, D. Wheeler, E. Hernandez, M. R. Prieto, and L. Gimero,
7320	2004: The use of Spanish and British documentary sources in the investigation of
7321	Atlantic hurricane incidence in historical times. In: <i>Hurricanes and Typhoons:</i>
7322	Past, Present, and Future (eds. R.J. Murnane, R. J. and K-b. Liu), p. 149-176.
7323	Columbia University Press.
7324	

7325 7326	Gedney, N., P.M. Cox, R.A. Betts, O. Boucher, C. Huntingford, and P.A. Stott, 2006a: Detection of a direct carbon dioxide effect in continental river runoff records.
7327	Nature, 439 , 835-838.
7328	
7329 7330	Gedney, N., P.M. Cox, R.A. Betts, O. Boucher, C. Huntingford, and P.A. Stott, 2006b: Continental runoff - A quality-controlled global runoff data set - Reply. <i>Nature</i> ,
7331 7332	444, E14-15 (doi:10.1038/nature05481).
7333	Gershunov, A., and D. R. Cayan, 2003: Heavy Daily Precipitation Frequency over the
7334	Contiguous United States: Sources of Climatic Variability and Seasonal
7335 7336	Predictability. J. Climate, 16, 2752-2765.
	Cattalenary A. D. I. Saidal M. C. Witaalan and D. I. Daar 2002. Markida adal (markida
7337 7338	Gettelman, A. D. J. Seidel, M. C. Wheeler, and R. J. Ross, 2002: Multidecadal trends in tropical convective available potential energy. <i>J. Geophys. Res.</i> , 107 , 4606,
7339	doi:10.1029/2001JD001082.
7340	
7341	Gillett, N.P., G.C. Hegerl, M.R. Allen, and P.A. Stott, 2000: Implications of changes in
7342	the Northern Hemispheric circulation for the detection of anthropogenic climate
7343 7344	change. Geophysical Research Letters, 27, 993-996.
7344	Gillett, N.P., et al., 2002b: How linear is the Arctic Oscillation response to greenhouse
7346	gases? Journal of Geophysical Research, 107, doi: 10.1029/2001JD000589.
7347	
7348	Gillett, N.P., H.F. Graf, and T.J. Osborn, 2003a: Climate change and the North Atlantic
7349	Oscillation. [Y.K. J. Hurrell, G. Ottersen and M. Visbeck (ed). American
7350 7351	Geophysical Union, Washington, DC.
	CHI-H ND ALW EW Z
7352 7353	Gillett, N.P., A.J. Weaver, F.W. Zwiers, and M.F. Wehner, 2004b: Detection of volcanic influence on global precipitation. <i>Geophysical Research Letters</i> , 31(12), L12217,
7354	doi:10.1029/2004GL020044.
7355	
7356	Gillett, N.P., 2005: Northern Hemisphere circulation. Nature, 437, 496
7357	
7358	Gillett, N. P., P. A. Stott, and B. D. Santer, 2007: Attribution of Cyclonogenesis Region
7359	Sea Surface Temperature Change to Anthropogenic Influence. <i>Geophysical</i>
7360	Research Letters (submitted).
7361	
7362	Giorgi, F., B. Hewitson, J. Christensen, M. Hulme, H. Von Storch, P. Whetton, R. Jones,
7363	L. Mearns, and C. Fu, 2001: Regional climate information - evaluation and
7364	projections. In <i>Climate Change 2001: The Scientific Basis</i> . Contribution of
7365	Working Group I to the Third Assessment Report of the Intergovernmental Panel
7366	on Climate Change. [Houghton JT, Ding Y, Griggs DJ, Noguer M, van der
7367	Linden PJ, Dai X, Maskell K and Johnson CA, eds.] 881 pp. Cambridge
7368	University Press, Cambridge, United Kingdom and New York, NY, USA.
7369	

7370 7371	Goldenberg, S. B., C. W. Landsea, A.M. Mesta-Nuñez, and W. M. Gray, 2001: The
	recent increase in Atlantic hurricane activity: causes and implications. <i>Science</i> ,
7372	293, 474-479.
7373	Carebon NE and HE Dia 2001. Evidence for interview of North Decific
7374 7375	Graham, N.E., and H. F. Diaz, 2001: Evidence for intensification of North Pacific winter cyclones since 1948. <i>Bull. Amer. Meteor. Soc.</i> , 82 , 1869-1893.
7376	
7377	Gray, W. M., 1979: Hurricanes: their formation, structure, and likely role in the tropical
7378 7379	circulation. In <i>Meteorology over the tropical oceans</i> . Ed., D. B. Shaw, Roy. Meteor. Soc., 155-218.
7380	
7381 7382	Gray, W. M., 1990: Strong association between West African rainfall and U.S. landfall of intense hurricanes. <i>Science</i> , 249 , 1251-1256.
7383	
7384 7385	Groisman, P. Y., R. W. Knight, T. R. Karl, D. R. Easterling, B. Sun, and J. H. Lawrimore, 2004: Contemporary changes of the hydrological cycle over the
7386	contiguous United States: trends derived from <i>in situ</i> observations. J.
7387	<i>Hydormeteor.</i> , 5 , 64-85.
7388	
7389	Gulev, S.K., and V. Grigorieva, 2004: Last century changes in ocean wind wave height
7390	from global visual wave data. Geophys. Res. Lett., 31, Art. No. L24302.
7391	
7392	Hart, R. E., 2006: The winter impact of recurving tropical cyclones. 27 th AMS
7393	Conference on Hurricanes and Tropical Meteorology, 24-28 April 2006,
7394	Monterey, CA.
7395	
7396	Hart, R. E., L. F. Bosart, and C. Hosler, 2006: The possible hemispheric impacts of
7397	anomalous recurving tropical cyclone frequency. Submitted to Mon. Wea. Rev.,
7398	August 2006.
7399	
7400	Hasegawa, A. and S. Emori, 2005: Tropical cyclones and associated precipitation over
7401	the Western North Pacific: T106 atmospheric GCM simulation for present-day
7402	and doubled CO2 climates. SOLA, 1, 145-148, SOI:10.2151/sola.2005-038.
7403	
7404	Hayhoe, K, C.P. Wake, T.G. Huntington, L.F. Luo, M.D. Schwartz, J. Sheffield, E.
7405	Wood, B. Anderson, J. Bradbury, A. DeGaetano, T.J. Troy, D. Wolfe, 2007: Past
7406	and future changes in climate and hydrological indicators in the US Northeast.
7407	<i>Clim. Dyn.</i> , 28 , 381-407.
7408	
7409	Hayne, M. and J. Chappell. 2001. Cyclone frequency during the last 5,000 years from
7410	Curacoa Island, Queensland. Palaeogeography, Palaeoclimatology,
7411	Palaeoecology, 168, 201-219.
7412	
7413	Hegerl, G.C., F.W. Zwiers, V.V. Kharin, and P.A. Stott, 2004: Detectability of
7414	anthropogenic changes in temperature and precipitation extremes. Journal of
7415	<i>Climate</i> , 17, 3683-3700.

7416	
7417	Hegerl, G. C., F. W. Zwiers, P. Braconnot, N. P. Gillett, Y. Luo, J. Marengo, N.
7418	Nicholls, J. E. Penner and P. A, Stott: Understanding and Attributing Climate
7419	Change. In: S. Solomon et al. (ed.) Climate Change 2007. The Fourth Scientific
7420	Assessment, Intergovernmental Panel on Climate Change (IPCC), in press.
7421	
7422	Held, I. M., T. L. Delworth, J. Lu, K. L. Findell, and T. R. Knutson, 2005: Simulation of
7423	Sahel drought in the 20 th and 21 st centuries. <i>Proc. Nat. Acad. Sci.</i> , 102 (50), 17891-
7424	17896.
7425	
7426	Held, I.M., and B.J. Soden, 2006: Robust Responses of the Hydrological Cycle to Global
7427	Warming. Journal of Climate, in press.
7428	the animage of the and the press.
7429	Henderson-Sellers, A., H. Zhang, G. Berz, K. Emanuel, W. Gray, C. Landsea,
7430	G. Holland, J. Lighthill, S-L. Shieh, P. Webster, and K. McGuffie, 1998: Tropical
7431	cyclones and global climate change: a post-IPCC assessment. <i>Bull. Amer. Meteor.</i>
7432	<i>Soc.</i> , 79 , 19-38.
7433	500, 79, 19 50.
7434	Hodgkins, G.A., I.C. James, and T.G. Huntington, 2002: Historical changes in lake ice-
7435	out dates as indicators of climate change in New England, 1850-2000. <i>Int. J.</i>
7436	Climatology, 22 , 1819-1827.
7437	<i>Cullatology, 22,</i> 1019–1027.
7438	Hodgkins, G.A., R.W. Dudley, and T. G. Huntington, 2003: Changes in the timing of
7439	high river flows in New England over the 20 th century. J. Hydrololgy, 278 , 244-
7440	252.
7441	252.
7442	Hoerling, M. P., and A. Kumar, 2003: The perfect ocean for drought. Science, 299, 691–
7443	694.
7444	094.
7445	Hoerling, M., J. Eischeid, X. Quan, T.Y. Xu, 2007: Explaining the Record US Warmth
7446	of 2006. Geophys. Res. Lett. (submitted).
7447	of 2000. <i>Geophys. Res. Lett.</i> (Sublinted).
7448	Holland, J. Lighthill, S-L. Shieh, P. Webster, and K. McGuffie, 1998: Tropical cyclones
7449	and global climate change: a post-IPCC assessment. Bull. Amer. Meteor. Soc., 79,
7450	19-38.
7451	17-50.
7452	Holland, G.J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos.
7453	<i>Sci.</i> , 54 , 2519-2541.
7455	$\mathcal{D}(\mathcal{U}, \mathbf{J}^{\mathbf{T}}, \mathcal{L}\mathcal{J}^{\mathbf{T}})^{-\mathcal{L}\mathcal{J}^{\mathbf{T}}}$
7455	Holland, G. J., and P. J. Webster, 2007: Heightened tropical cyclone activity in the
7455	North Atlantic: natural variability or climate trend? <i>Phil. Trans. R. Soc. A</i> ,
7450	doi:10.1098/rsta.2007.2083.
	u01.10.1070/18ta.2007.2003.
7458	Hollond MM CM Ditz D Trombley 2006. Entrance about an directions in the entrance
7459	Holland, M.M., C.M. Bitz, B. Tremblay, 2006: Future abrupt reductions in the summer
7460	Arctic sea ice. Geophys. Res. Lett., 33, Art. No. L23503.
7461	

7462	Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on southern hemisphere storm
7463	tracks. J. Climate, 18, 4108-4129.
7464	
7465	Hoyos, C. D., P. A. Agudelo, P. J. Webster, and J. A. Curry, 2006: Deconvolution of the
7466	factors contributing to the increase in global hurricane intensity. <i>Science</i> , 312:
7467	94-97.
7468	
7469	Huntington, T.G., G.A. Hodgkins, and R.W. Dudley, 2003: Historical trend in river ice
7470	thickness and coherence in hydroclimatological trends in Maine. <i>Clim. Change</i> ,
7471	61, 217-236.
7472	
7473	Hurrell, J.W., 1995: Decadal Trends in the North-Atlantic Oscillation - Regional
7474	Temperatures and Precipitation. Science, 269 , 676-679.
7475	
7476	Hurrell, J.W., 1996: Influence of variations in extratropical wintertime teleconnections
7477	on Northern Hemisphere temperature. Geophysical Research Letters, 23, 665-
7478	668.
7479	
7480	IPCC , 2001. Climate Change 2001: The Scientific Basis. Contribution of Working
7481	Group I to the Third Assessment Report of the Intergovernmental Panel on
7482	Climate Change [Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der
7483	Linden, X. Dai, K. Maskell, and C. A. Johnson (eds.)]. Cambridge University
7484	Press, Cambridge, United Kingdom and New York, NY, USA, 881pp.
7485	
7486	International Ad Hoc Detection and Attribution Group (IADAG), 2005: Detecting
7487	and attributing external influences on the climate system: a review of recent
7488	advances. J. Climate, 18, 1291-1314.
7489	
7490	International Workshop on Tropical Cyclones VI (IWTC-VI), 2006: Statement on
7491	tropical cyclones and climate change. Available at:
7492	http://www.wmo.ch/web/arep/arep-home.html.
7493	
7494	Kamahori, H. N. Yamazaki, N. Mannoji, and K. Takahashi, 2006: Variability in intense
7495	tropical cyclone days in the western North Pacific. SOLA, 2, 104-107,
7496	doi:10.2151/sola.2006-027.
7497	
7498	Karl, T.R., and R.W. Knight, 1997: The 1995 Chicago heat wave: How likely is a
7499	recurrence? Bulletin of the Am. Meteor. Soc., 78, 1107-1119.
7500	
7501	Karoly, D.J., et al., 2003: Detection of a human influence on North American climate.
7502	Science, 302, 1200-1203.
7503	
7504	Karoly, D. J., and Q. Wu, 2005: Detection of regional surface temperature trends. J.
7505	<i>Climate</i> , 18 , 4337-4343.
7506	

7507 7508	Katz , R.W., and B.G. Brown, 1992: Extreme events in a changing climate: Variability is more important than averages. <i>Climatic Change</i> , 21 , 289–302.
7509	more important than averages. Cumatic Change, 21, 269–302.
7510 7511	Kenyon , J., and G.C. Hegerl, 2007: Influence of modes of climate variability on global temperature extremes. <i>J. Clim.</i> , submitted.
7512	temperature entremest et etana, suchinitedi
7513 7514	Kharin, V.V., and F.W. Zwiers, 2005: Estimating extremes in transient climate change simulations. <i>J. Clim.</i> , 18 , 1156-1173.
7515	
7516	Kharin, V., F. W. Zwiers, X. Zhang and G. C. Hegerl, 2007: Changes in temperature and
7517 7518	precipitation extremes in the IPCC ensemble of global coupled model simulations. <i>J. Climate</i> , in press.
7519	
7520	Kiktev, D., D. Sexton, L. Alexander, C. Folland, 2003: Comparison of modelled and
7521	observed trends in indices of daily climate extremes. Journal of Climate, 16,
7522	3560-3571.
7523	
7524	Klotzbach , P. J., 2006: Trends in global tropical cyclone activity over the past twenty
7525 7526	years (1986-2005), <i>Geophys. Res. Lett.</i> , 33 , L10805, DOI:10.1020/2006CL.025881
7520	DOI:10.1029/2006GL025881.
7528	Knaff, J. A, and C. R. Sampson, 2006: Reanalysis of West Pacific tropical cyclone
7528	intensity 1966-1987. Proceedings of 27 th AMS Conference on Hurricanes and
7530	Tropical Meteorology, #5B.5. Available online at:
7531	http://ams.confex.com/ams/pdfpapers/108298.pdf.
7532	http://ans.comex.com/ans/puppapers/108298.put
7533	Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A
7534	signature of persistent natural thermohaline circulation cycles in observed climate,
7535	<i>Geophys. Res. Lett.</i> , 32 , L20708, doi:10.1029/2005GL024233.
7536	
7537	Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic
7538	Multidecadal Oscillation. Geophys. Res. Lett., 33, 17, L17706
7539	http://dx.doi.org/10.1029/2006GL026242.
7540	
7541	Knutson, T. R., T. L. Delworth, K. W. Dixon, I. M. Held, J. Lu, V. Ramaswamy, D.
7542	Schwarzkopf, G. Stenchikov, and R. J. Stouffer, 2006. Assessment of twentieth-
7543	century regional surface temperature trends using the GFDL CM2 coupled
7544	models. J. Climate, 19(9), 1624-1651.
7545	
7546	Knutson, T. R., and R. E. Tuleya, 2004: Impact of CO2-induced warming on simulated
7547	hurricane intensity and precipitation: sensitivity to the choice of climate model
7548	and convective parameterization. J. Climate, 17, 3477-3495.
7549	
7550	Knutson, T. R., and R. E. Tuleya, 2005: Reply. J. Climate, 18, 5183-5187.
7551	

7552 7553	Knutson, T. R., and R. E. Tuleya, 2007: Tropical cyclones and climate change: Revisiting recent studies at GFDL. In <i>Climate Extremes and Society</i> , H. Diaz,
7554	and R. Murnane, eds., New York: Columbia Univ. Press, accepted for
7555	publication.
7556	puoliculon.
7557	Knutson, T. R., R. E. Tuleya, W. Shen, and I. Ginis, 2001: Impact of CO ₂ -induced
7558	warming on hurricane intensities as simulated in a hurricane model with ocean
7559	coupling. J. Climate, 14, 2458-2468.
7560	
7561	Knutson, T. R., R. E. Tuleya, and Y. Kurihara, 1998: Simulated increase of hurricane
7562 7563	intensities in a CO2-warmed climate. Science, 279(5353), 1018-1020.
7564	Kumar, A., F. Yang, L. Goddard, and S. Schubert, 2004: Differing Trends in the
7565	Tropical Surface Temperatures and Precipitation over Land and Oceans. <i>Journal</i>
7566	of Climate, 17, 653-664.
7567	of cumule, 17, 055 004.
7568	Kunkel, K.E., N.E. Westcott, and D.A.R. Kristovich, 2002: Assessment of potential
7569	effects of climate change on heavy lake-effect snowstorms near Lake Erie. J. Gt.
7570	Lakes Res., 28, 521-536.
7570	Lakes Res., 20, 521-550.
7572	Kunkel, K.E., XZ. Liang, J. Zhu, and Y. Lin, 2006: Can CGCMS simulate the
7573	twentieth century "warming hole" in the central United States? <i>Journal of</i>
7574	<i>Climate</i> , in press.
7575	<i>Cumule</i> , in press.
7576	Lambert, F.H., P.A. Stott, M.R. Allen, and M.A. Palmer, 2004: Detection and attribution
7577	of changes in 20 th century land precipitation. <i>Geophysical Research Letters</i> ,
7578	31(10), L10203.
7579	51(10), £10205.
7580	Lambert, S.J., and J.C. Fyfe, 2006: Changes in winter cyclone frequencies and strengths
7581	simulated in enhanced greenhouse warming experiments: results from the models
7582	participating in the IPCC diagnostic exercise. <i>Climate Dynamics</i> , online:
7582	10.1007/s00382-006-0110-3.
7584	10.1007/s00382-000-0110-3.
7585	Londmon W. A. A. Soth and S. I. Compress 2005: The offset of regional alimeter
	Landman, W. A., A. Seth, and S. J. Camargo, 2005: The effect of regional climate
7586	model domain choice on the simulation of tropical cyclone-like vortices in the
7587	Southwestern Indian Ocean. J. Climate, 18 , 1253-1274, DOI:
7588	10.1175/JCLI3324.1
7589	
7590	Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. <i>Mon.</i>
7591	<i>Wea. Rev.</i> , 121 , 1703-1713.
7592	
7593	Landsea, C. W., C. Anderson, N. Charles, G. Clark, J. Dunion, J. Fernandez-Partagas, P.
7594	Hungerford, C. Neumann, and M. Zimmer, 2004: The Atlantic hurricane database
7595	re-analysis project: Documentation for the 1851-1910 alterations and additions to
7596	the HURDAT database. In: <i>Hurricanes and Typhoons: Past, Present and Future</i> ,
7597	R. J. Murname and KB. Liu, Eds., Columbia University Press, p. 177-221.

7598		
7599	Landsea, C. W., 2005: Hurricanes and global warming. <i>Nature</i> , 438,	
7600	doi:10.1038/nature04477.	
7601		
7602	Landsea, C.W., B.A.Harper, K.Hoarau, and J.A.Knaff, 2006: Can we detect trends in	
7603	extreme tropical cyclones? <i>Science</i> . 313 , 452-454.	
7604		
7605	Lawrence, J. R. and S. D. Gedzelman, 1996: Low stable isotope ratios of tropical	
7606	cyclone rains. <i>Geophys. Res. Lett.</i> , 23 , 527-530.	
7607	<i>cyclone rams. Ccophys. Res. Len.</i> , 20, 527 550.	
7608	Leung, L.R., Y. Qian, X.D. Bian, W.M. Washington, J.G. Han, and J.O. Roads, 2004:	
7609	Mid-century ensemble regional climate change scenarios for the western United	
7610	States. <i>Climatic Change</i> , 62 , 75-113.	
7611	States. Cumune Change, 02, 75 115.	
7612	Liu, G., A.E. Strong, W. Skirving, L.F. Arzayus, 2006: Overview of NOAA Coral Reef	
7612	Watch Program's near-real-time satellite global coral bleaching monitoring	
7614	activities. Proceedings of the 10th International Coral Reef Symposium. p. 1783-	
7615	1793.	
7616	1775.	
7617	Liu, K-b., 2004: Paleotempestology: Principles, Methods, and Examples from Gulf Coast	
7618	Lake Sediments. In: Hurricanes and Typhoons: Past, Present, and Future, R.J.	
7619	Murnane, R. J. and K-b. Liu, Eds., Columbia University Press, p. 13-57.	
7620	Multialie, K. J. and K-0. Eld, Eds., Columbia Oniversity Fless, p. 15-57.	
7620	Liu, K-b. and M. L. Fearn, 1993: Lake-sediment record of late Holocene hurricane	
7622	activities from coastal Alabama. <i>Geology</i> , 21 , 793-796.	
7622	activities from coastal Alabama. <i>Geology</i> , 21 , 735-730.	
7623	Liu, K-b. and M. L. Fearn, 2000: Reconstruction of prehistoric landfall frequencies of	
7625	catastrophic hurricanes in northwestern Florida from lake sediment records.	
7626	Quaternary Research, 54 , 238-245.	
7627	Qualernary Research, 54 , 258-245.	
7628	Liu, K-b., C. Shen, C, and K. S. Louie, 2001: A 1000-year history of typhoon landfalls	
7629	in Guangdong, southern China, reconstructed from Chinese historical	
7630	documentary records. Annals of the Association of American Geographers 91 ,	
7631	453-464.	
7632	455-404.	
7632	Louie, K.S. and Kb. Liu, 2003: Earliest historical records of typhoons in China. J.	
7634	Historical Geography, 29 , 299-316.	
7635	<i>Historical Geography</i> , 29, 299-510.	
	Louis KS and K h Lin 2004. Angiant records of typhoons in Chinasa historical	
7636 7637	Louie, K.S. and Kb. Liu, 2004: Ancient records of typhoons in Chinese historical documents. In: Hurricanas and Typhoons: Past. Present. and Future. P. J.	
	documents. In: <i>Hurricanes and Typhoons: Past, Present, and Future</i> , R.J.	
7638	Murnane, R. J. and K-b. Liu, Eds., Columbia University Press, p. 222-248.	
7639	Lorono L and V Swail 2002. The link between worse beight workshilter in the Newth	
7640	Lozano , I., and V. Swail, 2002: The link between wave height variability in the North	
7641	Atlantic and the storm track activity in the last four decades. <i>AtmosOc.</i> , 40 , 377-	
7642	388.	
7643		

7644 7645	Lynch, A.H., J.A. Curry, R.D. Brunner, J.A. Maslanik, 2004: Toward an integrated assessment of the impacts of extreme wind events on Barrow, Alaska. <i>Bull.</i>
7646	•
	Amer. Meteor. Soc., 85 , 209-221.
7647	Marro Mand K. Ensenal 2006. Adaptic harrisons (made links days diverse shares
7648 7649	Mann, M. and K. Emanuel, 2006: Atlantic hurricane trends linked to climate change. <i>EOS</i> , 87 , 233-241.
7650	
7651 7652	Marchok, T., R. Rogers, and R. Tuleya, 2007: Validation schemes for tropical cyclone quantitative precipitation forecasts: Evaluation of operational models for U.S.
7653 7654	landfalling cases. Wea. Forecast., 22, 726-746.
7655	Mars, J.C., D.W. Houseknecht, 2007: Quantitative remote sensing study indicates
7656 7657	doubling of coastal erosion rate in past 50 yr along a segment of the Arctic coast of Alaska. <i>Geology</i> , 35 , 583-586.
7658	
7659	Marsh, P. T., H. E. Brooks, and D. J. Karoly, 2007: Assessment of the severe weather
7660	environment in North America simulated by a global climate model. Atmos. Sci.
7661	Letters, in review.
7662	
7663	Marshall, G. J., P. A. Stott, J. Turner, W. M. Connolley, J. C. King, T. A. Lachlan-Cope,
7664	2004: Causes of exceptional atmospheric circulation changes in the Southern
7665	Hemisphere. Geophys. Res. Lett., 31 (14), L14205, doi:10.1029/2004GL019952.
7666	
7667 7668	McCabe, G.J., M.P. Clark, and M.C. Serreze, 2001: Trends in Northern Hemisphere surface cyclone frequency and intensity, <i>J. Clim.</i> , <i>14</i> , 2763-2768.
7669	
7670	McDonald, R. E., D. G. Bleaken, D. R. Cresswell, V. D. Pope, and C. A. Senior, 2005:
7671 7672	Tropical storms: representation and diagnosis in climate models and the impacts of climate change. <i>Clim. Dyn.</i> , 25 : 19-36, DOI: 10.1007/s00382-004-0491-0.
7673	Many C. A. and F. I. Wantz. 2005. The affect of diversal connection on satellite derived
7674 7675	Mears, C. A., and F. J. Wentz, 2005: The effect of diurnal correction on satellite-derived lower tropospheric temperature. <i>Science</i> , 309 , 1548-1551.
7676	Machl C A and C Tabaldi 2004. More interest more frequent and langer lesting best
7677 7678	Meehl, G.A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. <i>Science</i> , 305 , 994-997.
7679	
7680	Meehl, G.A., C. Tebaldi, and D. Nychka, 2004: Changes in frost days in simulations of
7681	twentyfirst century climate. Clim. Dyn., 23, 495-511.
7682	
7683	Meehl, G. M., W. M. Washingon, C. M. Amman, J. M. Arblaster, T. M. L. Wigley, and
7684	C. Tebaldi, 2004: Combinations of natural and anthropogenic forcings in
7685	twentieth-century climate. J. Climate, 17, 3721-3727.
7686	$\mathbf{M} = \mathbf{h} = \mathbf{C} + \mathbf{M} = \mathbf{h} = \mathbf{C} + \mathbf{h} = \mathbf{C} + $
7687	Meehl, G. M., and Coauthors. 2007a: Global Climate Projections. In: S. Solomon et al.
7688 7689	(ed.) Climate Change 2007. The Fourth Scientific Assessment, Intergovernmental Panel on Climate Change (IPCC), in press.

7690	
7691	Meehl, G.A., J.M. Arblaster, and C. Tebaldi, 2007b: Contributions of natural and
7692	anthropogenic forcing to changes in temperature extremes over the U.S. <i>Geophys.</i>
7693	Res. Lett. (submitted).
7694	
7695	Meehl, G.A., and C. Tebaldi, 2007: Extremes and El Nino. Geophys. Res. Lett.
7696	(submitted).
7697	
7698	Mendelssohn, R., S.J. Bograd, F.B. Schwing, and D.M. Palacios, 2005: Teaching old
7699	indices new tricks: A state-space analysis of El Niño related climate indices.
7700	Geophysical Research Letters, 32, L07709.
7701	Geophysical Research Leners, 52, Lorroy.
7702	Merryfield, W.J., 2006: Changes to ENSO under CO2 doubling in the IPCC AR4
7703	coupled climate models. <i>Journal of Climate</i> , in press.
7704	coupled enhate models. <i>Journal of etimate</i> , in press.
7705	Michaels, P. J., P. C. Knappenberger, and C. Landsea, 2005: Comments on "Impacts of
7706	CO2-induced warming on simulated hurricane intensity and precipitation:
7707	Sensitivity to the choice of climate model and convective scheme." J. Climate,
7708	18, 5179-5182.
7709	10, 5179-5162.
7710	Michaels, P. J., P. C. Knappenberger, and R. E. Davis, 2006: Sea-surface temperatures
7711	and troical cyclones in the Atlantic basin. <i>Geophys. Res. Lett.</i> , 33 , L09708,
	•
7712	doi:10.1029/2006GL025757.
7713	Miller D. L. C. I. Mars. H. D. Crissing Mayor, C. I. Mask and M. E. Uhla 2002.
7714	Miller, D. L., C. I. Mora, H. D. Grissino-Mayer, C. J. Mock, and M. E. Uhle, 2003:
7715	Tropical cyclone activity and climate fluctuations captured by oxygen isotopes in
7716	tree-ring cellulose from the Southeastern U.S. Abstracts, American Geophysical
7717	Union Fall 2003 Meeting.
7718	
7719	Miller, N.L., K. E. Bashford, and E. Strem, 2003: Potential impacts of climate change on
7720	California hydrology. Journal of the American Water Resources Association, 39 ,
7721	771-784.
7722	
7723	Milly, P.C.D., K.A. Dunne, and A.V. Vecchia, 2005: Global pattern of trends in
7724	streamflow and water availability in a changing climate. <i>Nature</i> , 438 , 347-350.
7725	
7726	Mock, C.J., 2004: Tropical cyclone reconstructions from documentary records:
7727	examples for South Carolina, United States. In: Hurricanes and Typhoons: Past,
7728	Present, and Future, R.J. Murnane, R. J. and K-b. Liu, Eds., Columbia University
7729	Press, p. 121-148.
7730	
7731	Morris, K., M. Jeffries, and C. Duguay, 2005: Model simulation of the effects of climate
7732	variability and change on lake ice in central Alaska, USA. Ann. Glaciology, 40,
7733	113-118.
7734	

7735	Neelin, J.D., M. Münnich, H. Su, J.E. Meyerson, and C. Holloway, 2006: Tropical drying
7736	trends in global warming models and observations. Proceedings of the National
7737	Academy of Sciences, accepted.
7738	
7739	Neu, H. J. A., 1984: Interannual variations and longer-term changes in the sea state of the
7740	North Atlantic from 1970 to 1982: Journal of Geophysical Research, 89: 6397-
7741	6402.
7742	
7743	Nolan, D. S., E. D. Rappin, and K. A. Emanuel, 2006: Could hurricanes form from
7744	random convection in a warmer world? Preprints, 27th AMS Meeting on
7745	Hurricanes and Tropical Meteorology, Monterey, CA. Available online at:
7746	http://ams.confex.com/ams/pdfpapers/107936.pdf.
7747	
7748	Nott, J. and M. Hayne. 2001. High frequency of "super-cyclones" along the Great Barrier
7749	Reef over the past 5,000 years. <i>Nature</i> , 413 , 508-512.
7750	
7751	Nguyen, K. C., and K. J. E. Walsh, 2001: Interannual, decadal, and transient greenhouse
7752	simulation of tropical cyclone-like vortices in a regional climate model of the
7753	South Pacific. J. Climate, 14, 3043-3054.
7754	
7755	Osborn, T.J., K.R. Briffa, S.F.B. Tett, P.D. Jones, and R.M. Trigo, 1999: Evaluation of
7756	the North Atlantic Oscillation as simulated by a coupled climate model. <i>Climate</i>
7757	Dynamics, 15, 685-702.
7758	Dynamics, 15, 005 702.
7759	Osborn, T.J., 2004: Simulating the winter North Atlantic Oscillation: the roles of internal
7760	variability and greenhouse gas forcing. <i>Climate Dynamics</i> , 22, 605-623.
7761	variability and greenhouse gas foreing. Cumate Dynamics, 22, 005 025.
7762	Ostermeier, G.M., and J.M. Wallace, 2003: Trends in the North Atlantic Oscillation-
7763	Northern Hemisphere annular mode during the twentieth century. J. Climate, 16,
7764	336-341.
7765	550-5-1.
7766	Oouchi, K., J.Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda, 2006:
7767	Tropical cyclone climatology in a global-warming climate as simulated in a
7768	20km-mesh global atmospheric model: frequency and wind intensity analysis. J.
7769	Meteorol. Soc. Japan, , 84, 259-276.
7770	Meleoroi. Soc. Jupan, , 64 , 259-270.
7771	Paciorek, C.J., J.S. Risbey, V. Ventura, R.D. Rosen (2002). Multiple indices of Northern
7772	Hemisphere cyclone activity, winters 1949-99, J. Climate, 15, 1573-1590.
7773	Dall D. M. D. Allon and D. A. Stone 2007. Testing the Clausing Clauser statist
7774	Pall, P., M. R. Allen, and D. A. Stone, 2007: Testing the Clausius–Clapeyron constraint
7775	on changes in extreme precipitation under CO_2 warming . <i>Clim. Dyn.</i> , 28 , 351–
7776	363.
7777	
7778	Peel, M.C., and T.A. McMahon, 2006: A quality-controlled global runoff data set.
7779	<i>Nature</i> , 444 , E14 (doi:10.1038/nature05480).
7780	

7781 7782 7783	Peterson, T.C., X. Zhang, M.B. India, and J.L.V. Aguirre, 2007: Changes in North American extremes derived from daily weather data. Proc. Nat. Acad. Science (submitted).
7784	(
7785 7786 7787	Pezza , A. B., and I. Simmonds, 2005: The first South Atlantic hurricane: unprecedented blocking, low shear, and climate change. Geophys. Res. Lett., 32, L15712, doi:10.1029/2005GL023390.
7788	
7789	Pielke, R. A., Jr., 2005: Are there trends in hurricane destruction? <i>Nature</i> , 438 , E11.
7790	
7791 7792 7793 7794	Pinto, J.G T. Spangehl, U. Ulbrich and P. Speth, 2006: Assessment of winter cyclone activity in a transient ECHAM4-OPYC3 GHG experiment. <i>Meteor. Ziet.</i> , 15, 279- 291.
	P : 4. I.C. H. Illheith, C.C. Lashaharah, T. Caranahi, M. Darras, and C. Zasharian
7795 7796 7797	Pinto, J. G., U. Ulbrich, G. C. Leckebusch, T. Spangehl, M. Reyers, and S. Zacharias, 2007: Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. <i>Climate Dynamics</i> , 29 , 195–
7798	210 (DOI 10.1007/s00382-007-0230-4).
7799	
7800	Rotstayn, L. and U. Lohmann, 2002: Tropical rainfall trends and the indirect aerosol
7801	effect. J. Climate, 15, 2103-2116.
7802	
7803	Royer. JF., F. Chauvin, B. Timbal, P. Araspin, and D. Grimal, 1998: A GCM study of
7804 7805	the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. <i>Clim. Change</i> , 38 , 307-343.
7806	
7807	Ryan, B.F., I. G. Watterson, and J. L. Evans, 1992: Tropical cyclones frequencies
7808	inferred from Gray's yearly genesis parameter: validation of GCM tropical
7809	climate. <i>Geophys. Res. Lett.</i> , 19 , 1831-1834.
7810	
7811	Santer, B. D., and Coauthors, 2005: Amplification of surface temperature trends and
7812	variability in the tropical atmosphere. <i>Science</i> , 309 , 1551-1556.
7813	
7814	Santer, B. D., and Coauthors, 2006: Forced and unforced ocean temperature changes in
7815	Atlantic and Pacific tropical cyclogenesis regions. Proc. Nat. Acad. Sci., 103,
7815	13905-13910, 10.1073/pnas.0602861103.
7810	13903-13910, 10.1075/pilas.0002801105.
	Soundars M. A. and A. S. Les. 2005. Second and disting of humisons activity
7818	Saunders, M. A., and A. S. Lea, 2005: Seasonal prediction of hurricane activity
7819	reaching the coast of the United States. <i>Nature</i> , 434 , 1005-1008.
7820	
7821	Schär, C., P.L. Vidale, D. Lüthi, C. Frei, C. Häberli, M.A. Liniger, and C. Appenzeller,
7822	2004: The role of increasing temperature variability in European summer heat
7823	waves. <i>Nature</i> , 427 , 332-336.
7824	
7825	Schubert, S. D., M. J. Suarez, P. J. Region, R. D. Koster, and J. T. Bacmeister, 2004:
7826	Causes of long term drought in the U. S. Great Plains. J Climate, 17, 485-503.

7827	
7828	Seager, R. Y. Kushnir, C. Herweijer, N. Naik, and J. Velez, 2005: Modeling of tropical
7829	forcing of persistent droughts and pluvials over western North America: 1856-
7830	2000. J Climate, 18, 4065-4088.
7831	
7832	Selten, F.M., Branstator, G. W.Dijkstra, and M. Kliphuis, 2004: Tropical origins for
7833	recent and future Northern Hemisphere climate change. Geophysical Research
7834	Letters, 31, L21205.
7835	
7836	Shen, W., R.E. Tuleya, and I. Ginis, 2000: A sensitivity study of the thermodynamic
7837	environment on GFDL model hurricane intensity: implications for global
7838	warming. J. Climate, 13, 109-121.
7839	
7840	Sherwood, S. C., J. R. Lanzante, and C. L. Meyer, 2005: Radiosonde daytime biases and
7841	late-20 th century warming. Science, 309, 1556-1559.
7842	
7843	Shiogama, H., M. Watanabe, M. Kimoto, and T. Nozawa, 2005: Anthropogenic and
7844	natural forcing impacts on ENSO-like decadal variability during the second half
7845	of the 20th century. Geophysical Research Letters, 32, L21714.
7846	
7847	Sriver, R. and M. Huber, 2006: Low frequency variability in globally integrated tropical
7848	cyclone power dissipation. Geophys. Res. Lett., 33, L11705,
7849	doi:10.1029/2006GL026167.
7850	
7851	Stott, P.A., 2003: Attribution of regional-scale temperature changes to anthropogenic and
7852	natural causes. Geophysical Research Letters, 30, doi:10.1029/2003GL017324.
7853	
7854	Stott, P.A., and S.F.B. Tett, 1998: Scale-dependent detection of climate change. <i>Journal</i>
7855	of Climate, 11, 3282-3294.
7856	
7857	Stott, P. A., S. F. B. Tett, G. S. Jones, M. R. Allen, J. F. B. Mitchell, and G. J. Jenkins,
7858	2000: External control of 20 th century temperature by natural and anthropogenic
7859	forcings. Science, 290, 2133-2137.
7860	
7861	Strong, A.E., F. Arzayus, W. Skirving, and S.F. Heron, 2006: Identifying coral
7862	bleaching remotely via coral reef watch – improved integration and implications
7863	for changing climate, in Corals and Climate Change: Science and Management,
7864	Coastal and Estuarine Studies, 61, 163-180.
7865	
7866	Sugi, M., A. Noda, and N. Sato, 2002: Influence of global warming on tropical cyclone
7867	climatology: an experiment with the JMA global model. J. Meteorol. Soc. Japan
7868	80 : 249-272, DOI:10.2151/jmsj.80.249.
7869	
7870	Sugi, M., and J. Yoshimura, 2004: A mechanism of tropical precipitation change due to
7871	CO2 increase. J. Climate, 17, 238-243.
7872	

7873	Tang, B. H., and J. D. Neelin, 2004: ENSO influence on Atlantic hurricanes via
7874	tropospheric warming. Geophys. Res. Lett., 31, L24204,
7875	doi:10.1029/2004GL021072.
7876	
7877	Tebaldi, C., K. Hayhoe, J.M. Arblaster, and G.A. Meehl, 2006: Going to the extremes.
7878	<i>Clim. Change</i> , 79 , 185-211.
7879	
7880	Thompson, D.W.J., and J.M. Wallace, 1998: The Arctic Oscillation signature in the
7881	wintertime geopotential height and temperature fields. <i>Geophysical Research</i>
7882	Letters, 25, 1297-1300.
7883	
7884	Thompson , D., J.M. Wallace, and G.C. Hegerl, 2000: Annular modes in the extratropical
7885	circulation: Part II, Trends. Journal of Climate, 13, 1018-1036.
7886	
7887	Tonkin, H., G. J. Holland, N. Holbrook, and A. Henderson-Sellers, 2000: An evaluation
7888	of thermodynamic estimates of climatological maximum potential tropical
7889	cyclone intensity. <i>Mon. Wea. Rev.</i> , 128 , 746-762.
7890	
7891	Tonkin, H., G. Holland, C. Landsea, and S. Li, 1997: Tropical cyclones and climate
7892	change: a preliminary assessment. In Assessing Climate Change: Results from
7893	the Model Evaluation and Consortium for Climate Assessments, W. Howe and A.
7894	Henderson-Sellers, eds., Taylor and Francis Group, plc., London, 327-360.
7895	Tiendelson Seriers, eds., Tuylor and Traners Group, prei, Zondon, 627 500.
7896	Trapp, R. J., N. S. Diffenbaugh, H. E. Brooks, M. E. Baldwin, E. D. Robinson, and J. S.
7897	Pal, 2007: Changes in severe thunderstorm frequency during the 21st century due
7898	to anthropogenically enhanced global radiative forcing. <i>Proc. National Acad. Sci.</i> ,
7899	in review.
7900	
7901	Trenberth , K., 1999: Conceptual framework for changes of extremes of the hydrological
7902	cycle with climate change. <i>Clim. Change</i> , 42 , 327-339.
7903	
7904	Trenberth, K., 2005: Uncertainty in hurricanes and global warming. Science, 308,
7905	1753-1754.
7906	
7907	Trenberth, K. E., J. Fasullo, and L. Smith, 2005: Trends and variability in column-
7908	integrated atmospheric water vapor. <i>Clim. Dyn.</i> , 24: 741-758.
7909	
7910	Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in
7911	2005. <i>Geophys. Res. Lett.</i> , 33 , L12704, doi:10.1029/2006GL026894.
7912	2000. 000phys. Res. Lem, 00, 212701, doi:10.1029/200002020091.
7913	Trenberth, K. E., and Coauthors, 2007: Chapter 3: Observations: Surface and
7914	Atmospheric Climate Chang. In: S. Solomon et al. (ed.) Climate Change 2007.
7915	The Fourth Scientific Assessment, Intergovernmental Panel on Climate Change
7916	(IPCC), in press.
7917	(II CC), III pross.

7918	Tsutsui, J., 2002: Implications of anthropogenic climate change for tropical cyclone
7919	activity: a case study with the NCAR CCM2. J. Meteorol. Soc. Japan, 80, 45-65,
7920	DOI:10.2151/jmsj.80.45
7921	
7922	Tsutsui, J., and A. Kasahara, 1996: Simulated tropical cyclones using the National
7923	Center for Atmospheric Research community climate model. J. Geophys. Res.
7924	101 , 15013-15032.
7925	
7926	Tuleya, R. E., M. DeMaria, and R. J. Kuligowski, 2007: Evaluation of GFDL and simple
7927	statistical model rainfall forecasts for U.S. landfalling tropical storms. <i>Weather</i>
7928	and Forecasting, 22, 56-70.
7929	
7930	Uhlhorn, E. W, and P. G. Black, 2003: Verification of remotely sensed sea surface winds
7931	in hurricanes. J. Atmos. and Ocean. Tech., 20, 99-116.
7932	
7933	Vavrus, S.J., J.E. Walsh, W.L. Chapman, and D. Portis, 2006: The behavior of extreme
7934	cold air outbreaks under greenhouse warming. Int. J. Clim., in press.
7935	eora an outoreans anaer greennouse warming. nur et ettini, in pressi
7936	Vecchi, G. A., and B. J. Soden, 2007: Increased tropical Atlantic wind shear in model
7937	projections of global warming. <i>Geophys. Res. Lett.</i> , 34 , L08702,
7938	doi:10.1029/2006GL028905.
7939	doi.10.102)/2000GE020903.
7940	Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J.
7941	Harrison, 2006: Weakening of the tropical Pacific atmospheric circulation due to
7942	anthropogenic forcing. Nature, 441, 73-76. doi:10.1038/nature/04744.
7943	
7944	Vitart, F., J. L. Anderson, and W. F. Stern, 1997: Simulation of inter-annual variability
7945	of tropical storm frequency in an ensemble of GCM integrations. J. Climate, 10,
7946	745-760.
7947	
7948	Vitart, F. and J. L. Anderson, 2001: Sensitivity of Atlantic tropical storm frequency to
7949	ENSO and interdecadal variability of SSTs in an ensemble of AGCM
7950	integrations. J. Climate, 14(4), 533-545.
7951	integrations. <i>J. Cumate</i> , 14 (+), 555 5+5.
7952	Vitart, F., J. L. Anderson, J. Sirutis, R. E. Tuleya, 2001: Sensitivity of tropical storms
7953	simulated by a general circulation model to changes in cumulus parametrization.
7954	Quart. J. Roy. Meteorol. Soc. 127 , 25-51.
7955	Quart. 5 . Roy. Meleorot. 500. 12 7, 25-51.
7956	Walsh, K., 2004: Tropical cyclones and climate change: unresolved issues. <i>Clim. Res.</i> ,
7930 7957	27 , 77-83.
7958	<i>ш</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
7958	Walsh, K. J. E., KC. Nguyen, and J. L. McGregor, 2004: Fine-resolution regional
7939 7960	climate model simulations of the impact of climate change on tropical cyclones
7960 7961	
	near Australia. Clim. Dyn., 22, 47-56, DOI: 10.1007/s00382-003-0362-0.
7962	

7963	Walsh, K. J. E. and B. F. Ryan, 2000: Tropical cyclone intensity increase near Australia
7964	as a result of climate change. J. Climate, 13, 3029-3036.
7965	
7966	Walsh, K. J. E., M. Fiorino, C. W. Landsea, and K. McInnes, 2006: Objectively-
7967	determined resolution-dependent threshold criteria for the detection of tropical
7968	cyclones in climate models and reanalyses. J. Climate, (in press).
7969	
7970	Wang, X.L., F.W. Zwiers, and V.R. Swail, 2004: North Atlantic ocean wave climate
7971	change scenarios for the twenty-first century. Journal of Climate, 17, 2368-2383.
7972	
7973	Wang X.L., V.R. Swail, and F.W. Zwiers, 2006: Climatology and changes of extra-
7974	tropical storm tracks and cyclone activity: Comparison of ERA-40 with
7975	NCEP/NCAR Reanalysis for 1958–2001. J. Climate, 19, 3145-3166.
7976	•
7977	Wang, X.L., V.R. Swail, X. Zhang, F.W. Zwiers, and Y. Feng, 2007: Detection of human
7978	influence on trends of atmospheric storminess and northern oceans wave heights.
7979	Clim. Dyn. (in preparation).
7980	
7981	WASA, 1998: Changing waves and storms in the northeast Atlantic? Bull. Amer. Meteor.
7982	Soc., 79 , 741-760.
7983	
7984	Watterson, I. G., J. L. Evans, and B. F. Ryan, 1995: Seasonal and inter-annual variability
7985	of tropical cyclogenesis: diagnostics from large-scale fields. J. Climate, 8, 3052-
7986	3066.
7987	
7988	Webster, P. J., G. J. Holland, J. A. Curry, and HR. Chang, 2005: Changes in tropical
7989	cyclone number, duration, and intensity in a warming environment. Science, 309 ,
7990	1844-1846.
7991	
7992	Webster, P. J., J. A. Curry, J. Liu, and G. J. Holland, 2006: Response to comment on
7993	"Changes in tropical cyclone number, duration, and intensity in a warming
7994	environment". Science, 311, 1713c.
7995	· · · · · · · · · · · · · · · · · · ·
7996	Wehner, M., 2005: Changes in daily precipitation and surface air temperature extremes
7997	in the IPCC AR4 models. US CLIVAR Variations, 3 , 5-9.
7998	
7999	Weisheimer, A., and T.N. Palmer, 2005: Changing frequency of occurrence of extreme
8000	seasonal-mean temperatures under global warming. <i>Geophys. Res. Lett.</i> , 32 ,
8001	L20721.
8002	
8002	Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will
8004	global warming bring? <i>Science</i> , 317 , 233-235, doi: 10.1126/science.1140746.
8005	grout warning oring. Science, 217 , 255-255, doi: 10.1120/5616160.1140/40.
8005	Wettstein, J.J., and L.O. Mearns, 2002: The influence of the North Atlantic-Arctic
8000	Oscillation on mean, variance, and extremes of temperature in the northeastern
8007	United States and Canada. J. Climate, 15 , 3586-3600.
0000	Chica States and Canada. 5. Comme, 19, 5500 5000.

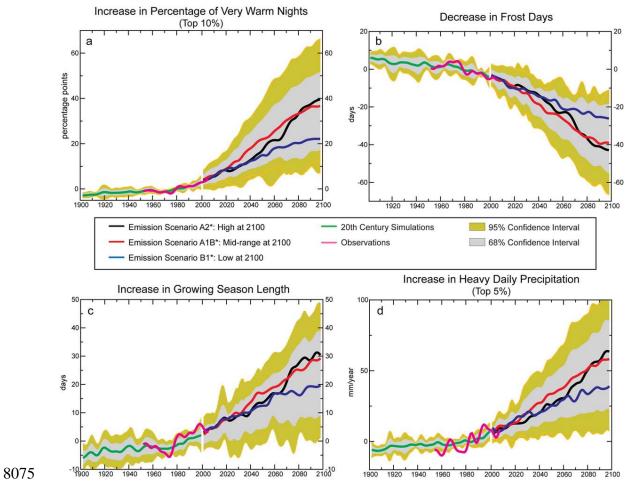
8009	
8010	Williams, G., K.L. Layman, H.G. Stefan, 2004: Dependence of lake ice covers on
8011	climatic, geographic and bathymetric variables. Cold Reg. Sci. Tech., 40, 145-
8012	164.
8013	
8014	Wittenberg, A. T., A. Rosati, NC. Lau, and J. J. Ploshay, 2006: GFDL's CM2 global
8015	coupled climate models - Part 3: Tropical Pacific climate and ENSO. J. Climate,
8016	19 (5), 698-722.
8017	17(5), 090 722.
8018	Wu, L., and B. Wang, 2004: Assessing impacts of global warming on tropical cyclone
8019	tracks. J. Climate, 17 , 1686-1698.
8020	uacks. <i>J. Cumule</i> , 17 , 1000-1070.
8020	Wu, L., B. Wang, and S. Geng, 2005: Growing typhoon influence on east Asia, Geophys.
8021	
	Res. Lett., 32, L18703, doi:10.1029/2005GL022937.
8023	Way DL D Wood and D Statt 2005. Human influence on increasing Arctic river
8024	Wu, P.L., R. Wood, and P. Stott, 2005: Human influence on increasing Arctic river
8025	discharges. Geophys. Res. Lett., 32, Art. No. L02703.
8026	
8027	Yin, J.H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st
8028	century climate. Geophys. Res. Lett., 32, L18701.
8029	
8030	Yonetani, T., and H.B. Gordon, 2001: Simulated changes in the frequency of extremes
8031	and regional features of seasonal/annual temperature and precipitation when
8032	atmospheric CO2 is doubled. J. Clim., 14, 1765-1779.
8033	
8034	Yoshimura, J. and M. Sugi, 2005: Tropical cyclone climatology in a high-resolution
8035	AGCM - impacts of SST warming and CO2 increase. SOLA, 1, 133-136, DOI:
8036	10.2151/sola.2005-035.
8037	
8038	Yoshimura, J., M. Sugi and A. Noda, 2006: Influence of greenhouse warming on
8039	tropical cyclone frequency. J. Meteor. Soc. Japan, 84, 405-428.
8040	
8041	Zelle, H., G.J. Van Oldenborgh, G. Burgers, and H. Dijkstra, 2005: El Nino and
8042	greenhouse warming: Results from ensemble simulations with the NCAR CCSM.
8043	J. Climate, 18, 4669-4683.
8044	
8045	Zeng, Z., Y. Wang, and CC. Wu, 2006: Environmental dynamical control of tropical
8046	cyclone intensity-An observational study. Mon. Wea. Rev., (in press).
8047	
8048	Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on
8049	India/Sahel rainfall and Atlantic hurricanes. <i>Geophys. Res. Lett.</i> , 33 , L17712,
8050	doi:10.1029/2006GL026267.
8051	
8052	Zhang, X., F.W. Zwiers, and P.A. Stott, 2006: Multi-model multi-signal climate change
8053	detection at regional scale. <i>Journal of Climate</i> , in press.
8054	contraction at regional sould bournan of contract, in pross.

Zhang, X., F. W. Zwiers, G. C. Hegerl, N. Gillett, H. Lambert, and S. Solomon, 2007: Detection of human Influence on 20 th century precipitation trends. <i>Nature</i> , in
press.
Zhang, X.D., and J.E. Walsh, 2006: Toward a seasonally ice-covered Arctic Ocean:
Scenarios from the IPCC AR4 model simulations. J. Climate, 19, 1730-1747.
Zwiers, F.W., and X. Zhang, 2003: Toward regional scale climate change detection.
Journal of Climate, 16, 793-797.

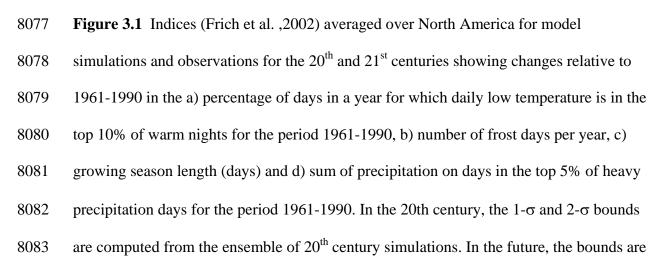
8065 Table 3.1 Models and scenarios used for computing the Frich et al. (2002) indices

Scenario	Models
SRES A1B	ccsm3.0
	cnrm
	gfdl2.0
	gfdl2.1
	inmcm3
	ipsl
	miroc3_2_medres
	miroc3_2_hires
	mri_cgcm2_3_2a
SRES A2	cnrm
	gfd2.0
	gfdl2.1
	inmcm3
	ipsl
	miroc3_2_medre
	mri_cgcm2_3_2a
SRES B1	ccsm3.0
	cnrm
	gfdl2.0
	gfdl2.1
	inmcm3
	ipsl
	miroc3_2_medres
	miroc3_2_hires

8066 for North America that appear in this document.


8068 **Table 3.2 Summary of tropical storm frequency, expressed as a percent of present**

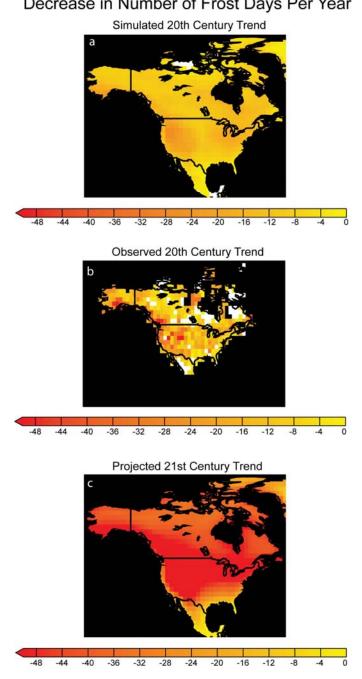
8069 day levels, as simulated by several climate GCMs under global warming conditions.


Reference	Model	Resolution	Experiment				
					Ν	NW	NE
				Global	Atlantic	Pacific	Pacific
Sugi et al. 2002	JMA	T106 L21	10y	<u>66</u>	<u>161</u>	<u>34</u>	33
	timeslice	(~120km)	1xCO2, 2xCO2				
Tsutsui 2002	NCAR	T42 L18	10y	102	86	111	91
	ССМ2		1xCO2				
			2xCO2 from				
			115y CO2 1% pa				
McDonald et al.	HadAM3	N144 L30	15y IS95a	<u>94</u>	<u>75</u>	<u>70</u>	<u>180</u>
2005	timeslice	(~100km)	1979-1994				
			2082-2097				
Hasegawa and	CCSR/NIES	T106 L56	5x20y at 1xCO2			96	
Emori 2005	/FRCGC	(~120km)	7x20y at 2xCO2				
	timeslice						
Yoshimura et al.	JMA	T106 L21	10y	<u>85</u>			
2006	timeslice	(~120km)	1xCO2, 2xCO2				
Bengtsson et al.	ECHAM5-	T63 L31	A1B 3 members	94			1
2006	ОМ	1.5° L40	30y 20C and 21C				
Oouchi et al.	MRI/JMA	TL959 L60	10y A1B	<u>70</u>	<u>134</u>	<u>62</u>	<u>66</u>
2006	timeslice	(~20km)	1982-1993				

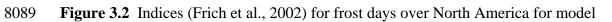
			2080-2099			
Chauvin et al.	ARPEGE-	Stretched	10y			
2006	Climat time	non-uniform	CNRM SRES-B2:	118		
	slice	grid (~50	Hadley SRES-A2:	<u>75</u>		
		km)				
Bengtsson et al.	ECHAM5	up to T319	20yr, A1B scenario	 <u>87</u>	<u>72</u>	<u>107</u>
2007	time slice	(down to				
		~30-40 km				
		grid)				

- 8071 **<u>Bold</u>** = significantly <u>more</u> tropical storms in the future simulation
- 8072 <u>*Italic*</u> = significantly <u>fewer</u> tropical storms in the future simulation
- 8073 Plain text = not significant or significance level not tested

- 8084 from an ensemble of simulations that used the A1B, A2 or B1 scenarios^{*}. The bounds are
- 8085 the max (or min) standard deviation plus (or minus) signal over all three scenarios. The
- 8086 model plots are obtained from the CMIP-3 multi-model data set at PCMDI and the
- 8087 observations are from Peterson et al. (2007).

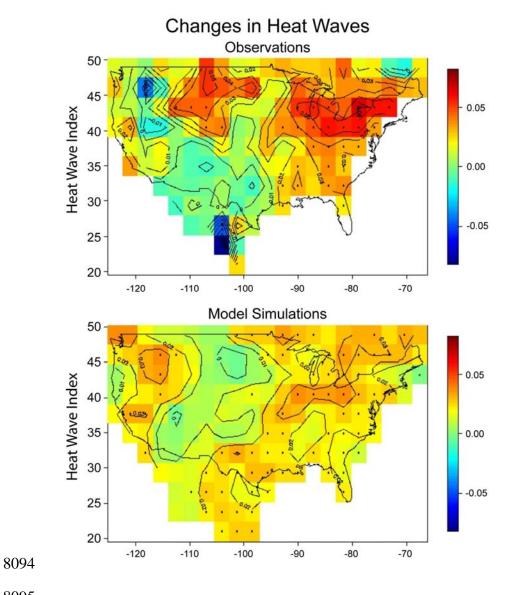

^{*3} future emission scenarios from the IPCC Special Report on Emissions Scenarios:

B1 blue line: emissions increase very slowly for a few more decades, then level off and decline

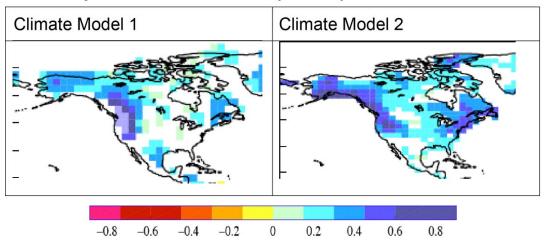

A2 black line: emissions continue to increase rapidly and steadily throughout this century

A1B red line: emissions increase rapidly until 2050 and then decline.

There are more details on these emission scenarios in the glossary.



Decrease in Number of Frost Days Per Year


simulations and observations: a) 20th century trend for model ensemble, b) Observed 20th 8090

- century trend and c) 21st century trend for emission scenario A2 from model ensemble. 8091
- The model plots are obtained from the CMIP-3 multi-model data set at PCMDI and the 8092
- 8093 observations are from Peterson et al. (2007).

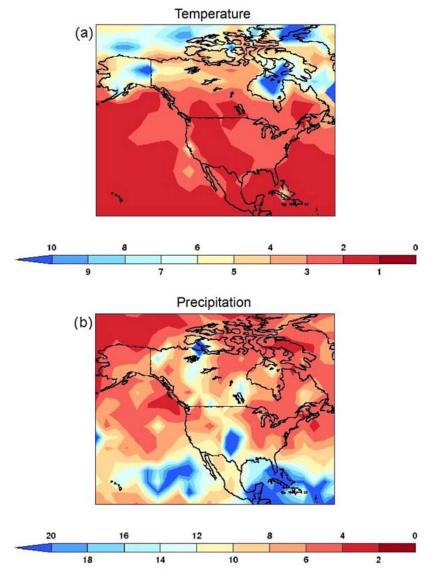
8096 Figure 3.3 Trends in the Karl-Knight heat-wave index (Karl and Knight, 1997) for 1961-

- 8097 1990 in observations (top panel) and in an ensemble of climate simulations by the
- 8098 Parallel Climate Model (bottom panel). Dots mark trends that are significant at the 95%
- 8099 level.

Projected Increase in Very Heavy Rainfall Events

8100

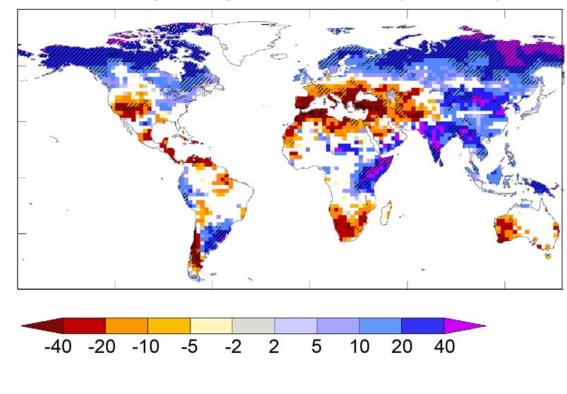
8101


8102 **Figure 3.4** Comparison between regions with disproportionate trends in the number of

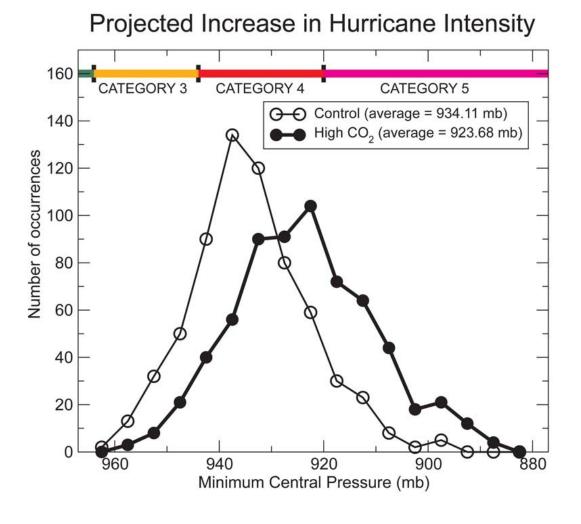
8103 exceedances of the heaviest rainfall events (99.7th percentile) in two climate models at the

8104 time of CO2 doubling. See figure 2.8 for areas of N. America which show observed

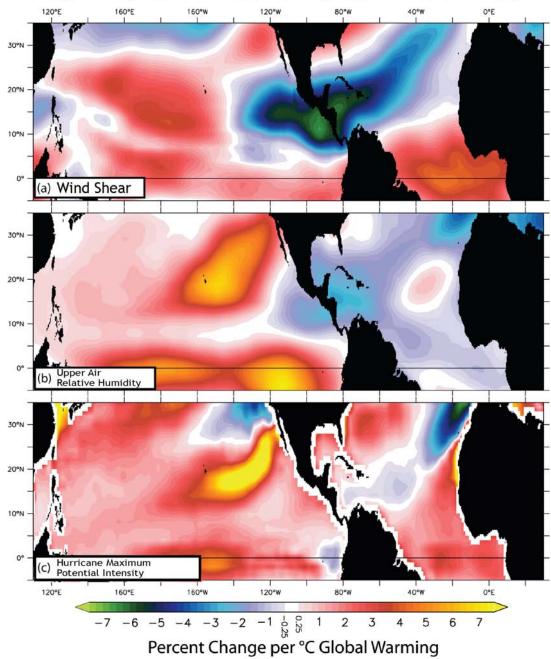
8105 increases in very heavy rainfall Model 1 is the CGCM2 and model 2 is the HadCM3.


8106 After Groisman et al. (2005).

Projected Increase in Occurrence of a 1-in-20 Year Event


8107

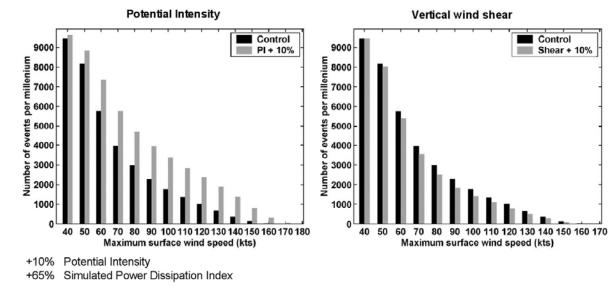
8108 Figure 3.5 Simulations for 2090-2099 indicating how currently rare extremes (a 1-in-20-8109 year event) are projected to become more commonplace. a) Temperature - a day so hot 8110 that it is currently experienced once every 20 years would occur every other year or more 8111 by the end of the century, (b) daily total precipitation events that occur on average every 8112 20 years in the present climate would, for example, occur once in every 4-6 years for 8113 N.E. North America. These results are based on a multi-model ensemble of global 8114 climate models simulating the midrange A1B emission scenario*. (from Wehner 2005). 8115 [units: years].


Percentage Change in Annual Runoff (2090-2099)

- 8118 **Figure 3.6** Change in annual runoff (%) for the period 2090-2099, relative to 1980-1999.
- 8119 Values are obtained from the median in a multi-model dataset that used the A1B emission
- scenario. White areas are where less than 66% of the models agree in the sign of change
- and stippled areas are where more than 90% models agree in the sign of change. [Derived
- 8122 from the analysis of Milly et al. (2005)]

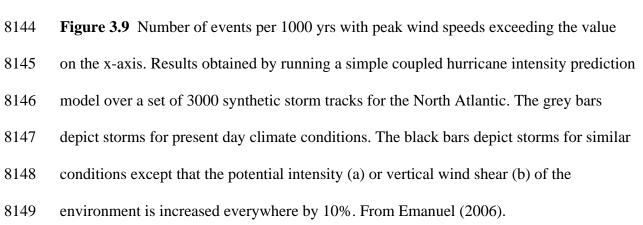
8124

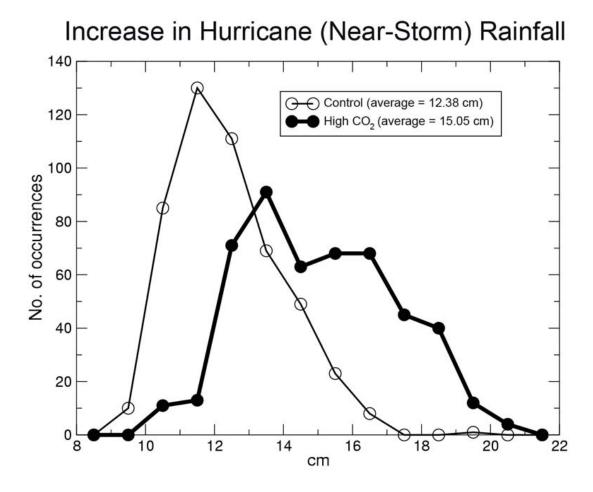
Figure 3.7 Frequency histograms of hurricane intensities in terms of central pressure (mb) aggregated across all idealized hurricane experiments in the Knutson and Tuleya (2004) study. The light curve shows the histogram from the experiments with present-day conditions, while the dark curve is for high CO_2 conditions (after an 80 yr warming trend in a +1%/yr CO_2 experiment). The results indicate that hurricanes in a CO_2 -warmed climate will have significantly higher intensities (lower central pressures) than hurricanes in the present climate.

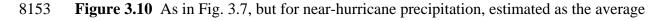


Changes in Aspects of Climate that Regulate Hurricane Development

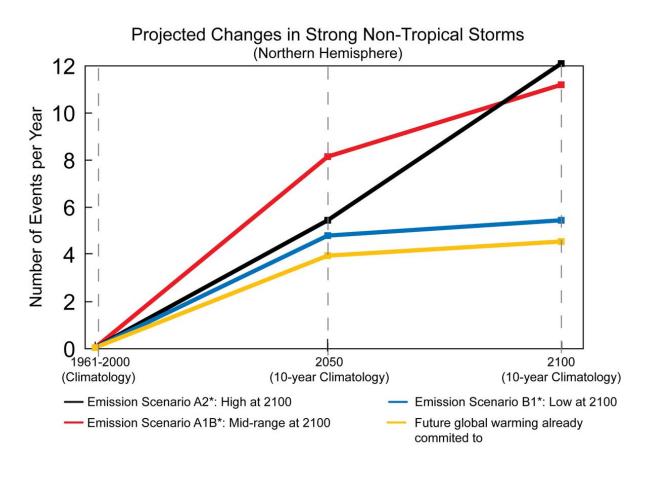
- 8133
- 8134


Figure 3.8 Percent changes in June-November ensemble mean a) vertical wind shear, b)
mid-tropospheric relative humidity, and c) maximum potential intensity of tropical
cyclones for the period 2081-2100 minus the period 2001-2021 for an ensemble of 18


- 8138 GCMs, available in the IPCC AR4 archive, using the A1B scenario. The percentage
- 8139 changes are normalized by the global surface air temperature increase projected by the
- 8140 models. From Vecchi and Soden (2007).


Influence of Climatic Factors that Contribute to Hurricane Development

8143



8151

- 8154 precipitation rate for the 102 model grid points (32,700 km² area) with highest
- 8155 accumulated rainfall over the last 6 hours of the 5-day idealized hurricane experiments in
- 8156 Knutson and Tuleya (2004). The results indicate that hurricanes in a CO2-warmed
- 8157 climate will have substantially higher core rainfall rates than those in the present climate.
- 8158 (From Knutson and Tuleya, 2007).

8161 Figure 3.11 The projected change in intense low pressure systems (strong storms) during

- the cold season for the Northern Hemisphere for various emission scenarios* (adapted
- 8163 from Lambert and Fyfe; 2006). Storms counted have central pressures less than 970 mb
- and occur poleward of 30° N during 120-day season starting November 15. Adapted from
- 8165 Lambert and Fyfe (2006).