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Abstract—The calculation of two-hop connectivity be-
tween two terminals for randomly deployed wireless
networks requires the joint probability distribution of
the distances between these terminals and the terminal
that is acting as a relay.  In general the distances are not
independent since a common terminal is involved.  The
marginal distributions for link distances are known for
various random deployment models.  However, the joint
distribution of two or more link distances is not known.
In this paper, the derivation of the joint distribution is
given in general form and in a new form suitable for
computation for a network of terminals randomly
deployed in a square area.

I. INTRODUCTION

The connectivity between pairs of terminals in a wireless
network is a function of the distances between the terminals.
The distribution of the distance  between one pair of.
terminals in a randomly deployed wireless network has been
derived for various deployment models [1-3].  For example,
for a uniform distribution of terminals in a  squareH ‚H
area, the cumulative probability distribution function (CDF)
for the distance is given by [1]
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For calculation of single-hop connectivity, the distribution in
(1) is sufficient, assuming that the terminals are connected
when  is less than a certain value (transmission radius).  For.
example, since F , if the transmission.a b!Þ"H œ !Þ!#))
radius equals  then a particular terminal pair is soV œ !Þ"H
positioned as to be connected with probability ,: œ !Þ!#))
and the expected number of neighbors for a terminal in an
R œ R  " :-terminal network equals ./ a b

For calculation of two-hop connectivity, the distribution
in (1) is not sufficient because the two link distances in the
connection are not independent—the second-order (joint)
distribution for link distances is needed.  In what follows, a
derivation of this joint distribution is given and its com-
putation and application are discussed.

II. G  F  J  DENERAL ORM OF OINT ISTRIBUTION

For a network of  wireless terminals randomlyR
deployed in some area, let the position of a reference
terminal be given by .  The joint CDF for the distancesa bBß C
between the reference terminal and the other R  "
terminals can be expressed as follows:
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where F  denotes the conditional CDF of a single.- 8a b! l Bß C
terminal's distance from the reference terminal, given the
position of the reference terminal.

III. J  D  S  AOINT ISTRIBUTION FOR QUARE REA

Consider a network of  wireless terminals randomlyR
deployed in a square area with independent - and -H ‚H B C
position coordinates between  and .  MakingHÎ# HÎ#
maximum use of symmetry, the joint CDF for the distances
between the reference terminal and the other R  "
terminals for this case can be expressed as follows:
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For the two-hop connectivity calculation, the reference term-
inal is the relay and the other  terminals need to beR  "
considered in pairs.  Regardless of how many other terminals
are involved in the calculation, the conditional distribution is
required.  Based on (3), we assume that ! Ÿ C Ÿ B Ÿ HÎ#
and use the diagram in Figure 1 to formulate the conditional
CDF as follows:
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Figure 1.  Key angles used in the derivation.
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Note that the sum of the eight angles in (5) equals  and#1
that, for the assumed reference terminal position,

HÎ#  B Ÿ HÎ#  C Ÿ HÎ#  C Ÿ HÎ#  B (6)

Therefore, for , the integrand in all of the! Ÿ HÎ#  B
integrals in (4) is  and the conditional probability equals!#

1! !# #ÎH .  As  increases through the ordered values of
distance in (6), the probability increases but is less than
1!# #ÎH  because the integrands of the integrals in (4) in
order change from  to an expression of the form cos ,! " )# # #Î
according to the rule given by
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The quantity  for each integral in (4) is the shortest distance"
to the edge of the square in the applicable angular region.
When , the total area of!  HÎ#  B  HÎ#  CÉa b a b# #

the square is encompassed by the circle centered at .a bBß C

IV. DISCUSSION

The form of the joint CDF given here for the square area is
designed for ease of computation.  It is decomposed into four
separate integrals involving angles less than /2, each of1
which can be simplified further, as follows:
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For calculation of the joint probability density function

(PDF), it is straightforward to show that it is the average
over  of the product of the sums of the derivatives ofa bBß C
the four integrals, where
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This derivation is part of an ongoing effort to develop
analytical tools for the assessment of wireless ad hoc net-
works, with an emphasis on heuristics that simplify compu-
tation and analysis.  Numerical evaluations of the
expressions disclosed in this paper will be used to quantify
the error that is involved in ignoring the dependence among
the distances of links having a common terminal.  Graphical
comparison of the joint CDF with the case of independent
distances is shown in Figure 2 for two distances with a
common endpoint.
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Fig. 2  Comparison of joint CDF with product of CDFs.


