2111	Chapter 2 Observed Changes of Weather and Climate
2112	Extremes
2113	
2114	Convening Lead Author: Kenneth Kunkel, Univ. Ill. Urbana-Champaign, Ill. State
2115	Water Survey
2116	
2117	Lead Authors: Peter Bromirski, Scripps Inst. Oceanography, UCSD; Harold Brooks,
2118	NOAA; Tereza Cavazos, Centro de Investigación Científica y de Educación Superior de
2119	Ensenada, Mexico; Arthur Douglas, Creighton Univ.; David Easterling, NOAA; Kerry
2120	Emanuel, Mass. Inst. Tech.; Pavel Groisman, UCAR/NCDC; Greg Holland, NCAR;
2121	Thomas Knutson, NOAA; James Kossin, Univ. WisMadison, CIMSS; Paul Komar,
2122	Oreg. State Univ.; David Levinson, NOAA; Richard Smith, Univ. N.C., Chapel Hill
2123	
2124	Contributing Authors: Jonathan Allan, Oreg. Dept. Geology and Mineral Industries;
2125	Raymond Assel, NOAA; Stanley Changnon, Univ. Ill. Urbana-Champaign, Ill. State
2126	Water Survey; Jay Lawrimore, NOAA; Kam-biu Liu, La. State Univ., Baton Rouge;
2127	Thomas Peterson, NOAA
2128 2129 2130 2131	KEY FINDINGS Observed Changes
2132	Upward trends in the frequency of unusually warm nights, extreme precipitation
2133	episodes, the frequency of North Atlantic tropical cyclones (hurricanes), the length of the
2134	frost-free season, and extreme wave heights along the west coast are notable changes in
2135	the North American climate record.
2136	• Most of North America is experiencing more unusually hot days. The number of
2137	warm spells has been increasing since 1950. However, the heat waves of the 1930s
2138	remain the most severe in the U.S. historical record back to 1895.

2139	•	There are fewer unusually cold days during the last few decades. The last 10 years
2140		have seen a lower number of severe cold waves than for any other 10-yr period in the
2141		historical record which dates back to 1895. There has been a decrease in the number
2142		of frost days and a lengthening of the frost-free season, particularly in the western
2143		part of North America.
2144	•	Extreme precipitation episodes (heavy downpours) have become more frequent and
2145		more intense in recent decades than at any other time in the historical record dating
2146		back to the late 19 th Century and account for a larger percentage of total precipitation.
2147		The most significant changes have occurred in most of the U.S., northern Mexico,
2148		southeastern, northern and western Canada, and southern Alaska.
2149	•	There are recent regional tendencies toward more severe droughts in the southwestern
2150		U.S., parts of Canada and Alaska, and Mexico.
2151	•	For the continental U.S. and southern Canada, the most severe droughts occurred in
2152		the 1930s and there is no indication of an overall trend since 1895; in Mexico, the
2153		1950s and 1994-present were the driest period.
2154	•	Atlantic tropical cyclone (hurricane) activity, as measured by both frequency and the
2155		Power Dissipation Index (which combines storm intensity, duration and frequency)
2156		has increased.
2157		– The increases are substantial since about 1970, and are likely substantial since
2158		the 1950s and 60s, in association with warming Atlantic sea surface temperatures.
2159		There is less confidence in data prior to 1900.
2160		– It is likely that there has been an increase in tropical cyclone <i>frequency</i> in the
2161		North Atlantic over the past 100 years, which has closely followed warming

2162		tropical Atlantic sea surface temperatures. There is increasing uncertainty in the
2163		data as one proceeds further back in time.
2164		- The frequency of major hurricanes has increased coincident with overall
2165		tropical cyclone numbers.
2166	•	There is no observational evidence for an increase in North American mainland land-
2167		falling hurricanes since the late 1800s.
2168	•	The hurricane Power Dissipation Index in the eastern Pacific, affecting the Mexican
2169		west coast and shipping lanes, has decreased since 1980, but rainfall from near-
2170		coastal hurricanes has increased since 1949.
2171	•	The balance of evidence suggests that there has been a northward shift in the tracks of
2172		strong low pressure systems (storms) in both the N. Atlantic and N. Pacific basins.
2173		There is a trend toward stronger intense low pressure systems in the North Pacific.
2174	•	Increases in extreme wave height characteristics have been observed along the
2175		Atlantic and Pacific coasts of North America during recent decades based on 3
2176		decades of buoy data.
2177		- Increases along the West coast have been greatest in the Pacific Northwest, and are
2178		likely a reflection of changes in storm tracks.
2179		- Increases along the U.S. east coast are evident during the hurricane season.
2180	•	Although snow cover extent has decreased over North America, there is no indication
2181		of continental-scale trends in snowstorms and episodes of freezing rain during the
2182		20 th Century.
2183	•	There is no trend in the frequency of tornadoes and other severe convective storms

when the data are adjusted for changes in observing practices.

2185 **2.1 Background**

2186 Weather and climate extremes exhibit substantial spatial variability. It is not unusual for 2187 severe drought and flooding to occur simultaneously in different parts of North America 2188 (e.g. catastrophic flooding in the Mississippi River basin and severe drought in the 2189 southeast U.S. during summer 1993). These reflect temporary shifts in large-scale 2190 circulation patterns that are an integral part of the climate system (Chapter 2, Box 2.3). 2191 The central goal of this chapter is to identify long-term shifts/trends in extremes and to 2192 characterize the continental-scale patterns of such shifts. Such characterization requires 2193 data that is homogeneous, of adequate length, and with continental-scale coverage. Many 2194 datasets meet these requirements for limited periods only. For temperature and 2195 precipitation, rather high quality data are available for the conterminous U.S. back to the late 19th Century. However, shorter data records are available for parts of Canada, 2196 2197 Alaska, Hawaii, Mexico, the Caribbean, and U.S. territories. In practice, this limits true 2198 continental-scale analyses of temperature and precipitation extremes to the middle part of the 20th Century onward. Other phenomena have similar limitations and continental-scale 2199 2200 characterizations are generally limited to the last 50-60 years or less, or must confront 2201 data homogeneity issues which add uncertainty to the analysis. We consider all studies 2202 that are available, but in many cases these studies have to be interpreted carefully because 2203 of these limitations. A variety of statistical techniques are used in the studies cited here. 2204 General information about statistical methods along with several illustrative examples are 2205 given in the Appendix. 2206

2208 2.2 Observed Changes and Variations in Weather and Climate Extremes

2209 2.2.1 Temperature Extremes

- 2210 Extreme temperatures do not always correlate with average temperature, but they often
- 2211 change in tandem; thus, average temperature changes provide a context for discussion of
- 2212 extremes. In 2005, virtually all of North America was above to much above average¹¹
- (Shein et al. 2006) and 2006 was one of the warmest years on record in the conterminous
- 2214 United States (Arguez et al., 2007). The areas experiencing the largest temperature
- anomalies included the higher latitudes of Canada and Alaska. Annual average
- temperature time series for Canada, Mexico and the United States all show substantial
- 2217 warming since the middle of the 20th century (Shein et al. 2006). Since 1998 over half of
- the U.S. annual average temperatures have been extremely high, including the hottest two
- 2219 years on record (1998 and 2006).
- 2220
- 2221 Since 1950, the annual percent of days exceeding the 90th, 95th, and 97.5th percentile

thresholds¹² for both maximum (daytime highs) and minimum (nighttime lows)

temperature has increased when averaged over all the land area (Figure 2.1; Peterson et

- al. 2007). Although the changes are greatest in the 90th percentile (increasing from about
- 2225 10% of the days to about 13% for maximum and almost 15% for minimum) and decrease
- as the threshold temperatures increase indicating more rare events (the 97.5th percentage
- increases from about 3% of the days to 4% for maximum and 5% for minimum), the

¹¹ NOAA's National Climatic Data Center uses the following terminology for classifying its monthly/seasonal/annual U.S. temperature and precipitation rankings: "near-normal" is defined as within the *mid-tercile*, "above/below normal" is within the *top-tercile*, and "much-above/much-below normal" is within the *top-decile* of all such periods on record.

¹² An advantage of the use of percentile, rather than absolute, thresholds is that they account for regional climate differences

2228	relative changes are similar. There are important regional differences in the changes. For
2229	example, the largest increases in the 90 th percentile threshold temperature occur in the
2230	western part of the continent from northern Mexico through the western U.S. and Canada
2231	and across Alaska, while some areas, such as eastern Canada, show declines of as many
2232	as 10 days per year from 1950 to 2004 (Fig. 2.2).
2233	
2234	Other regional studies have shown similar patterns of change. For the U.S., the number of
2235	days exceeding the 90 th , 95 th and 99 th percentile thresholds (defined monthly) have
2236	increased in recent years ¹³ , but are also dominated earlier in the 20 th century by the
2237	extreme heat and drought of the 1930s ¹⁴ (DeGaetano and Allen 2002). Changes in cold
2238	extremes (days falling below the 10 th , 5 th , and 1 st percentile threshold temperatures) show
2239	decreases, particularly since 1960 ¹⁵ . For the 1900-1998 period in Canada, there are fewer
2240	cold extremes in winter, spring and summer in most of southern Canada and more high
2241	temperature extremes in winter and spring, but little change in warm extremes in
2242	summer ¹⁶ (Bonsal et al. 2001). However, for the more recent (1950-1998) period there
2243	are significant increases in warm extremes over western Canada, but decreases in eastern
2244	Canada. Similar results averaged across all of Canada are found for the longer 1900-2003
2245	period, with 28 fewer cold nights, 10 fewer cold days, 21 more extreme warm nights and
2246	8 more warm days per year now than in 1900 ¹⁷ (Vincent and Mekis 2006). For the U.S.
2247	and Canada, the largest increases in daily maximum and minimum temperature are

¹³ The number of stations with statistically significant positive trends for 1960-1996 passed tests for field significance based on resampling.

¹⁴ The number of stations with statistically significant negative trends for 1930-1996 was greater than the number with positive trends.

¹⁵ The number of stations with statistically significant downward trends for 1960-1996 passed tests for field ¹⁶ Statistical significance of trends was assessed using Kendall's tau test
 ¹⁷ These trends were statistically significant at more than 20% of the stations based on Kendall's tau test

2248	occurring in the colder days of each month (Robeson 2004). For the Caribbean region,
2249	there is an 8% increase in the number of very warm nights and 6% increase in the number
2250	of very warm days for the 1958-1999 period. There also has been a corresponding
2251	decrease of 7% in the number of cold days and 4% in the number of cold nights (Peterson
2252	et al. 2002). The number of warm nights has increased by 10 or more per year for Hawaii
2253	and 15 or more per year for Puerto Rico from 1950 to 2004 (Fig. 2.2).
2254	
2255	Analysis of multi-day very extreme heat and cold episodes ¹⁸ in the U.S. were updated ¹⁹
2256	from Kunkel et al. (1999) for the period 1895-2005. The most notable feature of the
2257	pattern of the annual number of the extreme heat waves (Fig. 2.3a) through time is the
2258	high frequency in the 1930s compared to the rest of the years in the 1895-2005 period.
2259	This was followed by a decrease to a minimum in the 1960s and 1970s and then an
2260	increasing trend since then. There is no trend over the entire period, but a highly
2261	statistically significant upward trend since 1960. The heat waves during the 1930s were
2262	characterized by extremely high daytime temperatures while nighttime temperatures were
2263	not as unusual (Fig. 2.3b,c). An extended multi-year period of intense drought
2264	undoubtedly played a large role in the extreme heat of this period, particularly the
2265	daytime temperatures, by depleting soil moisture and reducing the moderating effects of
2266	evaporation. By contrast, the recent period of increasing heat wave index is distinguished
2267	by the dominant contribution of a rise in extremely high nighttime temperatures (Fig.
2268	2.3c). Cold waves show a decline in the first half of the 20 th century, then a large spike of

 ¹⁸ The threshold is approximately the 99.9 percentile.
 ¹⁹ The data were first transformed to create near-normal distributions using a log transformation for the heat wave index and a cube root transformation for the cold wave index. The transformed data were then subjected to least squares regression. Details are given in the Appendix, Example 2.

2269	events during the mid-1980s, then a decline ²⁰ . The last 10 years have seen a lower
2270	number of severe cold waves in the U.S. than in any other 10-yr period since 1895,
2271	consistent with observed impacts such as insect populations (Chapter 1, Box 1.2).
2272	Decreases in the frequency of extremely low nighttime temperatures have made a
2273	somewhat greater contribution than extremely low daytime temperatures to this recent
2274	low period of cold waves. Over the entire period there is a downward trend but it is not
2275	statistically significant at the p=0.05 level.
2276	
2277	The annual number of warm spells ²¹ averaged over North America has increased since
2278	1950 (Peterson et al. 2007). In the U.S. the annual number of warm spells ²² has increased
2279	by about 1 ¹ / ₂ per year, and the duration has increased by about 1 day since 1950
2280	(Easterling et al. 2007a). Regionally the largest increases, up to about 2 ¹ / ₂ per year, were
2281	found in the western U.S., with many parts of the south and southeast showing little
2282	change. Seasonal results show the largest increases in the spring and winter, with little
2283	change in the number of events for the fall or summer. These results for warm spells are
2284	roughly consistent with those for the much more extreme heat waves illustrated in Fig.
2285	2.3a for the common period of analysis (1950-present); the warm spell analyses do not
2286	extend back to the 1930s when very extreme heat was frequent. The frequency and extent
2287	of hot summers ²³ was highest in the 1930s, 1950s, and 1995-2003; the geographic pattern

²⁰ Details of this analysis are given in the Appendix, Example 1.
²¹ Defined as at least 3 consecutive days above the 90th percentile threshold done separately for maximum and minimum temperature.
²² Defined as at least 3 consecutive days with both the daily maximum and succeeding daily minimum temperature above the 80th percentile.
²³ Based on percentage of North American grid points with summer temperatures above the 90th or below the 10th percentiles of the 1950-1999 summer climatology.

of hot summers during 1995-2003 was similar to that of the 1930s (Gershunov and 2288 Douville 2007). 2289

2291	The occurrence of temperatures below the biologically- and societally-important freezing
2292	threshold (0°C, 32°F) is an important aspect of the cold season climatology. Studies have
2293	typically characterized this either in terms of the number of frost days (days with the
2294	minimum temperature below freezing) or the length of the frost-free season ²⁴ . The
2295	number of frost days decreased by 4 days per year in the U.S. during the 1948-1999
2296	period, with the largest decreases, as many as 13 days per year, occurring in the Western
2297	U.S. ²⁵ (Easterling 2002). In Canada, there have been significant decreases in frost day
2298	occurrence over the entire country from 1950 to 2003, with the largest decreases in
2299	extreme western Canada where there have been decreases of up to 40 or more frost days
2300	per year, and slightly smaller decreases in eastern Canada (Vincent and Mekis 2006). The
2301	start of the frost-free season in the Northeastern U.S. occurred 11 days earlier in the
2302	1990s than in the 1950s (Cooter and LeDuc 1995). For the entire U.S., the average length
2303	of the frost-free season over the 1895-2000 period for the U.S. increased by almost 2
2304	weeks ²⁶ (Figure 2.4; Kunkel et al. 2004). The change is characterized by 4 distinct
2305	regimes, with decreasing frost-free season length from 1895 to1910, an increase in length
2306	of about 1 week from 1910 to 1930, little change during1930-1980, and large increases
2307	since1980. The frost-free season length has increased more in the western U.S. than in
2308	the eastern U.S. (Easterling 2002; Kunkel et al. 2004), which is consistent with the

 ²⁴ The difference between the date of the last spring frost and the first fall frost
 ²⁵ Trends in the western half of the U.S. were statistically significant based on simple linear regression
 ²⁶ Statistically significant based on least-squares linear regression

2309	finding that the spring pulse of snow melt water in the Western U.S. now comes as much
2310	as 7-10 days earlier than in the late 1950s (Cayan et al. 2001).
2311	
2312	Ice cover on lakes and the oceans is a direct reflection of the number and intensity of
2313	cold, below freezing days. Ice cover on the Laurentian Great Lakes of North American
2314	usually forms along the shore and in shallow areas in December and January, and in
2315	deeper mid-lake areas in February due to their large depth and heat storage capacity. Ice
2316	loss usually starts in early to-mid-March and lasts through mid-to-late April (Assel 2003).
2317	
2318	Annual maximum ice cover on the Great Lakes has been monitored since 1963. The
2319	maximum extent of ice cover over the past 4 decades varied from less then 10% to over
2320	90%. The winters of 1977-1982 were characterized by a higher ice cover regime relative
2321	to the prior 14 winters (1963-1976) and the following 24 winters (1983-2006) (Assel et
2322	al. 2003, Assel 2005a, Assel personal communication for winter 2006). A majority of the
2323	mildest (lowest) seasonal average ice cover winters (Assel 2005b) over the past 4 decades
2324	occurred during the most recent 10-year period (1997-2006). Analysis of ice breakup
2325	dates on other smaller lakes in North America with at least 100 years of data (Magnuson
2326	et al. 2000) show a uniform trend toward earlier breakup dates (up to 13 days earlier per
2327	$100 \text{ years})^{27}$.
2328	

2329 Reductions in Arctic sea ice, especially near-shore sea ice, allow strong storm and wave

2330 activity to produce extensive coastal erosion resulting in extreme impacts. Observations

2331 from satellites starting in 1978 show that there has been a substantial decline in Arctic sea

²⁷ Statistically significant trends were found for 16 of 24 lakes

2332	ice, with a statistically significant decreasing trend in annual Arctic sea ice extent of -33
2333	\pm 8.8 x 10 ³ km ² per year (equivalent to approximately -2.7% \pm 0.7% per decade).
2334	Seasonally the largest changes in Arctic sea ice have been observed in the ice that
2335	survives the summer, where the trend in the minimum Arctic sea ice extent, between
2336	1979 and 2005, was $-60 \pm 24 \times 10^{3} \text{ km}^{2}$ per year (-7.4 ± 2.9% per decade) (Lemke et al.
2337	2007).
2338	
2339	Rising sea surface temperatures have led to an increase in the frequency of extreme high
2340	SST events causing coral bleaching (see Box 1.1, Chapter 1). Mass bleaching events were
2341	not observed prior to 1980. However, since the 1970s, there have been 6 major global
2342	cycles of mass bleaching, with increasing frequency and intensity (Hoegh-Guldberg
2343	2005). Almost 30% of the world's coral reefs have disappeared in that time.
2344	
2345	Less scrutiny has been focused on Mexico temperature extremes, in part, because much
2346	of the country can be classified as a 'tropical climate' where temperature changes are
2347	presumed fairly small, or semi-arid to arid climate where moisture availability exerts a far
2348	greater influence on human activities than does temperature.
2349	
2350	Most of the sites in Mexico's oldest temperature observing network are located in major
2351	metropolitan areas and there is considerable evidence to indicate that trend behaviors at
2352	least partly reflect urbanization and urban heat island influences (Englehart and Douglas,
2353	2003). To avoid such issues in analysis, a monthly rural temperature dataset has recently

2354	been developed ²⁸ . Examined in broad terms as a national aggregate, a couple of basic
2355	behaviors emerge. First, long period temperature trends over Mexico are generally
2356	compatible with continental-scale trends which indicate a cooling trend over North
2357	America from about the mid-1940s to the mid-1970s, with a warming trend thereafter.
2358	
2359	The rural gridded data set indicates that much of Mexico experienced decreases in both
2360	T_{max} and T_{min} during 1941-1970 (-0.27 $^{\circ}C/decade$ for T_{max} and -0.19 $^{\circ}C/decade$ for $T_{min})$
2361	while the later period of 1971-2001 is dominated by positive trends that are most strongly
2362	evident in T_{max} (0.35°C/decade for T_{max} and 0.10°C/decade for T_{min}). Based on these
2363	results it appears very likely that much of Mexico has experienced an increase in average
2364	temperature driven in large measure by increases in T_{max} . The diurnal temperature range
2365	$(T_{max} minus T_{min})$ for the warm season (June-September) averaged over all of Mexico has
2366	increased by 0.26°C/decade since 1970 with particularly rapid rises since 1990 (Fig. 2.5)
2367	reflecting a comparatively rapid rise in T_{max} with respect to T_{min} (Englehart and Douglas
2368	2005) ²⁹ . This behavior departs from the general picture for many regions of the world,
2369	where warming is attributable mainly to a faster rise in T_{min} than in T_{max} (e.g. Easterling
2370	et al., 1997).
2371	

- Given Mexico's largely tropical/sub-tropical climate and the influence of nearby oceans, 2372
- a reasonable expectation would be that changes in the behavior of temperature extremes 2373

²⁸ It consists of monthly historical surface air temperature observations (1940-2001) compiled from stations (n=103) located in places with population <10,000 (2000 Census). To accommodate variable station record lengths and missing monthly observations, the dataset is formatted as a grid-type (2.5° x 2.5° lat.-long.) based on the climate anomaly method (Jones and Moberg, 2003)²⁹ Statistically significant trends were found in the northwest, central, and south, but not the northeast

regions

2374	could be small and difficult to detect as compared to at many mid-and high latitude
2375	locations. However, the cold surge ³⁰ phenomena – the equatorward penetration of
2376	modified cold air, known as nortes in Mexico – is an integral part of the country's cool
2377	season climatology. The frequency of both cold surge days and cold surge events tends to
2378	vary depending in part on Pacific Decadal Oscillation (PDO) phase: under negative PDO
2379	phase cold surge activity tends to be more prevalent. However, the intensity of cold surge
2380	events as indicated by the maximum daily drop in T_{min} tends to be greater under positive
2381	PDO phase. Analysis of linear trends indicates that from the early 1950s onward, it is
2382	very likely that southern Mexico has experienced a trend toward decreasing frequency of
2383	both cold surge days by 2.4 cold days/decade and cold surge events by 0.88
2384	events/decade (Englehart and Douglas 2007).
2385	
2386	2.2.2 Precipitation Extremes
2387	2.2.2.1 Drought
2388	Droughts are one of the most costly natural disasters (Chapter 1, Box 1.4), with estimated
2389	annual U.S. losses of \$6 – 8 billion (Federal Emergency Management Agency, 1995). An
2390	extended period of deficient precipitation is the root cause of a drought episode, but the
2391	intensity can be exacerbated by high evaporation rates arising from excessive
2392	temperatures, high winds, lack of cloudiness, and/or low humidity. Drought can be
2393	defined in many ways, from acute short-term to chronic long-term hydrological drought,
2394	agricultural drought, meteorological drought, and so on. The assessment in this report

- 2395 focuses mainly on meteorological droughts based on the Palmer (1965) Drought Severity
- 2396 Index (PDSI), though other indices are also documented in the report (Chapter 2, Box
- 2397 2.1).

 $^{^{30}}$ Cold surges are defined for the period 1925-2002 based on daily station observations of T_{min} from two locations – stations in south Texas and near coastal stations from the southern Mexican state of Veracruz. Cold surge days have T_{min} below its climatological values by 1 standard deviation. Cold surge events are runs of 1 or more consecutive cold surge days.

2399	Individual droughts can occur on a range of spatial scales, but they often affect rather
2400	large areas and can persist for many months and even years. Thus, the aggregate impacts
2401	can be very large. For the U.S., the percentage area affected by severe to extreme drought
2402	(Fig. 2.6) highlights some major episodes of extended drought. The most widespread and
2403	severe drought conditions occurred in the 1930s and 1950s (Andreadis et al. 2005). The
2404	early 2000s were also characterized by severe droughts in some areas, notably in the
2405	western U.S. When averaged across the entire U.S. (Fig. 2.6), there is no clear tendency
2406	for a trend based on the PDSI. Similarly, long-term trends (1925-2003) of hydrologic
2407	droughts based on model derived soil moisture and runoff show that droughts have, for
2408	the most part, become shorter, less frequent, and cover a smaller portion of the U.S. over
2409	the last century (Andreadis and Lettenmaier, 2006). The main exception is the Southwest
2410	and parts of the interior of the West, where increased temperature has led to positive
2411	drought trends (Andreadis and Lettenmaier, 2006). The trends averaged over all of North
2412	America since 1950 (Fig. 2.6) are similar to U.S. trends for the same period, indicating no
2413	overall trend.
2414	
2415	Since the contiguous United States has experienced an increase in both temperature and

2416 precipitation during the 20^{th} century, one question is whether these increases are

2417 impacting the occurrence of drought. Easterling et al (2007b) examined this possibility by

- 2418 looking at drought, as defined by the PDSI, for the United States using detrended
- temperature and precipitation. Results indicate that without the upward trend in

- precipitation the increase in temperatures would have lead to an increase in the area ofthe U.S. in severe-extreme drought of up to 30% in some months.
- 2422

2423 Summer conditions, which relate to fire danger, have trended toward lesser drought in the 2424 upper Mississippi, Midwest, and Northwest, but the fire danger has increased in the 2425 Southwest, in California in the spring season (not shown), and, surprisingly, over the 2426 Northeast, despite the fact that annual precipitation here has increased. A century-long 2427 warming in this region is quite significant in summer, which reverses the tendencies of 2428 the precipitation contribution to soil wetness (Groisman et al. 2004). Westerling et al. 2429 (2006) document that large wildfire activity in the Western U.S. increased suddenly and 2430 markedly in the mid-1980s, with higher large-wildfire frequency, longer wildfire 2431 durations, and longer wildfire seasons. The greatest increases occurred in mid-elevation, 2432 Northern Rockies forests, where land-use histories have relatively little effect on fire risks 2433 and are strongly associated with increased spring and summer temperatures and an earlier 2434 spring snowmelt.

For the entire North American continent, there is a north-south pattern in drought trends
(Dai et al. 2004). Since 1950, there is a trend toward wetter conditions over much of the
conterminous U.S., but a trend toward drier conditions over southern and western
Canada, Alaska, and Mexico. The summer PDSI averaged for Canada indicates dry
conditions during the 1940s and 1950s, generally wet conditions from the 1960s to 1995,
but much drier after 1995 (Shabbar and Skinner, 2004). In Alaska and Canada, the
upward trend in temperature, resulting in increased evaporation rates, has made a

2443	substantial contribution to the upward trend in drought (Dai et al. 2004). In agreement
2444	with this drought index analysis, the area of forest fires in Canada has been quite high
2445	since 1980 compared to the previous 30 years and Alaska experienced a record high year
2446	for forest fires in 2004 followed by the third highest in 2005 (Soja et al. 2007). During
2447	the mid-1990s and early 2000s, central (Stahle et al. 2007) and western Mexico (Kim et
2448	al. 2002; Nicholas and Battisti, 2006; Hallack and Watkins, 2007) experienced
2449	continuous cool-season droughts having major impacts in agriculture, forestry, and
2450	ranching, especially during the warm summer season. In 1998, "El Niño" caused one of
2451	the most severe droughts in Mexico since the 1950s (Ropelewski, 1999), creating the
2452	most difficult wildfire season in Mexico's history. Mexico had 14,445 wildfires affecting
2453	849,632 hectares - the largest area ever burned in Mexico in a single season
2454	(SEMARNAP, 2000).

2456 Reconstructions of drought prior to the instrumental record based on tree-ring 2457 chronologies indicate that the 1930s may have been the worst drought since 1700 (Cook 2458 et al. 1999). There were three major multiyear droughts in the U.S. during the latter half 2459 of the 1800s: 1856-1865, 1870-1877 and 1890-1896 (Herweijer et al. 2006). Similar 2460 droughts have been reconstructed for northern Mexico (Therrell et al. 2002). There is 2461 evidence of earlier, even more intense drought episodes (Woodhouse and Overpeck 2462 1998). A period in the mid to late 1500s has been termed a "mega-drought" and was 2463 longer-lasting and more widespread than the 1930s Dust Bowl (Stahle et al. 2000). 2464 Several additional mega-droughts occurred during 1000-1470 (Herweijer et al. 2007). 2465 These droughts were about as severe as the 1930s Dust Bowl episode but much longer,

2466	lasting 20-40 years. In the western U.S., the period of 900-1300 was characterized by
2467	widespread drought conditions (Fig. 2.7; Cook et al. 2004). In Mexico, reconstructions of
2468	seasonal precipitation (Stahle et al. 2000, Acuña-Soto et al. 2002, Cleaveland et al. 2004)
2469	indicate that there have been droughts more severe than the 1950s drought, e.g., the
2470	mega-drought in the mid- to late- 16 th century, which appears as a continental-scale
2471	drought.
2472	
2473	During the summer months, excessive heat and drought often occur simultaneously
2474	because the meteorological conditions typically causing drought are also conducive to
2475	high temperatures. The impacts of the Dust Bowl droughts and the 1988 drought were
2476	compounded by episodes of extremely high temperatures. The month of July 1936 in the
2477	central U.S. is a notable example. To illustrate, Lincoln, NE received only 0.05" of
2478	precipitation that month (after receiving less than 1 inch the previous month) while
2479	experiencing temperatures reaching or exceeding 110°F on 10 days, including 117°F on
2480	July 24. Although no studies of trends in such "compound" extreme events have been
2481	performed, they represent a significant societal risk.
2482	
2483	BOX 2.1: Drought Indicators and Resources
2484	• Palmer Drought Severity Index (PDSI; Palmer, 1965) – meteorological drought.
2485	The PDSI is a commonly-used drought index that measures intensity, duration, and
2486	spatial extent of drought. It is derived from measurements of precipitation, air
2487	temperature, and local estimated soil moisture content. Categories range from less
2488	than -4 (extreme drought) to more than +4 (extreme wet conditions), and have been

Do Not Cite or Quote

2489	standardized to facilitate comparisons from region to region. Alley (1984) identified
2490	some positive characteristics of the PDSI that contribute to its popularity: (1) it is an
2491	internationally recognized index; (2) it provides decision makers with a measurement
2492	of the abnormality of recent weather for a region; (3) it provides an opportunity to
2493	place current conditions in historical perspective; and (4) it provides spatial and
2494	temporal representations of historical droughts. However, the PDSI has some
2495	limitations (1) it may lag emerging droughts by several months; (2) it is less well
2496	suited for mountainous land or areas of frequent climatic extremes; (3) it does not
2497	take into account streamflow, lake and reservoir levels, and other long-term
2498	hydrologic impacts (Karl and Knight, 1985), such as snowfall and snow cover; (4) the
2499	use of temperature alone to estimate potential evapotranspiration (PET) can introduce
2500	biases in trend estimates because humidity, wind and radiation also affect PET and
2501	changes in these elements are not accounted for. In fact, Hobbins et al. (2007) show
2502	that the PDSI trends in Australia and New Zealand are exaggerated compared to
2503	trends using more realistic methods to estimate evapotranspiration. The use of
2504	temperature alone is a practical consideration since measurements of these other
2505	elements are often not available.
2506 •	Crop Moisture Index (CMI; Palmer, 1968) – short-term meteorological drought.
2507	Whereas the PDSI monitors long-term meteorological wet and dry spells, the CMI
2508	was designed to evaluate short-term moisture conditions across major crop-producing
2509	regions. It is based on the mean temperature and total precipitation for each week, as

2510 well as the CMI value from the previous week. Categories range from less than -3

2511 (severely dry) to more than +3 (excessively wet). The CMI responds rapidly to

2512 changing conditions, and it is weighted by location and time so that maps, which 2513 commonly display the weekly CMI across the United States, can be used to compare 2514 moisture conditions at different locations. Weekly maps of the CMI are available as 2515 part of the USDA/JAWF Weekly Weather and Crop Bulletin. 2516 Standardized Precipitation Index (SPI; McKee et al., 1993) – precipitation-based 2517 drought. The SPI was developed to categorize rainfall as a standardized departure 2518 with respect to a rainfall probability distribution function; categories range from less 2519 than -3 (extremely dry) to more than +3 (extremely wet). The SPI is calculated on the 2520 basis of selected periods of time (typically from 1 to 48 months of total precipitation) 2521 and it indicates how the precipitation for a specific period compares with the long-2522 term record at a given location (Edwards and McKee, 1997). The index correlates 2523 well with other drought indices. Sims et al. (2002) suggested that the SPI was more 2524 representative of short-term precipitation and a better indicator of soil wetness than 2525 the PDSI. The 9-month SPI corresponds closely to the PDSI (Heim 2002; Guttman 2526 1998).

 Keetch-Byram Index (KBDI; Keetch and Byram, 1968) – meteorological drought and wildfire potential index. This was developed to characterize the level of potential fire danger. It uses daily temperature and precipitation information and estimates soil moisture deficiency. High values of KBDI are indicative of favorable conditions for wildfires. However, the index needs to be regionalized, as values are not comparable among regions Groisman et al. 2004, 2007a).

No-rain episodes – meteorological drought. Groisman and Knight (2007) proposed
 to directly monitor frequency and intensity of prolonged no-rain episodes (greater

2535	than 20, 30, 60, etc. days) during the warm season, when evaporation and
2536	transpiration are highest and the absence of rain may affect natural ecosystems and
2537	agriculture. They found that during the past four decades the duration of prolonged
2538	dry episodes has significantly increased over the Eastern and Southwestern United
2539	States and adjacent areas of Northern Mexico and Southeastern Canada.
2540	• Soil Moisture and Runoff Index (SMRI; Andreadis and Lettenmaier, 2006) –
2541	hydrologic and agricultural droughts. The SMRI is based on model-derived soil
2542	moisture and runoff as drought indicators; it uses percentiles and the values are
2543	normalized from 0 (dry) to 1 (wet conditions). The limitation of this index is that it is
2544	based on land-surface model-derived soil moisture. However, long-term records of
2545	soil moisture – a key variable related to drought – are essentially non-existent
2546	(Andreadis and Lettenmaier, 2006). Thus, the advantage of the SMRI is that it is
2547	physically based and with the current sophisticated land-surface models it is easy to
2548	produce multimodel average climatologies and century-long reconstructions of land
2549	surface conditions, which could be compared under drought conditions.
2550	Resources: A list of these and other drought indicators, data availability, and current
2551	drought conditions based on observational data can be found at the National Climatic
2552	Data Center (NCDC, <u>http://www.ncdc.noaa.gov</u>). The North American Drought Monitor
2553	at NCDC monitors current drought conditions in Canada, the United States, and Mexico.
2554	Tree-ring reconstruction of PDSI across North America over the last 2000 years can be
2555	also found at NCDC
2556	

2558 2.2.2.2 Short Duration Heavy Precipitation

2559 2.2.2.1 Data Considerations and Terms

2560 Intense precipitation often exhibits higher spatial variability than many other extreme

2561 phenomena. This poses challenges for the analysis of observed data since the heaviest

area of precipitation in many events may fall between stations. This adds uncertainty to

estimates of regional trends based on the climate network. The uncertainty issue is

2564 explicitly addressed in some recent studies.

2565

2566 Precipitation extremes are typically defined based on the frequency of occurrence [by

2567 percentile (e.g., upper 5%, 1%, 0.1%, etc) or by return period (e.g. an average occurrence

of once every 5 years, once every 20 years, etc.)] of rain events and/or their absolute

values (e.g., above 50 mm, 100 mm, 150 mm, or more). Values of percentile or return

2570 period thresholds vary considerably across North America. For example, in the U.S.,

2571 regional average values of the 99.9 percentile threshold for daily precipitation are lowest

2572 in the Northwest and Southwest (average of 55 mm) and highest in the South (average of

2573 130mm)³¹.

2574

2575 As noted above, spatial patterns of precipitation have smaller spatial correlation scales

2576 (for example, compared to temperature and atmospheric pressure) which means that a

2577 denser network is required in order to achieve a given uncertainty level. While monthly

2578 precipitation time series for flat terrain have typical radii of correlation³² (ρ) of ~300 km

³¹ The large magnitude of these differences is a major motivation for the use of regionally-varying thresholds based on percentiles.

³² Spatial correlation decay with distance, r, for many meteorological variables, X, can be approximated by

2579	or even more, daily precipitation may have ρ less than 100 km with typical values for
2580	convective rainfall in isolated thunderstorms of ~15 to 30 km (Gandin and Kagan 1976).
2581	Values of ρ can be very small for extreme rainfall events and sparse networks may not be
2582	adequate to detect a desired minimum magnitude of change that can result in societally-
2583	important impacts and can indicate important changes in the climate system.
2584	
2585	2.2.2.2 United States
2586	One of the clearest trends in the U.S. observational record is that of an increasing
2587	frequency and intensity of heavy precipitation events (Karl and Knight 1998; Groisman et
2588	al. 1999, 2001, 2004; Kunkel et al. 1999; Easterling et al. 2000; IPCC 2001; Semenov
2589	and Bengtsson 2002, Kunkel 2003). For example, the area of the United States affected
2590	by a much above normal contribution to total annual precipitation of daily precipitation
2591	events exceeding 50.8 mm (2 inches) increased by a statistically significant amount from
2592	about 9% in the 1910s to about 11% in the 1980s and 1990s (Karl and Knight 1998).
2593	Total precipitation also increased during this time, due in large part to increases in the
2594	intensity of heavy precipitation events (Karl and Knight 1998). In fact, there has been
2595	little change or decreases in the frequency of light and average precipitation days
2596	(Easterling et al. 2000; Groisman et al. 2004, 2005) during the last 30 years while heavy
2597	precipitation frequencies have increased (Sun and Groisman 2004). For example, the
2598	amount of precipitation falling in the heaviest 1% of rain events has increased by 20%
2599	during the 20 th Century while total precipitation has increased by only 7% (Groisman et
2600	al. 2004). Although the exact character of those changes has been questioned (e.g.

an exponential function of distance: Corr (X(A), X(B)) ~ $e^{-r/\rho}$ where r is a distance between point A and B and ρ is a radius of correlation, which is a distance where the correlation between the points is reduced to 1/e compared to an initial "zero" distance.

- 2601 Michaels et al. 2004), it is highly likely that in recent decades extreme precipitation2602 events have increased more than light to medium events.
- 2603

A statistically significant 50% increase during the 1900s in the frequency of days with

- 2605 precipitation exceeding 101.6 mm (4 inches) was found in the upper Midwest U.S.
- 2606 (Groisman et al. 2001). Upward trends in the amount of precipitation occurring in the
- 2607 upper 0.3% of daily precipitation events are statistically significant for the period of
- 2608 1908-2002 within three major regions (the South, Midwest, and Upper Mississippi; see
- Fig. 2.8) of the central United States (Groisman et al. 2004). The upward trends are
- 2610 primarily a warm season phenomenon when the most intense rainfall events typically
- 2611 occur. A time series of the frequency of events in the upper 0.3% averaged for these 3
- regions (Fig 2.8) shows a 20% increase over the period of 1893-2002 with all of this
- 2613 increase occurring over the last third of the 1900s (Groisman et al. 2005).
- 2614

Examination of intense precipitation events defined by return period, covering the period of 1895-2000, indicates that the frequencies of extreme precipitation events before 1920 were generally above the long-term averages for durations of 1 to 30 days and return periods 1 to 20 years and only slightly lower than values during the 1980s and 1990s (Kunkel et al. 2003). The highest values occur after about 1980, but the elevated levels prior to about 1920 are an interesting feature suggesting that there is considerable variability in the occurrence of extreme precipitation on multi-decadal time scales

2623	There is a seeming discrepancy between the results for the 99.7 th percentile (which do not
2624	show high values early in the record in the analysis of Groisman et al. 2004) and for 1 to
2625	20-yr return periods (which do in the analysis of Kunkel et al. 2003). The number of
2626	stations with available data is only about half (about 400) in the late 1800s of what is
2627	available in most of the 1900s (800-900). Furthermore, the spatial distribution of stations
2628	throughout the record is not uniform; the density in the western U.S. is relatively lower
2629	than in the central and eastern U.S. It is possible that the resulting uncertainties in heavy
2630	precipitation estimates are too large to make unambiguous statements about the recent
2631	high frequencies.
2632	

2633 Recently, this question was addressed (Kunkel et al. 2007a) by analyzing the modern 2634 dense network to determine how the density of stations affects the uncertainty and then to 2635 estimate the level of uncertainty in the estimates of frequencies in the actual (sparse) 2636 network used in the long-term studies. The results were unambiguous. For all 2637 combinations of three durations (1-day, 5-days and 10-days) and 3 return periods (1-yr, 2638 5-yr, and 20-yr), the frequencies for 1983-2004 were significantly higher than those for 2639 1895-1916 at a high level of confidence. In addition, the observed linear trends were all 2640 found to be upward, again with a high level of confidence. Based on these results, it is 2641 highly likely that the recent elevated frequencies in the U.S. are the highest since 1895. 2642

2643 **2.2.2.3 Alaska and Canada**

2644 The sparse network of long-term stations in Canada increases the uncertainty in estimates2645 of extremes. Changes in the frequency of heavy events exhibit considerable multi-decadal

2646	variability since 1900, but no long-term trend for the entire century (Zhang et al. 2001).
2647	However, according to Zhang et al. (2001), there are not sufficient instrumental data to
2648	discuss the nationwide trends in precipitation extremes over Canada prior to 1950.
2649	Nevertheless, there are changes that are noteworthy. For example, the frequency of
2650	99.7% events exhibits a statistically significant upward trend of 19%/50yr in British
2651	Columbia since 1910 (Fig. 2.8; Groisman et al. 2005). For Canada, increases in
2652	precipitation intensity during the second half of the 1900s are concentrated in heavy and
2653	intermediate events, with the largest changes occurring in Arctic areas (Stone et al. 2000).
2654	The tendency for increases in the frequency of intense precipitation while the frequency
2655	of days with average and light precipitation does not change or decreases has also been
2656	observed in Canada over the last 30 years (Stone et al. 2000), mirroring U.S. changes.
2657	Recently, Vincent and Mekis (2006) repeated analyses of precipitation extremes for the
2658	second half of 1900s (1950-2003 period). They reported a statistically significant increase
2659	of 1.8 days per 54 years in heavy precipitation days (defined as the days with
2660	precipitation above 10 mm) and statistically insignificant increases in the maximum 5-
2661	day precipitation (by ~5%) and in the number of "very wet days" defined as days with
2662	precipitation above the upper 5 th percentiles of local daily precipitation (by 0.4 days).
2663	
2664	There is an upward trend of 37%/50yr in southern Alaska since 1950 although this trend
2665	is not statistically significant (Fig. 2.8; Groisman et al. 2005).
2666	
2667	

2669 **2.2.2.4 Mexico**

2670 On an annual basis, the number of heavy precipitation (P > 10 mm) days has increased in 2671 northern Mexico and the Sierra Madre Occidental and decreased in the south-central part 2672 of the country (Alexander et al. 2006). The percent contribution to total precipitation

2673 from heavy precipitation events exceeding the 95th percentile threshold has increased in

the monsoon region (Alexander et al., 2006) and along the southern Pacific coast

2675 (Aguilar et al. 2005), while some decreases are documented for south-central Mexico

2676 (Aguilar et al. 2005).

2677

2678 On a seasonal basis, the maximum precipitation reported in 5 consecutive days during 2679 winter and spring has increased in Northern Mexico and decreased in south-central 2680 Mexico (Alexander et al. 2006). Northern Baja California, the only region in Mexico 2681 characterized by a Mediterranean climate, has experienced an increasing trend in winter precipitation exceeding the 90th percentile, especially after 1977 (Cavazos and Rivas, 2682 2683 2004). Heavy winter precipitation in this region is significantly correlated with El Niño 2684 events (Pavia and Badan, 1998; Cavazos and Rivas, 2004); similar results have been 2685 documented for California (e.g., Gershunov and Cayan, 2003). During the summer there 2686 has been a general increase of 2.5 mm in the maximum 5-consecutive-day precipitation in most of the country and an upward trend in the intensity of events exceeding the 99th and 2687 99.7th percentiles in the high plains of Northern Mexico during the summer season 2688 2689 (Groisman et al. 2005).

2691	During the monsoon season (June-September) in northwestern Mexico, the intensity and
2692	seasonal contribution of rainfall events exceeding the 95 th percentiles significantly
2693	increased (p<0.05) in the core monsoon region and at mountain sites (Fig. 2.8; Cavazos et
2694	al. 2007). The mean intensity of 95 th percentile events in the monsoon region increased
2695	significantly by 0.6 mm dec ⁻¹ during 1950-2003. It went from 17.9 mm d ⁻¹ in the 1950-
2696	1976 period to 19.6 mm d ⁻¹ in 1977-2003 while at mountain sites the increase was from
2697	40.8 mm d ⁻¹ to 43.9 mm d ⁻¹ , respectively. These increases are mainly due to an increase
2698	in tropical cyclone-derived rainfall after 1980. The frequency of heavy events does not
2699	show a significant trend (Englehart and Douglas 2001; Neelin et al. 2006; Cavazos et al.,
2700	2007). Similarly, Groisman et al. (2005) report that the frequency of very heavy summer
2701	precipitation events (above the 99 th percentile) in the high plains of Northern Mexico
2702	(east of the core monsoon) has not increased, whereas their intensity has increased
2703	significantly.
2704	
2705	The increase in the mean intensity of heavy summer precipitation events in the core
2706	monsoon region during the 1977-2003 period are significantly correlated with the

2707 Oceanic El Niño Index (ONI³³) conditions during the cool season. El Niño SST

- anomalies antecedent to the monsoon season are associated with less frequent, but more
- 2709 intense, heavy precipitation events³⁴ (exceeding the 95th percentile threshold), and vice

2710 versa.

³³ ONI INDEX:

<u>http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml</u> Warm and cold episodes based on a threshold of +/- 0.5°C for the Oceanic Niño Index (ONI) [3 month running mean of ERSST.v2 SST anomalies in the Niño 3.4 region (5°N-5°S, 120°-170°W)], based on the 1971-2000 base period.

³⁴ The correlation coefficient between ONI and heavy precipitation frequency (intensity) is -0.37 (+0.46)

- 2711 There has been an insignificant decrease in the number of consecutive dry days in
- 2712 northern Mexico, while an increase is reported for south-central Mexico (Alexander et
- al., 2006), and the southern Pacific coast (Aguilar et al. 2005).
- 2714

2715 2.2.2.5 Summary

- 2716 All studies indicate that changes in heavy precipitation frequencies are *always* higher
- than changes in precipitation totals and, in some regions, an *increase* in heavy and/or
- 2718 very heavy precipitation occurred while no change or even a decrease in precipitation
- totals was observed (e.g., in the summer season in central Mexico). There are regional
- 2720 variations in where these changes are statistically significant (Fig. 2.8). The most
- 2721 significant changes occur in the central U.S., central Mexico, southeastern, northern and
- 2722 western Canada, and southern Alaska. These changes have resulted in a wide range of
- 2723 impacts, including human health impacts (Chapter 1, Box 1.3).

2724

2725 **2.2.2.3 Monthly to Seasonal Heavy Precipitation**

2726 On the main stems of large river basins, significant flooding will not occur from short

2727 duration extreme precipitation episodes alone. Rather, excessive precipitation must be

sustained for weeks to months. The 1993 Mississippi River flood, which resulted in an

- estimated \$17 billion in damages, was caused by several months of anomalously high
- 2730 precipitation (Kunkel et al. 1994).

2731

2732 A time series of the frequency of 90-day precipitation totals exceeding the 20-year return

2733 period (a simple extension of the approach of Kunkel et al. 2003) indicates a statistically

2734	significant upward trend (Fig. 2.9). The frequency of such events during the last 25 years
2735	is 20% higher than during any earlier 25-year period. Even though the causes of multi-
2736	month excessive precipitation are not necessarily the same as for short duration extremes,
2737	both show moderately high frequencies in the early 20 th Century, low values in the 1920s
2738	and 1930s, and the highest values in the past 2-3 decades. The trend ³⁵ over the entire
2739	period is highly statistically significant.

- 2740
- 2741 2.2.2.4 North American Monsoon

2742 Much of Mexico is dominated by a monsoon type climate with a pronounced peak in

rainfall during the summer (June through September) when up to 60% to 80% of the

annual rainfall is received (Douglas et al., 1993; Higgins et al., 1999 and Cavazos et al.,

2745 2002). Monsoon rainfall in southwest Mexico is often supplemented by tropical cyclones

2746 moving along the coast. Farther removed from the tracks of Pacific tropical cyclones,

2747 interior and northwest sections of Mexico receive less than 10% of the summer rainfall

from passing tropical cyclones (Fig. 2.10; Englehart and Douglas 2001). The main

2749 influences on total monsoon rainfall in these regions rests in the behavior of the monsoon

as defined by its start and end date, rainfall intensity and duration of wet and dry spells

2751 (Englehart and Douglas 2006). Extremes in any one of these parameters can have a

- 2752 strong effect on the total monsoon rainfall.
- 2753

2754 The monsoon in northwest Mexico has been studied in detail because of its singular

2755 importance to that region and because summer rainfall from this core monsoon region

³⁵ The data were first subjected to a square root transformation to produce a data set with an approximate normal distribution; then least squares regression was applied. Details can be found in the Appendix, Example 4.

2756	spills over into the U.S. Desert Southwest (Douglas et al., 1993; Higgins et al. 1999,
2757	Cavazos et al. 2002). Based on long term data from 8 stations in southern Sonora, the
2758	summer rains have become increasingly late in arriving (Englehart and Douglas 2006)
2759	and this has had strong hydrologic and ecologic repercussions for this northwest core
2760	region of the monsoon. Based on linear trend, the mean start date for the monsoon has
2761	been delayed almost 10 days (9.89 days with a significant trend of 1.57 days per decade)
2762	over the past 63 years (Figure 2.11a). Because extended periods of intense heat and
2763	desiccation typically precede the arrival of the monsoon, the trend toward later starts to
2764	the monsoon will place additional stress on the water resources and ecology of the region
2765	if continued into the future.
2766	
2767	Accompanying the tendency for later monsoon starts, there also has been a notable
2768	change in the "consistency" of the monsoon as indicated by the average duration of wet
2769	spells in southern Sonora (Figure 2.11b). Based on a linear trend, the average wet spell ³⁶
2770	has decreased by almost one day (0.88 days with a significant trend of -0.14 days per
2771	decade) from nearly four days in the early 1940s to slightly more than three days in
2772	recent years. The decrease in wet spell length indicates a more erratic monsoon is now
2773	being observed. Extended periods of consecutive days with rainfall are now becoming
2774	less common during the monsoon. These changes can have profound influences on

2775 surface soil moisture levels which affect both plant growth and runoff in the region.

³⁶ For southern Sonora, Mexico, wet spells are defined as the mean number of consecutive days with mean regional precipitation ≥ 1 mm.

2777	A final measure of long term change in monsoon activity is associated with the change in
2778	rainfall intensity over the past 63 years (Figure 2.11c). Based on linear trend, rainfall
2779	intensity ³⁷ in the 1940s was roughly 5.6mm per rain day, but in recent years has risen to
2780	nearly 7.5mm per rain day ³⁸ . Thus, while the summer monsoon has become increasingly
2781	late in arriving and wet spells have become shorter, the average rainfall during rain
2782	events has actually increased very significantly by 17% or 1.89mm over the 63 year
2783	period (0.3 mm per decade) as well as the intensity of heavy precipitation events (Fig.
2784	2.9). Taken together, these statistics indicate that the rainfall in the core region of the
2785	monsoon (i.e., northwest Mexico) has become more erratic with a tendency towards high
2786	intensity rainfall events countering the tendency towards a shorter monsoon with shorter
2787	wet spells.
2788	
2789	Variability in Mexican monsoon rainfall shows modulation by large-scale climate modes.
2790	Englehart and Douglas (2002) demonstrate that a well developed inverse relationship
2791	exists between ENSO and total seasonal rainfall (June-September) over much of Mexico,
2792	but the relationship is only operable in the positive phase of the PDO. Evaluating
2793	monsoon rainfall behavior on intraseasonal time scales, Englehart and Douglas (2006)
2794	demonstrate that rainfall intensity (mm/rain day) in the core region of the monsoon is
2795	related to PDO phase with the positive (negative) phase favoring relatively high (low)
2796	intensity rainfall events. Analysis indicates that other rainfall characteristics of the

monsoon respond to ENSO with warm events favoring later starts to the monsoon and 2797

³⁷ Daily rainfall intensity during the monsoon is defined as the regional average rainfall for all days with rainfall ≥ 1 mm. ³⁸ The linear trend in this time series is significant at the p=0.01 level

shorter length wet spells (days) with cold events favoring opposite behavior (Englehartand Douglas 2006).

2800

2801 2.2.2.5 Tropical Storm Rainfall in Western Mexico

Across southern Baja California and along the southwest coast of Mexico, 30% to 50% of

2803 warm season rainfall (May-November) is attributed to tropical cyclones (Fig. 2.10) and in

2804 years heavily affected by tropical cyclones (upper 95th percentile) 50% to 100% of the

summer rainfall comes from tropical cyclones. In this region of Mexico, there is a long

2806 term, upward trend in tropical cyclone-derived rainfall at both Manzanillo

2807 (41.8mm/decade; Fig. 2.12a) and Cabo San Lucas (20.5mm/decade)³⁹. This upward trend

2808 in tropical cyclone rainfall has led to an increase in the importance of tropical cyclone

rainfall in the total warm season rainfall for southwest Mexico (Fig. 2.12b) and this has

2810 resulted in a higher ratio of tropical cyclone rainfall to total warm season rainfall. Since

these two stations are separated by more than 700km, these significant trends in tropical

2812 cyclone rainfall imply large scale shifts in the summer climate of Mexico.

2813

2814 This recent shift in emphasis on tropical cyclone warm season rainfall in western Mexico

2815 has strong repercussions as rainfall becomes less reliable from the monsoon and becomes

- 2816 more dependent on heavy rainfall events associated with passing tropical cyclones. Based
- 2817 on the large scale and heavy rainfall characteristics associated with tropical cyclones,
- 2818 dams in the mountainous regions of western Mexico are often recharged by strong

 $^{^{39}}$ The linear trends in tropical cyclone rainfall at these two stations are significant at the p=0.01 and p=0.05 level, respectively.

- tropical cyclone events which therefore have positive benefits for Mexico despite anyattendant damage due to high winds or flooding.
- 2821

2822 This trend in tropical cyclone-derived rainfall is consistent with a long term analysis of 2823 near-shore tropical storm tracks along the west coast of Mexico (storms passing within 5° 2824 of the coast) which indicates an upward trend in the number of near shore storms over the 2825 past 50 years (Fig. 2.12c). While the number of tropical cyclones occurring in the entire 2826 east Pacific Basin is uncertain prior to the advent of satellite tracking in about 1967, it 2827 should be noted that the long term data sets for near shore storm activity (within 5° of the 2828 coast) are considered to be much more reliable due to coastal observatories and heavy 2829 ship traffic to and from the Panama Canal to Pacific ports in Mexico and the United 2830 States. The number of near shore storm days (storms less than 550km from the station) 2831 has increased by 1.3 days/decade in Manzanillo and about 0.7 days/decade in Cabo San Lucas $(1949-2006)^{40}$. The long term correlation between tropical cyclone days at each 2832 2833 station and total tropical cyclone rainfall is r = 0.61 for Manzanillo and r = 0.37 for Cabo 2834 San Lucas, illustrating the strong tie between passing tropical cyclones and the rain that 2835 they provide to coastal areas of Mexico. 2836

- 2837 Interestingly, the correlations between tropical cyclone days and total tropical cyclone
- rainfall actually drop slightly when based only on the satellite era, 1967-2006 (r = 0.54
- for Manzanillo and r = 0.31 for Cabo San Lucas). The fact that the longer time series has
- the higher set of correlations shows no reason to suggest problems with near shore

 $^{^{40}}$ The linear trends in near shore storm days are significant at the p=0.05 level and p=0.10 level, respectively.

2841 tropical cyclone tracking in the pre-satellite era. The lower correlations in the more recent 2842 period between tropical cyclone days and total tropical cyclone rainfall may be tied to 2843 tropical cyclone derived rainfall rising at a faster pace compared to the rise in tropical 2844 cyclone days. In other words, tropical cyclones are producing more rain per event than in 2845 the earlier 1949-1975 period when SSTs were colder. 2846 2847 **2.2.2.6 Tropical Storm Rainfall in the Southeastern United States** 2848 Tropical cyclone-derived rainfall along the southeastern coast of the United States on a 2849 century time scale has changed insignificantly in summer (when no century-long trends

2850 in precipitation was observed) as well as in autumn (when the total precipitation

increased by more than 20% since the 1900s; Groisman et al. 2004).

2852

2853 2.2.3 Storm Extremes

2854 2.2.3.1 Tropical Cyclones

2855 **2.2.3.1.1 Introduction**

Each year, about 90 tropical cyclones develop over the world's oceans, and some of these

2857 make landfall in populous regions, exacting heavy tolls in life and property. Their

2858 occurrence is often statistically modeled as a Poisson process. The global number has

2859 been quite stable since 1970, when global satellite coverage began in earnest, having a

- standard deviation of 10 and no evidence of any substantial trend (e.g. Webster et al
- 2861 1995). However, there is some evidence for trends in storm intensity and/or duration
- 2862 (e.g. Holland and Webster 2007 and quoted references for the North Atlantic; Chan 2000
- 2863 for the Western North Pacific), and there is substantial variability in tropical cyclone

2864 frequency within each of the ocean basins they affect. Regional variability occurs on all 2865 resolved time scales, and there is also some evidence of trends in certain measures of 2866 tropical cyclone energy, affecting many of these regions and perhaps the globe as well. 2867 2868 There are at least two reasons to be concerned with such variability. The first and most 2869 obvious is that tropical cyclones rank with flash floods as the most lethal and expensive 2870 natural catastrophes, greatly exceeding other phenomena such as earthquakes. In 2871 developed countries, such as the U.S., they are enormously costly: Hurricane Katrina is 2872 estimated to have caused in excess of \$80 billion 2005 dollars in damage, and killed more 2873 than 1500 people. Death and injury from tropical cyclones is yet higher in developing 2874 nations; for example, Hurricane Mitch of 1998 took more than 11,000 lives in Central 2875 America. Any variation or trend in tropical cyclone activity is thus of concern to coastal 2876 residents in affected areas, compounding trends related to societal factors such as 2877 changing coastal population.

2878

2879 A second, less obvious and more debatable issue is the possible feedback of tropical 2880 cyclone activity on the climate system itself. The inner cores of tropical cyclones have 2881 the highest specific entropy content of any air at sea level, and for this reason such air 2882 penetrates higher into the stratosphere than is the case with other storm systems. Thus 2883 tropical cyclones may play a role in injecting water and trace gases and microscopic 2884 airborne particles into the upper troposphere and lower stratosphere, though this idea 2885 remains largely unexamined. There is also considerable evidence that tropical cyclones 2886 vigorously mix the upper ocean, affecting its circulation and biogeochemistry, perhaps to 2887 the point of having a significant effect on the climate system. Since the current generation 2888 of coupled climate models greatly under-resolves tropical cyclones, such feedbacks are 2889 badly underrepresented, if they are represented at all. 2890 For these reasons, it is important to quantify, understand, and predict variations in 2891 tropical cyclone activity. The following sections review current knowledge of these 2892 variations on various time scales. 2893 2894 2.2.3.1.2 Data Issues 2895 Quantifying tropical cyclone variability is limited, sometimes seriously, by a large suite 2896 of problems with the historical record of tropical cyclone activity. In the North Atlantic 2897 and eastern North Pacific regions, responsibility for the tropical cyclone database rests 2898 with NOAA's National Hurricane Center (NHC), while in other regions, archives of 2899 hurricane activity are maintained by several organizations, including the U.S. Navy's 2900 Joint Typhoon Warning Center (JTWC), the Japan Meteorological Agency (JMA), the 2901 Hong Kong Observatory (HKO) and the Australian Bureau of Meteorology (BMRC). 2902 The data, known as ``best track" data (Jarvinen et al. 1984; Chu et al. 2002), comprise a 2903 global historical record of tropical cyclone position and intensity, along with more recent 2904 structural information. Initially completed in real time, the best tracks are finalized by 2905 teams of forecasters update the best track data at the end of the hurricane season in each 2906 ocean basin using data collected during and after each hurricane's lifetime. 2907 2908 It should first be recognized that the primary motivation for collecting data on tropical

2909 cyclones was initially to support real-time forecasts and this remains the case in many
2910	regions today. From the 1970s onwards increasing emphasis has been placed on
2911	improving the archive for climate purposes, and on extending the record back to include
2912	historical systems (e.g. Laurensz 1977; Neumann 1993; Landsea et al 2004).
2913	Unfortunately, improvements in measurement and estimation techniques have often been
2914	implemented with little or no effort to calibrate against existing techniques and with poor
2915	documentation where such calibrations were done. Thus the available tropical cyclone
2916	data contain an inhomogeneous mix of changes in quality of observing systems, reporting
2917	policies, and the methods utilized to analyze the data
2918	
2919	It remains a scientific tragedy that insufficient effort is expended in re-examining and
2920	quality controlling the tropical cyclone record on a year to year basis, particularly outside
2921	the Atlantic and eastern North Pacific regions. Efforts are ongoing to reanalyze the
2922	historic best track data, but such a posteriori reanalyses are less than optimal because not
2923	all of the original data that the best track was based on are readily available.
2924	
2925	Documentation of the occurrence of tropical cyclones is thought to be reliable back to
2926	about 1945 in the Atlantic and 1970 in the Eastern Pacific (e.g. Holland and Webster
2927	2007 and references therein), and back to about 1975 for the Western and Southern
2928	Pacific basins, thanks to earth-orbiting satellites (e.g. Holland 1981). Until the launch of
2929	MeteoSat-7 in 1998, the Indian Oceans were seen only obliquely, but storm counts may
2930	still be expected to be accurate after 1977. Before those periods, storms could and
2931	undoubtedly remain undetected, especially if they did not pass near ships at sea or land
2932	masses. For the North Atlantic it is likely that up to 3 storms per year were missing

before 1900 dropping to zero by the early 1960s (Holland and Webster 2007; Chang and
Guo 2007). Estimates of the duration of storms are considered to be less reliable prior to
the 1970's due particularly to a lack of good information on their time of genesis. Since
the 1970s storms were more accurately tracked throughout their lifetimes by
geostationary satellites.

2938

2939 Estimates of storm intensity are far less reliable, and this remains true for large portions 2940 of the globe even today. Airborne hurricane reconnaissance flight became increasingly 2941 routine in the North Atlantic and western North Pacific regions after 1945, but was 2942 discontinued in the western North Pacific region in 1987. Some missions are today being 2943 conducted under the auspices of the government of Taiwan. However airborne 2944 reconnaissance only samples a small fraction of storms, and then only over a fraction of 2945 their lifetimes; moreover, good, quantitative estimates of wind speeds from aircraft did 2946 not become available until the late 1950s. Beginning in the mid 1970s, tropical cyclone 2947 intensity has been estimated from satellite imagery. Until relatively recently, techniques 2948 for doing so were largely subjective, and the known lack of homogeneity in both the data 2949 and techniques applied in the post-analyses has resulted in significant skepticism 2950 regarding the consistency of the intensity estimates in the data set. This lack of temporal 2951 consistency renders the data suspect for identifying trends, particularly in metrics related 2952 to intensity.

2953

Recent studies have addressed these known data issues. Kossin et al. (2007a) constructeda more homogeneous record of hurricane activity and found remarkably good agreement

2956 in both variability and trends between their new record and the best track data in the N. 2957 Atlantic and Eastern Pacific basins during the period 1983–2005. They concluded that the 2958 best track maintained by the NHC does not appear to suffer from data quality issues 2959 during this period. On the other hand, they were not able to corroborate the presence of 2960 upward intensity trends in any of the remaining tropical cyclone-prone ocean basins. This 2961 could be due to inaccuracies in the satellite best tracks, or could be due to the training of 2962 the Kossin et al technique on North Atlantic data. This is supported by Wu et al. (2006), 2963 who considered Western Pacific best track data constructed by other agencies (HKMO 2964 and JMA) who construct best track data for the western North Pacific. Harper and 2965 Callaghan (2006) report on reanalyzed data from the Southeastern Indian Ocean and 2966 showed some biases, but a remaining upward intensity trend. These studies underscores 2967 the need for improved care in analyzing tropical cyclones and in obtaining better 2968 understanding of the climatic controls of tropical cyclone activity beyond SST-based 2969 arguments alone.

2970

The standard tropical cyclone databases do not usually contain information pertaining to the geometric size of tropical cyclones Exceptions include the Australian region and the enhanced database for the North Atlantic over the last few decades. A measure of size of a tropical cyclone is a crucial complement to estimates of intensity as it relates directly to storm surge and damage area associated with landfalling storms. Such size measures can be inferred from aircraft measurements and surface pressure distributions, and can now be estimated from satellite imagery (e.g. Mueller et al. 2006; Kossin et al. 2007b).

2980	2.2.3.1.3 Low-frequency Variability and Trends of Tropical cyclone Activity Indices
2981	"Low frequency" variability is here defined as variations on time scales greater than
2982	those associated with ENSO (i.e. more than 3-4 years). Several papers in recent years
2983	have quantified interdecadal variability of tropical cyclones in the Atlantic (Goldenberg
2984	et al., 2001; Bell and Chelliah, 2006) and the western North Pacific (Chan and Shi, 1996),
2985	attributing most of the variability to natural interdecadal variability of regional climates
2986	in the Atlantic and Pacific, respectively. In the last few years, however, several papers
2987	have attributed both low frequency variability and trends in tropical cyclone activity to
2988	changing radiative forcing owing to anthropogenic sulfate aerosols and greenhouse gases.
2989	Emanuel (2005a) developed a "Power Dissipation Index" (PDI) of tropical cyclones,
2990	defined as the sum of the cubed estimated maximum sustained surface wind speeds at 6-
2991	hour intervals accumulated over each Atlantic tropical cyclone from the late 1940s to
2992	2003. Landsea (2005) commented on the quality of data comprising the index. An
2993	updated version of this analysis (Emanuel 2007), shown in Fig. 2.13, confirms that there
2994	has been a substantial increase in tropical cyclone activity since about 1970, and indicates
2995	that the low-frequency Atlantic PDI variations are strongly correlated with low-frequency
2996	variations in tropical Atlantic SSTs. Based on this analysis, it is likely that hurricane
2997	activity, as measured by the Power Dissipation Index (PDI), has increased substantially
2998	since the 1950s and 60s in association with warmer Atlantic SSTs. The magnitude of this
2999	increase depends on the adjustment to the wind speed data from the 1950s and 60s
3000	(Landsea 2005; Emanuel 2007). It is very likely that PDI has generally tracked SST
3001	variations on decadal time scales in the tropical Atlantic since 1950 and likely that it also

3002 generally tracked the secular increase of SST. Confidence in these statistics prior to the
3003 late 1940s is low, due mainly to the decreasing confidence in hurricane duration and
3004 intensity observations. The PDI in the eastern Pacific has decreased since 1980 (Kossin et
3005 al. 2007).

3006

3007 The Power Dissipation Index for U.S. landfalling tropical cyclones has not increased 3008 since the late 1800s (Landsea 2005). Pielke (2005) noted that there are no evident trends 3009 in observed damage in the North Atlantic region, after accounting for population 3010 increases and coastal development. However, Emanuel (2005b) notes that a PDI series 3011 such as Landsea's (2005) based on only U.S. landfalling data, contains only about 1 3012 percent of the data that Emanuel's (2005a) basin-wide PDI contains, which is based on all 3013 storms over their entire lifetimes. Thus a trend in basin-wide PDI may not be detectable 3014 in U.S. landfalling PDI since the former index has a factor of 10 advantage in signal to 3015 noise ratio.

3016

3017 Figure 2.14 (from Holland and Webster 2007), indicates that there has been no distinct

3018 trend in the mean intensity of all Atlantic storms, hurricanes, and major hurricanes. A

3019 distinct increase in the most intense storms occurred around the time of onset of aircraft

3020 reconnaissance, but this is considered to be largely due to better observing methods.

3021 Holland and Webster also found that the overall proportion of hurricanes has remained

3022 remarkably constant during the 20th century at around 50%, and there has been a marked

3023 oscillation in major hurricane proportions, which has no observable trend.

3024 Webster et al. (2005) reported that the number of category 4 and 5 hurricanes has almost

August 16, 2007

3025	doubled globally over the past three decades. The recent reanalysis of satellite data
3026	beginning in the early 1980s by Kossin et al. (2007a) support these results in the Atlantic
3027	although the results in the remaining basins were not corroborated.
3028	
3029	The recent Emanuel and Webster et al. studies have generated much debate in the
3030	hurricane research community, particularly with regard to homogeneity of the tropical
3031	cyclone data over time and the required adjustments (e.g. Landsea 2005; Knaff and
3032	Sampson 2006; Chan 2006; Hoyos et al. 2006; Landsea et al. 2006; Sriver and Huber
3033	2006; Klotzbach 2006; Elsner et al. 2006; Maue and Hart 2007; Manning and Hart 2007;
3034	Holland and Webster 2007, Landsea 2007, Mann et al 2007, Holland 2007). Several of
3035	these studies argue that data problems preclude determination of significant trends in
3036	various tropical cyclone measures, while others provide further evidence in support of
3037	reported trends. In some cases, differences between existing historical data sets
3038	maintained by different nations can yield strongly contrasting results (e.g., Kamahori et
3039	al. 2006).

3040

Several studies have examined past regional variability in tropical cyclone tracks (Wu et
al. 2005; Xie et al. 2005; Vimont and Kossin 2007; Kossin and Vimont 2007). Thus far,
no clear long-term trends in this metric have been reported, but there is evidence that
Atlantic tropical cyclone formation regions have undergone systematic long-term shifts to
more eastward developments (Holland 2007). These shifts affect track and duration,
which subsequently affects intensity. The modulation of the Atlantic tropical cyclone
genesis region occurs through systematic changes of the regional SST and circulation

3048	patterns. Thus SST affects intensity not just through thermodynamic pathways that are
3049	local to the storms, but also through changes in basinwide circulation patterns (Kossin
3050	and Vimont 2007).

3052 In summary, we conclude that Atlantic tropical storm and hurricane destructive potential

3053 as measured by the Power Dissipation Index (which combines storm intensity, duration,

3054 and frequency) has increased. This increase is substantial since about 1970, and is likely

3055 substantial since the 1950s and 60s, in association with warming Atlantic sea surface

- 3056 temperatures.
- 3057

3058 2.2.3.1.4 Low-frequency Variability and Trends of Tropical Cyclone Counts

3059 Mann and Emanuel (2006) reported that Atlantic tropical cyclone counts closely track

3060 low-frequency variations in tropical Atlantic SSTs, including a long-term increase since

the late 1800s and early 1900s (see also Fig. 2.15 from Holland and Webster 2007).

3062 There is currently debate on the relative roles of internal climate variability (e.g.,

3063 Goldenberg et al. 2001) versus radiative forcing, including greenhouse gases, and sulfate

- 3064 aerosols (Mann and Emanuel 2006; Santer et al 2006) in producing the multi-decadal
- 3065 cooling of the tropical North Atlantic. This SST variation is correlated with reduced
- 3066 hurricane activity during the 1970s and 80s relative to the 1950s and 60s or to the period
- 3067 since 1995 (see also Zhang et al. 2007).

3068

3069 On a century time scale, time series of tropical storm frequency in the Atlantic (Fig. 2.15)

3070 show substantial interannual variability and a marked increase (of over 100%) since

3071	about 1900. This increase occurred in two sharp jumps of around 50%, one in the 1930s
3072	and another that commenced in 1995 and has not yet stabilized. Holland and Webster
3073	(2007) have suggested that these sharp jumps are transition periods between relatively
3074	stable climatic periods of tropical cyclone frequency (Fig. 2.15). Figure 2.15 uses
3075	unadjusted storm—an issue which will be addressed further below.
3076	
3077	For tropical cyclone frequency, the finding that the largest recorded increases over the
3078	past century have been in the eastern North Atlantic (e.g., see recent analysis in Vecchi
3079	and Knutson 2007; Holland 2007), which historically has been the least well observed,
3080	has led to questions of whether this may be due to data issues (Landsea et al. 2004;
3081	Landsea 2007). The major observing system change points over the past century have
3082	been:
3083	• The implementation of routine aircraft reconnaissance in 1944-45;
3084	• The use of satellite observations and related analysis procedures from the late
3085	1960s onwards; and,
3086	• A change in analysis practice by the National Hurricane Center from 1970 to
3087	include more mid-latitude systems.
3088	In addition, there have steady improvements in techniques and instrumentation, which
3089	may also introduce some spurious trends.
3090	
3091	Landsea (2007) has used the fraction of storms striking land in the satellite and pre-
3092	satellite era to estimate the number of missing storms per year in the pre-satellite era
3093	(1900 to 1965) to be about 3.2 storms per year. This assumes that the fraction of all

storms that strike land in the real world has been relatively constant over time, which has
been shown to be incorrect by Holland (2007). Holland also shows that the smaller
fraction of storms that made landfall during the past fifty years (1956-2005) compared to
the previous fifty years (1906-1955) is directly related to changes in the main formation
location regions, with a decrease in western Caribbean and Gulf of Mexico developments
and an increase in the eastern Atlantic.

3100

3101 Alternative approaches to estimating the earlier data deficiencies have been used by 3102 Chang and Guo (2007), Vecchi and Knutson (2007) and Mann et al (2007). The first two 3103 studies use historical ship tracks from the pre-satellite era, combined with storm track 3104 information from the satellite era, to infer an estimated adjustment for missing storms in 3105 the pre-satellite era (assumed as all years prior to 1965). Mann et al used statistical 3106 climate relationships to estimate potential errors. Vecchi and Knutson found 2.5 storms 3107 per year were missing prior to 1900, decreasing to zero by 1960. Chang and Guo found 3108 1.2 storms missing around 1910 also decreasing to zero by 1960. Mann et al, estimated a 3109 more modest undercount bias of 1 per year back to 1970. The adjusted time series by 3110 Vecchi and Knutson (Fig. 2.16) suggest a statistically significant (p=0.003 or less) 3111 positive linear trend in adjusted storm counts of 55%/century since 1900. However, 3112 beginning the trend from 1878, the trend through 2006 is smaller (+15%) century) and not statistically significant at the p=0.05 level (p-value of about 0.3)⁴¹. It is notable that the 3113 3114 degree of increase over the past century depends on the analysis methodology. When 3115 using a linear trend, as above, the increase from 1900 to 2005 is around 55% in the 3116 adjusted storm counts. However, using the essentially non-linear approach by Holland

⁴¹ Details of the statistical analysis are given in the Appendix, Example 5.

3117	and Webster (2007) of separate climatic regimes, the increase in adjusted storm counts
3118	from the 1900-1920 regime to the 1995-2006 regime is 85%. The trend from 1900 begins
3119	near a local minimum in the time series and ends with the recent high activity, perhaps
3120	exaggerating the significance of the trend due to multidecadal variability. On the other
3121	hand high levels of activity during the late 1800s, which lead to the insignificant trend
3122	result, are indirectly inferred in large part from lack of ship track data, and the uncertainty
3123	in the late 1800s storm counts is greater than that during the 1900s.
3124	
3125	Hurricane frequency closely follows the tropical cyclone variability, with a stable 50% of
3126	all cyclones developing to hurricane strength over much of the past century (Holland and
3127	Webster 2007). However, there has been a concomitant increase in both overall storm
3128	frequency and the proportion of major hurricanes since 1995. Taken together, these result
3129	in a very sharp increase in major hurricane numbers, which can be associated with
3130	changes of SST (Holland and Webster 2007, Webster et al 2005). The PDI trend reported
3131	by Emanuel (2007) is largely due to this increase in major hurricane numbers.
3132	
3133	Atlantic basin total hurricane counts, major hurricane counts, and U.S. landfalling
3134	hurricane counts as recorded in the HURDAT data base for the period 1851-2006 are
3135	shown in Fig. 2.17. These have not been adjusted for missing storms, as there was likely
3136	less of a tendency to miss both hurricanes and major hurricanes in earlier years compared

- to tropical storms, largely because of their intensity and damage potential. There is a
- 3138 slight negative trend in U.S. landfalling hurricane frequency. The basin-wide major
- 3139 hurricane counts increase over the long-term. For total hurricanes, trends to 2005

3140	beginning in 1881 through 1921 are positive and statistically significant (p=0.05)
3141	whereas trends beginning in 1851 through 1871 are positive but not statistically
3142	significant, owing to the prolonged active period in the late 1800s. For major hurricanes,
3143	trends beginning in 1851 through 1911 were positive and statistically significant, whereas
3144	the trend beginning from 1921 was positive but not statistically significant ⁴² .
3145	
3146	Regional storm track reconstructions for the basin (Vecchi and Knutson 2007; Holland
3147	and Webster 2007b(?)) indicate a decrease in tropical storm occurrence in the western
3148	part of the basin, consistent with the minimal change or slight decrease in U.S.
3149	landfalling tropical storm or hurricane counts. These analyses further suggest that-after
3150	adjustment for missing storms a century-scale increase in basin-wide Atlantic tropical
3151	storm occurrence has occurred, with increases mainly in the central and eastern parts of
3152	the basin (also consistent with Chang and Guo 2007). From a climate variability
3153	perspective, Kossin and Vimont (2007) have shown that a positive phases of the Atlantic
3154	Meridional Mode is correlated to an systematic eastward extension of the genesis region
3155	in the Atlantic. Elsner (1996) and Holland and Webster (2007) have shown that the
3156	increasing frequency over the past 30 years is associated with a changeover to equatorial
3157	developments and particularly to developments in the eastern equatorial region.
3158	
3159	In summary, we conclude that there have been fluctuations from decade to decade in
3160	tropical cyclone numbers, and data uncertainty is larger in the earlier parts of the record,
3161	particularly prior to aircraft reconnaissance beginning in the mid-1940s. While there are

undoubtedly data deficiencies and missing storms in the early record, they appear

⁴² Further details of the statistical analysis are given in the Appendix, Example 6.

3163	insufficient to remove the observed positive trends in basin-wide tropical storm counts. It
3164	is likely that that the annual numbers of tropical storms/hurricanes and major hurricanes
3165	in the North Atlantic basin have increased significantly over the past 100 years in close
3166	relationship with warming equatorial Atlantic sea surface temperatures. The positive
3167	linear trend in all storm categories extends back to the 1800s, but is generally not
3168	significant prior to 1890. The increasingly decreased confidence in the data before 1900
3169	precludes any definitive conclusions from this era. The increases in basin-wide storm
3170	counts has occurred primarily from an eastward shift in the formation and occurrence
3171	regions and there has been a distinct decrease in western Caribbean and Gulf of Mexico
3172	developments. As a result, North American mainland land-falling hurricanes have
3173	remained quasi-static over the past century.
3174	
5171	
3175	2.2.3.1.5 Paleoclimate Proxy Studies of Past Tropical Cyclone Activity
31753176	2.2.3.1.5 Paleoclimate Proxy Studies of Past Tropical Cyclone Activity Paleotempestology is an emerging field of science that attempts to reconstruct past
317531763177	2.2.3.1.5 Paleoclimate Proxy Studies of Past Tropical Cyclone ActivityPaleotempestology is an emerging field of science that attempts to reconstruct pasttropical cyclone activity using geological proxy evidence or historical documents. This
 3175 3176 3177 3178 	 2.2.3.1.5 Paleoclimate Proxy Studies of Past Tropical Cyclone Activity Paleotempestology is an emerging field of science that attempts to reconstruct past tropical cyclone activity using geological proxy evidence or historical documents. This work attempts to expand knowledge about hurricane occurrence back in time beyond the
 3175 3175 3176 3177 3178 3179 	 2.2.3.1.5 Paleoclimate Proxy Studies of Past Tropical Cyclone Activity Paleotempestology is an emerging field of science that attempts to reconstruct past tropical cyclone activity using geological proxy evidence or historical documents. This work attempts to expand knowledge about hurricane occurrence back in time beyond the limits of conventional instrumental records, which cover roughly the last 150 years. A
 3175 3175 3176 3177 3178 3179 3180 	 2.2.3.1.5 Paleoclimate Proxy Studies of Past Tropical Cyclone Activity Paleotempestology is an emerging field of science that attempts to reconstruct past tropical cyclone activity using geological proxy evidence or historical documents. This work attempts to expand knowledge about hurricane occurrence back in time beyond the limits of conventional instrumental records, which cover roughly the last 150 years. A broader goal of paleotempestology is to help researchers explore physically based
 3175 3175 3176 3177 3178 3179 3180 3181 	 2.2.3.1.5 Paleoclimate Proxy Studies of Past Tropical Cyclone Activity Paleotempestology is an emerging field of science that attempts to reconstruct past tropical cyclone activity using geological proxy evidence or historical documents. This work attempts to expand knowledge about hurricane occurrence back in time beyond the limits of conventional instrumental records, which cover roughly the last 150 years. A broader goal of paleotempestology is to help researchers explore physically based linkages between prehistoric tropical cyclone activity and other aspects of past climate.
 3175 3175 3176 3177 3178 3179 3180 3181 3182 	2.2.3.1.5 Paleoclimate Proxy Studies of Past Tropical Cyclone Activity Paleotempestology is an emerging field of science that attempts to reconstruct past tropical cyclone activity using geological proxy evidence or historical documents. This work attempts to expand knowledge about hurricane occurrence back in time beyond the limits of conventional instrumental records, which cover roughly the last 150 years. A broader goal of paleotempestology is to help researchers explore physically based linkages between prehistoric tropical cyclone activity and other aspects of past climate.
 3175 3175 3176 3177 3178 3179 3180 3181 3182 3183 	2.2.3.1.5 Paleoclimate Proxy Studies of Past Tropical Cyclone Activity Paleotempestology is an emerging field of science that attempts to reconstruct past tropical cyclone activity using geological proxy evidence or historical documents. This work attempts to expand knowledge about hurricane occurrence back in time beyond the limits of conventional instrumental records, which cover roughly the last 150 years. A broader goal of paleotempestology is to help researchers explore physically based linkages between prehistoric tropical cyclone activity and other aspects of past climate. Among the geologically based proxies, overwash sand layers deposited in coastal lakes
 3175 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 	2.2.3.1.5 Paleoclimate Proxy Studies of Past Tropical Cyclone Activity Paleotempestology is an emerging field of science that attempts to reconstruct past tropical cyclone activity using geological proxy evidence or historical documents. This work attempts to expand knowledge about hurricane occurrence back in time beyond the limits of conventional instrumental records, which cover roughly the last 150 years. A broader goal of paleotempestology is to help researchers explore physically based linkages between prehistoric tropical cyclone activity and other aspects of past climate. Among the geologically based proxies, overwash sand layers deposited in coastal lakes and marshes have proven to be quite useful (Liu and Fearn, 1993, 2000; Liu 2004;

3185 Donnelly and Webb 2004). Similar methods have been used to produce proxy records of

3186	hurricane strikes from back-barrier marshes in Rhode Island and New Jersey extending
3187	back about 700 years (Donnelly et al. 2001a, 2001b; Donnelly et al. 2004; Donnelly and
3188	Webb 2004), and more recently in the Caribbean (Donnelly 2005). Stable isotope signals
3189	in tree rings (Miller et al. 2006), cave deposits (Frappier et al. 2007) and coral reef
3190	materials are also being actively explored for their utility in providing paleoclimate
3191	information on tropical cyclone activity. Historical documents apart from traditional
3192	weather service records (newspapers, plantation diaries, Spanish and British historical
3193	archives, etc.) can also be used to reconstruct some aspects of past tropical cyclone
3194	activity (Ludlam, 1963; Millas, 1968; Fernandez-Partagas and Diaz, 1996; Chenoweth,
3195	2003; Mock 2004; Garcia Herrera et al. 2004; 2005; Liu et al. 2001; Louie and Liu 2003;
3196	Louie and Liu 2004).
3197	

3198 Donnelly and Woodruff's (2007) proxy reconstruction the past 5,000 years of intense 3199 hurricane activity in the western North Atlantic suggests that hurricane variability has 3200 been strongly modulated by El Nino during this time and that the past 250 years has been relatively active in the context of the past 5,000 years. Nyberg et al. (2007) suggest that 3201 3202 major hurricane activity in the Atlantic was anomalously low in the 1970s and 1980s 3203 relative to the past 270 years. As with Donnelly and Woodruff, their proxy measures 3204 were located in the western part of the basin (near Puerto Rico), and in their study, 3205 hurricane activity was inferred indirectly through statistical associations with proxies for 3206 vertical wind shear and SSTs. 3207

3210 2.2.3.2 Strong Extratropical Cyclones Overview Extra-tropical cyclone $(ETC)^{43}$ is a generic term for any non-tropical, large-scale low 3211 3212 pressure storm system that develops along a boundary between warm and cold air masses. These types of cyclonic⁴⁴ disturbances are the dominant weather phenomenon 3213 3214 occurring in the mid- and high-latitudes during the cold season because they are typically 3215 large and often have associated severe weather. The mid-latitude North Pacific and North 3216 Atlantic basins, between ~30°N-60 °N, are regions where large-numbers of ETC's 3217 develop and propagate across the ocean basins each year. Over land or near populous 3218 coastlines, strong or extreme ETC events generate some of the most devastating impacts 3219 associated with extreme weather and climate, and have the potential to affect large areas 3220 and dense population centers. A notable example was the blizzard of 12-14 March 1993 3221 along the East Coast of the U.S. that is often referred to as the "super-storm" or "storm of the century"⁴⁵ (e.g., Kocin et al. 1995;). Over the ocean, strong ETCs generate high waves 3222 3223 that can cause extensive coastal erosion when combined with storm surge as they reach 3224 the shore, resulting in significant economic impact. Rising sea level extends the zone of 3225 impact from storm surge and waves farther inland, and will likely result in increasingly 3226 greater coastal erosion and damage from storms of equal intensity. 3227

⁴³ The fundamental difference between the characteristics of extra-tropical and tropical cyclones is that ETC's have a cold core and their energy is derived from baroclinic instability, while tropical cyclones have a warm core and derive their energy from barotropic instability (Holton 1979).

⁴⁴ A term applied to systems rotating in the counter-clockwise direction in the Northern Hemisphere.

⁴⁵ The phrase "Storm of the Century" is also frequently used to refer to the 1991 Halloween ETC along the Northeast US coast, immortalized in the movie *The Perfect Storm*

2220	
5449	

3230	Studies of changes in strong ETC's and associated frontal systems have focused on
3231	locations where ETCs form and the resulting storm tracks, frequencies, and intensities ⁴⁶ .
3232	The primary constraint on these studies has been the limited period of record available
3233	that has the best observation coverage for analysis and verification of results, with most
3234	research focused on the latter half of the 20 th century. Model reanalysis data is used in the
3235	majority of studies, either NCEP-NCAR (Kalnay et al. 1996) or ERA-40 (Upalla et al.
3236	2005) datasets, although prior to 1965 data quality have been shown to be less reliable
3237	
3238	It is important to stress that any observed changes in ETC storm tracks, frequencies or
3239	intensities are highly dependent on broad-scale atmospheric modes of variability, and the
3240	noise associated with this variability is large in relation to any observed linear trend.
3241	Therefore, detection and attribution of long-term (decadal- to century-scale) changes in
3242	ETC activity is extremely difficult.
3243	
3244	2.2.3.2.1 Variability of Extra-Tropical Cyclone Activity
3245	Inter-annual and inter-decadal variability of ETC's is primarily driven by the location and
3246	other characteristics associated with the Polar jet stream. The mean location of the Polar
3247	jet is often referred to as the "storm track". The large-scale circulation is governed by the
3248	equator-to-pole temperature gradient, which is strongly modulated by SST's over the
3249	oceans. The magnitude of the equator-to-pole temperature gradient is of utmost

⁴⁶ These studies use *in situ* observations (both surface and upper-air), re-analysis fields, and Atmospheric-Ocean Global Climate Model (GCM) hind-casts

3250	importance in determining the intensity of storms: the smaller (larger) the gradient in
3251	temperature, the weaker (stronger) the potential energy available for extra-tropical
3252	cyclone formation. The observed intensity of ETC's at the surface is related to the
3253	amplitude of the large-scale circulation pattern, with high-amplitude, negatively tilted
3254	troughs favoring stronger development of ETC's at the surface (Sanders and Gyakum
3255	1980).

3257 From a seasonal perspective, the strongest ETC's are temporally out of phase in the 3258 Pacific and Atlantic basins, since the baroclinic wave energy climatologically reaches a 3259 peak in late fall in the North Pacific and in January in the North Atlantic (Nakamura 3260 1992; Eichler and Higgins 2006). While it remains unclear what the physical basis is for 3261 the offset in peak storm activity between the two basins, Nakamura (1992) showed statistically that when the Pacific jet exceeds 45 m s⁻¹ there is a suppression of baroclinic 3262 3263 wave energy, even though the low-level regional baroclinicity and strength of the Pacific 3264 jet are at a maximum (this effect is not evident in the Atlantic basin, since the peak strength of the jet across the basin rarely exceeds 45 m s⁻¹). Despite the observed 3265 seasonal difference in the peak of ETC activity, Chang and Fu (2002) found a strong 3266 3267 positive correlation between the Pacific and Atlantic storm tracks using monthly mean 3268 reanalysis data covering 51 winters (1949 to 1999). They found the correlations between 3269 the two basins remained positive and robust over individual months during winter (DJF) 3270 or over the entire season (Chang and Fu 2002). 3271

- 3272

It has been widely documented that the track position, intensity and frequency of ETC's

3273	is strongly modulated on inter-annual time-scales by different modes of variability, such
3274	as the El Niño/Southern Oscillation (ENSO) phenomenon (Gershunov and Barnett 1998;
3275	An et al. 2007). In a recent study, Eichler and Higgins (2006) used both NCEP-NCAR
3276	and ERA-40 reanalysis data to diagnose the behavior of ETC activity during different
3277	ENSO phases. Their results showed that during El Niño events there is an equator-ward
3278	shift in storm tracks in the North Pacific basin, as well as an enhancement of the storm
3279	track along the U.S. East Coast. However, they found significant variability related to the
3280	magnitude of the El Niño event. During strong El Niños, ETC frequencies peak over the
3281	North Pacific and along the eastern U.S., from the southeast coast to the Maritime
3282	Provinces of Canada (Eichler and Higgins 2006), with a weaker track across the Midwest
3283	from the lee of the Rocky Mountains to the Great Lakes. During weak to moderate El
3284	Niños, the storm tracks are similar to the strong El Niños, except there is a slight increase
3285	in the number of ETC's over the northern Plains and the frequency of ETC activity
3286	decreases over the mid-Atlantic region. Similar to other previous studies (e. g. Hirsch et
3287	al. 2001; Noel and Changnon 1998), an inverse relationship typically exists during La
3288	Niñas; as the strength of La Niña increases, the frequency maxima of East Coast storms
3289	shifts poleward, the North Pacific storm track extends eastward toward the Pacific
3290	Northwest, and the frequency of cyclones increases across the Great Lakes region
3291	(Eichler and Higgins (2006).
3292	
3293	In addition to ENSO, studies have shown that the Arctic Oscillation (AO) can strongly
3294	influence the position of storm tracks and the intensity of ETC's. Previous studies have

3295 shown that during positive AO conditions Northern Hemisphere cyclone activity shifts

3296	poleward (Serreze et al. 1997; Clark et al. 1999). Inversely, during negative AO
3297	conditions the polar vortex is weaker and cyclone activity shifts southward. Since the
3298	North Atlantic Oscillation (NAO) represents the primary component of the AO, it has a
3299	similar affect on storm tracks position, especially over the eastern North Atlantic basin
3300	(McCabe et al. 2001). For futher information on the different atmospheric modes of
3301	variability (Chapter 2, Box 2.3).
3302	
3303	2.2.3.2.2 Changes in Storm Tracks and Extra-Tropical Cyclone Characteristics
3304	Many studies have documented changes in storm track activity. Specifically, a significant
3305	pole-ward shift of the storm track in both the Pacific and Atlantic ocean basins has been
3306	verified by a number of recent studies that have shown a decrease in ETC frequency in
3307	mid-latitudes, and a corresponding increase in ETC activity in high-latitudes (Wang et al.
3308	2006a; Simmons and Keay 2002; Paciorek et al. 2002; Graham and Diaz 2001; Geng and
3309	Sugi 2001; McCabe et al. 2001; Key and Chan 1999; Serreze et al. 1997). Several of
3310	these studies have examined changes in storm tracks over the entire Northern Hemisphere
3311	(i.e. McCabe et al. 2001; Paciorek et al. 2002; Key and Chan 1999), while several others
3312	have focused on the storm track changes over the Pacific (i.e., Graham and Diaz 2001)
3313	and Atlantic basins (i.e., Geng and Sugi 2001), or both (i.e., Wang and Swail 2001). Most
3314	of these studies focused on changes in frequency and intensity observed during winter
3315	(DJF) or the entire cold season (Oct-Mar). However, for spring, summer and autumn,
3316	Key and Chan (1999) found opposite trends in 1000-hPa and 500-hPa cyclone
3317	frequencies for both the mid- and high latitudes of the Northern Hemisphere.

3318	The standardized annual departures ⁴⁷ of ETC frequency for the entire Northern
3319	Hemisphere over the period 1959-1997 (Fig. 2.18a,b; McCabe et al. 2001) shows that
3320	cyclone frequency has decreased for the mid-latitudes $(30^{\circ}-60^{\circ}N)$ and increased for the
3321	high latitudes (60° - 90° N). For the 55-year period of 1948-2002, a metric called the
3322	Cyclone Activity Index (CAI) ⁴⁸ was developed by Zhang et al. (2004) to document the
3323	variability of Northern Hemisphere cyclone activity. The CAI has increased in the Arctic
3324	Ocean (70°-90°N) during the latter half of the 20 th century, while it has decreased in mid-
3325	latitudes (30 ⁰ -60 ⁰ N) from 1960 to 1993, which is evidence of a pole-ward shift in the
3326	average storm track position. Interestingly, the number and intensity of cyclones entering
3327	the Arctic from the mid-latitudes has increased, particularly during summer (Zhang et al.
3328	2004). The increasing activity in the Arctic was more recently verified by Wang et al.
3329	(2006a), who analyzed ETC counts by applying two separate cyclone detection
3330	thresholds to ERA-40 reanalysis of mean sea level pressure data. Their results showed an
3331	increase in high latitude storm counts, and a decrease in ETC counts in the mid-latitudes
3332	during the latter half of the 20 th century.
3333	
3334	Northern Hemisphere ETC intensity has increased over the period 1959-1997 across both

- mid- and high-latitudes cyclone intensity (McCabe et al. 2001; Fig. 2.18c,d), with the
- 3336 upward trend more significant for the high latitudes (0.01 level) than for the mid-latitudes

⁴⁷ Standardized departures (*z* scores) were computed for each 5[°] latitudinal band by subtracting the respective 1959-1997 mean from each value and dividing by the respective 1959-1997 standard deviation (McCabe et al. 2001). ⁴⁸ The CAI integrates information on cyclone intensity, frequency, and duration into a comprehensive index

⁴⁸ The CAI integrates information on cyclone intensity, frequency, and duration into a comprehensive index of cyclone activity. The CAI is defined as the sum over all cyclone centers, at a 6-hourly resolution, of the differences between the cyclone central SLP and the climatological monthly mean SLP at corresponding grid points in a particular region during the month (Zhang et al. 2004).

3337	(0.10 level). From an ocean basin perspective, the observed increase in intense ETC's
3338	appears to be more robust across the Pacific than the Atlantic. Using reanalysis data
3339	covering the period 1949-1999, Paciorek et al. (2002) found that extreme wind speeds
3340	have increased significantly in both basins (Fig. 2.19a,d). Their results also showed that
3341	the observed upward trend in the frequency of intense cyclones has been more
3342	pronounced in the Pacific basin (Fig. 2.19c), although the inter-annual variability is much
3343	less in the Atlantic (Fig. 2.19f). Surprisingly, they found that the overall counts of ETC's
3344	showed either no long-term change, or a decrease in the total number of cyclones (Fig.
3345	2.19b,e). However, this may be a result of the large latitudinal domain used in their study
3346	$(20^{\circ}-70^{\circ}N)$, which included parts of the tropics, sub-tropics, mid- and high latitudes.
3347	
3348	On a regional scale, ETC activity has increased in frequency, duration and intensity in the
3349	lower Canadian Arctic during 1953-2002 with the most statistically significant trends
3350	during winter ⁴⁹ (p=0.05 level; Wang et al. 2006b). In contrast to the Arctic region,
3351	cyclone activity was less frequent and weaker along the southeast and southwest coasts of
3352	Canada. Winter cyclone deepening rates (i.e. rates of intensification) have increased in
3353	the zone around 60°N, but decreased further south in the Great Lakes area and southern
3354	Prairies-British Columbia region of Canada. This is also indicative of a pole-ward shift in
3355	ETC activity, and corresponding weakening of ETC's in the mid-latitudes and an
3356	increase in observed intensities in the high latitudes. For the period of 1949-1999, the
3357	intensity of Atlantic ETC's increased from the 1960's to the 1990's during the winter

⁴⁹ Results based on hourly average sea level pressure data observed at 83 stations

season⁵⁰ (Harnik and Chang 2003). Their results showed no significant trend in the
Pacific region but this is a limited finding because of a lack of upper-air (i.e. radiosonde)
data over the central North Pacific⁵¹ in the region of the storm track peak (Harnik and
Chang 2003).

3362

3363 There have been very few studies that have analyzed the climatological frequencies and

3364 intensities of ETC's across the central U.S., specifically in the Great Lakes region (e.g.,

Lewis 1987; Harmon et al. 1980; Garriott 1903). Over the period 1900 to 1990 the

number of strong cyclones (≤992 mb) increased significantly across the Great Lakes

3367 (Angel and Isard 1998). This increasing trend was evident (at the p=0.05 level) both

annually and during the cold season,. In fact, over the 91-yr period analyzed, they found

that the number of strong cyclones per year more than doubled during both November

and December.

3371

In addition to studies using reanalysis data, which have limited record lengths, other longer-term studies of the variability of *storminess* typically use wave or water level measurements as proxies for storm frequency and intensity. Along the U.S. West Coast, one of the longest continuous climate-related instrumental time series in existence is the hourly tide gauge record at San Francisco that dates back to 1858. A derived metric called non-tide residuals (NTR)⁵², which are related to broad-scale atmospheric

⁵⁰ Results based on gridded rawinsonde observations covering the Northern Hemisphere

⁵¹ Besides the few radiosonde sites located on islands (i.e., Midway or the Azores), most upper-air observations over the vast expanses of the North Pacific and Atlantic are from automated pilot reports (pireps) that measure temperature, wind speed, and barometric pressure onboard commercial aircraft traveling at or near jet stream level (between 200-300 hPa).

⁵² Non-tide residuals are obtained by first removing the known tidal component from the water level variations using a spectral method; then, variations longer than 30 days and shorter than 2.5 days are

3378	circulation patterns across the eastern North Pacific that affect storm track location,
3379	provides a measure of storminess variability along the California coast (Bromirski et al.
3380	2003). Average monthly variations in NTR, which are associated with the numbers and
3381	intensities of all ETCs over the eastern North Pacific, did not change substantially over
3382	the period 1858-2000 or over the period covered by most ETC reanalysis studies, 1951-
3383	2000. However, the highest 2% of extreme winter NTR (Fig. 2.20), which are related to
3384	the intensity of the most extreme ETCs, had a significant upward trend since ~1950, with
3385	a pronounced quasi-periodic decadal-scale variability that is relatively consistent over the
3386	last 140 yr. Changes in storm intensity from the mid-1970s to early 1980s are also
3387	suggested by a substantial pressure decreases at an elevation above sea level of about
3388	3000 m over the eastern North Pacific and North America (Graham 1994), indicating that
3389	the pattern of variability of extreme storm conditions observed at San Francisco (as
3390	shown in Fig. 2.20) likely extends over much of the North Pacific basin and the U.S. The
3391	oscillatory pattern of variability is thought to be influenced by teleconnections from the
3392	tropics, predominately during ENSO events (Trenberth and Hurrell 1994), resulting in a
3393	deepened Aleutian low shifted to the east that causes both ETC intensification and a shift
3394	in storm track. It is interesting to note that peaks in the 5-year moving average in Fig.
3395	2.20 generally correspond to peaks in extreme rainfall in Fig. 2.10 suggesting that the
3396	influence of El Niño and broad-scale atmospheric circulation patterns across the Pacific
3397	that affect sea level variability along the West Coast are associated with storm systems
3398	that affect rainfall variability across the U.S

- 3399
- 3400 The amplitude and distribution of ocean wave energy measured by ocean buoys is removed with a bandpass filter.

determined by ETC intensity and track location. Changes in long period (>12 sec),
intermediate period, and short period (<6 sec) components in the wave-energy spectra
permit inferences regarding the changes over time of the paths of the storms, as well as
their intensities and resulting wave energies (Bromirski et al. 2005). Analysis of the
combination of observations from several buoys in the eastern North Pacific supports a
progressive northward shift of the dominant Pacific storm tracks to the central latitudes
(section 2.2.3.3).

3408

3409 2.2.3.2.3 Nor'easters

Those ETCs that develop and propagate along the East Coast of the U.S. and southeast Canada are often termed colloquially as *Nor'easters*⁵³. In terms of their climatology and any long-term changes associated with this subclass of ETCs, there are only a handful of studies in the scientific literature that have analyzed their climatological frequency and intensity (Jones and Davis 1995), likely due to a lack of any formal objective definition of this important atmospheric phenomenon (Hirsch et al. 2001).

3416

3417 Because waves generated by ETCs are a function of storm size and the duration and area 3418 over which high winds persist, changes in significant wave heights can also be used as a 3419 proxy for changes in Nor'easters. Using hindcast wave heights and assigning a minimum 3420 criterion of open ocean waves greater than 1.6 m in height (a commonly used threshold 3421 for storms that caused some degree of beach erosion along the mid-Atlantic coast) to 3422 qualify as a nor'easter, the frequency of nor'easters along the Atlantic coast peaked in the

⁵³ According to the *Glossary of Meteorology* (Huschke 1959), a *nor'easter* is any cyclone forming within 167 km of the East Coast between 30° - 40° N and tracking to the north-northeast

- 3423 1950's, declined to a minimum in the 1970's, and then increased again to the mid-1980's3424 (Dolan et al. 1988; Davis et al. 1993).
- 3425

3426	An alternate approach utilized by Hirsch et al. (2001) uses pressure, direction of
3427	movement and wind speed to identify such systems and generically names them as East
3428	Coast Winter Storms (ECWS) ⁵⁴ . Hirsch et al. (2001) defined an ECWS as "strong" if the
3429	maximum wind speed is greater than 23.2 m s ⁻¹ (45 kt). During the period of 1951-1997,
3430	their analysis showed that there were an average of 12 ECWS events occurring each
3431	winter (October-April), with a maximum in January, and an average of 3 strong events
3432	(Fig. 2.21a). They found a general tendency toward weaker systems over the past few
3433	decades, based on a marginally significant (at the 90% confidence level) increase in
3434	average storm minimum pressure (not shown). However, their analysis found no
3435	statistically significant trends in ECWS frequency for all nor'easters identified in their
3436	analysis, for those storms that occurred over the northern portion of the domain (> 35^{0} N),
3437	or those that traversed full coast (Fig. 2.21b,c) during the 46-year period of record used in
3438	this study.
3439	
3440	Because strong storms over the open ocean generate high amplitude waves, buoy

- 3441 measurements of wave height and wave period can be used to infer characteristics of
- 3442 ETC variability. The wave power index (WPI) of strong storm-forced wave events

⁵⁴ According to Hirsch et al. (2001), in order to be classified as an ECWS, an area of low pressure is required to (1) have a closed circulation; (2) be located along the east coast of the United States, within the quadrilateral bounded at 45° N by 65° and 70° W and at 30° N by 75° and 85° W; (3) show general movement from the south-southwest to the north-northeast; and (4) contain winds greater than 10.3 m s⁻¹ (20 kt) during at least one 6-h period.

3443 (significant wave heights > 3 m) measured at deep-water open-ocean NOAA buoys 3444 44004, 41001, 41002 along the U.S. Atlantic coast (see Figure 2.25 for locations) during 3445 winter months (October-March, excluding tropical cyclone wave events) shows a 3446 decreasing trend that is significant at the p=0.05 level amounting to a decrease in ETC-3447 forced wave power of about 1%/yr (Bromirski 2007). Coupled with no statistically 3448 significant change in either mean wave height or the number of measurements exceeding 3449 3 m (implying no change in storm duration and/or the number of strong storms), the 3450 downward trend in the WPI suggests that winter ETC intensity has decreased since 1980, 3451 in general agreement with Hirsch et al. (2001). 3452 3453 BOX 2.2: Extreme Coastal Storm Impacts: "The Perfect Storm" as a True 3454 **Nor'easter:** From a coastal impacts perspective, damage is greatest when large storms 3455 are propagating *towards* the coast, which generally results in both a larger storm surge 3456 and more long period wave energy (resulting in greater run-up causing more 3457 beach/coastal erosion/damage). Storm intensity (winds) is usually greatest in the right-3458 front quadrant of the storm (based on the cyclone's forward movement), so the typical 3459 track of east coast winter storms propagating parallel to the coast leaves the most intense 3460 part of the storm out to sea. In contrast to storms propagating parallel to the coast, 3461 Nor'easters (such as "the Perfect Storm") that propagate from east-to-west in a retrograde 3462 track at some point in their lifetime (Fig. 2.22) can generate much greater surge and 3463 greater long period wave energy, and also potentially have the most intense associated 3464 winds making landfall along the coast.

3466 2.2.3.3 Coastal Waves: Trends of Increasing Heights and Their Extremes 3467 The high wind speeds of hurricanes and extratropical cyclones over bodies of water cause 3468 extremes in the heights and energies of the waves they generate. Seasonal and long-term changes 3469 in storm intensities and their tracks produce corresponding variations in wave heights and 3470 periods along coasts, defining their wave climates. Waves generated by extratropical storms 3471 dominate the oceans at higher latitudes, including the Northeast Pacific along the shores of 3472 Canada and the west coast of the United States, and along the Atlantic coast of North America 3473 where they originate from destructive Nor'easters. Tropical cyclones dominate the wave climates 3474 at lower latitudes during the warm season (June-September), including the southeast Atlantic 3475 coast of the United States, Gulf of Mexico, and the Caribbean, while hurricanes in the East 3476 Pacific generate waves along the western shores of Mexico and Central America. The 3477 magnitude of associated damage from storm waves depends to a large extent on whether the 3478 storms make landfall, when storm surge, high winds, and heavy rainfall combined with high 3479 waves cause severe impacts. However, high waves from strong tropical cyclones that reach 3480 hurricane strength and then track northward along the East Coast as they weaken, can combine 3481 with extratropical systems, such as the 1991 Halloween Storm (Bromirski 2001; Chapter 2, Box 3482 2.2), and cause severe coastal erosion and have significant economic impacts (Davis et al. 1993; 3483 Dolan et al. 1988; Mather et al. 1967).

3484

3485 **2.2.3.3.1** The Waves of Extratropical Storms and Hurricanes

The heights and periods of waves generated by a storm depend on the speed of its winds, the area over which the winds blow (the storm's fetch), and on the duration of the storm, factors that

3488 determine the amount of energy transferred to the waves. Wave climate variability has been

3489 estimated from: (1) direct measurements by buoys; (2) visual observations from ships; (3) wave 3490 hindcast analyses where wave heights and periods are assessed using forecast models that are run 3491 retrospectively using observed meteorological data; and (4) in recent years from satellite 3492 altimetry. The reliability of the wave records ranges widely for these different sources, and 3493 changes in data-collection methodologies and processing techniques can affect the data 3494 consistency. However, long records from these sources make it possible to identify long-term 3495 trends, and to investigate underlying climate controls. 3496 3497 In the Northern Hemisphere the hurricane winds are strongest on the right-hand side of the storm 3498 relative to it track, where its cyclonic winds coincide with the direction of the storm's 3499 propagation, in turn producing the highest waves on that side of the storm. They achieve their 3500 greatest heights in proximity to the wall of the storm's eye where the winds reach their 3501 maximum, and systematically decrease outward as the wind speeds are reduced. Extreme heights 3502 are closely associated with the Saffir-Simpson hurricane classification system, where the central 3503 atmospheric pressures are lower and the associated wind speeds are higher for the higher 3504 hurricane categories. A correlation between the meausred wave heights and the central atmospheric pressure (Hsu et al. 2000) allows the magnitude of the significant wave height⁵⁵, 3505 $H_{s,to}$ be related to the hurricane categories⁵⁶. Estimates of the maximum H_{s} generated close to 3506 3507 the wall of the hurricane's eye on the storm's leading right quadrant where the wind speeds are 3508 greatest, range from 6 to 7 m for Category 1 storms to about 20 m and greater for Category 5 3509 storms. The decrease in observed $H_{\rm S}$ outward from the hurricane's eye in response to the

⁵⁵ The "significant wave height" is a commonly used statistical measure for the waves generated by a storm, defined as the average of the highest one-third of the measured wave heights

⁵⁶ Hsu et al. (2000) have developed the empirical formula H_{smax} =0.2(P_n - P_c) where P_c and $P_n \sim 1013$ mbar are respectively the atmospheric pressures at the center and edge of the tropical cyclone, and H_{smax} is the maximum value of the significant wave height

3510	outward decrease in wind speeds, demonstrates that $H_{\rm S}$ is reduced by 50% at approximately a
3511	distance of 5 times the radius of the eye, typically occurring about 250 km outward from the
3512	storm's center (Hsu, et al. 2000).
3513	
3514	The impression has been, however, that such models under-predict the highest waves of
3515	Category 4 and 5 storms, and this has led to recent investigations that included the direct
3516	measurement of waves generated by hurricanes. For example, measurements obtained by six
3517	wave gauges deployed by the Naval Research Laboratory (NRL) at depths of 60 to 90 m in the
3518	Gulf of Mexico, when the Category 4 Hurricane Ivan passed directly over the array on 15
3519	September 2004, recorded significant wave heights ranging from 16.1 to 17.9 m; the largest
3520	individual wave height reached 27.7 m (Wang et al. 2005). The simple model of Hsu et al.
3521	(2000) yields a maximum significant wave height of 15.6 m for Ivan's 935-mbar central
3522	pressure, seemingly in agreement with the 16-m measured waves. However, the NRL gauges
3523	were about 30 km outward from the zone of strongest winds and were positioned toward the
3524	forward face of Ivan rather than in its right-hand quadrant, so Wang et al. (2005) concluded it is
3525	likely that the maximum significant wave height was greater than 21 m, with the largest
3526	individual wave heights having been greater than 40 m, indicating that the Hsu et al. (2000)
3527	empirical formula somewhat under predicts the waves generated by high-category hurricanes. On
3528	the other hand, hurricane waves from more complex models that use spatially distributed surface
3529	wind measurements (Tolman et al. 2002) compare well with satellite and buoy observations both
3530	in deep water and in shallow water as hurricanes make landfall (Moon et al. 2003).
3531	

3532	Any trend over the years of increasing intensities of hurricanes or of extratropical storms should
3533	on average be reflected in similar upward trends in associated wave heights. Analyses of wave-
3534	buoy data along both the Atlantic and Pacific coasts of the United States document that wave-
3535	height increases have occurred at some locations since the late 1970s.
3536	
3537	2.2.3.3.2 Atlantic Coast Waves
3538	Two analyses have recently been undertaken of the hourly measurements of the significant wave
3539	heights collected by the buoys of NOAA's National Data Buoy Center (NDBC) along the U.S.
3540	Atlantic shore. These analyses, while differing in some important methodological aspects that
3541	affect some of the results, both show changes in waves generated by hurricanes while the ranges
3542	of wave heights created by extratropical storms appear to have undergone little change.
3543	
3544	Komar and Allan (2007a) analyzed the data from three buoys located in deep water to the east of
3545	Cape May, New Jersey, Cape Hatteras, North Carolina, and offshore from Charleston, South
3546	Carolina. These buoys were selected due to their long record lengths and because the sites
3547	represent a range of latitudes where the wave climate is expected to be affected by both tropical
3548	hurricanes and extratropical storms (Nor'easters). Separate analyses were undertaken for the
3549	winter season dominated by extratropical storms and the summer season of hurricanes ⁵⁷ . There
3550	was not a statistically significant change over the decades in the heights of waves generated by
3551	extratropical storms, but statistically significant increases have occurred for the hurricane-
3552	generated waves. The increases in annual-averaged significant wave heights measured by the

⁵⁷ The hurricane waves were analyzed for the months of July through September, expected to be dominated by tropical cyclones, while the waves of extratropical storms were based on the records from November through March; transitional months such as October were not included, when both types of storms could be expected to be important in wave generation. Also, strict missing data criteria eliminated some years from the analysis.

3553	three Atlantic buoys for the summer hurricane seasons are graphed in Figure 2.23. These annual
3554	averages have included only occurrences when the significant wave heights were greater than 3
3555	m, it having been found that those higher waves can be directly attributed to specific hurricanes,
3556	whereas the lower waves represent the calmer periods between storms. It is seen in Figure 2.23
3557	that there has been a dependence on the latitude, with the highest rate of increase having
3558	occurred in the south; 0.059 m/yr (1.8 m in 30 years) for the Charleston buoy, 0.024 m/yr for the
3559	Hatteras buoy, and 0.017 m/yr for Cape May^{58} .
3560	
3561	Figure 2.24 provides a comparison of histograms for the numbers of significant wave heights
3562	measured during the hurricane season by the Cape Hatteras buoy, one histogram for data from
3563	early in its record (1977-1990) and the second from 1996-2005, this comparison further
3564	documenting the decadal increase seen in Figure 2.23, especially of the more-extreme waves ⁵⁹ .
3565	The histogram for the early decade in the wave record shows that the maximum significant wave
3566	height measured was 7.8 m, providing an approximate estimate for the height expected to have a
3567	10-year recurrence interval. From this, we could expect that the 100-year extreme (1%
3568	probability) would have been on the order of 9.5 m significant wave height. In contrast, during
3569	1996-2005 there has been a considerably larger number of occurrences having significant wave
3570	heights greater than 4 m, with the most extreme heights measured ranging up to 10.3 m. The
3571	100-year extreme is now on the order of 12 m, about 3 m higher than in the 1980s. Similar

 $^{^{58}}$ The regressions in Figure 2.38 for the Charleston and Cape Hatteras buoy data are statistically significant at the p=0.05 level according to the Wilcoxon Test, whereas the value of the trend for the Cape May does not pass that test.

⁵⁹ Traditionally a wave histogram is graphed as the percentages of occurrences, but here the actual numbers of occurrences for the range of wave heights have been plotted, using a log scale that emphasizes the most-extreme heights.

- results have been found in analyses of the wave-height histograms for the Cape May andCharleston buoys (Komar and Allan, 2007a).
- 3574

3575 This analysis of the three U.S. East Coast buoys (Figures 2.23 and 2.24) demonstrate that there 3576 has been a 30-year increase in wave heights measured during the hurricane season. This increase 3577 could depend on several factors, including changes from year to year in the numbers and 3578 intensities of storms, their tracks that determine whether they traveled northward through the 3579 Atlantic where their generated waves could be recorded by these buoys, and how distant the 3580 hurricanes were from the buoys, whether they passed far offshore within the central Atlantic, or 3581 approached the east coast and possibly made landfall. Analyses by Komar and Allan (2007b) 3582 indicate that all of these factors have been important to the observed wave-height increases, but 3583 the increased hurricane intensities found by Emanuel (2005) based on the measured wind speeds 3584 provide the best explanation for the progressive increase in wave heights seen in Figure 2.23, 3585 since the numbers and tracks of the storms show considerable variability from year to year. 3586 In the second study (Bromirski and Kossin, 2007)⁶⁰, extreme tropical cyclone-associated H_s 3587 3588 events (deep water H_s exceeding 3 m) measured at buoys in both the Atlantic and Gulf regions 3589 (Figure 2.25a) show a general tendency for more significant tropical cyclone-associated wave

- 3590 events since 1995 (Figure 2.25b), consistent with increasing overall counts of named storms
- during recent years [Webster et al. 2005; Klotzbach 2006]. As would be expected, the intense
- 3592 2005 hurricane season had the highest incidence of significant H_S events over the data record in

⁶⁰ In this study, the entire hurricane season (June-November) was analyzed. Hurricane track data were used to restrict the analysis to time periods when hurricanes were likely the cause of extreme waves, the goal being to minimize the effects of ETCs during the transition months of October and November. Less stringent missing data were applied, resulting in the inclusion of more years than in Komar and Allan (2007).

3593	the Gulf when Hurricanes Katrina, Rita, and Wilma occurred. Since 1978, there were
3594	substantially more significant H_S events along the Atlantic coast than in the Gulf, with almost
3595	three times as many events during September (Figure 2.25c). The monthly distribution along
3596	both coasts peaks in September, with an equally likely chance of a significant tropical cyclone
3597	wave event occurring during October as during August over the 1978-2006 data record. About 3
3598	times as many extreme events occurred in September in the Atlantic compared with the Gulf
3599	from 1978-2006. However, inclusion of all tropical cyclone generated wave events (listed in
3600	http://www.nhc.noaa.gov/pastall.shtml) for the entire June though November hurricane season
3601	indicates that there is no significant trend in mean tropical cyclone associated H_S at either the
3602	western North Atlantic or Gulf buoys (Bromirski and Kossin, 2007; Figure 2.25b).
3603	
3604	A tropical cyclone wave power index, WPI ⁶¹ , shows an increase in the Atlantic during
3605	the mid-1990s (Bromirski and Kossin, 2007; Figure 2.26), associated with an increase in
3606	the number of significant tropical cyclone forced wave events, that is proportionally
3607	consistent with the increase observed for the tropical cyclone power dissipation index
3608	(PDI, Emanuel 2005]\). The Gulf WPI indicates that only the 2005 hurricane season was
3609	exceptional in the Gulf, but is highly correlated with the Atlantic multidecadal oscillation
3610	(AMO, Goldenberg et al. 2001) over the 1980-2006 period. In contrast, the Atlantic WPI
3611	is not well correlated with the AMO, suggesting that tropical sea surface temperature
3612	variability has a greater influence on the characteristics of tropical cyclones that reach the
3613	Gulf.

⁶¹ The WPI for the Atlantic and Gulf regions is obtained as the average of the total wave power for all tropical cyclone associated wave events during the June – November hurricane season at the three southernmost Atlantic buoys and the three Gulf buoys in Figure 2.waves.1a (Bromirski, 2007).

3615	To summarize, these 2 studies both detect changes in tropical cyclone-related waves, but
3616	in different aspects. Komar and Allan (2007a) show statistically significant increases in
3617	extreme wave heights during July-September, while Bromirski and Kossin (2007) do not
3618	find the trends over the entire hurricane season to be statistically significant. However,
3619	Bromirski and Kossin (2007) do find a statistically significant increase in tropical
3620	cyclone-caused wave power, a trend that is attributed to an increase in numbers of events
3621	rather than intensity.
3622	
3623	In contrast to the changes in the hurricane waves, analyses of the winter wave heights
3624	generated by extratropical storms and recorded since the mid-1970s by the three buoys
3625	along the central U.S. Atlantic shore have shown little change (Komar and Allan, 2007a).
3626	The records from the Cape Hatteras and Charleston NDBC buoys yield regressions
3627	indicating that they have actually experienced a slight decrease over the decades (-0.005
3628	m/yr), while the Cape May buoy shows a lower rate of reduction (-0.001 m/yr). These
3629	trends are not statistically significant, but may a reflection in the changes in storm tracks
3630	over the decades, with the storms having shifted to the north.
3631	

Analyses of the winter waves generated by extratropical storms demonstrate that the highest measured occurrences are on the order of 10.5-m significant wave heights, with the extremevalue assessments placing the 100-year event at on the order of 11.5 m, effectively the same as seen in the histogram of Figure 2.24 for the summer hurricane waves recorded by the Hatteras buoy during the 1996-2005 decade, so the wave climates of the two seasons are now quite similar. However, thirty-years ago when these buoys first became operational, the significant wave heights generated in the summer by hurricanes were much lower than those of the
extratropical storms during the winter; while the heights of hurricane-generated waves have
progressively increased since the 1970s, the wave heights due to extratropical storms have not.

3642 Although minimal change in the heights of waves generated by extratropical storms have been

3643 measured by buoys along the U.S. shore in the Western Atlantic, progressive increases have

3644 occurred in the Northeast Atlantic extending back to at least the 1960s, documented by the Seven

3645 Stones ship-borne wave recorder located in deep water off the southwest coast of England

3646 (Carter and Draper, 1988; Bacon and Carter, 1991). Of interest, the rate of increase (0.022 m/yr)

in the annual averages are closely similar to those measured by buoys along the northwest coast

3648 of the United States in the Pacific Ocean, discussed below.

3649

3650 The documentation by buoys of trends in wave heights in the North Atlantic are limited by 3651 their relatively short records, hindering a determination of the longevity of the identified trends 3652 and the possible presence of any decadal cycles in climate-determined variability. To 3653 supplement the buoy data, visual observations from ships in transit provide longer time series 3654 of estimated ocean wave-heights; although the quality of the data may be questionable, its 3655 availability extends back through the entire 20th century, and in general appears to yield 3656 reasonably consistent trends when compared with the buoy data and with wave hindcasts. 3657 Gulev and Grigorieva (2004) have undertaken detailed analyses of the visual assessments of wave heights from ships, covering the years 1895-2002 except for a gap in the data during 3658 3659 World War II. The observations for the northeast Atlantic showed a distinct increase in wave 3660 heights after about 1955, corresponding to the wave-sensor measurements since the 1960s

3661 collected southwest of England. Earlier in the 20th century, however, there were distinct cycles 3662 in the visual wave heights observed from ships, with years during which the average wave 3663 heights were some 0.2 m higher than at present. These cycles correlate with the North Atlantic 3664 Oscillation (NAO), with the higher wave heights having been associated with high NAO 3665 indices. 3666 3667 Hindcasts by Wang and Swail (2001) of the wave climates based on the meteorological records 3668 of extratropical storms have been analyzed with respect to changes in the 90th and 99th 3669 percentiles of the significant wave heights, thereby representing the trends for the more 3670 extreme wave conditions. The results indicate a lack of change along the east coast of North 3671 America, in agreement with the buoy data for waves generated by extratropical storms. 3672 2.2.3.3.3 Pacific Coast Waves 3673 3674 Analyses of the wave data from NDBC buoys have also been undertaken along the U.S. Pacific 3675 coast, similar to those discussed above for the Atlantic but with the focus having been on the 3676 waves generated by extratropical storms in the Northeast Pacific. The principal investigations of 3677 the trends of changing wave heights and their potential climate controls are those of Allan and 3678 Komar (2000, 2006), who analyzed the records from 6 buoys along the coast from Washington 3679 to south-central California (Point Conception). The analyses were limited to the "winter" waves, 3680 October though the following March, the season with the most intense storms and highest waves.

3681 Trends of increasing wave heights spanning the past 30 years were found, with the greatest rate

3682 of increase having occurred off the coast of Washington where the regression yielded an average

3683 rate of 0.032 m/yr for the winter, with a regular pattern of lesser rates of increase for the latitudes

to the south, such that off the coast of south-central California there has not been a statistically
 significant trend⁶².

3687	Analyses of the more extreme wave heights measured off the Washington coast were undertaken
3688	due to their importance to coastal-erosion occurrences (Allan and Komar, 2006). Figure 2.27
3689	contains graphs of the annual averages of the winter wave heights, and the averages of the five
3690	largest significant wave heights measured each winter, the latter showing a higher rate of
3691	increase (0.095 m/yr, a 2.85-m increase in the significant wave heights in 30 years). The full
3692	series of analyses are listed in Table 2.1, demonstrating that there is an orderly progression with
3693	the more extreme the assessment the greater the rate of increase, up to a rate of 0.108 m/yr for
3694	the single highest measured significant wave height each year. While the data in Figure 2.27 for
3695	the averages of the largest five storm-wave occurrences each year are statistically significant at
3696	the p=0.05 level, the trends for the more extreme waves do not meet this criterion (Table 2.1).
3697	However, for applications to engineering design of coastal structures and in coastal management
3698	assessments of hazards, these extremes for the measured wave heights are of greatest relevance,
3699	and therefore are sometimes used in applications as is the trend for the assessment of the 100-
3700	year projected extreme, which has increased at a still greater rate over the decades, from about 11
3701	m in 1975 to 16 m at present. This use in applications is further supported by the fact that much
3702	of the scatter in the diagrams, as seen in Figure 2.27, can be accounted for by considering the
3703	range of climate events from El Niños to La Niñas (Allan and Komar, 2000, 2006).
3704	

⁶² Where trends of increasing wave heights do exist, they have again been verified by application of the Wilcoxon test, a statistical analysis that basically compares the first half the record with the second half to establish that there has been a meaningful change.
3705 The intensities of North Pacific extratropical storms and their associated tracks are strongly 3706 affected by the depth and position of the Aleutian Low, which tends to intensify and shift 3707 southward and eastward during strong El Nino events (Mo and Livezey, 1986). This southward 3708 shift results in increased occurrences of extreme waves throughout the eastern North Pacific, 3709 particularly along the south-central California coast (Seymour et al. 1984; Allan and Komar 3710 2000, 2006; Bromirski et al. 2005). Correlations between the measured wave heights and the 3711 Multivariate ENSO Index show that increased wave heights occur at all latitudes along the U.S. 3712 Pacific coast during major El Niños, but with the greatest increases along the shore of southern 3713 California (Allan and Komar, 2006). Along the coast of California where the trends of decadal 3714 increases are small to non-existent, it is this cycle between El Niños and La Niñas that exerts the 3715 primary climate control on the storm-wave heights and their extremes (and also on the monthly-3716 mean winter water levels, which are elevated by 20 to 50 cm during a major El Niño above the 3717 long-term mean sea levels).

3718

3719 The documentation of increasing wave heights in the North Pacific is given limited by the 3720 relatively short records from buoys, extending back only to the 1970s. Similar to discussed for 3721 the Atlantic, visual observations from ships in transit provide longer time series of ocean wave 3722 height estimates, but of questionable quality. Gulev and Grigorieva (2004) examined this source 3723 of wave data for the North Pacific, finding that there has been a general increase in the 3724 significant wave heights throughout the 20th century, with a rapid increase from 1900 to about 3725 1925, and a leveling off from 1925 to about 1950-60 but with an apparent maximum during the 3726 1940s (there being a gap in the data during World War II). There was a renewed increase 3727 beginning in about 1960, corresponding to that documented by the wave buoy measurements

3728	(Fig. 2.27). The wave hindcasts ⁶³ by Wang and Swail (2001), representing the more extreme
3729	significant wave-height occurrences (the 90 th and 99 th percentiles), largely also confirm the
3730	general increase in wave heights throughout the central to eastern North Pacific.
3731	
3732	There is the potential for the use of proxy evidence to examine the changes in wave heights
3733	back beyond that provided by the wave data, the proxy having the clearest potential being
3734	measurements by seismometers installed to monitor earthquake activity. During the "quiet"
3735	intervals between earthquakes it has been noted that there is a consistent level of "noise" in the
3736	recorded ground motions, termed "microseisms". It has been shown that much of this energy is
3737	derived from surf on the coast, with the microseisms increasing at times of storms. Analyses
3738	have been undertaken by Bromirski et al. (1999) correlating buoy measurements of ocean
3739	waves along the coast of central California and the microseisms measured by the seismometer
3740	at the University of California, Berkeley. The results of that study yielded a calibration
3741	between the ocean wave heights and the microseism energy, demonstrating the potential use of
3742	the archived seismic data that dates back to 1930, to investigate changes in the U.S. West Coast
3743	wave climate.

3745 **2.2.3.4 Winter Storms**

3746 **2.2.3.4.1 Snowstorms**

3747 The amount of snow that causes serious impacts varies depending on a given location's

- usual snow conditions. A snowstorm is defined here as an event in which more than 15
- 3749 cm of snow falls in 24 hours or less at some location in the U.S. This is an amount

⁶³ Hindcasts are model estimates of waves using forecast models that are run retrospectively using observed meteorological data

3750	sufficient to cause societally-important impacts in most locations. During the 1901-2001
3751	period, 2,257 snowstorms occurred (Changnon et al. 2006). Temporal assessment of the
3752	snowstorm incidences during 1901-2000 revealed major regional differences.
3753	Comparison of the storm occurrences in 1901-1950 against those in 1951-2000 revealed
3754	that much of the eastern U.S. had more storms in the early half of the 20 th Century,
3755	whereas in the West and New England, the last half of the century had more storms.
3756	Nationally, 53% of the weather stations had their peaks in 1901-1950 and 47% peaked in
3757	1951-2000.
3758	
3759	The South and lower Midwest had distinct statistically significant downward trends in
3760	snowstorm frequency from 1901 to 2000. In direct contrast, the Northeast and upper
3761	Midwest had statistically significant upward linear trends. These contrasting regional
3762	trends suggest a northward shift in snowstorm occurrence. Nationally, the regionally
3763	varying up and down trends resulted in a national storm trend that was slightly upward
3764	for 1901-2000, but not statistically significant. The long-term increases in the upper
3765	Midwest and Northeast occurred where snowstorms are most frequent, and thus had an
3766	influence on the upward trend in national snowstorm activity. Research has shown that
3767	cyclonic activity was low during 1931-1950, a period of few snowstorms in the U.S.
3768	
3769	Nationally, 39 of 231 stations with long-term records had their lowest frequencies of
3770	storms during 1931-1940, whereas 29 others had their peak of incidences then. The
3771	second ranked decade with numerous stations having low snowstorm frequencies was

3772 1981-1990. Very few low storm occurrences were found during 1911-1920 and in the

3773 1961-1980 period, times when storms were quite frequent. The 1911-1920 decade had the
3774 greatest number of high station values with 38 stations. The fewest peak values occurred
3775 in the next decade, 1921-1930. Comparison of the decades of high and low frequencies of
3776 snowstorms reveals, as expected, an inverse relationship. That is, when many high storm
3777 values occurred, there are few low storm frequencies.

3778

3779 Generally, the decades with high snowstorm frequencies were characterized by cold

3780 winters. The three highest decades for snowstorms (1911-1920, 1961-1970, and 1971-

3781 1980) were ranked 1st, 4th, and 3rd coldest, respectively while the two lowest decades

3782 (1921-1930 and 1931-1940) were ranked as 3rd and 4th warmest. One exception to this

3783 general relationship is the warmest decade (1991-2000), which experienced a moderately

- high number of snowstorms.
- 3785

3786 Very snowy seasons (those with seasonal snowfall totals exceeding the 90th percentile

threshold) were infrequent in the 1920s and 1930s and have also been rare since the mid-

3788 1980s (Kunkel et al. 2007b). There is a high correlation with average winter temperature.

3789 Warm winters tend to have few stations with high snowfall totals and most of the snowy

3790 seasons have also been cold.

3791

3792 Some of the snowiest regions in North America are the southern and eastern shores of the

3793 Great Lakes where cold northwesterly winds flowing over the warmer lakes pick up

3794 moisture and deposit on the shoreline areas. There is evidence of upward trends in

snowfall since 1951 in these regions even while locations away from the snowy shoreline

3796	areas have not experienced increases (Burnett et al. 2003). An analysis of historical heavy
3797	lake-effect snowstorms identified several weather conditions to be closely related to
3798	heavy lake-effect snowstorm occurrence including moderately high surface wind speed,
3799	wind direction promoting a long fetch over the lakes, surface air temperature in the range
3800	of -10 to 0°C, lake surface to air temperature difference of at least 7°C, and an unstable
3801	lower troposphere (Kunkel et al. 2002). It is also necessary that the lakes be mostly ice-
3802	free.
3803	
3804	Snow cover extent for North America based on satellite data (Robinson et al. 1993)
3805	abruptly decreased in the mid-1980s and generally has remained low since then
3806	(http://climate.rutgers.edu/snowcover/chart_anom.php?ui_set=0&ui_region=nam&ui_mo
3807	nth=6).
3808	
3809	2.2.3.4.2 Ice Storms
3810	Freezing rain is a phenomenon where even light amounts can have substantial impacts.
3811	All days with freezing rain (ZR) were determined during the 1948-2000 period based on
3812	data from 988 stations across the U.S. (Changnon and Karl 2003). The national frequency
3813	of freezing rain days (FZRA) exhibited a downward trend, being higher during 1948-
3814	1964 than in any subsequent period.
3815	
3816	The temporal distributions of FZRA for three climate regions (Northeast, Southeast, and

- 3817 South) reveal substantial variability. They all were high in 1977-1980, low in 1985-1988,
- 3818 and lowest in 1973-1976. The 52-year linear trends for all three regions were downward

3819	over time. The time distributions for the Central, West North Central, and East North
3820	Central regions are alike, all showing that high values occurred early, 1949-1956. All
3821	climate regions had their lowest FZRA during 1965-1976. The East north central,
3822	Central, Northwest, and Northeast regions, which embrace the northern half of the
3823	conterminous U.S., all had statistically significant downward linear trends. This is in
3824	contrast to trends in snowstorm incidences.
3825	
3826	Both snowstorms and ice storms are often accompanied or followed by extreme cold
3827	because a strong ETC (which is the meteorological cause of the snow and ice) is one of
3828	the meteorological components of the flow of extreme cold air from the Arctic. This
3829	compounds the impacts of such events in a variety of ways, including increasing the risks
3830	to human health and adversely affecting the working environment for snow removal and
3831	repair activities. While there have been no systematic studies of trends in such compound
3832	events, observed variations in these events appear to be correlated. For example, the late
3833	1970s were characterized both by a high frequency of extreme cold (Kunkel et al. 1999)
3834	and a high frequency of high snowfall years (Kunkel et al. 2007b).

3836 2.2.3.5 Convective Storms

3837 Thunderstorms in the United States are defined to be severe by the National Weather

3838 Service (NWS) if they produce hail of at least 1.9 cm (3/4 inch) in diameter, wind gusts

- 3839 of at least 25.5 m s⁻¹ (50 kt) or a tornado. Currently, reports come from a variety of
- 3840 sources to the local NWS forecast offices that produce a final listing of events for their
- area. Over the years, procedures and efforts to produce that listing have changed. Official

3842 data collection in near real-time began in 1953 for tornadoes and 1955 for hail and wind. 3843 Prior to 1973, tornado reports were verified by state climatologists (Changnon 1982). In 3844 addition, efforts to improve verification of severe thunderstorm and tornado warnings, the 3845 introduction of Doppler radars, changes in population, and increases in public awareness, 3846 have led to increases in reports over the years. Changes in reporting practices have also 3847 led to inconsistencies in many aspects of the records (e.g., Brooks 2004). Changnon and 3848 Changnon (2000) identified regional changes in hail frequency from reports made at 3849 official surface observing sites. With the change to automated surface observing sites in 3850 the 1990s, the number of hail reports at those locations dropped dramatically because of 3851 the loss of human observers at the sites. As a result, comparisons to the Changnon and 3852 Changnon work cannot be continued, although Changnon et al. (2001) have attempted to 3853 use insurance loss records as a proxy for hail occurrence.

3854

3855 The raw reports of annual tornado occurrences show an approximately doubling from 3856 1954-2003 (Brooks and Dotzek 2007), a reflection of the changes in observing and 3857 reporting. When detrended to remove this artificial trend, the data show large interannual 3858 variability, but a persistent minimum in the late 1980s (Fig. 2.28). There were changes in 3859 assigning intensity estimates in the mid-1970s that resulted in tornadoes prior to 1975 3860 being rated more strongly than those in the later part of the record (Verbout et al. 2006). 3861 More recently, there have been no tornadoes rated F5, the highest rating, since 3 May 3862 1999, the longest gap on record. Coupled with a large decrease in the number of F4 3863 tornadoes (McCarthy et al. 2006), it has been suggested that the strongest tornadoes are 3864 now being rated lower than practice prior to 2000.

3866 A dataset of F2 and stronger tornadoes extending back before the official record

3867 (Grazulis 1993) provides an opportunity to examine longer trends. This examination⁶⁴ of

the record from 1921-1995 indicates that the variability between periods was large,

3869 without significant long-term trends (Concannon et al. 2000).

3870

3871 The fraction of strong tornadoes (F2 and greater) that have been rated as violent (F4 and

3872 greater) has been relatively consistent in the US from the 1950s through the 1990s⁶⁵

3873 (Brooks and Doswell 2001)⁶⁶. There were no significant changes in the high-intensity

and of these distributions from 1950s through the 1990s, although the distribution from

3875 2000 and later may differ.

3876

3877 Nontornadic reports have increased even more rapidly than tornadic reports (Doswell et

al. 2005, 2006). Over the period 1955-2004, this increase was approximately exponential,

3879 resulting in an almost 20-fold increase over the period. The increase is mostly in

3880 marginally severe thunderstorm reports (Brooks 2007. An overall increase is seen, but the

distribution by intensity is similar in the 1970s and post-2000 eras for the strongest 10%

3882 of reports of hail and wind. Thus, there is no evidence for a change in the severity of

3883 events, and the large changes in the overall number of reports make it impossible to

3884 detect if meteorological changes have occurred.

⁶⁴ This analysis used the technique described in Brooks et al. (2003a) to estimate the spatial distribution over different periods

⁶⁵ Note that consistent overrating will not change this ratio.

⁶⁶ Feuerstein et al. (2005) showed that the distribution in the US and other countries could be fit to Weibull distributions with the parameters in the distribution converging as time goes along, which they associated with more complete reporting of events.

3886	Environmental conditions that are most likely associated with severe and tornadic
3887	thunderstorms have been derived from reanalysis data (Brooks et al. 2003b) and counts of
3888	the frequency of favorable environments for significant severe thunderstorms ⁶⁷ have been
3889	determined for the area east of the Rocky Mountains in the US for the period 1958-1999
3890	(Brooks and Dotzek 2007). The count of favorable environments decreased from the late
3891	1950s into the early 1970s and increased after that through the 1990s, so that the
3892	frequency was approximately the same at both ends of the analyzed period. Given the
3893	high values seen at the beginning of the reanalysis era, it is likely that the record is long
3894	enough to sample natural variability, so that it is possible that even though the 1973-1999
3895	increase is statistically significant, it does not represent a departure from natural
3896	variability. The time series of the count of reports of very large hail (7 cm diameter and
3897	larger) shows an inflection at about the same time as the inflection in the counts of
3898	favorable environments. A comparison of the rate of increase of the two series suggested
3899	that the change in environments could account for approximately 7% of the change in
3900	reports from the mid-1970s through 1999, with the rest coming from non-meteorological
3901	sources. Changes in tornado reports do not correspond to the changes in overall favorable
3902	severe thunderstorm environment, in part because the discrimination of tornadic
3903	environments in the reanalysis data is not as good as the discrimination of severe
3904	thunderstorm environments (Brooks et al. 2003a).
3905	

- 3906
- 3907

⁶⁷ Hail of at least 5 cm diameter, wind gusts of at least 33 m s⁻¹, and/or a tornado of F2 or greater intensity

3908 BOX 2.3: Changes in Modes of Variability

3909 The atmosphere-ocean system has a wide variety of circulation patterns, or modes, of 3910 climate variability that pulse on time scales ranging from days, to many decades, or 3911 longer. For example, the well-known winter weather pattern of a storm followed by clear 3912 skies and then another storm a week later is, part of an atmospheric wave (wind) pattern 3913 that circles the Earth. As these waves move over the ocean, heat from the ocean is given 3914 up to the air, which impacts both the intensity and the movement of the atmospheric 3915 waves (weather) as well as ocean circulations. Weather and climate extremes are often 3916 linked to one or more of these modes of climate variability, and following is a brief 3917 description of the most important circulation regimes. However, it is important to keep in 3918 mind that these modes of variability are not independent of each other.

3919

3920 El Niño-Southern Oscillation (ENSO)

3921 The ENSO phenomenon is the result of coupled ocean-atmosphere dynamics and is the 3922 largest source of interannual variability in global weather and climate. It is characterized 3923 by changes in eastern equatorial Pacific sea surface temperature (SST) and surface air 3924 pressure in the tropical Pacific region. Warm (cold) eastern Pacific SST anomalies are 3925 associated with El Niño (La Niña) events. El Niños occur at irregular intervals of 3926 approximately 2 to 7 years, and generally persists for 12 to 18 months. The Southern 3927 Oscillation component of ENSO is defined by air pressure differences between the 3928 eastern and western tropical Pacific (typically between Darwin and Tahiti) and is 3929 characterized by changes in tropical atmospheric flow patterns which are caused by and 3930 can enhance tropical Pacific SST variations. These tropical atmospheric circulation

2021	changes can	altar both the	intoncity or	nd tracks of	f North A	marican at	orme For av	omnlo
5951	changes can a		intensity a	iu tracks of	I NOIUI F	American st	orms. For ex	ampie,

- 3932 El Niño is often associated with heavy winter rains in southern California.
- 3933

- - - .

3934	The nature of ENSO has varied considerably through time. Strong ENSO events occurred
3935	with regularity from the late 19 th Century through 1925 and again after 1950. Between
3936	1976 and 1977 rapid warming occurred in the Tropical Pacific with concurrent cooling in
3937	the Central Pacific that has been termed the climate shift of 1976/1977 (Trenberth 1990,
3938	Miller et al. 1994). The shift has been associated with increased El Niño activity, changes
3939	in storm tracks, increased storm intensity and is at the start of the period of rapid

- 3940 warming in global temperatures, and the 1997-1998 El Niño was the strongest on record.
- 3941

3942 The North Atlantic Oscillation (NAO)

3943 The NAO is the most important mode of winter climate variability in the North Atlantic 3944 region and is measured by an index that is based on air pressure differences between 3945 Iceland/Greenland and the Azores in the north Atlantic. As Figure 2.29 illustrates, high 3946 values of the NAO index are associated with intensified westerly winds around the arctic. 3947 Changes in the strength and location of the westerlies produce characteristic shifts in 3948 temperature, rainfall, and winds. Low NAO values correspond with cold extremes in 3949 central North America and high NAO index values increase the chances of warm winter 3950 extremes. Proxy and instrumental data show evidence for intervals of decadal and longer 3951 positive and negative NAO index in the last few centuries (Cook et al., 2002; Jones et al., 2003). A reversal occurred from minimum winter index values in the late 1960s to 3952

strongly positive NAO index values in the mid-1990s but since have declined to near thelong-term mean.

3955

3956 Atlantic Multidecadal Oscillation (AMO)

3957 The Atlantic Ocean meridional overturning circulation carries warm salty surface waters3958 into far-northern latitudes around Greenland where it cools, sinks, and returns cold deep

3959 waters southward across the equator. An oscillating pattern of SSTs in the northern

3960 Atlantic that is related to this overturning circulation, called the Atlantic Multidecadal

3961 Oscillation (AMO), has been identified by a number of researchers (Delworth and Mann,

3962 2000; Folland *et al.*, 1986; Mann and Park, 1994). The AMO is commonly identified by

3963 subtracting a linear trend from a time series of the North Atlantic SST. This trend

3964 subtraction is intended to remove, or at least reduce, the influence of greenhouse-gas

induced global warming from the AMO so that the bulk of the variability in the

3966 remainder is due to natural causes. The warm phase, the decades when the temperature is

3967 above the trend line, is associated with increased Atlantic hurricane activity, and the cool

3968 phase is associated with reduced Atlantic hurricane activity. Instrumental data has been

used to identify warm phases roughly between 1860-1880, 1930-1960, and one beginning

in the mid-1990s which continues to present. Cool phases were present during 1905-1925

and 1970-1990 (Schlesinger and Ramankutty, 1994).

3972

3973 Some scientists, however, question the validity of subtracting a linear trend from a time

3974 series created by non-linear forcings and wonder if the AMO as commonly calculated is

3975 primarily an artifact of this creation process rather than a real change in the ocean

3976 circulation. Some suggest that subtracting the global SST time series from the North 3977 Atlantic SST time series removes a global climate change signal better than subtracting a 3978 linear trend and produces a very different historical AMO record (Trenberth and Shea, 3979 2006). Proxy and modeling studies have identified an AMO-like signal and found that 3980 multidecadal eras in hurricane activity in the North Atlantic are correlated with the AMO 3981 (Bell and Chelliah, 2006). No matter how it is calculated, the AMO has such a long 3982 period that the observational SST data only records about 1.5 cycles which makes it 3983 difficult to determine whether the AMO is truly a natural oscillation or caused in whole 3984 or at least in part by greenhouse-gas induced climate change.

3985

3986 Pacific Decadal Oscillation (PDO)

3987 The Pacific Decadal Oscillation (PDO) is a multidecadal pattern of monthly SST 3988 anomalies in the North Pacific Ocean poleward of 20°N. Two full PDO cycles occurred 3989 through the twentieth century with each phase persisting for 20 to 30 years. The typical 3990 spatial pattern of the "warm" phase of the PDO has negative SST anomalies in the central 3991 and eastern North Pacific and positive SST anomalies along the coast of North America. 3992 Sea level pressure (SLP) anomalies during the warm phase tend to have a basin-scale low 3993 centered over the Aleutian Islands and high sea-level pressure over western North 3994 America. The cool phase of the PDO has SST and SLP patterns that are essentially the 3995 opposite of the warm phase. Because the PDO influences various weather systems it can 3996 affect the chances of, for example, winter temperatures cold enough to cause mountain 3997 pine beetle mortality in British Columbia (Stahl et al., 2006). When an El Niño event 3998 occurs during a warm phase of the PDO, the characteristic El Niño-related temperature

- and precipitation anomalies in North America tend to be accentuated. The PDO had
- 4000 extended periods of negative values indicative of weakened circulation from 1900 to
- 4001 1924 and 1947 to 1976, and positive values indicative of strengthened circulation from
- 4002 1925 to 1946 and 1977 to 2005. The 1976-1977 climate shift in the Pacific described
- 4003 above was associated with a phase change in the PDO from negative to positive
- 4004 (Trenberth et al., 2002; Deser et al., 2004).
- 4005
- 4006 Pacific North American Pattern (PNA)

4007 The PNA can be defined as a secondary pattern in the variability of monthly atmospheric

- 4008 pressure anomalies for the latitude range 20-90°N. When the PNA is positive, the mid-
- 4009 tropospheric winds over North America and the North Pacific have a strong meridional
- 4010 (north-south) wave pattern while the negative PNA has more zonal (west to east) flow.
- 4011 Strong wave patterns tend to bring extreme weather; whether the extremes are warm,
- 4012 cold, wet or dry at a particular location depends on the shape of the wave. A positive
- 4013 PNA is associated with El Niños and negative PNA is associated with La Niña.
- 4014
- 4015 The Madden-Julian Oscillation (MJO)
- 4016 The atmospheric response to convection on the equator, which heats the atmosphere, is
- 4017 the creation of circulation cells, which then move eastward. These cells have a period of
- 4018 about 50 days and either enhance tropical convection or help suppress it. Referred to as
- 4019 the Madden-Julian Oscillation (MJO), after the two scientists who discovered it (Madden
- 4020 and Julian, 1971 and 1972), it is the dominant source of tropical atmospheric variability
- 4021 on intraseasonal time scales. The MJO is related to North American extremes through its

4022	influence on the dynamics of tropical cyclone formation (Hartmann and Maloney, 2001;
4023	Maloney and Hartmann, 2000a; 2000b, 2001) as well as western North American winter
4024	rainfall variability. The MJO can enhance or suppress either depending on which part of
4025	the circulation cell is active in the region.
4026	
4027	As the climate changes, some of the atmospheric circulation patterns or modes of
4028	atmospheric variability described above have changed as well. However, only one
4029	circulation pattern, the MJO, would not be expected to have long-term changes since it is
4030	a localized circulation response to convection on the equator.
4031	
4032	2.3 Key Uncertainties Related to Measuring Specific Variations and Change
4033	In this section we review the statistical methods that have been used to assess
4034	uncertainties in studies of changing extremes. The focus of the discussion is on
4035	precipitation events, though similar methods have also been used for temperature.
4036	
4037	2.3.1 Methods Based on Counting Exceedances Over a High Threshold
4038	Most existing methods follow some variant of the following procedure, given by Kunkel
4039	et al. (1999). First, daily data are collected, corrected for biases such as winter
4040	undercatchment. Only stations with nearly complete data are used (typically, "nearly
4041	complete" means no more than 5% missing values). Different event durations (for
4042	example, 1-day or 7-day) and different return periods (such as 1 year or 5 years) are
4043	considered. For each station, a threshold is determined according to the desired return
4044	value – for example, with 100 years of data and a 5-year return value, the threshold is the

4045	20 th largest event. The number of exceedances of the threshold is computed for each year,
4046	and then averaged either regionally or nationally. The averaging is a weighted average in
4047	which, first, simple averaging is used over climate divisions (typically there are about 7
4048	climate divisions in each state), and then, an area-weighted average is computed over
4049	climate divisions, either for one of the nine U.S. climate regions or the whole contiguous
4050	U.S. This averaging method ensures that parts of the country with relatively sparse data
4051	coverage are adequately represented in the final average. Sometimes (e.g. Groisman et al.
4052	2005, Kunkel et al. 2007a) the climate divisons are replaced by 1° by 1° grid cells. Two
4053	additional refinements used by Groisman et al. (2005) are (i) to replace the raw
4054	exceedance counts for each year by anomalies from a 30-year reference period, computed
4055	separately for each station, (ii) to assess the standard error of the regional average using
4056	spatial statistics techniques. This calculation is based on an exponentially decreasing
4057	spatial covariance function with a range of the order 100-500 km. and a nugget:sill ratio
4058	(the proportion of the variability that is not spatially correlated) between 0 and 85%,
4059	depending on the region, season and threshold.
4060	
10/1	

4061 Once these spatially averaged annual exceedance counts or anomalies are computed, the 4062 next step is to compute trends. In most studies, the emphasis is on linear trends computed 4063 either by least squares regression or by the Kendall slope method, in which the trend is 4064 estimated as the median of all possible slopes computed from pairs of data points. The 4065 standard errors of the trends should theoretically be corrected for autocorrelation, but in 4066 the case of extreme events the autocorrelation is usually negligible (Groisman et al., 4067 2004).

4069	One of the concerns about this methodology is the effect of changing spatial coverage of
4070	the data set, especially for comparisons that go back to the late years of the 19 th century.
4071	Kunkel et al. (2007a) generated simulations of the 1895-2004 data record by first
4072	randomly sampling complete years of data from a modern network of 6351 stations for
4073	1971-2000, projecting to a random subnetwork equivalent in size and spatial extent to the
4074	historical data network, then using repeat simulations to calculate means and 95%
4075	confidence intervals for five 22-year periods. The confidence intervals were then
4076	superimposed on the actual 22-year means calculated from the observational data record.
4077	The results for 1-year, 5-year and 20-year return values show clearly that the most recent
4078	period (1983-2004) has the highest return values of the five periods, but they also show
4079	the second highest return values in 1895-1916 with a sharp drop thereafter, implying a
4080	still not fully explained role due to natural variability.
4081	
4082	Some issues that might justify further research include the following:
4083	1. Further exploration of why extreme precipitation apparently decreases
4084	after the 1895-1916 period before the recent (post-1983) rise when they exceeded
4085	that level. For example, if one breaks the data down into finer resolution spatially,
4086	does one still see the same effect?
4087	2. What about the effect of large-scale circulation effects such as ENSO
4088	events, AMO, PDO, etc? These could potentially be included as covariates in a

4089 time series regression analysis, thus allowing one to "correct" for circulation4090 effects in measuring the trend.

4091	3. The spatial analyses of Groisman et al. (2005) allow for spatial correlation
4092	in assessing the significance of trends, but they don't do the logical next step,
4093	which is to use the covariance function to construct optimal interpolations (also
4094	known as kriging) and thereby produce more detailed spatial maps. This is
4095	something that might be explored in the future.
4096	
4097	2.3.2 The GEV Approach
4098	An alternative approach to extreme value assessment is though the Generalized Extreme
4099	Value (GEV) distribution ⁶⁸ , and its variants. The GEV combines together three "types"
4100	of extreme value distributions that in earlier treatments were often regarded as separate
4101	families (e.g. Gumbel 1958). The distribution is most frequently applied to the annual
4102	maxima of a meteorological or hydrological variable, though it can also be applied to
4103	maxima over other time periods (e.g. one month or one season). With minor changes in
4104	notation, the distributions are also applicable to minima rather than maxima. The
4105	parameters may be estimated by maximum likelihood, though there are also a number of
4106	more specialized techniques such as L-moments estimation. The methods have been
4107	applied in climate researchers by a number of authors including Kharin and Zwiers
4108	(2000), Wehner (2004,2005), Kharin et al. (2007).
4109	

⁶⁸ The basic GEV distribution is given by the formula (see, e.g. Zwiers and Kharin (1998)) $F(x) = exp\{-[1-k(x-\zeta)/\alpha]^{1/k}\}$ in which ζ plays the role of a centering or location constant, α determines the scale, and *k* is a key parameter that determines the shape of the distribution. (Other authors have used different notations, especially for the shape parameter.) The range of the distribution is $x < \zeta + \alpha/k$ when k < 0, $x > \zeta + \alpha/k$ when k < 0, $-\infty < x < \infty$ when k = 0, in which case the formula reduces to $F(x) = exp\{-exp[-(x-\zeta)/\alpha]\}$ and is known as the Gumbel distribution.

4110	The potential advantage of GEV methods over those based on counting threshold
4111	exceedances is that by fitting a probability distribution to the extremes, one obtains more
4112	information that is less sensitive to the choice of threshold, and can also derive other
4113	quantities such as the <i>T</i> -year return value X_T , calculated by solving the equation $F(X_T)=1$ -
4114	1/T. Trends in the <i>T</i> -year return value (for typical values of <i>T</i> , e.g. 1, 10, 25 or 100 years)
4115	would be particularly valuable as indicators of changing extremes in the climate.
4116	Direct application of GEV methods is often inefficient because they only use very sparse
4117	summaries of the data (typically one value per year), and need reasonably long time
4118	series before they are applicable at all. Alternative methods are based on exceedances
4119	over thresholds, not just counting exceedances but also fitting a distribution to the excess
4120	over the threshold. The most common choice of distribution of excess is the Generalized
4121	Pareto distribution or GPD, which is closely related to the GEV (Pickands 1975, Davison
4122	and Smith 1990). Some recent overviews of extreme value distributions, threshold
4123	methods, and a variety of extensions are by Coles (2001) and Smith (2003).
4124	
4125	Much of the recent research (e.g. Wehner 2005, Kharin et al. 2007) has used model
4126	output data, using the GEV to estimate for example a 20-year return value at each grid
4127	cell, then plotting spatial maps of the resulting estimates. Corresponding maps based on
4128	observational data must take into account the irregular spatial distribution of weather
4129	stations, but this is also possible using spatial statistics (or "kriging") methodology. For
4130	example, Cooley et al. (2007) have applied a hierarchical modeling approach to
4131	precipitation data from the Front Range of Colorado, fitting a GPD to threshold
4132	exceedances at each station and combining results from different stations through a

- 4133 spatial model to compute a map of 25-year return values. Smith et al. (2007) applied
- 4134 similar methodology to data from the whole contiguous U.S., producing spatial maps of
- 4135 return values and also calculating changes in return values over the 1970-1999 period.

4136	Chapter 2 References
4137	
4138	Acuña-Soto, R., D. W. Stahle, M. K. Cleaveland, and M. D. Therrel, 2002: Megadrought
4139	and megadeath in 16 th century Mexico. <i>Historical Review</i> , 8 (4), 360-362.
4140	
4141	Aguilar, E., et al. (2005), Changes in precipitation and temperature extremes in Central
4142	America and northern South America, 1961–2003, J. Geophys. Res., 110,
4143	D23107, doi:10.1029/2005JD006119.
4144	
4145	Alexander, L. V., et al. (2006), Global observed changes in daily climate extremes of
4146	temperature and precipitation, J. Geophys. Res., 111, D05109,
4147	doi:10.1029/2005JD006290.
4148	
4149	Allan, J. C., and P. D. Komar, 2000: Are ocean wave heights increasing in the eastern
4150	North Pacific? EOS, Transaction of the American Geophysical Union, 47, 561-
4151	567.
4152	
4153	Allan, J. C. and P. D. Komer, 2006: Climate controls on US West Coast erosion
4154	processes. Journal of Coastal Research, 22, 511-529.
4155	
4156	Alley, W.M. 1984. The Palmer Drought Severity Index: Limitations and assumptions.
4157	Journal of Climate and Applied Meteorology 23:1100–1109.
4158	
4159	An, S.I., J.S. Kug, A. Timmermann, I.S. Kang, and O. Timm, 2007: The influence of
4160	ENSO on the generation of decadal variability in the North Pacific. J. Climate,
4161	20 , 667–680.
4162	
4163	Andreadis, K.M., E. A. Clark, A. W. Wood, A. F. Hamlet, and D. P. Lettenmaier, 2005:
4164	Twentieth-Century drought in the conterminous United States. <i>Journal of</i>
4165	Hydrometeorology, 6, 985–1001.
4166	Andread's K.M. and D. D. Lettermatics 2006. Treads in 20 th conternal treads to the
410/	Andreadis, K. M., and D. P. Lettenmaier, 2006: I fends in 20 century drought over the
4108	doi:10.1020/2006CL 025711
4109	doi.10.1029/2000GL023/11.
4170	Angel I.D. and S.A. Isard 1009. The frequency and intensity of Creat Lake evaluates I
4171	<i>Climate</i> 11 61 71
4172	<i>Climate</i> , 11 , 01–71.
4173 A17A	Arguez A (ed.) 2007: State of the Climate in 2006 Rull Amer Mateor Soc. 28 sl
+1/4 /175	a125
4175 A176	S155.
4177	Assel R A K Cronk and D C Norton 2003; Recent trends in Laurentian Great Lakes
4178	ice cover Climatic Change 57 185-204
4179	100 00 vol. Cumune Change, 37, 103-207.
11/2	

4180	Assel, R. A., 2003: Great Lakes ice cover, first ice, last ice, and ice duration. NOAA
4181	Technical Memorandum GLERL-125. NOAA, Great Lakes Environmental
4182	Research Laboratory, Ann Arbor, MI, 49 pp.
4183	
4184	Assel, R. A. Great Lakes ice cover climatology update: Winters 2003, 2004, and 2005.
4185	NOAA Technical Memorandum GLERL-135, 2005a: NOAA, Great Lakes
4186	Environmental Research Laboratory, Ann Arbor, MI, 21 pp.
4187	
4188	Assel, R. A., 2005b: Classification of annual Great Lakes ice cycles: Winters of 1973-
4189	2002. Journal of Climate, 18, 4895-4905.
4190	
4191	Bacon, S. and D.J.T. Carter, 1991: Wave climate changes in the North Atlantic and North
4192	Sea. International Journal of Climatology, 11, 545-558.
4193	
4194	Bell, D. B. and M. Chelliah, 2006: Leading tropical modes associated with interannual
4195	and multidecadal fluctuations in North Atlantic hurricane activity. Journal of
4196	<i>Climate</i> , 17 , 590-612.
4197	
4198	Bonsal, B. R., X. Zhang, L. Vincent and W. Hogg, 2001: Characteristics of daily and
4199	extreme temperatures over Canada. Journal of Climate, 14, 1959-1976.
4200	
4201	Bromirski, P.D., 2001, Vibrations from the "Perfect Storm", Geochem. Geophys.
4202	<i>Geosys.</i> , 2 (7), doi:10.1029/2000GC000119.
4203	
4204	Bromirski, P. D., 2007: Extratropical cyclone-forced wave power variability along the
4205	U.S. Atlantic coast. Nature, submitted.
4206	
4207	Bromirski, P. D. and J. Kossin, 2007: Hurricane waves along the U.S. east and Gulf
4208	coasts. Science, submitted.
4209	
4210	Bromirski, P. D., R.E. Flick and N. Graham, 1999: Ocean wave height determined from
4211	inland seismometer data: Implications for investigating wave climate changes:
4212	Journal of Geophysical Research, 104, 20753-20766.
4213	
4214	Bromirski, P.D., D.R. Cayan, and R.E. Flick, 2005: Wave spectral energy variability in
4215	the northeast Pacific. Journal of Geophysical Research, 110, C03005,
4216	doi:10.1029/2004JC002398.
4217	
4218	Bromirski, P.D., R.E. Flick, and D.R. Cayan, 2003: Decadal storminess variability along
4219	the California coast: 1858 – 2000. Journal of Climate, 16, 982-993.
4220	
4221	Brooks, H. E., 2004: On the relationship of tornado path length and width to intensity.
4222	Weather and Forecasting, 19 , 310-319.
4223	

4224	Brooks , H. E., 2007: Development and use of climatologies of convective weather.
4225	Atmospheric Convection: Research and Operational Forecasting Aspects.
4226	Springer-Verlag, in press.
4227	
4228	Brooks , H. E. and C. A. Doswell III, 2001: Some aspects of the international climatology
4229	of tornadoes by damage classification. <i>Atmospheric Research</i> , 56 , 191-201.
4230	
4231	Brooks, H. E., C. A. Doswell III and M. P. Kay, 2003a: Climatological estimates of local
4232	daily tornado probability. Weather and Forecasting, 18, 626-640.
4233	
4234	Brooks, H. E., J. W. Lee and J. P. Craven, 2003b: The spatial distribution of severe
4235	thunderstorm and tornado environments from global reanalysis data. Atmospheric
4236	Research, 67-68 , 73-94.
4237	
4238	Brooks , H. E. and N. Dotzek, 2007: The spatial distribution of severe convective storms
4239	and an analysis of their secular changes. Climate Extremes and Society. H. F.
4240	Diaz and R. Murnane, Eds., Cambridge University Press, in press.
4241	
4242	Burnett, A.W., M.E. Kirby, H.T. Mullins, and W.P. Patterson, 2003: Increasing Great
4243	Lake-effect snowfall during the Twentieth Century: A regional response to global
4244	warming? J. Climate, 16, 3535-3541.
4245	
4246	Carter, D.J.T. and L. Draper, 1988: Has the north-east Atlantic become rougher? <i>Nature</i> ,
4247	332, 494.
4248	
4249	Cavazos, T., A. C. Comrie and D. M. Liverman, 2002: Intraseasonal variability
4250	associated with wet monsoons in southeast Arizona. J. Climate, 15, 2477-2490.
4251	
4252	Cavazos , T. and D. Rivas, 2004: Variability of extreme precipitation events in Tijuana,
4253	Mexico. Climate Research, 25, 229-243.
4254	
4255	Cavazos, T., C. Turrent., and D. P. Lettenmaier, 2007: Extreme precipitation variability
4256	in the core of the North American monsoon. Geophysical Research Letters, to be
4257	submitted.
4258	
4259	Cayan, D. R. A. Kammerdiener, M.D. Dettinger, J.M. Caprio, and D.H. Peterson, 2001:
4260	Changes in the onset of spring in the Western United States. Bulletin of the
4261	American Meteorological Society, 82, 399-415.
4262	
4263	Chan, J. C. L., 2006: Comment on "Changes in tropical cyclone number, duration, and
4264	intensity in a warming environment. Science, 311 , 1713.
4265	
4266	Chan, J. C. L. and JE. Shi, 1996: Long-term trends and interannual variability in
4267	tropical cyclone activity over the western North Pacific. Geophysical Research
4268	Letters, 23, 2765-2767.
4269	

4270	Chang, E.K.M., and Y. Fu, 2002: Inter-decadal variations in Northern Hemisphere
4271	winter storm track intensity. J. Climate, 15, 642–658.
4272	
4273	Chang, E. K., and Y. Guo, 2007: Is the number of North Atlantic tropical cyclones
4274	significantly underestimated prior to the availability of satellite observations?
4275	Geophys. Res. Lett., 34, L14801, doi:10.1029/2007GL030169.
4276	
4277	Changnon, D., S.A. Changnon and S. Changnon, 2001: A method for estimating crop
4278 4279	losses from hail in uninsured periods and regions. <i>Journal of Applied Meteorology</i> , 40 , 84-91.
4280	
4281	Changnon S A 1982: Trends in tornado frequency: Fact or fallacy? <i>Preprints</i> 12 th
4282	conference on severe local storms, San Antonio, TX, American Meteorological
4283	Society, 42-44.
4284	Change S. A. and D. Change on 2000, Long tarm fluctuations in hail insidences in
4285	the United States Loweral of Climate 13, 658, 664
4280	the United States. <i>Journal of Climate</i> , 15 , 058-004.
4287	
4288	Changnon, S.A., D. Changnon, and I.R. Karl, 2006: Temporal and spatial characteristics
4289	of snowstorms in the contiguous United States. <i>Journal of Applied Meteorology</i>
4290	and Climatology, 45, 1141-1155.
4291	~
4292	Changnon , S. and T. Karl, 2003: Temporal and spatial variations in freezing rain in
4293	the contiguous U.S. Journal of Applied Meteorology, 42, 1302-1315.
4294	Chanawath M. 2002. The 19 th contum alimete of Ismaics. American Philosophical
4293	Chenoweth, M., 2005. The 18 Century cumule of Jumaica. American Philosophical
4290	Society, 212-219.
4297	
4298	Chu, J. –H., C. R. Sampson, A. S. Levine and E. Fukada, 2002: The joint typhoon
4299 4300	warning center tropical cyclone best tracks, 1945-2000. Naval research Laboratory Reference Number NRL/MR/7540-02-16
4300	Laboratory Reference (Value) (REF, WHO 7540-02-10.
4302	Clark, M. P., M. C. Serreze, and D. A. Robinson, 1999: Atmospheric controls on
4303	Eurasian snow cover extent. Int. J. Climatol., 19, 27-40.
4304	
4305	Cleaveland, M. L., D. W. Stahle, M. D. Therrell, J. Villanueva-Diaz, and B. T. Burnes.
4306	2004: Tree-ring reconstructed winter precipitation and tropical teleconnections in
4307	Durango Mexico <i>Climatic Change</i> 59(3) , 369-388
4308	Darango, monico. Crimano Change, 07 (0), 509 500.
4300	Coles S.G. 2001: An Introduction to Statistical Modeling of Extreme Values. Springer
4310	Verlag New York
4311	venag, new rork.
4312	Concannon , P. R., H. E. Brooks, and C. A. Doswell III, 2000: Climatological risk of
4313	strong and violent tornadoes in the United States <i>Preprints</i> 2nd Symposium on
4314	Environmental Applications Long Beach California American Meteorological
4315	Society, 212-219

4316	
4317	Cook, E.R., D. M. Meko, D. W. Stahle, and M. K. Cleaveland, 1999: Drought
4318	reconstructions for the continental United States. Journal of Climate, 12, 1145-
4319	1162.
4320	
4321	Cook , E.R., R.D. D'Arrigo, and M.E. Mann, 2002; A well-verified, multiproxy
4322	reconstruction of the winter North Atlantic Oscillation index since A D 1400 <i>I</i>
1322	Climate 15 1754_1764
4323	Сипанс, 13, 1754 1764.
4324	Cook EP. Woodhouse CA. Eakin CM, et al. Long term aridity changes in the western
4323	United States SCIENCE 206 (5608): 1015 1018 NOV 5 2004
4320	<u>United States</u> SCIENCE 500 (5098). 1015-1018 NOV 5 2004
4327	Cooley D. D. Novooy and D. Nychka, 2007; Devesion spatial modeling of avtrame
4328	Cooley , D., P. Naveau and D. Nychka, 2007. Bayesian spatial modeling of extreme
4329	precipitation return levels. Journal of the American Statistical Association, to
4330	appear.
4331	
4332	Cooter, E. and S. LeDuc, 1995: Recent frost date trends in the northeastern United
4333	States. International Journal of Climatology, 15, 65-75.
4334	
4335	Dai A.G., K.E. Trenberth, and T.T. Qian, 2004: <u>A global dataset of Palmer Drought</u>
4336	Severity Index for 1870-2002: Relationship with soil moisture and effects of
4337	surface warming. Journal of Hydrometeorology, 5, 1117-1130.
4338	
4339	Davis, R. E., R. Dolan and G. Demme, 1993: Synoptic climatology of Atlantic coast
4340	north-easters, International Journal of Climatology, 13 (2), 171-189.
4341	
4342	Davison, A.C. and R.L. Smith, 1990: Models for exceedances over high thresholds (with
4343	discussion). Journal of the Royal Statistical Society 52, 393-442.
4344	
4345	DeGaetano, A. T. and R. J. Allen, 2002: Trends in the twentieth century temperature
4346	extremes across the United States. Journal of Climate, 15, 3188-3205.
4347	
1210	Deleverth TL and ME Many 2000. Observed and simulated multidated deleverishiliter
4348	Delworth , I.L. and M.E. Mann, 2000: Observed and simulated multidecadal variability
4349	in the Northern Hemisphere, <i>Climate Dynamics</i> , 16 , 661-676.
4350	
4351	Deser , C., A.S. Phillips, and J.W. Hurrell, 2004: Pacific interdecadal climate variability:
4352	Linkages between the tropics and the north Pacific during boreal winter since
4353	1900. J. Climate, 17, 3109–3124.
4354	
4355	Dolan , R., H. Lins and B. Hayden, 1988; Mid-Atlantic coastal storms. <i>Journal of Coastal</i>
4356	Research 4 (3) 417-433
4357	
4358	Donnelly I.P. 2005: Evidence of past intense tropical evolutions from backbarrier solt
	nond sediments: a case study from Isla de Culabrita Duerto Dico II S A Lournal
4360	of Coastal Research 12, 201, 210
4261	oj Cousiai Research, 42 , 201-210.
4301	

4362 4363	Donnelly , J.P., S. S. Bryant, J. Butler, J. Dowling, L. Fan, N. Hausmann, P. Newby, B. Shuman, J. Stern, K. Westover and T. Webb, III, 2001a: A 700 yr. sedimentary
4364 4365	record of intense hurricane landfalls in southern New England. <i>Geological Society of America Bulletin</i> , 113 , 714-727.
4360 4367 4368	Donnelly , J.P., J. Butler, S. Roll, M. Wengren, and T. Webb, III, 2004: A backbarrier overwash record of intense storms from Brigantine. New Jersey <i>Marine Geology</i>
4369 4370	210 : 107-121.
4371	Donnelly J.P., S. Roll, M. Wengren, J. Butler, R. Lederer and T. Webb, III, 2001b.
4372 4373	Sedimentary evidence of intense hurricane strikes from New Jersey. <i>Geology</i> , 29 , 615-618.
4374	
4375 4376	Donnelly , J.P. and T. Webb, III, 2004: Backbarrier sedimentary records of intense hurricane landfalls in the northeastern United States. In: <i>Hurricanes and</i>
4377 4378	<i>Typhoons: Past, Present, and Future</i> (eds. R.J. Murnane, R.J. and K-b. Liu, <i>Columbia University Press</i> , pp. 58-95.
4379	
4380	Donnelly, J. P., and J. D. Woodruff, 2007: Intense hurricane activity over the past 5,000
4381 4382	years controlled by El Nino and the West African monsoon. <i>Nature</i> , 447 , 465-468.
4383	
4384 4385	Doswell , C. A. III, H. E. Brooks and M. P. Kay, 2005: Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. <i>Weather</i>
4386 4387	and Forecasting, 20 , 577-595.
4388	Doswell, C. A. III, R. Edwards, R. L. Thompson and K. C. Crosbie, 2006: A simple and
4389 4390	in press.
4391	Develop MW DA Meller K Herred and C Develop 1002. The Merican response
4392 4393	<i>J. Climate</i> , 6 , 1665-1677.
4394	
4395	Easterling, D.R., J.L. Evans, P.Ya. Groisman, T.R. Karl, K.E. Kunkel, and P. Ambenje,
4396	2000a: Observed variability and trends in extreme climate events: a brief review.
4397 4398	Bulletin of the American Meteorological Society, 81 , 417-425.
4399	Easterling D R 2002. Recent changes in frost days and the frost-free season in the
4400	United States. Bulletin of the American Meteorological Society, 83 , 1327-1332.
4401 AA02	Fasterling D.R. B. Horton P.D. Jones T.C. Deterson T.D. Karl D.F. Darker M.I.
4403	Salinger V Razuvavev N Plummer P Jamison and C K Folland 1007.
4404	Maximum and minimum temperature trends for the globe Science 277 : 364-367
4405	Maximum and minimum temperature trends for the globe. Science 217. 304-307.

4406 4407 4408	Easterling , D.R., T. Wallis, J. Lawrimore, and R. Heim, 2007b: The effects of temperature and precipitation trends on U.S. drought. <i>Geophyical. Research Letters</i> , submitted.
4409 4410 4411 4412 4413	Easterling , D. R. B. Gleason, K. E. Kunkel and R, J. Stouffer, 2007a: A comparison between observed and model produced warm spells for the United States, to be submitted.
4414 4415 4416 4417	Edwards , D. C. and T. B. McKee, 1997: Characteristics of 20 th Century Drought in the United States at Multiple Time Scales. Fort Collins, Colorado, Department of Atmospheric Science, Colorado State University.
4418 4419 4420	Eichler , T., and W. Higgins, 2006: Climatology and ENSO-related variability of North American extra-tropical cyclone activity. <i>J. Climate</i> , 19 , 2076–2093.
4421 4422 4423 4423	Elsner , J. B., A. A. Tsonis and T. H. Jagger, 2006: High-frequency variability in hurricane power dissipation and its relationship to global temperature. <i>Bulletin of the American Meteorological Society</i> , 87 , 763-768.
4425 4426 4427	Emanuel, K. A., 2005a: Increasing destructiveness of tropical cyclones over the past 30 years. <i>Nature</i> , 436 , 686-688.
4428 4429	Emanuel, K. A., 2005b: Emanuel replies. <i>Nature</i> , 438 , doi:10.1038/nature04427.
4430 4431 4432	Emanuel , K. A., 2007: Environmental factors affecting tropical cyclone power dissipation. <i>J. Climate</i> , accepted for publication.
4433 4434 4435 4435	Englehart, P.J. and A.V. Douglas, 2001: The Role of Eastern North Pacific Tropical Storms in the Rainfall Climatology of Western Mexico. Int. J. Climatology, 21, 1357-1370.
4430 4437 4438 4439	Englehart , P.J., and A.V. Douglas, 2002: Mexico's summer rainfall patterns: an analysis of regional modes and changes in their teleconnectivity. <i>Atmósfera</i> , 15, pp. 147-164.
4440 4441 4442 4443	Englehart, P.J. and A.V. Douglas, 2003: Urbanization and seasonal temperature trends: observational evidence from a data sparse part of North America. <i>Int. J. Climatol</i> 23: 1253-1263.
4444 4445 4446 4447	Englehart P.J. and A.V. Douglas, 2005: Changing behavior in the diurnal range of surface air temperatures over Mexico. <i>Geophys. Res. Ltrs.</i> 32 No. 1: L01701 10.1029/2004GL021139.
4448 4449 4450 4451	Englehart , P.J. and A.V. Douglas, 2006: Defining intraseasonal variability within the North American monsoon. <i>J. Climate</i> , 19 , 4243-4253.

4452 4453	Englehart , P. J., M. D. Lewis, and A. V. Douglas, 2007: Defining the frequency of near shore tropical cyclone activity in the eastern North Pacific from historical surface
4454 4455	observations 1921-2005. Submitted to Geophys. Res. Lett
1455 AA56	Federal Emergency management Agency 1995: National mitigation strategy:
4457	Partnerships for building safer communities. Report, 40 pp, Washington, D. C.
4430	Formandag Portagog L and H. E. Diaz. 1006. Atlantic huminones in the second half of
4439	Fernandez-Partagas , J. and H. F. Diaz, 1990: Attantic numerates in the second nan of the nineteenth contumy. Bulletin of the American Meteorological Society 77
4460 4461	2899-2906.
4462	
4463 4464	Feuerstein , B., N. Dotzek and J. Grieser, 2005: Assessing a tornado climatology from global tornado intensity distributions, <i>Journal of Climate</i> , 18 , 585-596.
4465	
4466 4467	Folland, C.K., <i>et al.</i> , 1986: Sahel rainfall and worldwide sea temperatures, <i>Nature</i> , 320 , 686-688.
4468	
4469	Frappier, A., Sahagian, D., Carpeter, S.J., Gonzalez, L.A., Frappier, B., 2007: A
4470	stalagmite record of recent tropical cyclones. Geology, 7,, 111114; doi:
4471	10.1130/G23145A.
4472	
4473	Gandin L. S., and R. L. Kagan, 1976: Statistical Methods of Interpretation of
4474 4475	Meteorological Data. (in Russian). Gidrometeoizdat, 359 pp
4476	Garcia Herrera R. L. Gimeno, P. Ribera and F. Hernandez, 2005: New records of
4477 4478	Atlantic hurricanes from Spanish documentary sources, <i>Journal of Geophysical</i> <i>Research</i> 110 :D03100
4470	Research, 110 .D05107.
4477 1180	Carcia Harrara R. F. Rubio, D. Wheeler, F. Hernandez, M. R. Prieto and I. Gimero
4481	2004: The use of Spanish and British documentary sources in the investigation of Atlantic humisons incidence in historical times. In: Humisons and Turks and
4482	Auantic numeane incidence in instorical times. In: <i>Hurricanes and Typhoons:</i>
4485	Past, Present, and Future (eds. K.J. Murnane, K. J. and K-o. Liu), p. 149-176.
4484	Columbia University Press.
4485	Convict ED 1002. Starma of the Creat Lakes U.S. Department of Agriculture
4486 4487	Weather Bureau, <i>Bulletin K</i> , 486 pp.
4488	
4489	Geng, Q., and M. Sugi, 2001: Variability of the North Atlantic cyclone activity in winter
4490 4491	analyzed from NCEP–NCAR reanalysis data. J. Climate, 14, 3863–3873.
4492	Gershunov, A., and T.P. Barnett, 1998: Inter-decadal modulation of ENSO
4493	teleconnections. Bull. Amer. Meteor. Soc., 79, 2715–2725.
4494	
4495 4496	Gershunov, A. and D. R. Cayan, 2003: Heavy daily precipitation frequency over the contiguous United States: sources of climate variability and seasonal

4497	predictability. J. Climate, 16, 2752-2765.
4498	
4499 4500	Gershunov, A. and H. Douville, 2007: Extensive summer hot and cold extremes under current and possible future climatic conditions: Europe and North America. In
4501	Diaz, H.F. and Murnane, R.J. eds., Climate Extremes and Society, Cambridge:
4502	Cambridge University Press (in press).
4503	
4504	Goldenberg, S. B., C. W. Landsea, A.M. Mesta-Nuñez and W. M. Gray, 2001: The
4505	recent increase in Atlantic hurricane activity: Causes and implications. <i>Science</i> , 202 , 474, 470
4500	293, 474-479.
4507	
4508	Croham NE 1004: Decedel coole elimete verichility in the tranical and North Decific
4510	during the 1070s and 1080s; observations and model results. Climate Dynamics
4510	10 135 162
4512	10, 155-162.
4512	Graham N E and H E Diaz 2001: Evidence for intensification of North Pacific winter
4514	cyclones since 1948 <i>Bulletin of the American Meteorological Society</i> 82, 1869-
4515	1803
4516	1075.
4517	Grazulis T. P. 1993: Significant Tornadoes, 1680-1991, Environmental Films, St.
4518	Johnshury VT 1326 pp
4519	Johnsbury, V1, 1520 pp.
4520	Groisman, P.Ya., T.R. Karl, D.R. Easterling, R.W. Knight, P.B. Jamason, K.J.
4521	Hennessy, R. Suppiah, Ch.M. Page, J. Wibig, K. Fortuniak, V.N. Razuvaev, A.
4522	Douglas, E. Førland, and PM. Zhai, 1999: Changes in the probability of heavy
4523	precipitation: Important indicators of climatic change. <i>Climatic Change</i> , 42, 243-
4524	283.
4525	
4526	Groisman, P.Ya. R.W. Knight, and T.R. Karl, 2001: Heavy precipitation and high
4527	streamflow in the contiguous United States: Trends in the 20 th century. Bull.
4528	Amer. Meteorol. Soc., 82, 219-246.
4529	
4530	Groisman, P. Ya., R. W. Knight, and T. R. Karl, D. R. Easterling, B. Sun and J.
4531	H. Lawrimore, 2004: Contemporary changes of the hydrological cycle over the
4532	contiguous United States: Trends derived from in situ observations, Journal of
4533	Hydrometeorology, 5 , 64–85.
4534	
4535	Groisman, P.Ya, R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl and V.
4536	N. Razuvaev, 2005: Trends in intense precipitation in the climate record. Journal
4537	of Climate, 18 , 1326–1350.
4538	
4539	Groisman, P.Ya. and R.W. Knight, 2007: Prolonged dry episodes over the conterminous
4540	United States: New tendencies emerged during the last 40 years. J. Climate,
4541	submitted.
4542	

4543	Groisman, P.Ya., B.G. Sherstyukov, V.N. Razuvaev, R.W. Knight, J.G. Enloe, N.S.
4544	Stroumentova, P. H. Whitfield, E. Førland, I. Hannsen-Bauer, H. Tuomenvirta, H.
4545	Aleksandersson, A. V. Mescherskaya, and T.R. Karl, 2007a: Potential forest fire
4546	danger over Northern Eurasia: Changes during the 20 th century. Global and
4547	<i>Planetary Change</i> , 56 , issue 3-4, 371-386.
4548	
4549	Groisman, P. Ya., R. W. Knight, R. W. Reynolds, A. B. Smith, T.R. Karl, and O. N.
4550	Bulygina, 2007b: Tropical Cyclone Related Precipitation over the Southeastern
4551	United States. (to be submitted)
4552	
4553	Gulev S. K. and V. Grigorieva, 2004: Last century changes in ocean wind wave height
4554	from global visual wave data. Geophys. Res. Lett., 31, L24302,
4555	doi:10.1029/2004GL021040.
4556	
4557	Gumbel, E.J., 1958: Statistics of Extremes. Columbia University Press.
4558	
4559	Guttman, N.B., 1998: Comparing the Palmer Drought Index and the Standardized
4560	Precipitation Index. Journal of the American Water Resources Association 34.
4561	113–121, doi:10.1111/i.1752-1688.1998.tb05964.
4562	,
4563	Hallack-Alegria, M., and D. W. Watkins Jr., 2007: Annual and warm season drought
4564	intensity-duration-frequency analysis for Sonora, Mexico. Journal of Climate, 20,
4565	1897-1909.
4566	
4567	Harman, J.R., R. Rosen, and W. Corcoran, 1980: Winter cyclones and circulation
4568	patterns on the western Great Lakes. <i>Phys. Geogr.</i> , 1, 28–41.
4569	
4570	Harnik N. and E.K.M. Chang, 2003: Storm track variations as seen in radiosonde
4571	observations and reanalysis data. Journal of Climate, 16, 480-495.
4572	
4573	Harper B. A. and J. Callaghan, 2006: On the importance of reviewing historical tropical
4574	cyclone intensities. American Meteorological Society, 27th Conference on
4575	Hurricanes and Tropical Meteorology, 2C.1, Monterey, Apr.
4576	
4577	Hartmann, D.L. and E.D. Maloney, 2001: The Madden-Julian Oscillation, barotropic
4578	dynamics, and North Pacific tropical cyclone formation. Part II: Stochastic
4579	barotropic modeling, Journal of Atmospheric Sciences, 58, 2559-2570.
4580	
4581	Heim Jr., R.R., 2002: A review of Twentieth-Century drought indices used in the United
4582	States. Bulletin of the American Meteorological Society, 83, 1149–1165.
4583	
4584	Herweijer, C., R. Seager and E.R. Cook, 2006: North American droughts of the mid-to-
4585	late nineteenth century: a history, simulation and implication for mediaeval
4586	drought. The Holocene, 16, 159-171.
4587	·····

4588 4580	Herweijer, C., R. Seager, E.R. Cook and J. Emile-Geay, 2007: North American droughts
4309	Climate in press
4501	Cumate, in press.
4502	Higgins P.W. V. Chen and A.V. Douglas, 1000: Interannual Variability of the North
4593	American Warm Season Precipitation Regime. J. Climate, 12 , 653-680.
4594	
4595	
4596 4597	Hirsch, M. E., A. T. DeGaetano and S. J. Colucci, 2001: An East Coast winter storm climatology. <i>Journal of Climate</i> , 14 (5), 882-899.
4598	
4599	Hobbins, M.T., A. Dai, M. L. Roderick, and G. D. Farquhar, 2007: Back to basics:
4600 4601	Revisiting potential evapotranspiration as a driver of water balance trends. Geophysical Research Letters, submitted.
4602	Cooping stear research Letters, submitted.
4603	Hoegh-Guldberg O. 2005: Low coral cover in a high-CO ₂ world. Journal of
4604	Geophysical Research 110, C09S06, doi:10.1029/2004JC002528
4605	200 ph/ shear research, 110, 200 b00, aon 101029/200 h 20020201
4606	Holland , G.J., 2007: Misuse of landfall as a proxy for Atlantic tropical cyclone activity.
4607	EOS (in press).
4608	
4609	Holland, G. J., and P. J. Webster, 2007: Heightened tropical cyclone activity in the North
4610	Atlantic: natural variability or climate trend? <i>Phil. Trans. R. Soc. A</i> ,
4611	doi:10.1098/rsta.2007.2083.
4612	
4613	Hoyos, C. D., P. A. Agudelo, P. J. Webster and J. A. Curry, 2006: Deconvolution of the
4614	factors contributing to the increase in global hurricane intensity. Science, 312: 94-
4615	97.
4616	
4617	Hsu, S.A., Martin, M.F., and Blanchard, B.W., 2000: An evaluation of the USACE's
4618	deepwater wave prediction techniques under hurricane conditions during Georges in
4619	1998. Journal of Coastal Research, 16 , 823-829.
4620	
4621	Huschke, R. E. (editor) (1959) Glossary of Meteorology, American Meteorological Society,
4622	Boston, Massachusetts, USA, pgs. 106 and 419.
4623	
4624	IPCC , 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to
4625	the Third Assessment Report of the Intergovernmental Panel on Climate Change
4626	[Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K.
4627	Maskell, and C.A. Johnson (eds.)]. Cambridge University Press, Cambridge, United
4628	Kingdom and New York, NY, USA, 881pp.
4629	
4630	Jarvinen, B. R., C. J. Neumann and M. A. S. Davis, 1984: A tropical cyclone data tape
4631	for the North Atlantic Basin, 1886-1983. Contents, limitations and uses. Tech.
4632	Memo. NWS NHC-22, 21pp. NOAA, Washington DC.
4633	

4634	Jones, G.V., and R.E. Davis, 1995: Climatology of Nor'easters and the 30 kPa jet. J.
4635	<i>Coastal Res.</i> , 11 (3), 1210-1220.
4636	

- 4637 Jones P.D. and A. Moberg, 2003: Hemispheric and large-scale surface air temperature
 4638 variations: an extensive revision and an update to 2001. *J Climate* 16: 206-223.
 4639
- Jones, P.D., T.J. Osborn, and K.R. Briffa, 2003: Pressure-based measures of the North
 Atlantic Oscillation (NAO): A comparison and an assessment of changes in the
 strength of the NAO and in its influence on surface climate parameters. In: *The North Atlantic Oscillation: Climatic Significance and Environmental Impact*[Hurrell, J.W., et al. (eds.)].
- Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S.
 Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, B. Reynolds, M. Chelliah, W.
 Ebisuzaki, W. Higgins, J. Janowiak, K. Mo, C. Ropelewski, J. Wang, R. Jenne,
 and D. Joseph, 1996: The NCEP/NCAR 40-Year reanalysis project. *Bull. Amer. Meteor. Soc.*, 77, 437–471.
- 4652 Kamahori, H. N. Yamazaki, N. Mannoji, and K. Takahashi, 2006: Variability in intense
 4653 tropical cyclone days in the western North Pacific. SOLA, 2, 104-107,
 4654 doi:10.2151/sola.2006-027.
- 4656 Karl, T.R.; and R.W. Knight. 1985. Atlas of Monthly Palmer Hydrological Drought
 4657 Indices (1931–1983) for the Contiguous United States. Historical Climatology
 4658 Series 3–7, National Climatic Data Center, Asheville, North Carolina.
- 4660 Karl, T.R. and R. W. Knight, 1998: Secular Trends of Precipitation Amount, Frequency,
 4661 and Intensity in the United States. *Bulletin of the American Meteorological*4662 Society, 79, 231–241
- 4664 Keetch, J.J. and G.M. Byram, 1968: A drought index for forest fire control. U.S.D.A.
 4665 Forest Service Research Paper SE-38. 35 pp. [Available from: http://www.srs.fs.fed.us/pubs/]
- 4668 Key, J. R. and A. C. K. Chan, 1999: Multidecadal global and regional trends in 1000 mb
 4669 and 500 mb cyclone frequencies. *Geophysical Research Letters*, 26 2035-2056.
- 4671 Kharin, V.V., and F.W. Zwiers, 2000: Changes in the extremes in an ensemble of
 4672 transient climate simulation with a coupled atmosphere-ocean GCM. *Journal of*4673 *Climate*, 13, 3760-3788.
- 4675 Kharin, V. V., F. W. Zwiers, X. Zhang, and G. C. Hegerl, 2007: Changes in temperature
 4676 and precipitation extremes in the IPCC ensemble of global coupled model
 4677 simulations. *Journal of Climate, accepted*.

4645

4651

4655

4659

4663

4667

4670

4674

4679 4680	Kim , T-W., J. B. Valdes, and J. Aparicio, 2002: Frequency and spatial characteristics of droughts in the Conchos river basin Mexico. International Water Resources
4681	27(3), 420-430.
4682 4683 4684	Klotzbach, P. J., 2006: Trends in global tropical cyclone activity over the past twenty years (1986-2005). <i>Geophysical Research Letters</i> , 33 , L10805, doi:10.1020/2006CL025881
4685	doi:10.1029/2000GL023881.
4687	Knaff, J. A and C. R. Sampson, 2006: Reanalysis of West Pacific tropical cyclone
4688 4689 4690	intensity 1966-1987. Proceedings of 27 ^{^m} AMS Conference on Hurricanes and Tropical Meteorology, #5B.5. Available online at: <u>http://ams.confex.com/ams/pdfpapers/108298.pdf</u>
4691	
4692 4693	Kocin, P. J., P. N. Schnumacher, R. F. Morales Jr. and L.W.Uccellini, 1995: Overview of the 12-14 March 1993 Superstorm. <i>Bulletin of the American Meteorological</i> Society 76 (2) 165–182
4094	<i>Society</i> , 70 (2), 105-182.
4696 4697	Komar, P.D. and J.C. Allan, 2007a: Higher waves along U.S. East Coast linked to hurricanes. <i>EOS, Transactions, American Geophysical Union</i> , 88, 301.
4698	
4699 4700	Komar, P.D., and J.C. Allan, 2007b: Increasing wave heights along the U.S. Atlantic coast due to the intensification of hurricanes. <i>Journal of Coastal Research</i> , in
4701	press.
4702	Kossin, J. P., K. R. Knapp, D. J. Vimont, R. J. Murnane, and B. A. Harper, 2007a: A
4704 4705	globally consistent reanalysis of hurricane variability and trends. Geophys. Res. Lett., 34, L04815, doi:10.1029/2006GL028836.
4706	
4707 4708	Kossin, J. P., J. A. Knaff, H. I. Berger, D. C. Herndon, T. A. Cram, C. S. Velden, R. J. Murnane, and J. D. Hawkins, 2007b: Estimating hurricane wind structure in the
4709 4710	absence of aircraft reconnaissance. Wea. Forecasting, 22, 89-101
4711	Kossin, J. P., and D. J. Vimont, 2007: A more general framework for understanding
4712	Atlantic hurricane variability and trends. Bull. Amer. Meteor. Soc., in press.
4713	
4/14	Kunkel , K.E., 2003: North American trends in extreme precipitation. <i>Natural Hazards</i> , 20 291–305
4715	27 , 271-303.
4717	Kunkel, K.E., S.A. Changnon, and J.R. Angel, 1994: Climatic aspects of the 1993 Upper
4718	Mississippi River basin flood. Bull. Amer. Meteor. Soc., 75, 811-822.
4719	
4720	Kunkel , K. E., K. Andsager and D.R. Easterling, 1999: Long-term trends in extreme
4721 4722	<i>Climate</i> 12 2515-2527
4723	Cumule, 12 , 2315 ⁻ 2321.

4724 4725	Kunkel , K.E., N.E. Westcott, and D.A.R. Kristovich, 2002: Assessment of potential effects of climate change on heavy lake-effect spowstorms near Lake Frie. <i>I</i>
4726	Great Lakes Res., 28, 521-536.
4727	
4728 4729	Kunkel , K. E., D. R. Easterling, K. Redmond and K. Hubbard, 2003: Temporal variations of extreme precipitation events in the United States: 1895-2000.
4730 4731	Geophysical Research Letters, 30 , 1900, 10.1029/2003GL018052.
4732 4733 4734 4735	Kunkel, K.E., D.R. Easterling, K. Redmond, and K. Hubbard, 2004: Temporal variations in frost-free season in the United States: 1895–2000, <i>Geophys. Res. Lett.</i> , 31, L03201, doi:10.1029/2003GL018624.
4736 4737 4738 4739	Kunkel , K.E., T.R. Karl, and D.R. Easterling, 2007a: A Monte Carlo assessment of uncertainties in heavy precipitation frequency variations. <i>J. Hydrometeor.</i> , in press.
4740 4741 4742 4743	Kunkel , K. E., R. A. Pielke, Jr. and S. A. Changnon, 1999: Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: A review. <i>Bulletin of the American Meteorological Society</i> , 80 , 1077-1098.
4743 4744 4745	Kunkel , K.E., K.E., M. Palecki, L. Ensor, D. Robinson, K.Hubbard, D. Easterling, and K. Redmond. 2007b: Trends in 20 th Century U.S. snowfall using a quality-
4746 4747 4748	controlled data set. Proceedings, 75 th Annual Meeting, Western Snow Conference, in press.
4749 4750 4751 4752	Landsea, C. W., et al, 2004: The Atlantic hurricane database re-analysis project: Documentation for the 1851-1910 alterations and additions to the HURDAT database. In Hurricanes and Typhoons: Past, Present and Future, R. J. Murnane and KB. Liu, Eds., Columbia University Press.
4753 4754 4755 4756	Landsea, C. W., 2005: Hurricanes and global warming. <i>Nature</i> , 438 , doi:10.1038/nature04477.
4750 4757 4758 4759	Landsea, C. (2007), Counting Atlantic tropical cylones back in time. EOS, 88(18), 197-203.
4760 4761 4762	Landsea, C.W., B.A. Harper, K. Hoarau and J.A. Knaff, 2006: Can we detect trends in extreme tropical cyclones? <i>Science</i> . 313 , 452-454.
4762 4763 4764 4765	Lemke, P., et al. 2007: Observations: Changes in Snow, Ice and Frozen Ground., Chapter 4, Report of Working Group I, Intergovernmental Panel on Climate Change, Fourth Assessment Report, in press.
4767 4768 4769	Lewis , P.J., 1987: Severe storms over the Great Lakes: a catalogue summary for the period 1957–1985. Canadian Climate Center Report No. 87–13, Atmospheric Environment Service, Downsview, ON, Canada, 342 pp.

4770	
4771	Liu, K-b., 2004: Paleotempestology: Principles, methods, and examples from Gulf Coast
4772	lake sediments. In: Hurricanes and Typhoons: Past, Present, and Future, R.J.
4773	Murnane, R. J. and K-b. Liu, Eds., Columbia University Press, pp. 13-57.
4774	
4775	Liu, K-b. and M. L. Fearn, 1993: Lake-sediment record of late holocene hurricane
4776	activities from coastal Alabama. Geology, 21, 793-796.
4777	
4778	Liu, K-b. and M. L. Fearn, 2000: Reconstruction of prehistoric landfall frequencies of
4779	catastrophic hurricanes in northwestern Florida from lake sediment records.
4780	Quaternary Research, 54, 238-245.
4781	
4782	Liu, K-b., C. Shen, C. and K. S. Louie, 2001: A 1,000-year history of typhoon landfalls
4783	in Guangdong, southern China, reconstructed from Chinese historical
4784	documentary records. Annals of the Association of American Geographers, 91,
4785	453-464.
4786	
4787	Louie, K.S. and Kb. Liu, 2003: Earliest historical records of typhoons in China. <i>Journal</i>
4788	of Historical Geography, 29 , 299-316.
4789	
4790	Louie, K.S. and Kb. Liu, 2004: Ancient records of typhoons in Chinese historical
4791	documents. In: Hurricanes and Typhoons: Past, Present, and Future, R.J.
4792	Murnane, R. J. and K-b. Liu, Eds., Columbia University Press, pp. 222-248.
4793	
4794	Ludlam, D.M., 1963: Early American hurricanes, 1492-1870. American Meteorological
4795	Society.
4796	
4797	Madden, R. and P. Julian, 1971: Detection of a 40-50 day oscillation in the zonal wind in
4798	the tropical Pacific, <i>Journal of the Atmospheric Sciences</i> , 28 , 702-708.
4799	
4800	Madden, R. and P. Julian, 1972: Description of global-scale circulation cells in the
4801	tropics with a 40-50 day period, <i>Journal of the Atmospheric Sciences</i> , 29 , 1109-
4802	1123.
4803	
4804	Magnuson, J. J., D.M. Robertson, B. J. Benson, R. H. Wynne, D.M. Livingston, T. Arai,
4805	R. A. Assel, R. G. Barry, V. Card, E. Kuusisto, N.G. Granin, T. D. Prowse, K. M.
4806	Stewart, and V. S. Vuglinski, 2000: Historical trends in lake and river ice cover in
4807	the Northern Hemisphere. Science, 289 , 1743–1746.
4808	
4809	Maloney, E. D. and D.L. Hartmann, 2000a: Modulation of eastern North Pacific
4810	nurricanes by the Madden-Julian Oscillation, <i>Journal of Climate</i> , 13 , 1451-1460.
4811	
4812	Maloney, E. D. and D.L. Hartmann, 2000b: Modulation of hurricane activity in the Gulf
4813	of Mexico by the Madden-Julian Oscillation, Science, 287, 2002-2004.
4814	

4815	Maloney, E. D. and D.L. Hartmann, 2001: The Madden-Julian Oscillation, barotropic
4816	dynamics, and North Pacific tropical cyclone formation. Part I: Observations,
4817	Journal of the Atmospheric Sciences, 58, 2545-2558.
4818	
4819	Mann, M. E. and K. Emanuel, 2006: Atlantic hurricane trends linked to climate change.
4820	<i>EOS</i> , 87 , 233-241.
4821	
4822	Mann, M.E. and J. Park, 1994: Global-scale modes of surface temperature variability on
4823	interannual to century timescales, Journal of Geophysical Research, 99, 25819-
4824	25833.
4825	
4826	Mann, M.E., K.A. Emanuel, G.J. Holland and P.J. Webster, 2007: Atlantic tropical
4827	cyclones revisited. EOS (in press).
4828	
4829	Mann. M.E., T.A. Sabbatelli and U. Neu, 2007: Evidence for a modest undercount bias
4830	in early historical Atlantic tropical cyclone counts. <i>Nature</i> (submitted).
4831	
4832	Manning, D. M., and R. E. Hart, 2007: Evolution of North Atlantic ERA40 tropical
4833	cyclone representation. Geophys. Res. Lett., 34, L05705.
4834	doi:10.1029/2006GL028266.
4835	
4836	Mather, J.R., R.T. Field, and G.A. Yoskioka (1967), Storm hazard damage along the
4837	East Coast of the U.S., J. Appl. Meteor., 6, 20-30.
4838	
4839	Maue, R. N., and R. E. Hart, 2007: Comment on "Low frequency variability in globally
4840	integrated tropical cyclone power dissipation" by Ryan Sriver and Matthew
4841	Huber. Geophys. Res. Lett., 34, L05705. doi:10.1029/2006GL028266.
4842	
4843	McCabe, G. J., M. P. Clark and M. C. Serreze, 2001: Trends in Northern Hemisphere
4844	surface cyclone frequency and intensity. Journal of Climate, 14, 2763-2768.
4845	
4846	McCarthy, D. W., J. T. Schaefer and R. Edwards, 2006: What are we doing with (or to)
4847	the F-xcale? Preprints, 23rd Conference on Severe Local Storms, St. Louis,
4848	Missouri, American Meteorological Society, Conference CD. (Available online at
4849	http://ams.confex.com/ams/pdfpapers/115260.pdf.)
4850	
4851	McKee, T. B., N. J. Doesken and J. Kleist, 1993: Drought monitoring with multiple
4852	timescales. Preprints of the Eight Conference on Applied Climatology, Anaheim,
4853	California.
4854	
4855	Michaels, P.J., P.C. Knappenberger, O.W. Frauenfeld, and R.E. Davis, 2004: Trends in
4856	precipitation on the wettest days of the year across the contiguous USA. Int. J.
4857	<i>Climatol.</i> 24 : 1873–1882.
4858	
4859	
4860	
4861 Millas , J.C., 1968: Hurricanes of the Caribbean and adjacent regi	ons, 1492-1800.
---	-----------------------------
4862 Academy of the Arts and Sciences of the Americas.	,
4863	
4864 Miller, A.J., Cayan, D., T. Barnett, N. Graham, and J. Oberhuber	, 1994: The 1976-77
4865 climate shift of the Pacific Ocean, OCEANOGRAPHY, 1	, 21-26.
4866	
4867 Miller, D. L., Mora, C. I., Grissino-Mayer, H. D., Uhle, M. E. and	d Sharp, Z., 2006: Tree-
4868 ring isotope records of tropical cyclone activity. <i>Proc. Nat</i>	. Acad. Sci., 103,
4869 14294-14297.	
4870	
4871 Mo, K.C. and R.E. Livezey, 1986: Tropical-extratropical geopote	ntial height
4872 teleconnections during the northern hemisphere winter, <i>M</i>	on. Wea. Rev., 114 ,
4873 2488-2515, 1986.	
4874	
4875 Mock , C.J., 2004: Tropical cyclone reconstructions from docume	ntary records: examples
4876 for South Carolina, United States. In: <i>Hurricanes and Typ</i>	hoons: Past, Present,
4877 <i>and Future</i> , R.J. Murnane, R. J. and K-b. Liu, Eds., Colum	nbia University Press, p.
4878 121-148.	
4879	
4880 Moon, I.J., I. Ginis, T. Hara, H.L. Tolman, C.W. Wright, and E.J	Walsh (2003),
4881 Numerical simulation of sea surface directional wave spec	tra under hurricane
4882 wind forcing, <i>J. Phys. Ocean.</i> , 33 , 1680-1706.	
4883	
4884 Mueller K.J., M. DeMaria, J. Knaff, et al., 2006: <u>Objective estim</u>	ation of tropical cyclone
4885 <u>wind structure from infrared satellite data</u> . Weather and F	precasting, 21, 990-
4886 1005.	
4888 Nakamura, H., 1992: Midwinter suppression of baroclinic wave	activity in the Pacific. J.
4889 Atmos. Scl., 49 , 1629–1642.	
4090 4801 Naclin ID M Munnich H Su et al. 2006: Tropical drying tra	de in global warming
4891 Neemi J.D., M. Mullinch, H. Su, et al., 2000. <u>Hopical drying fiel</u> 4802 models and observations. <i>Proceedings of the National Acc</i>	idemy of Sciences of the
4892 <u>Indees and observations</u> . Troceedings of the National Act 4803 United States of America, 103, 6110, 6115	idemy of sciences of the
4875 Onited States of America, 105, 0110-0115.	
4074 A895 Nicholas R and D S Battisti 2006 Drought recurrence and sea	sonal rainfall prediction
4896 in the Vacui basin Mexico, <i>Journal Applied Meteorology</i>	and
4897 <i>Climatology</i> accented	unu
4898	
4899 Noel I and D Changnon 1998: A Pilot Study Examining U.S.	Winter Cyclone
4900 Frequency Patterns Associated with Three ENSO Parame	ers L Climate 11
4901 2152–2159	, , ,
4902	
4903 Nyberg , J. B. A. Malmøren A. Winter M. R. Jury K. Halimeda	Kilbourne, and T. M
4904 Ouinn. 2007: Low Atlantic hurricane activity in the 1970s	and 1980s compared to
4905 the past 270 years. <i>Nature</i> . 447. 698-702.	

4907 4908 4909	Paciorek, C.J., J.S. Risbey, V. Ventura, and R.D. Rosen, 2002: Multiple indices of Northern Hemisphere cyclone activity, Winters 1949–99. J. Climate, 15, 1573– 1590.
4910 4911 4912	Palmer , W. C. 1965. Meteorological drought. Research Paper No. 45, U.S. Department of Commerce Weather Bureau, Washington, D.C
4913 4914 4915 4016	Palmer , W.C. 1968. Keeping track of crop moisture conditions, nationwide: The new Crop Moisture Index. <i>Weatherwise</i> 21:156–161.
4916 4917 4918	Pavia E.G. and A. Badan, 1998: <u>ENSO modulates rainfall in the Mediterranean</u> <u>Californias</u> . <i>GEOPHYSICAL RESEARCH LETTERS</i> , 25, 3855-3858
4919 4920 4921 4922	Peterson, T. C. et al. 2002: Recent changes in the climate extemes in the Caribbean region. <i>Journal of Geophysical Research</i> , 107 , NO.D21, 4601, doi:10.1029/2002JD002251,2002.
4923 4924 4925 4926	Peterson , T. C., X. Zhang, M. Brunet India, J. L. Vázquez Aguirre, 2007: Changes in North American extremes derived from daily weather data. <i>Proceedings of the</i> <i>National Academy of Science</i> , submitted.
4927 4928 4929 4920	Pickands , J. (1975), Statistical inference using extreme order statistics. <i>Annals of Statistics</i> 3 , 119-131.
4930 4931 4932	Pielke, R. A., Jr., 2005: Are there trends in hurricane destruction? <i>Nature</i> , 438, E11.
4933 4934 4935 4936	Robeson , S. M., 2004: Trends in time-varying percentiles of daily minimum and maximum temperature over North America," <i>Geophysical Research Letters</i> , 31, L04203, doi:10.1029/2003GL019019.
4930 4937 4938	Ropelewski, C., 1999: The great El Niño of 1997-1998: Impacts on precipitation and temperature. <i>Consequences</i> , 5 (2).
4939 4940 4941 4042	Robinson, D.A., K.F. Dewey, and R.R. Heim Jr., 1993: Global snow cover monitoring: an update. <i>Bull. Am. Meteorol. Soc.</i> , 74 , 1689–1696.
4942 4943 4944	Sanders, F., and J.R. Gyakum, 1980: Synoptic-dynamic climatology of the "bomb". <i>Mon. Wea. Rev.</i> , 108 , 1589–1606.
4945 4946 4947	Schlesinger, M.E. and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. <i>Nature</i> , 367, 723–726.
4948 4949 4950 4951	SEMARNAP , 2000: Programa nacional contra incendios forestales. Resultados 1995-2000. Mexico, 263 pp.

4952	Semenov VA, Bengtsson L, 2002: Secular trends in daily precipitation characteristics:
4953	greenhouse gas simulation with a coupled AOGCM. CLIMATE DYNAMICS, 19,
4954	123-140
4955	
4956	Serreze, M. C., F. Arse, R. G. Barry and J. C. Rogers, 1997: Iclandic low cyclone
4957	activity. Climatological features, linkages with the NAO, and relationships with
4958	recent changes in the Northern Hemisphere circulation. <i>Journal of Climate</i> , 10
4959	(3), 453-464.
4960	
4961	Sevmour, R. J., R. R. Strange, D. R. Cavan and R. A. Nathan, 1984: Influence of El
4962	Niños on California's wave climate. <i>Proceedings</i> 19 th International Conference
4963	on Coastal Engineering, Amer. Soc. Civil Engrs., 577-592.
4964	
4965	Shabbar, A. and W. Skinner, 2004; Summer drought patterns in Canada and the
4966	relationship to global sea surface temperatures <i>L Climate</i> 17 2866–2880
4967	
4968	Shein K A ed 2006: State of the climate in 2005 <i>Bulletin of the American</i>
4969	Meteorological Society 87 1-S102
4970	meteorological bockety, 01, 1 5102.
4971	Simmonds I and K Keav 2000: Variability of Southern Hemisphere extra-tropical
4972	cyclone behavior 1958–97 <i>I Climate</i> 13 550–561
4073	cyclone benavior, 1996–97. 9. Climate, 19, 996–961.
4973	Simmonds I and K Keav 2002: Surface fluxes of momentum and mechanical energy
4974	over the North Desifie and North Atlantic Oceans. Metaerology and Atmospheric
4975	Dhusiag 90 1 19
4970	T Hysics, 80 , 1-18.
4977	Sime A. P. D. D. S. Nivogi and S. Paman 2002: Adopting drought indices for
4970	Sins, A. F., D. D. S. Nyogi and S. Kaman, 2002. Adopting drought indices for
49/9	Letters 20, 1182
4980	Letters, 29, 1185.
4981	Smith D. L. 2002. Statistics of autromas with applications in anyironment insurance
4962	Sintu, K.L., 2005. Statistics of extremes, with applications in environment, insurance
4985	and finance. Chapter 1 of <i>Extreme values in Finance, Telecommunications and</i>
4984	the Environment, edited by B. Finkenstadt and H. Rootzen, Chapman and
4985	Hall/CRC Press, London, pp. 1-78.
4986	
4987	Smith, R.L., C. Tebaldi, D. Nychka and L.O. Mearns, 2007: Bayesian modeling of
4988	uncertainty in ensembles of climate models. Journal of the American Statistical
4989	Association, under revision.
4990	
4991	Soja, A.J., N. M. Tchebakova, N. H.F. French, M. D. Flannigan, H. H. Shugart, B. J.
4992	Stocks, A. I. Sukhinin, E.I. Parfenova, F. S. Chapin III and Jr., and P. W.
4993	Stackhouse, 2007: Climate-induced boreal forest change: Predictions versus
4994	current observations. Global and Planetary Change, in press.
4995	
4996	
4997	

4998 4999	Sriver, R. and M. Huber, 2006: Low frequency variability in globally integrated tropical evolution power dissipation. <i>Geophysical Research Letters</i> 33 , L 11705
4999 5000	doi:10.1020/2006GL 026167
5000	doi.10.102)/20000E02010/.
5001	Stabl K R D Moore I.G. McKendry 2006: Climatology of winter cold spells in
5002	relation to mountain nine beetle mortality in British Columbia Canada <i>Climate</i>
5003	Research 32, 13-23
5005	Research, 52 , 15 25.
5005	Stable D W E R Cook M K Cleaveland M D Therrell D M Meko H D
5007	Grissino-Mayer, E. Watson, and B. H. Luckman, 2000: Tree-ring data document
5008	16th century megadrought over North America. <i>Eos Trans. AGU</i> , 81, 121.
5009	
5010	Stone, D.A., A.J. Weaver and F.W. Zwiers, 2000: Trends in Canadian precipitation
5011	intensity. Atmosphere-Ocean, 38, 321-347
5012	
5013	Sun B.M. and P.Y. Groisman, 2004: Variations in low cloud cover over the United States
5014	during the second half of the twentieth century. JOURNAL OF CLIMATE, 17,
5015	1883-1888.
5016	
5017	Therrell, M. D., D. W. Stahle, M. K. Cleaveland, and J. Villanueva-Diaz, 2002: Warm
5018	season tree growth and precipitation in Mexico. Journal of Geophysical Research,
5019	107 (D14), 4205.
5020	
5021	Tolman, H.L., B. Balasubramaniyan, L.D. Burroughs, D. Chalikov, Y.Y. Chao, H.S.
5022	Chen, and V.M. Gerald (2002), Development and implementation of wind-
5023	generated ocean surface wave models at NCEP, Wea. Forecasting, 17, 311-333.
5024	
5025	Trenberth, K.E., 1990: Recent observed interdecadal climate changes in the Northern
5026	Hemisphere. Bull. Amer. Meteor. Soc., 71, 988-993.
5027	
5028	Trenberth, K.E. and J.W. Hurrell, 1994: Decadal atmospheric-ocean variations in the
5029	Pacific. Climate Dynamics, 9, 303-319
5030	
5031	Trenberth, K.E. and D.J. Shea, 2006: Atlantic hurricanes and natural variability in 2005.
5032	Geophysical Research Letters, 33, doi:10.1029/2006GL026894.
5033	
5034	Trenberth, K.E., et al., 2002: The evolution of ENSO and global atmospheric
5035	temperatures. J. Geophys. Res., 107, 4065, doi:10.1029/2000JD000298.
5036	
5037	Uppala, S.M., Kållberg, P.W., Simmons, A.J., Andrae, U., da Costa Bechtold, V.,
5038	Fiorino, M., Gibson, J.K., Haseler, J., Hernandez, A., Kelly, G.A., Li, X., Onogi,
5039	K., Saarinen, S., Sokka, N., Allan, R.P., Andersson, E., Arpe, K., Balmaseda,
5040	M.A., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Caires, S.,
5041	Chevallier, F., Dethot, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann,
5042	S., Holm, E., Hoskins, B.J., Isaksen, L., Janssen, P.A.E.M., Jenne, R., McNally,
5043	A.P., Mantout, JF., Morcrette, JJ., Rayner, N.A., Saunders, R.W., Simon, P.,

5044 5045 5046	Sterl, A., Trenberth, K.E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J. 2005: The ERA-40 re-analysis. <i>Quart. J. R. Meteorol. Soc.</i> , 131 , 2961-3012 (doi:10.1256/qj.04.176).
5047 5048 5049 5050	Vecchi, G. A., and T. R. Knutson, 2007: On estimates of historical North Atlantic tropical cyclone activity. <i>J. Climate</i> , submitted.
5050 5051 5052 5053	Verbout, S. M., H.E. Brooks, L. M. Leslie, and D. M. Schultz, 2006: Evolution of the US tornado database: 1954-2003. Weather and Forecasting, 21, 86-93.
5055 5054 5055 5056	Vimont, D. J., and J. P. Kossin, 2007: The Atlantic meridional mode and hurricane activity. <i>Geophysical Research Letters</i> , in press.
5050 5057 5058 5059	Vincent, L. A. and E. Mekis, 2006: Changes in daily and extreme temperature and precipitation indices for Canada over the 20 th century. <i>Atmoshere-Ocean</i> , 44 , 177-193.
5060 5061 5062 5063	Wang, D. W., D. A. Mitchell, W. J. Teague, E. Jarosz and M.S. Hulbet, 2005: Extreme waves under Hurricane Ivan. <i>Science</i> , 309, 896.
5065 5064 5065 5066	Wang, W. L. and V. R. Swail, 2001: Changes of extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes. <i>Journal of Climate</i> , 14, 2201-2204.
5067 5068 5069 5070	Wang, X. L., V. R. Swail and F. W. Zwiers, 2006a: Climatology and changes of extratropical storm tracks and cyclone activity. Comparison of ERA-40 with NCEP/NCAR reanalysis for 1958-2001. <i>Journal of Climate</i> , 19 , 3145-3166.
5071 5072 5073 5074	Wang, X. L., H. Wan and V. R. Swail, 2006b: Observed changes in cyclone activity in Canada and their relationships to major circulation regimes. <i>Journal of Climate</i>, 19, 895-916.
5075 5076 5077 5078	Webster, P. J., G. J. Holland, J. A. Curry and HR. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. <i>Science</i> , 309 , 1844-1846.
5079 5080 5081	Wehner, M.F., Predicted 21 st century changes in seasonal extreme precipitation events in the Parallel Climate Model, <i>J. Climate</i> 17 (2004) 4281-4290
5082 5083 5084 5085	Wehner, M., Changes in daily precipitation and surface air temperature extremes in the IPCC AR4 models. <i>US CLIVAR Variations</i> , 3 , (2005) pp 5-9. LBNL-61594
5085 5086 5087 5088	Westerling, A.L., H.G. Hidalgo, and D.R. Cayan, 2006. Warming and earlier spring increases in western U.S. forest wildfire activity. <i>Science</i> 313:940-943.

5089	Woodhouse, C.A. and J. T. Overpeck, 1998: 2000 Years of Drought Variability in the
5090	Central United States. Bulletin of the American Meteorological Society, 79, 2693-
5091	2714.
5092	
5093	Wu, L., B. Wang, and S. Geng, 2005: Growing typhoon influence on east Asia,
5094	Geophysical Research Letters, 32, L18703, doi:10.1029/2005GL022937.
5095	
5096	Wu, C.C., K.H. Chou, Y.Q. Wang, et al., 2006: <u>Tropical cyclone initialization and</u>
5097	prediction based on four-dimensional variational data assimilation. JOURNAL OF
5098	THE ATMOSPHERIC SCIENCES, 63, 2383-2395.
5099	
5100	Xie, L., L. J. Pietrafesa, J. M. Morrison, and T. Karl, 2005: Climatological and
5101	interannual variability of North Atlantic hurricane tracks. Journal of Climate, 18,
5102	5370-5381.
5103	
5104	Zhang, R., T. L. Delworth, and I. M. Held, 2007: Can the Atlantic Ocean drive the
5105	observed multidecadal variability in Northern Hemisphere mean temperature?
5106	Geophysical Research Letters, 34, L02709, doi:10.1029/2006GL028683.
5107	
5108	Zhang, X., W. D. Hogg, and E. Mekis, 2001: Spatial and temporal characteristics of
5109	heavy precipitation events over Canada. Journal of Climate, 14, 19231936.
5110	
5111	Zhang, X., J. E. Walsh, J. Zhang, U. S. Bhatt and M. Ikeda, 2004: Climatology and inter-
5112	annual variability of Arctic cyclone activity. 1948-2002. Journal of Climate, 17,
5113	2300-2317.
5114	
5115	Zwiers, F. W., and V. V. Kharin, 1998: Changes in the extremes of the climate simulated
5116	by CCC GCM2 under CO ₂ doubling. Journal of Climate, 11 , 2200-2222

5117 Table 2.1 Regressions for the decadal trends of increasing wave heights measured off the

5118 Washington coast (NDBC buoy #46005). [after Allan and Komar (2006)]

5121 (m/yr)Annual AverageSigni 5122 5123 Annual Average 0.024 1.0 Signi 5123 Annual Average 0.024 1.0 Signi 5124 Winter Average 0.032 1.3 Signi 5125 Five Largest 0.095 4.0 Signi 5126 Three Largest 0.103 4.3 NSigni 5127 Maximum 0.108 4.5 NSigni 5128 100 -yr Projection ≈ 0.13 ≈ 5.5 estimation	5120	Wave Heights	Rate	Ratio of Rate to	Statistical
5122 5123 Annual Average 0.024 1.0 S. 5123 Annual Average 0.024 1.0 S. 5124 Winter Average 0.032 1.3 S. 5125 Five Largest 0.095 4.0 S. 5126 Three Largest 0.103 4.3 NS. 5127 Maximum 0.108 4.5 NS. 5128 100-yr Projection ≈ 0.13 ≈ 5.5 estimation	5121		(m/yr)	Annual Average	Significance*
5123Annual Average 0.024 1.0 S5124Winter Average 0.032 1.3 S5125Five Largest 0.095 4.0 S5126Three Largest 0.103 4.3 NS5127Maximum 0.108 4.5 NS5128100-yr Projection ≈ 0.13 ≈ 5.5 estimation	5122				
5124 Winter Average 0.032 1.3 S 5125 Five Largest 0.095 4.0 S 5126 Three Largest 0.103 4.3 NS 5127 Maximum 0.108 4.5 NS 5128 100-yr Projection ≈ 0.13 ≈ 5.5 estimation	5123	Annual Average	0.024	1.0	SS
5125 Five Largest 0.095 4.0 S 5126 Three Largest 0.103 4.3 NS 5127 Maximum 0.108 4.5 NS 5128 100-yr Projection ≈ 0.13 ≈ 5.5 estimation	5124	Winter Average	0.032	1.3	SS
5126Three Largest 0.103 4.3 NS5127Maximum 0.108 4.5 NS5128100-yr Projection ≈ 0.13 ≈ 5.5 estimation	5125	Five Largest	0.095	4.0	SS
5127Maximum 0.108 4.5 NS5128100-yr Projection ≈ 0.13 ≈ 5.5 estimation	5126	Three Largest	0.103	4.3	NSS
5128 100-yr Projection ≈ 0.13 ≈ 5.5 estimation	5127	Maximum	0.108	4.5	NSS
	5128	100-yr Projection	≈0.13	≈5.5	estimate
5129	5129				

SS = statistically significant at the 0.05 level; NSS = not statistically significant.

5134 Figure 2.1 Changes in the percent of days in a year above three thresholds for North5135 America for daily high temperature (top) and daily low temperature (bottom) from

5136 Peterson et al. (2007).

5137 Trends in Number of Days With Unusually Warm Daily Low 5138 Temperature

- 5139
- 5140

5141 **Figure 2.2** Trends in the number of days in a year when the daily low is unusually warm

- (ie. In the top 10% of warm nights for the 1950-2004 period). Grid boxes with green
- 5143 squares are statistically significant at the p=0.05 level, (from Peterson et al. 2007). A
- trend of 1.8 days/decade translates to a trend of 9.9 days over the entire 55-year (1950-
- 5145 2004) period, meaning that 10 days more a year will have unusually warm nights.

5148

Figure 2.3 Time series of (a) annual values of a U.S. national average "heat wave"
index. Heat waves are defined as warm spells of 4 days in duration with mean
temperature exceeding the threshold for a 1 in 10 year event. (updated from Kunkel et al.
1999); (b)Area of the U.S. (in percent) with much above normal daily high temperatures
in summer; (c) Area of the U.S. (in percent) with much above normal daily low
temperatures in summer. Blue vertical bars give values for individual seasons while red
lines are smoothed (9-yr running) averages.

5158 **Figure 2.4** Change in the length of the frost free season averaged over the U.S. (from

5159 Kunkel et al. 2003). The frost-free season is at least 10 days longer on average than the5160 long-term average.

temperature range reflects hotter daily summer highs. The time series represents theaverage DTR taken over the four temperature regions of Mexico as defined in Englehart

5191 and Douglas, 2004. Trend line (red) based on LOWESS smoothing (*n*=30).

US and North American Drought Comparison

5194 Figure 2.6 the area (in percent) of area in severe to extreme drought as measured by the

- 5195 Palmer Drought Severity Index for the U.S. (red) from 1900 to present and for North
- 5196 America (blue) from 1950 to present.

Regions of N. America where Heavy and Very Heavy Precipitation has Increased

5223 5224

5225 Figure 2.8 Regions where disproportionate increases in heavy and very heavy 5226 precipitation during the past decades were documented compared to the change in the 5227 annual and/or seasonal precipitation. Because these results come from different studies, 5228 the definitions of extreme precipitation vary. (a) annual anomalies (% departures) of 5229 heavy precipitation for northern Canada. (b) as (a), but for southeastern Canada. (c) the 5230 top 0.3% of daily rain events over the central United States and the trend (22%/113 yrs) 5231 (updated from Groisman et al. 2005). (d) as for (c), but for southern Mexico. (e) change 5232 of intensity of the upper 5% of daily rain events in the core monsoon region of Mexico, 5233 relative to the 1961-1990 base period. (Cavazos et al., 2007) (f) upper 5%, top points, and 5234 upper 0.3%, bottom points, of daily precipitation events and linear trends for British 5235 Columbia south of 55°N. (g) upper 5% of daily precipitation events and linear trend for 5236 Alaska south of 62°N.

Increase in the Occurence of Periods of Heavy Rainfall Lasting at Least 90 Days

5239 Figure 2.9 Frequency (expressed as a percentage anomaly from the period of record

5240 average) of excessive precipitation periods of 90 day duration exceeding a 1-in-20-year

5241 event threshold for the U.S. Annual values have been smoothed with a 9-yr running

5242 average filter. The black line shows the trend (a linear fit) for the annual values.

- 5246 Figure 2.10 Average (median) percentage of warm season rainfall (May-November)
- 5247 from Hurricanes and tropical storms affecting Mexico and the Gulf Coast of the United
- 5248 States. Figure updated from Englehart and Douglas 2001.

Changes in Monsoon Rainfall for Mexico

5249 5250

5251Figure 2.11Variations and linear trend in various characteristics of the summer5252monsoon in southern Sonora, Mexico, including (a) the mean start date June 1 = Day 15253on the graph; (b) the mean wet spell length defined as the mean number of consecutive5254days with mean regional precipitation ≥ 1 mm; and (c) the mean daily rainfall intensity for

5255 wet days defined as the regional average rainfall for all days with rainfall ≥ 1 mm.

Figure 2.12 Trends in hurricane/tropical storm rainfall statistics at Manzanillo, Mexico, including (a) the total warm season rainfall from hurricanes/tropical storms; (b) the ratio of hurricane/tropical storm rainfall to total summer rainfall; and (c) the number of days each summer with a hurricane or tropical storm within 550km of the stations

Relationship Between Sea Surface Temperatures and Hurricane Power in the North Atlantic Ocean

5262 5263

Figure 2.13 Sea surface temperatures (blue) correlated with the Power Dissipation Index
for North Atlantic hurricanes (Emanuel, 2007). Sea Surface Temperature is from the
Hadley Centre dataset and is for the Main Development Region for tropical cyclones in
the Atlantic, defined as 6-18°N, 20-60°W. The time series have been smoothed using a 13-4-3-1 filter to reduce the effect of interannual variability and highlight fluctuations on
time scales of 3 years and longer.

5270 5271

5272 Figure 2.14 Century changes in the intensity of North Atlantic tropical cyclones,

- 5273 hurricanes and major hurricanes. Also shown are all individual tropical cyclone
- 5274 intensities. (From Holland and Webster 2007).

Figure 2.15 Combined annual numbers of hurricanes and tropical storms for the North
Atlantic (black dots), together with a 9-year running mean filter (black line) and the 9year smoothed sea surface temperature in the eastern North Atlantic (red line). Adapted
from Holland and Webster (2007).

Atlantic Hurricanes/Tropical Storms (Adjusted for Estimated Missing Storms)

5283 Figure 2.16 Atlantic hurricanes and tropical storms for 1878-2006, using the adjustment 5284 method A for missing storms described in the text. Black curve is the adjusted annual 5285 storm count, red is the 5-yr running mean, and solid blue curve is a normalized (same 5286 mean and variance) 5-yr running mean sea surface temperature index for the Main 5287 Development Region of the tropical Atlantic (HadISST, 80-20W, 10-20N; Aug.-Oct.). 5288 Green curves show the adjustment that has been added for missing storms to obtain the 5289 black curve, assuming two simulated ship-storm "encounters" are required for a modern-5290 day storm to be "detected" by a historical ship traffic for a given year. Dashed green 5291 curve is an alternative adjustment sensitivity test requiring just one ship-storm simulated 5292 encounter for detection. Straight lines are least squares trend lines for the adjusted storm 5293 counts. (Adapted from Vecchi and Knutson, 2007).

5296	Figure 2.17 Counts of total North Atlantic basin hurricanes (black), major hurricanes
5297	(red) and U.S. landfalling hurricanes (blue) based on annual data from 1851 to 2006 and
5298	smoothed (using a 5-year running mean). Asterisks on the time series indicate years
5299	where trends beginning in that year and extending through 2005 are statistically
5300	significant (p=0.05) based on annual data; circles indicate non-significant trend results.

Changes in Frequency and Intensity of Winter Storms (Northern Hemisphere)

5301 5302

Figure 2.18 Changes from average (1959-1997) in the number of winter (Nov-Mar)
storms each year in the Northern Hemisphere for (a) high latitudes (60°-90°N), and (b)

- 5305 mid-latitudes (30° - 60° N), and the change from average of winter storm intensity in the
- 5306 Northern Hemisphere each year for (c) high latitudes (60°-90°N), and (d) mid-latitudes
- 5307 (30° - 60° N). [Adapted from McCabe et al. 2001].

Winter Storm Characteristics for the Pacific and Atlantic

Fig. 2.19 Extreme wind speed (meters per second), number of winter storms, and number of intense (\leq 980 hPa) winter storms for the Pacific region (20°-70°N, 130°E-112.5°W; panels a-b-c) and the Atlantic region (20°-70°N, 7.5°E-110°W; panels d-e-f):. The thick smooth lines are the trends determined using a Bayesian spline model, and the thin dashed lines denote the 95% confidence intervals. [Adapted from Paciorek et al. 2002].

Figure 2.20 Cumulative extreme Non-Tide Residuals (NTR) (water level) exceeding the
98th percentile level of hourly NTR levels at San Francisco, during winter months (DecMar), with the 5-yr running mean (red line). Least squares trend estimates for the entire
winter record (light dashed line) and since 1948 (bold dashed line), the period covered by
NCEP reanalysis and ERA-40 data used in most ETC studies. [Adapted from Bromirski
et al. 2003].

Figure 2.21 Seasonal totals (gray line) covering the period of 1951-1997 for (a) all East
Coast Winter Storms (ECWS; top curve) and strong ECWS (bottom curve), (b) northern
ECWS (>35°N), and (c) those ECWS tracking along the full coast. Data points along the
5-yr moving average (black) correspond to the middle year. [Adapted from Hirsch et al.
2001].

5332 Figure 2.22 Track of the October 1991 "Perfect Storm" (PS) center showing the east-to-5333 west retrograde propagation of a non-typical Nor'easter. The massive ETC was 5334 reenergized as it moved southward by absorbing northward propagating remnants of 5335 Hurricane Grace, becoming unnamed Hurricane #8 and giving rise to the name "Perfect 5336 Storm" for this composite storm. Storm center locations with date/hr time stamps at 6-hr 5337 intervals are indicated by stars. Also shown are locations of open ocean NOAA buoys 5338 that measured the extreme waves generated by these storms. [Adapted from Bromirski 5339 2001].

Increase in Hurricane Generated Wave Heights

Figure 2.23 Increases in the summer, hurricane-generated wave heights of 3 meters andhigher significant wave heights (from Komar and Allan 2007, and in review).

Figure 2.24 Number of significant wave heights measured by the Cape Hatteras buoyduring the July-September season, early in its record 1976-1991 and during the recent

decade,1996-2005 (from Komar and Allan 2007a,b).

Number of Significant Wave Events During the Atlantic Hurricane Season

5349

5350

5351 **Figure 2.25** (a) Location of the NOAA Atlantic and Gulf buoys discussed. Bathymetric

5352 contours identify the continental shelf boundary. (b) Total number of significant wave

5353 events per hurricane season. (c) Total number of wave events identified during each

5354 month of the June-November hurricane season for all buoy data available from NOAA's

5355 National Ocean Data Center (NODC) from 1978-2006. Panels (b) and (c) show the

- 5356 number of wave events associated with hurricanes/tropical storms with wave heights that
- 5357 exceeded 3 m at a minimum of one of the buoys in each group. Each event was counted
- 5358 only once, even if observed at multiple buoys in a group. No data were available from
- 5359 NODC for any of the Atlantic buoys during the 1979 hurricane season. [Adapted from
- 5360 Bromirski, 2007b]

5361 5362

Figure 2.26 A measure of the total annual tropical cyclone wave power in the western
North Atlantic and Gulf regions obtained as the mean of the available annual deep water
wave power (the wave power index, WPI). Longer period variability is emphasized by
lowpass filtering the annual data with three iterations of a 1-2-1 smoothing operator,

5367 giving the Atlantic and Gulf region WPI (thick lines). [Adapted from Bromirski, 2007b)

5370 Figure 2.27 The trends of increasing wave heights measured by NOAA's National Data

5371Buoy Center (NDBC) buoy #46005 off the coast of Washington [after Allan and Komar

5372 (2006)]

Reports of Tornadoes

5375 Figure 2.28 Tornado reports in official database in USA from 1954-2004. Open circles 5376 are raw reports, solid line (linear regression) is the trend for raw reports, solid circles are 5377 reports adjusted to 2002 reporting system. The adjusted data show little or no trend in 5378 reported tornadoes. The trend in raw reports reflects an increasing density of population 5379 in tornado-prone areas, and therefore more opportunity for sightings, rather than a real 5380 increase in the occurrences of tornadoes.

- 5381 5382
- 5383 **Figure 2.29** Schematic of the North Atlantic Oscillation (NAO) showing its effect on
- 5384 extremes. Illustrations by Fritz Heidi and Jack Cook, Woods Hole Oceanographic
- 5385 Institution.