8600 Appendix A Statistical Trend Analysis

8601

8602 Author: Richard L. Smith, Univ. N.C., Chapel Hill

8603

In many places in this report, but especially Chapter 2, trends have been calculated, either

8605 based directly on some climatic variable of interest (e.g. hurricane or cyclone counts) or

8606 from some index of extreme climate events. Statistical methods are used in determining

the form of a trend, estimating the trend itself along with some measure of uncertainty

8608 (e.g. a standard error), and in determining the statistical significance of a trend. A broad-

8609 based introduction to these concepts has been given by Wigley (2006). The present

8610 review extends Wigley's by introducing some of the more advanced statistical methods

that involve time series analysis.

8612

8613 Some initial comments are appropriate about the purpose, and also the limitations, of 8614 statistical trend estimation. Real data rarely conform exactly to any statistical model, such 8615 as a normal distribution. Where there are trends, they may take many forms. For example, 8616 a trend may appear to follow a quadratic or exponential curve rather than a straight line, 8617 or it may appear to be superimposed on some cyclic behavior, or there may be sudden 8618 jumps (also called changepoints) as well or instead of a steadily increasing or decreasing 8619 trend. In these cases, assuming a simple linear trend (equation (1) below) may be 8620 misleading. However, the slope of a linear trend can still represent the most compact and 8621 convenient method of describing the overall change in some data over a given period of 8622 time.

8624	In this appendix, we first outline some of the modern methods of trend estimation that
8625	involve estimating a linear or non-linear trend in a correlated time series. Then, the
8626	methods are illustrated on a number of examples related to climate and weather extremes.
8627	
8628	The basic statistical model for a linear trend can be represented by the equation
8629	
8630	(1) $y_t = b_0 + b_1 t + u_t$
8631	
8632	where t represents the year, y_t is the data value of interest (e.g. temperature or some
8633	climate index in year t), b_0 and b_1 are the intercept and slope of the linear regression, and
8634	u_t represents a random error component. The simplest case is when u_t are uncorrelated
8635	error terms with mean 0 and a common variance, in which case we typically apply the
8636	standard ordinary least squares (OLS) formulas to estimate the intercept and slope,
8637	together with their standard errors. Usually the slope (b_1) is interpreted as a trend so this
8638	is the primary quantity of interest.
8639	
8640	The principal complication with this analysis in the case of climate data is usually that the
8641	data are autocorrelated, in other words, the terms cannot be taken as independent. This
8642	brings us within the field of statistics known as time series analysis, see e.g. the book by
8643	Brockwell and Davis (2002). One common way to deal with this is to assume the values
8644	form an autoregressive, moving average process (ARMA for short). The standard
8645	ARMA(p,q) process is of the form
8646	

8647 (2)
$$u_t - \varphi_1 u_{t-1} - \dots - \varphi_p u_{t-p} = \varepsilon_t + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q}$$

8649	where $\phi_1\phi_p$ are the autoregressive coefficients, $\theta_1\theta_q$ are the moving average
8650	coefficients and the $\boldsymbol{\epsilon}_t$ terms are independent with mean 0 and common variance. The
8651	orders p and q are sometimes determined empirically or sometimes through more formal
8652	model-determination techniques such as the Akaike Information Criterion (AIC) or the
8653	Bias-Corrected Akaike Information Criterion (AICC). The autoregressive and moving
8654	average coefficients may be determined by one of several estimation algorithms
8655	(including maximum likelihood) and the regression coefficients b_0 and b_1 by the
8656	algorithm of generalized least squares or GLS. Typically, the GLS estimates are not very
8657	different from the OLS estimates that arise when autocorrelation is ignored, but the
8658	standard errors can be very different. It is quite common that a trend that appears to be
8659	statistically significant when estimated under OLS regression is not statistically
8660	significant under GLS regression, because of the larger standard error that is usually
8661	though not invariably associated with GLS. This is the main reason why it is important to
8662	take autocorrelation into account.
8663	
8664	An alternative model which is an extension of (1) is
8665	
8666	(3) $y_t = b_0 + b_1 x_{t1} + \ldots + b_k x_{tk} + u_t$
8667	
8668	where $x_{t1}x_{tk}$ are k regression variables (covariates) and b_1b_k are the associated
8669	coefficients. A simple example is polynomial regression, where $x_{tj}=t^{j}$ for $j=1,,k$.

8670	However, a polynomial trend, when used to represent a non-linear trend in a climatic
8671	dataset, often has the disadvantage that it behaves unstably at the endpoints, so alternative
8672	representations such as cubic splines are usually preferred. These can also be represented
8673	in the form of (3) with suitable $x_{t1}x_{tk}$. As with (1), the u_t terms can be taken as
8674	uncorrelated with mean 0 and common variance, in which case OLS regression is again
8675	appropriate, but it is also common to consider the u_t as autocorrelated.

8677 There are, by now, several algorithms available that fit these models in a semi-automatic 8678 fashion. The book by Davis and Brockwell (2002) includes a CD containing a time series 8679 program, ITSM, that among many other features, will fit a model of the form (1) or (3) in 8680 which the u_t terms follow an ARMA model as in (2). The orders p and q may be specified 8681 by the user or selected automatically via AICC. Alternatively, the statistical language R 8682 (R Development Core Team, 2007) contains a function "arima" which allows for fitting 8683 these models by exact maximum likelihood. The inputs to the arima function include the 8684 time series, the covariates, and the orders p and q. The program calculates maximum 8685 likelihood/GLS estimates of the ARMA and regression parameters, together with their 8686 standard errors, and various other statistics including AIC. Although R does not contain 8687 an automated model-selection procedure, it is straightforward to write a short subroutine 8688 that fits the time series model for various values of p and q (for example, all values of p 8689 and q between 0 and 10) and then identifies the model with minimum AIC. This method 8690 has been routinely used for several of the following analyses.

8692	However, it is not always necessary to search through a large set of ARMA models. In
8693	very many cases, the AR(1) model in which p=1, q=0, captures almost all of the
8694	autocorrelation, in which case this would be the preferred approach.
8695	
8696	In other cases, it may be found that there is cyclic behavior in the data corresponding to
8697	large-scale circulation indexes such as the Southern Oscillation Index (SOI – often taken
8698	as an indicator of El Niño) or the Atlantic Multidecadal Oscillation (AMO) or the Pacific
8699	Decadal Oscillation (PDO). In such cases, an alternative to searching for a high-order
8700	ARMA model may be to include SOI, AMO or PDO directly as one of the covariates in
8701	(2).
8702	
8703	Two other practical features should be noted before we discuss specific examples. First,
8704	the methodology we have discussed assumes the observations are normally distributed
8705	with constant variances (homoscedastic). Sometimes it is necessary to make some
8706	transformation to improve the fit of these assumptions. Common transformations include
8707	taking logarithms or square roots. With data in the form of counts (such as hurricanes) a
8708	square root transformation is often made, because count data are frequently represented
8709	by a Poisson distribution, and for that distribution, a square root transformation is a so-
8710	called variance-stabilizing transformation, making the data approximately homoscedastic.
8711	
8712	The other practical feature that occurs quite frequently is that the same linear trend may
8713	not be apparent through all parts of the data. In that case, it is tempting to select the start
8714	and finish points of the time series and recalculate the trend just for that portion of the

8715	series. There is a danger in doing this, because in formally testing for the presence of a
8716	trend, the calculation of significance levels typically does not allow for the selection of a
8717	start and finish point. Thus, the procedure may end up selecting a spurious trend. On the
8718	other hand, it is sometimes possible to correct for this effect, for example using a
8719	Bonferroni correction procedure. An example of this is given in our analysis of the
8720	heatwave index dataset below.
8721	
8722	Example 1: Cold Index Data (Section 2.2.1)
8723	The data consist of the "cold index", 1895-2005. A density plot of the data shows that the
8724	original data are highly right-skewed, but a cube-root transformation leads to a much
8725	more symmetric distribution (Figure A.1).
8726	
8727	We therefore proceed to look for trends in the cube root data.
8728	
8729	A simple OLS linear regression yields a trend of00125 per year, standard error .00068,
8730	for which the 2-sided p-value is .067. Recomputing using the minimum-AIC ARMA
8731	model yields the optimal values p=q=3, trend00118, standard error .00064, p-value
8732	.066. In this case, fitting an ARMA model makes very little difference to the result,

- 8733 compared with OLS. By the usual criterion of a .05 significance level, this is not a
- statistically significant result, but it is close enough that we are justified in concluding
- there is still some evidence of a downward linear trend. Figure A.2 illustrates the fitted
- 8736 linear trend on the cube root data.
- 8737

8738	Example 2: Heat Wave Index Data (Section 2.2.1 and Fig. 2.3(a))
8739	This example is more complicated to analyze because of the presence of several outlying
8740	values in the 1930s which frustrate any attempt to fit a linear trend to the whole series.
8741	However, a density plot of the raw data show that they are very right-skewed, whereas
8742	taking natural logarithms makes the data look much more normal (Figure A.3).
8743	Therefore, for the rest of this analysis we work with the natural logarithms of the heat
8744	wave index.
8745	
8746	In this case there is no obvious evidence of a linear trend, either upwards or downwards.
8747	However, nonlinear trend fits suggest an oscillating pattern up to about 1960, followed by
8748	a steadier upward drift in the last four decades. For example, the solid curve in Figure
8749	A.4, which is based on a cubic spline fit with 8 degrees of freedom, fitted by ordinary
8750	linear regression, is of this form.
8751	
8752	Motivated by this, a linear trend has been fitted by time series regression to the data from
8753	1960-2005 (dashed straight line, Figure A.4). In this case, searching for the best ARMA
8754	model by the AIC criterion led to the ARMA(1,1) model being selected. Under this
8755	model, the fitted linear trend has a slope of 0.031 per year and a standard error of .0035.
8756	This is very highly statistically significant – assuming normally distributed errors, the
8757	probability that such a result could have been reached by chance, if there were no trend,
8758	is of the order 10^{-18} .
8759	

8760	We should comment a little about the justification for choosing the endpoints of the linear
8761	trend (in this case, 1960 and 2005) in order to give the best fit to a straight line. The
8762	potential objection to this is that it creates a bias associated with multiple testing.
8763	Suppose, as an artificial example, we were to conduct 100 hypothesis tests based on some
8764	sample of data, with significance level .05. This means that if there were in fact no trend
8765	present at all, each of the tests would have a .05 probability of incorrectly concluding that
8766	there was a trend. In 100 such tests, we would typically expect about 5 of the tests to lead
8767	to the conclusion that there was a trend.
8768	
8769	A standard way to deal with this issue is the Bonferroni correction. Suppose we still
8770	conducted 100 tests, but adjusted the significance level of each test to .05/100=.0005.
8771	Then even if no trend were present, the probability that at least one of the tests led to
8772	rejecting the null hypothesis would be no more than 100 times .0005, or .05. In other
8773	words, with the Bonferroni correction, .05 is still an upper bound on the overall
8774	probability that one of the tests falsely rejects the null hypothesis.
8775	
8776	In the case under discussion, if we allow for all possible combinations of start and finish
8777	dates, given a 111-year series, that makes for 111x110/2=6105 tests. To apply the
8778	Bonferroni correction in this case, we should therefore adjust the significance level of the
8779	individual tests to $.05/6105 = .0000082$. However, this is still very much larger than 10^{-18}
8780	The conclusion is that the statistically significant result cannot be explained away as
8781	merely the result of selecting the endpoints of the trend.
8782	

This application of the Bonferroni correction is somewhat unusual – it is rare for a trend to be so highly significant that selection effects can be explained away completely, as has been shown here. Usually, we have to make a somewhat more subjective judgment about what are suitable starting and finishing points of the analysis.

8787

8788 Example 3: 1-day Heavy Precipitation Frequencies (Section 2.1.2.2)

8789 In this example we considered the time series of 1-day heavy precipitation frequencies

8790 for a 20-year return value. In this case, the density plot for the raw data is not as badly

skewed as in the earlier examples (Figure A.5, left plot), but is still improved by taking

square roots (Figure A.5, right plot). Therefore, we take square roots in the subsequent

analysis.

8794

8795 Looking for linear trends in the whole series from 1895-2005, the overall trend is positive

8796 but not statistically significant (Figure A.6). Based on simple linear regression, the

estimated slope is .00023 with a standard error of .00012, which just fails to be

significant at the 5% level. However, time series analysis identifies an ARMA (5, 3)

8799 model, when the estimated slope is still .00023, the standard error rises to .00014, which

8800 is again not statistically significant.

- 8801
- 8802 However, a similar exploratory analysis to that in Example 2 suggested that a better
- 8803 linear trend could be obtained starting around 1935. To be specific, we have considered

the data from 1934-2005. Over this period, time series analysis identifies an ARMA(1,2)

model, for which the estimated slope is .00067, standard error .00007, under which a

8806	formal test rejects the null hypothesis of no slope with a significance level of the order of
8807	10^{-20} under normal theory assumptions. As with Example 2, an argument based on the
8808	Bonferroni correction shows that this is a clearly significant result even allowing for the
8809	subjective selection of start and finish points of the trend.
8810	
8811	Therefore, our conclusion in this case is that there is an overall positive but not
8812	statistically significant trend over the whole series, but the trend post-1934 is much
8813	steeper and clearly significant.
8814	
8815	Example 4: 90-day Heavy Precipitation Frequencies (Section 2.1.2.3 and Fig. 2.9)
8816	This is a similar example based on the time series of 90-day heavy precipitation
8817	frequencies for a 20-year return value. Once again, density plots suggest a square root
8818	transformation (the plots look rather similar to Figure A.5 and are not shown here).
8819	
8820	After taking square roots, simple linear regression leads to an estimated slope of .00044,
8821	standard error .00019, based on the whole data set. Fitting ARMA models with linear
8822	trend leads us to identify the ARMA(3,1) as the best model under AIC: in that case the
8823	estimated slope becomes .00046 and the standard error actually goes down, to .00009.
8824	Therefore, we conclude that the linear trend is highly significant in this case (Figure A.7).
8825 8826	Example 5: Tropical cyclones in the North Atlantic (Section 2.1.3.1)
8827	This analysis is based on historical reconstructions of tropical cyclone counts described in
8828	the recent paper of Vecchi and Knutson (2007). We consider two slightly different
8829	reconstructions of the data, the "one-encounter" reconstruction in which only one

8830	intersection of a ship and storm is required for a storm to be counted as seen, and the
8831	"two-encounter" reconstruction that requires two intersections before a storm is counted.
8832	We focus particularly on the contrast between trends over the 1878-2005 and 1900-2005
8833	time periods, since before the start of the present analysis, Vecchi and Knutson had
8834	identified these two periods as of particular interest.
8835	
8836	For 1878-2005, using the one-encounter dataset, we find by ordinary least squares a
8837	linear trend of .017 (storms per year), standard error .009, which is not statistically
8838	significant. Selecting a time series model by AIC, we identify an ARMA(9,2) model as
8839	best (an unusually large order of a time series model in this kind of analysis), which leads
8840	to a linear trend estimate of .022, standard error .022, which is clearly not significant.
8841	
8842	When the same analysis is repeated from 1900-2005, we find by linear regression a slope
8843	of .047, standard error .012, which is significant. Time series analysis now identifies the
8844	ARMA(5,3) model as optimal, with a slope of .048, standard error .015, very clearly
8845	significant. Thus, the evidence is that there is a statistically significant trend over 1900-
8846	2005, though not over 1878-2005.
8847	
8848	A comment here is that if the density of the data is plotted as in several earlier examples,

this suggests a square root transformation to remove skewness. Of course the numerical

- values of the slopes are quite different if a linear regression is fitted to square root
- 8851 cyclones counts instead of the raw values, but qualitatively, the results are quite similar to

8852	those just cited – significant for 1900-2005, not significant for 1878-2005, after fitting a
8853	time series model. We omit the details of this.
8854	
8855	The second part of the analysis uses the "two-encounter" data set. In this case, fitting an
8856	ordinary least-squares linear trend to the data 1878-2005 yields an estimated slope .014
8857	storms per year, standard error .009, not significant. The time series model (again
8858	ARMA(9,2)) leads to estimated slope .018, standard error .021, not significant.
8859	
8860	When repeated for 1900-2005, ordinary least-squares regression leads to a slope of .042,
8861	standard error .012. The same analysis based on a time series model (ARMA(9,2)) leads
8862	to a slope of .045 and a standard error of .021. Although the standard error is much bigger
8863	under the time series model, this is still significant with a p-value of about .03.
8864	
8865	Example 6: U.S. Landfalling Hurricanes (Section 2.1.3.1)
8866	The final example is a time series of U.S. landfalling hurricanes for 1851-2006 taken
8867	from the website http://www.aoml.noaa.gov/hrd/hurdat/ushurrlist18512005-gt.txt. The
8868	data consist of annual counts and are all between 0 and 7. In such cases a square root
8869	
	transformation is often performed because this is a variance stabilizing transformation for
8870	transformation is often performed because this is a variance stabilizing transformation for the Poisson distribution. Therefore, square roots have been taken here.
8870 8871	transformation is often performed because this is a variance stabilizing transformation for the Poisson distribution. Therefore, square roots have been taken here.
8870 8871 8872	 transformation is often performed because this is a variance stabilizing transformation for the Poisson distribution. Therefore, square roots have been taken here. A linear trend was fitted to the full series and also for the following subseries: 1861-2006,
8870887188728873	 transformation is often performed because this is a variance stabilizing transformation for the Poisson distribution. Therefore, square roots have been taken here. A linear trend was fitted to the full series and also for the following subseries: 1861-2006, 1871-2006 and so on up to 1921-2006. As in preceding examples, the model fitted was
8870 8871 8872 8873 8874	 transformation is often performed because this is a variance stabilizing transformation for the Poisson distribution. Therefore, square roots have been taken here. A linear trend was fitted to the full series and also for the following subseries: 1861-2006, 1871-2006 and so on up to 1921-2006. As in preceding examples, the model fitted was ARMA (p, q) with linear trend, with p and q identified by AIC.

8875	For 1871-2006, the optimal model was AR(4), for which the slope was00229, standard
8876	error .00089, significant at p=.01.
8877	
8878	For 1881-2006, the optimal model was AR(4), for which the slope was00212, standard
8879	error .00100, significant at p=.03.
8880	
8881	For all other cases, the estimated trend was negative but not statistically significant.
8882	
8883	Appendix A References
8884	
8885	Brockwell , P.J. and Davis, R.A. (2002). Introduction to Time Series and Forecasting
8886	(Second edition). Springer. New York.
8887	
8888	R Development Core Team (2007), R: A language and environment for statistical
8889	computing. R Foundation for Statistical Computing, Vienna, Austria,
8890	http://www.R-project.org.
8891	
8892	Vecchi, G.S. and Knutson, T.R. (2007), On estimates of historical North Atlantic tropical
8893	cyclone activity. Manuscript, submitted for publication.
8894	
8895	Wigley, T.M.L. (2006), Statistical Issues Regarding Trends. Appendix A (pp. 129-139)
8896	of Temperature Trends in the Lower Atmosphere: Steps for Understanding and
8897	Reconciling Differences. Thomas R. Karl, Susan J. Hassol, Christopher D. Miller,
8898	and William L. Murray, editors, 2006. A Report by the Climate Change Science
8899	Program and the Subcommittee on Global Change Research, Washington, DC.
8900	

8903 Figure A.1 Density plot for the cold index data (left), and for the cube roots of the same

data (right).

8907

8908 **Figure A.2** Cube root of cold wave index with fitted linear trend.

8910 8911

8912 Figure A.3 Density plot for the heat index data (left), and for the natural logarithms of

the same data (right).

8916 **Figure A.4** Trends fitted to natural logarithms of heat index. Solid curve: non-linear

spline with 8 degrees of freedom fitted to the whole series. Dashed line: linear trend fitted

8918 to data from 1960-2005.

8921 Figure A.5 Density plot for 1-day heavy precipitation frequencies for a 20-year return

value (left), and for square roots of the same data (right).

8925 Figure A.6 Trend analysis for the square roots of 1-day heavy precipitation frequencies

8926 for a 20-year return value, showing estimated linear trends over 1895-2005 and 1934-

8927 2005.

8930 **Figure A.7** Trend analysis for the square roots of 90-day heavy precipitation

8931 frequencies.