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Abstract{Object tracking in video sequences is a

very important topic and has various applications in

video compression, surveillance, robot technology, etc.

In many applications, the focus is on tracking moving

objects. In this paper, we propose a method for track-

ing moving objects in video sequences with the pres-

ence of the camera motion. The projective/bilinear

model is used to estimate the camera motion and the

wavelet decomposition is applied to perform multi-

resolution analysis and edge extraction. Experimental

results are given to demonstrate the performance of

the proposed algorithm.

I. INTRODUCTION

As object tracking has a lot of applications in areas

such as video compression, surveillance, robot technol-

ogy and so on, many algorithms have been proposed to

solve the problem [1][2][3][4]. However, a lot of existing

methods �rst perform computationally expensive spatial

segmentation based on gray-scale values[1][3]. This is not

necessary in a lot of applications, where only moving ob-

jects need to be tracked. The spatial segmentation also

create many problems when the algorithm is applied on

outdoor sequences, whose background, unlike most test

indoor sequences, are not homogeneous. Another prob-

lem for most existing algorithms is that they do not con-

sider the camera motion that is very common in many

applications [2][4]. In this paper, we propose a method

for tracking moving objects in video sequences with the

presence of camera motion. The projective/bilinear model

is used to deal with the camera motion, and the wavelet

transform is applied to perform multi-resolution analysis

and edge extraction.

The rest of this paper is organized as follows: In

Section II, we review some relevant work and establish

the background required for further discussion. Then,

we present the algorithm in Section III. Experimental

results are given in Section IV, where we demonstrate the

performance of the proposed algorithm. In Section V,
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we present our conclusions, comments and some possible

future study directions.

II. BACKGROUND

Before introducing our algorithm, we want to give a

short review of relevant work to establish the necessary

background.

(A) Camera Motion Estimation

Between consecutive frames of a video sequence, there

are usually both camera motions and object motions.

Before tracking moving objects, we need to remove the

e�ects of camera motion, such as translation, rotation,

zooming, panning, tilting, etc.

There are several existing models for camera motion.

We choose the projective/bilinear model since it is able

to characterize almost all possible camera motions [5][6].

The projective model is described by eight parameters

(mi; i = 1; 2; : : : ; 8) through equation

2
4

u

v

w

3
5 =

2
4

m1 m2 m3

m4 m5 m6

m7 m8 1

3
5
2
4

x

y

1

3
5

where (x; y) is the original coordinates. The transformed

coordinates (x0; y0) can be obtained by equations

x
0 =

m1x+m2y +m3

m7x+m8y + 1
=

u

w
;

y
0 =

m4x+m5y +m6

m7x+m8y + 1
=

v

w
:

The projective model can be approximated by the bilinear

model

x
0 = q1xy + q2x+ q3y + q4;

y
0 = q5xy + q6x+ q7y + q8;

which also uses eight parameters (qi; i = 1; 2; : : : ; 8) to

describe the camera motion.

The assumption for 2-D optical ow is

ufEx + vfEy +Et � 0;
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where uf and vf are the velocities along x and y directions

while Ex, Ey and Et are the partial derivatives of the

gray-scale values with respect to x, y, and t. If we de�ne

um = x
0
�x and vm = y

0
� y, by using the bilinear model

and minimizing

� =
X
x

(umEx + vmEy +Et)
2
;

we can get the parameters for the bilinear model. If we

know four pairs of coordinates and their corresponding

transformed coordinates, we can approximate the param-

eters for the projective model. The above procedure can

be performed on multi-scale pyramid.

(B) Wavelet Transform

The study of the wavelet transform has thrived in the

past two decades. The wavelet transform is now widely

used in signal analysis, compression, etc., since it can

achieve both spatial and frequency localization. A typical

2-channel wavelet decomposition and reconstruction

structure is given in Fig. 1 below [7].

(a) analysis part

(b) synthesis part

Fig. 1. 2-channel wavelet decomposition and reconstruction

structure

Digital images can be considered as 2-D signals and we

can apply the above 1-D wavelet analysis to the horizon-

tal and vertical directions separately [8]. By cascading the

structures, we can create a wavelet pyramid that is suit-

able for multi-resolution analysis. Fig. 2 is an example of

a wavelet pyramid of image \Lenna".

III. ALGORITHM

In this section, we introduce our algorithm for track-

ing moving objects in video sequences. A video sequence

contains a series of frames. Each frame can be considered

as an image. If an algorithm can track moving objects

between two digital images, it should be able to track

moving objects in a video sequence.

Fig. 2. the wavelet pyramid for \Lenna"

The algorithm starts with two consecutive frames. Each

frame is decomposed to create a wavelet pyramid using the

wavelet transform. The number of levels and the �lters

are chosen based on the size of the frame and the con-

tent of the video. We choose a wavelet pyramid so that

it is possible to incorporate the algorithm into a wavelet

compression scheme. First, the camera motion estimation

algorithm described in section II is applied to the two DC

bands. Second, two edge images are created by adding

the magnitudes of the AC bands of the lowest resolution.

Then, the motion parameters obtained from the �rst step

are used to align the two edge images. It is obvious that

the di�erences at the location of moving objects will be

larger. Hence, by thresholding the di�erence, we can seg-

ment the lowest resolution images into possible object ar-

eas and possible background areas. Furthermore, we ap-

ply the motion estimation algorithm to only the possible

background areas and achieve a better camera motion es-

timation. After we �nish processing the level of the lowest

resolution, we repeat the above procedure on higher res-

olution levels. The DC bands of a higher resolution level

can be created from the lower resolution level. And we

use the corresponding motion parameters from the lower

resolution level as an initial value for a higher resolution

value and only consider the parts of images that have been

classi�ed as background locations in the lower resolution

levels. Basically, the algorithm will select more areas as

object areas as the resolution gets higher, until it reaches

the highest resolution level.

After we complete the procedure above, we will have

di�erent sizes of blocks classi�ed as objects. Some of the

blocks are obtained because of moving objects, while oth-

ers are just the result of noise. Therefore, we need to
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group the blocks of the same object and eliminate the

noise e�ect. We start with the edge image at the highest

resolution level and set all pixels classi�ed as background

to zero. Then we add the values for each row to get a col-

umn vector. A zero element in the column vector means

that there are no object pixels in the corresponding row.

If the number of consecutive zeros is larger than a preset

threshold, we call it a \gap". The group of elements be-

tween two \gaps" is called a \mountain" and the element

with the largest value is called a \peak". If the width

of a \mountain" is larger than a preset threshold and its

\peak" is high enough, we conclude that there is at least

one object in the \mountain". If we regard an image as

a p � q matrix, after the above procedure, all the possi-

ble objects are in m smaller matrices and each of them

has q columns. If we apply the same idea to these ma-

trices and add the values for each row instead of column,

the total size of the matrices that contain objects will be-

come smaller. The same algorithm is applied iteratively

until the total size of the matrices does not change any

more. Each �nal matrix will be considered as an object

location. In summary, by adding along columns and rows

repeatedly, we are able to isolate every object.

To explain the \gap"/\mountain" method described

above more clearly, we will give a simple example. A

100 by 100 binary image is shown in Fig. 3.(a). The gray-

scale value for the background is zero and there are two

object rectangular of gray-scale one in the image. The

sizes of the objects are 20 by 20 and 15 by 30. By adding

the value for each row, we get a column vector of 100 el-

ements. We plot it in Fig. 3.(b). If we set the thresholds

for \gap" width and \mountain" width to be 10, we can

see that there are three \gaps" and two \mountains" and

the \mountains" are from row 16 to 35 and from row 61

to 75. Hence, instead of knowing the possible objects are

in the initial 100 by 100 matrix, now we know that they

are in two smaller matrices. The �rst one is 20 by 100

and the second is 15 by 100. Then, we apply the same

idea to these two smaller matrices one by one. However,

instead of adding the values for each row, we add along

columns and detect the \gaps" and \mountains" in the

corresponding row vectors. The algorithm is applied iter-

atively until the matrices do not change anymore. In this

example, we only need three steps. The left, right, top,

bottom boundary location for the �rst object are 21, 40,

16 and 35 respectively and those for the second object are

56, 85, 61 and 75.

The object areas obtained from the above step usually

contain the locations of the moving object in the current

frame and the previous frame. To get more accurate in-

formation about the location, the described comparison

should be performed between the current frame and the

next frame as well. The mutual areas detected in the

current frame are then considered the object locations.

(a) the example image

(b) the plot of the column vector

Fig. 3. an example

When the object locations are determined in each

frame, we need to track the objects between the frames.

Most temporal tracking methods can be used at this point

[1][4]. In our experiment, we use a simple yet e�ective

method based on the assumption that the size of the ob-

jects do not change much between adjacent frames. If we

de�ne the centroid of an object (cx; cy) as

cx = (
X

(i;j)2O

pi;j � i)=(
X

(i;j)2O

pi;j);

cy = (
X

(i;j)2O

pi;j � j)=(
X

(i;j)2O

pi;j);

and the dispersion of an object f as

f = (
X

(i;j)2O

q
(i� cx)2 + (j � cy)2 � pi;j)=(

X
(i;j)2O

pi;j);

where O is the set of coordinates of an object area and

pi;j is the value of the edge image at position (i; j), then
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we can track the objects by comparing the dispersion f .

Besides simplicity, another advantage of this tracking al-

gorithm is that it can track fast movement (e.g., swapping

places) while some existing methods [1] have di�culties.

To illustrate the whole algorithm, a block diagram is

given in Fig. 4.

Fig. 4. algorithm block diagram

IV. EXPERIMENTAL RESULTS

In this section, we will show the experimental results of

our algorithm.

The algorithm is �rst tested on the sequence \toy vehi-

cle". The frame size is 512 by 512. Two adjacent frames

(frame 4 and frame 5) are shown in Fig. 5(a) and Fig.

5(b). By applying the algorithm described in section III,

two object areas are detected in each frame. We choose

the number of wavelet decomposition levels to be four

and use Daubechies' 5/7 biorthogonal �lters. By adding

special e�ects, we highlight the object areas in Fig. 6(a)

and Fig. 6(b). The centroids and dispersions are listed

in Table. 1. The objects can be tracked based on the

dispersions and the �nal results are given in Fig. 7.

Table. 1. Centroids and dispersions

Frame 4

Boundary Centroid

Left Right Top Bottom cx cy Dispersion

33 116 285 356 72.8 321.0 27.6

225 404 305 352 328.5 328.6 40.8

Frame 5

Boundary Centroid

Left Right Top Bottom cx cy Dispersion

1 132 285 386 75.8 329.8 31.1

193 338 289 356 267.5 324.7 39.3

Because the sequence of \toy vehicle" does not have

much camera motion, the algorithm is also tested on the

sequence \tank". The frame size is 240 by 320. Three con-

secutive frames are shown in Fig. 8. with obvious camera

motion between frames. We choose the number of de-

composition levels to be three and use Daubechies' 5/7

biorthogonal �lters. The tracking result of the middle

frame is given in Fig. 9.

V. CONCLUSION, COMMENT AND FUTURE STUDY

In this paper, we present an algorithm to track moving

objects in a video sequence. Our experimental results

show that the algorithm can track the moving objects

with and without the presence of camera motion.

Although we use a simple algorithm to do the tempo-

ral tracking, other methods can also be applied after the

object areas are determined. One can even develop an al-

gorithm to weigh in di�erent tracking methods to achieve

more accurate results.

Since the projective model for camera motion is only

suitable for: 1) images taken from the same location of

an arbitrary 3-D scene with the camera free to pan, tilt,

rotate and zoom; or 2) images of a at scene taken from

arbitrary locations [5]; the proposed algorithm, like a lot

of existing algorithms, cannot solve the problem of occlu-

sion. In future study, we will try to incorporate occlusion-

killer algorithms in our method.
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(a) frame 4

(b) frame 5

Fig. 5. two frames from the \toy vehicle" sequence
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(a) frame 4, object 1: centroid (cx; cy) = (72:8; 321:0), dispersion

f = 27:6;

(b) frame 4, object 2: centroid (cx; cy) = (328:5; 328:6), dispersion

f = 40:8;

(c) frame 5, object 1: centroid (cx; cy) = (75:8; 329:8), dispersion

f = 31:1;

(d) frame 5, object 2: centroid (cx; cy) = (267:5; 324:7), dispersion

f = 39:3.

Fig. 7. tracking results of the two \toy vehicle" frames

(a) frame 1

(b) frame 2

(c) frame 3

Fig. 8. three consecutive frames from the \tank" sequence

Fig. 9. Tracking result of the middle frame in �g. 8.

centroid (cx; cy) = (140:9; 114:9), dispersion f = 20:5;
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