Cosmic Rays in Utah: From HiRes to the Telescope Array

Kai Martens High Energy Astrophysics Institute University of Utah

Overview

- Ultra High Energy Cosmic Rays
- Extensive Air Showers
- High Resolution Fly's Eye:
 - Spectra, Composition, & (non-) Correlations
 - Expectations for Neutrino Fluxes
 - Flux Limits from HiRes
- Telescope Array:
 - Full Operation since March 20, 2008
- Conclusions

Flux Challenge: $10^{19} \text{eV} \rightarrow 1/\text{km}^2/\text{century}...$

Extensive Air Showers:

primary <u>interaction</u>: - top of atmosphere

<u>evolution</u>: - "pancake" propagating @ speed of light

<u>description</u>: - lateral profile - longitudinal profile

Air Shower Dimensions

Cosmic Ray induced air showers: - start at ~ 12 km above ground

- span up to 5 km across

- hundreds of billions of particles

Fluorescence Detector: <u>longitudinal</u> profile through atmosphere

Ground Array: <u>transversal</u> profile at ground level

photons, electrons (99%), muons (1%)

• Ground Array stations

June 16, 2008

The HiRes Experiment:

HiRes: The Collaboration:

S. BenZvi, J. Boyer, B. Connolly, C.B. Finley, B. Knapp, E.J. Mannel, A. O'Neill, M. Seman, S. Westerhoff Columbia University

J.F. Amman, M.D. Cooper, C.M. Hoffman, M.H. Holzscheiter, C.A. Painter, J.S. Sarracino, G. Sinnis, T.N. Thompson, D. Tupa Los Alamos National Laboratory

> J. Belz, M. Kirn University of Montana

J.A.J. Matthews, M. Roberts University of New Mexico

D.R. Bergman, G. Hughes, D. Ivanov, L. Perera, S.R. Schnetzer, L. Scott, S. Stratton, G.B. Thomson, A. Zech Rutgers University

> N. Manago, M. Sasaki University of Tokyo

R.U. Abbasi, T. Abu-Zayyad, G. Archbold, K. Belov, Z. Cao, W. Deng, W. Hanlon, P. Huentemeyer, C.C.H. Jui, E.C. Loh, K. Martens, J.N. Matthews, K. Reil, J. Smith, P. Sokolsky, R.W. Springer, B.T. Stokes, J.R. Thomas, S.B. Thomas, L. Wiencke University of Utah

> Z. Cao, B. Zhang, Y. Zhang, Y. Yang IHEP Bejing Kai Martens, University of Utah

June 16, 2008

HiRes Optics:

low resolution high speed

June 16, 2008

Kai Martens, University of Utah

UV filter !!!

(protecting PMTs)

Camera: 16 x 16 PMT each sees $1^{\circ} \times 1^{\circ}$ in sky

Fluorescence Light Curve: Energy!

Mono Reconstruction Challenge:

HiRes: Stereo!!!

HR1: $6/1997 \leftarrow \underline{MONO}$ also: close by $\rightarrow \underline{MONO}$: HR2: $12/1999 \leftarrow \text{low E}$

Light Propagation: the <u>Atmosphere</u>

The Atmosphere:

Affecting propagation: <u>two components:</u>

molecular component:

Aerosol Component: Variable...

Γ = e^{-VAOD/sinθ}

-VAOD

T = e

@ 355 nm:

HR1 Mono \rightarrow **Average VAOD**:

Average VAOD: 0.04 ± 0.02 (RMS)

Systematics also estimated: ± 0.02

reconstruct data: VAOD = 0.02 VAOD = 0.06

Relative to "clearest" also okay...

Message One:

"stereo paper": before end 2008...

HiRes: First Observation of GZK Cutoff

small (~10%) overlap between
HR1/HR2 exposures/events:
→ remove from HR1

results: one BP to two BP: reduction in χ^2 : 27.9 (4.9 σ) observe 13 events, expect 43.2: P=7.2×10⁻⁸ (\rightarrow 5.3 σ)

extrapolate the integral spectrum (from first BP): drop to ½:

 $E_{\frac{1}{2}} @ 10^{19.73\pm0.07} \text{ eV}$ Berezinsky *et al*: $\rightarrow 10^{19.72} \text{eV}$

June 16, 2008

What We Don't Know:

What are they?

- GZK cutoff → protons?!
- composition measurement:

statistical but supportive...
(Auger...?)

Where do they come from?

 Auger in Science: 27 events above 6x10¹⁹eV: out to <u>75 Mpc</u>, 3.1 degree circles
 → correlated with "AGN" ← marker for mass?

- HiRes stereo: 13 events above 6x10¹⁹eV: isotropic...

~ $10^{20} \text{eV} \rightarrow$ intergalactic B-fields little influence on p-trajectory

Acceleration??!

GZK: top-down models no longer "en vogue"

everybody's prejudice: AGN → Auger:

Kai Martens, University of Utah

gauss)

log (Magnetic field,

Northern Hemisphere: HiRes Stereo

21

Northern Hemisphere: BL Lac History

Magnitude	Redshift	6cm Radio Flux	# Obj.	CR Sample	# CRs	Bin Size	# Pairs	Prob.
Catalog: Veron (9 th Ed.) BL Lacs			22	AGA SA >48 EeV Yakutsk >24 EeV	65	2.5°	8	< 10 ⁻⁴
m < 18	z > 0.1 or unknown	S _{6cm} > 0.17 Jy	22	HiRes > 24 EeV	66	2.5°	0	1.00
Catalog: Veron (10 th Ed.) BL Lacs correlated with EGRET sources			14	AGA SA >48 EeV Yakutsk >24 EeV	65	2.9°	8	10 ⁻⁴
no cut	no cut	no cut	14	HiRes > 24 EeV	66	2.9°	1	.70
Catalog: Veron (10 th Ed.) BL Lacs			156	AGASA > 40 EeV	57	2.5°	12	.02
m < 18	no cut	no cut	100	HiRes > 40 EeV	27	2.5°	2	.78

Tinyakov & Tkachev, JETP 74 (2001) 445. Tinyakov and Tkachev, Astropart. Phys. 18 (2002) 165. Gorbunov et al., ApJ 577 (2002) L93.

unknown: trial factors ???

Northern Hemisphere \rightarrow BL Lac ???

Gorbunov et al., JETP Lett. 80 (2004) 14 → HiRes analysis:

	Magnitude	Redshift	6cm Radio Flux	# Obj.	CR Sample	# CRs	Bin Size	# Pairs	Prob.
	Catalog: Veron (10 th Ed.) BL Lacs			HiRes > 10 EeV		271	0.8 °	10	10 ⁻³
1	m < 18	no cut	no cut	100	Need to test with new data				

10 EeV optimal for BL: Vernon 10th catalog: BL + HP (high pol.)

Gorbunov uses only BL							
Confirm	ned BL Lacs	HiRes Events					
		< 1	0 EeV	> 10 EeV			
Mag.	Class	n _s	F	n _s	F		
m<10	"BL" (157)	22	6×10 ⁻³	8	2×10 ⁻⁴		
111~10	"HP" (47)	0	0.7	3	6×10 ⁻³		
m\10	"BL" (193)	0	0.7	0	0.4		
111210	"HP" (21)	0	0.7	0	0.8		

F: fraction of MC sets with larger correlation n_s: number of events from source Kai Martens, University of Utah 23

June 16, 2008

HiRes Composition: Heavy (Fe) to Light (H)

HR: Fixed Target Experiment @ 3×10¹⁸eV

June 16, 2008

Propagating Protons:

protons E>10¹⁹ eV

neutrinos

protons E<10¹⁹ eV

propagation:

Hubble expansion

CMB:

- $p+\gamma \rightarrow p+e^++e^-$
- $p+\gamma \rightarrow \Delta^+ \rightarrow N+\pi \leftarrow \nu_{\mu}, \nu_{e}, \gamma$

 (v_e)

source model: injection spectrum: \mathbf{t} source distribution: range: 0 < z < 4evolution: $\sim (1+z)^{m}$

Berezinsky: New Interpretation of Ankle

galactic/extragalactic transition: composition change vs. slope change

June 16, 2008

τ-Neutrino Detection:

energy losses

calorimeter

shower

target mass

June 16, 2008

V.

ANIS (by Gazizov & Kowalski, AMANDA)

All **Neutrino** Interaction Simulation

Incorporates:

- cross sections:
 - CC, NC, $v_e e^-$ (resonant)
- $\tau(\mu)$ energy loss (parameterization)
- decay tables
- TAUOLA for τ-decay

But: made for detectors inside a spherical earth... (i.e. underground) Kai Martens, University of Utah

June 16, 2008

Neutrinos: Zenith Angle θ > 90°

MC statistics:

 v_{τ} CR 11847 341516

MC input:

up

θ

- triggered events
- both detectors
- MC generated geometries

shower axis

Zenith is the discriminator!

 \rightarrow reconstruct geometry:

A Rough Estimate for an Isotropic v Flux:

- total lifetime (Hr1 + Hr2) \rightarrow 1y
- $\varepsilon_{\text{reconstruct}} \sim 1\%$
- flux E⁻¹ between 10¹⁸-10²¹eV

 \rightarrow 2.3 events need dN/dt ~10⁻¹⁷s⁻¹cm⁻²sr⁻¹

HiRes: Cosmogenic Neutrino Limits

June 16, 2008

34

AGASA &/vs. HiRes: Telescope Array

H. Kawai^a, S. Yoshida^a, H. Yoshii^b, K. Tanaka^c, F. Cohen^d, M. Fukushima^d, N. Hayashida^d, K. Hiyama^d, D. Ikeda^d, E. Kido^d, Y. Kondo^d, T. Nonaka^d, M. Ohnishi^d, H. Ohoka^d, S. Ozawa^d, H. Sagawa^d, N. Sakurai^d, T. Shibata^d, H. Shimodaira^d, M. Takeda^d, A. Taketa^d, M. Takita^d, H. Tokuno^d, R. Torii^d, S. Udo^d, Y. Yamakawa^d, H. Fujije, T. Matsudae, M. Tanakae, H. Yamaokae, K. Hibinof, T. Bennog, K. Dourag, M. Chikawag, T. Nakamurah, M. Teshima^j, K. Kadotaⁱ, Y. Uchihori^k, K. Hayashi^l, Y. Hayashi^l, S. Kawakami^l, T. Matsuyam^l, M. Minamino^l, S. Ogio¹, A. Ohshima¹, T. Okuda¹, N. Shimizu¹, H. Tanaka¹, D.R. Bergman^m, G. Hughes^m, S. Stratton^m, G.B. Thomson^m, A. Endoⁿ, N. Inoueⁿ, S. Kawanaⁿ, Y. Wadaⁿ, K. Kasahara^o, R. Azuma^p, T. Iguchi^p, F. Kakimoto^p, S. Machida^p, K. Misumi^p, Y. Murano^p, Y. Tameda^p, Y. Tsunesada^p, J. Chiba^q, K. Miyata^q, T. Abu-Zayyadr, J.W. Belzrr R. Cadyrr Z. Caor, P. Huentemeyerr, C.C.H. Juir, K. Martensr, J.N. Matthewsr, M. Mostofar, J.D. Smithr, P. Sokolskyr, R.W. Springerr, J.R. Thomasr, S.B. Thomasr, L.R. Wiencker, T. Doyles, M.J. Taylor^s, V.B. Wickwar^s, T.D. Wilkerson^s, K. Hashimoto^t, K. Honda^t, K. Ikuta^t, T. Ishii^t, T. Kanbe^t, and T. Tomidat aloorators ^aChiba University, 33 Ya oi to, r ge- u-C (ii), 26 ^bEhime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan ^cHiroshinma City University, 3-4-1 Ozuka-Higashi, Asa-Minami-ku, Hiroshima, 731-3194, Japan ^dICRR, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8582, Japan ^eInstitute of Particle and Nuclear Studies, KEK, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan ^fKanagawa University, 3-27-1 Rokkakubayashi, Kanagawa-ku, Yokohama, Kanagawa, 221-8686, Japan ⁹Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan hKochi University - J-1 At c n ^hKochi University -1 AK n-chi Chi Shi 30 H R J p h C Sirmany ^jMusashi Institute of Technology, 1-28-1 Tamazutsumi, Setagawa-ku, Tokyo, 158-8558, Japan ^kNational Institute of Radiological Sciences, 4-9-1 Anagawa Inage-ku, Chiba, 263-8555, Japan ¹Osaka City University, 3-3-138 Sugimoto-cho, Sumiyoshi-ku, Osaka, 558-8585, Japan ^mRutgers University, 136 Freilinghuysen Road, Piscataway, NJ 08854, USA ⁿSaitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan ^oShibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama, 337-8570, Japan PTokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan ^qTokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan University of Utah, 115 S 1400 E, Salt Lake City, UT 84112, USA ^sUtah State University, Logan, UT 84322, USAMartens, University of Utah 36 'Yamanashi University, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan

TA FD building on BRM:

Ground Array: Heli Deployment

June 16, 2008

Message Two: Since March 20, 2008

Stereo Event

3月学会資料より

CAM-ID

← 3 fluorescence detectors

10000

The TA-LINAC Idea:

Specs of TA-Linac
Particle : eEnergy : 10, 20, 30, 40 MeV (variable)
Pulse width : 1µsec
Peak current : 0.16mA (10⁹e-(=160pC)/pulse)
Frequency : 1Hz
Distance from FD : 100m

 $40 \text{MeV} \times 10^9 \text{ e}^ @100 \text{m} \rightarrow \sim 10^{16} \text{eV}$ $\Leftrightarrow 10^{20} \text{ eV} @10 \text{km}$

TA Linac Layout:

Main container (40-ft container)

Kai M(600,LJ20kW) of Utah

Power generator(~100kW)

Sub container (20-ft container)

Operating room · cooling water system

June 16, 2008

TA-Linac @ KEK: Being Commissioned

Upper side **KEK** injector doorway Concrete shield (thickness:50cm) Lower side **TA-LINAC** →Full-system beam test was started of Utah

Lead Blocks

In shield

What next (in Utah)?

Enter: TA Low Energy Extension (TALE)

(details of layout still under revision; µ-counters?)

TA:	E>10 ¹⁹ eV	$\rightarrow \varepsilon = 100\%$		
	E>10 ¹⁸ eV	→ hybrid		
HiRes (12,6km)	E>10 ^{18.3} eV	→ stereo		

TALE:

- 6km stereo pairs (two of them) → best @10¹⁸ eV
 - 72 deg elevation tower + infill (hybrid) → E>10^{16.5} eV

All elements overlap → cross calibration + control of systematics (in energy and geometry)

June 16, 2008

June 16, 2008

Fields of View:

mirror area: TA = HR + 20%

TA-3 TA-3 TALE-2 20· TALE-2 TALE-1 TALE-1 0 TA-2 TA-1 TA-2 TA-1 -20 CI CLF 10¹⁹ eV 10²⁰ eV -40 20 20 40 -40 -20 -ż0 Ó -400 60 Kai Martens, University of Utah 46

June 16, 2008

Tower Detector and Infill Array:

47

TALE Apertures:

Stereo: - measure (!) resolution

Overlap: - calibration

Scintillator: - e/m component

High energy aperture: TA+TALE $\approx 2 \times TA$ $\approx 3000 \text{ km}^2 \text{ster}$ $\approx \frac{1}{2} \text{ S. Auger}$ $\approx 3 \times \text{HiRes}$

TA/TALE: Events per Year

Conclusions:

• HiRes "found" GZK cutoff → find GZK neutrinos!?

Auger found "AGN" correlation → charged particle astronomy?!

surface vs. fluorescence

→ understanding particle physics

• spectrum & composition \rightarrow down to 2nd knee

Telescope Array is taking data \rightarrow ICRC 09 ?!?