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• Rotation curves

• CMB / LSS / Supernovae

• Evolution of LSS

• Gravitational Lensing 

Ωb = 0.047 ± 0.006

Ωb = 0.040 ± 0.005

WMAP
BBN

Non-Baryonic

Physics beyond SM



Ωcdm h2 = 0.111± 0.006

Cosmological Dark Matter

WMAP

6% Accuracy (Planck < 0.4%)

Other (in)direct observations (e.g. LSS / Lensing ):
(1) Stable  (or very long-lived)
(2) Neutral  -- BBN / No exotic isotopes
(3) Weakly interacting 
(4) “Cold” -- Non-relativistic (otherwise lack small scale 
structure)

“WIMPs”



Particle Dark Matter?

Connection with Particle Theory?
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Particle Dark Matter?

Ωcdm h2 = 0.111± 0.006

Thermal Relic Density 

ΩXh2 =
10−10 GeV −2

〈σv〉

New Physics at Weak Scale

〈σv〉 ∼ α2

M2
weak

∼ 10−9 GeV −2
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EW Breaking and Dark Matter

Electroweak breaking + discrete symmetry = *Stable* WIMPs

Example:  SUSY
- Explain Weak Scale
- Stabilize higgs (radiative corrections)
- Gauge Coupling Unification
- [theoretical aside] unify internal and space-time symmetries  

+ R-parity ( B and L conserved -- no proton decay)

= Lightest SUSY Particle (LSP) is:
(1) Stable
(2) Weak Scale / Weakly interacting
(3) Massive ( 100 GeV )
(3) Correct relic density



LHC and Dark Matter

• Will Probe Higgs and EWSB

• New physics at TeV appears as missing energy

• Degeneracies make probing new physics 
challenging -- LHC inverse problem
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LHC

Work in progress w/ K. Freese, G. Kane, (Michigan) and L.T. Wang (Princeton)

 X mX



LHC and the Dark Matter Inverse Problem

LHC

Thermal Relic Density 

?

ΩXh2 =
10−10 GeV −2

〈σv〉

Can we reconstruct the relic density using LHC data?

Ωcdm

CDM ?

Work in progress w/ K. Freese, G. Kane, (Michigan) and L.T. Wang (Princeton)

 X mX
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CDM Inverse Problem

• Electroweak breaking models have many degeneracies

• LHC can not measure m and v directly -- need other experimental input
Methods can be improved ( model independent methods )

• Coannihilations can lower relic density

• Many additional dark matter particles - ( e.g. neutrinos / axions )

• Many assumptions go into thermal calculation - *Today’s talk*



Outline for rest of talk

• Standard Dark Matter Paradigm

• Light Scalars in the Early Universe

• Light Scalars and the CDM Inverse Problem

• Lifting constraints on WIMP candidates

• Conclusions and Outlook



Thermal Dark Matter
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Thermal Abundance

Boltzmann Equation

XX → γγ γγ → XXExpansion

Comoving Abundance

Yx ∼
nx

T 3
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Assume Chemical Equilibrium (initially)

m < T
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Relativistic 

m > T
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x =

m

T

Y
eq

x

Thermal Relic Density

XX ↔ γγ

Assume Chemical Equilibrium (initially)

m < T

n ∼ neq ∼ T 3

Relativistic 

m > T
n ∼ neq ∼ (mT )3/2 e−m/T

Non-relativistic

Y ∼ n

T 3

H > n〈σv〉
“Freeze-out”

n(Tf ) ∼ H(Tf )
〈σv〉f
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∼ 1
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Thermal Relic Density

Adiabatic expansion 
--> Relic abundance preserved
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Y ∼ Hf

〈σv〉fT 3
f

∼ 1
〈σv〉Tf

Thermal Relic Density

Adiabatic expansion 
--> Relic abundance preserved

Relic Abundance

nf ∼ Hf

〈σv〉f
∼ neq ∼ e−m/T

At freeze out:
Ωdm ∼ mx

〈σv〉fTf
∼ 10−10 GeV −2

〈σv〉

CDM Relic Density Today

Tf ≈

mx

30
Log dependence (robust)

Y
eq

x



Assumptions

• Radiation dominated universe (RDU) at freeze-out
BBN --> RDU

• No entropy production after freeze-out

• Particles reach chemical equilibrium

• One dark matter species

Thermal Relic Density 

ΩXh2 =
10−10 GeV −2

〈σv〉

Y ∼ Hf

〈σv〉fT 3
f

∼ 1
〈σv〉Tf



How Robust is this Scenario?
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Physics beyond SM - Light Scalars

• Inflation (and particle physics) requires physics beyond SM:

• Physics beyond SM (e.g. MSSM) -->  New Symmetries and Particles

• Symmetry is not realized at low energies 
--> Spontaneous Symmetry “Breaking”

• Scalar VEVs <--> undetermined parameters

• Inflation
• Dark Matter
• Dark Energy

• Baryon Asymmetry
• Neutrino Masses
• Strong CP, Naturalness, etc...
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“Flat Direction”

Approximate Moduli

V (ϕ)

ϕ

- Higher scale effects
- Hubble Friction

Low scale effects
(e.g. SUSY soft masses)
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Moduli Stabilization

• If moduli are not stabilized many observational consequences:

• Spoil inflation

• Spoil BBN (exotic isotopes, dilute primordial abundances)

• 5th force violation

• Changing couplings and masses

• Two generic problems for moduli:  

• Generate potential -- a lot of work has been done 
(e.g. Fluxes, gaugino condensation, instantons etc...)

• Fix at the minimum and stay there! -- ( not so much progress )
“ Moduli Trapping “  
-- Light scalars couple to other stuff, naturally driven and fixed at 
points of enhanced symmetry

- Kofman, et. al. hep-th/0403001

- S. W. hep-th/0404177



∆Φ → ∆E

Cosmological Moduli

H ! m3/2 ∼ TeV〈Φ〉 ∼ M

(

H

M

)
1

n+1

〈Φ〉 ≈ 0 H ! M

VΦ(T, H, Φ) = 0 + m2
softΦ

2
− H2Φ2 +

1

M2n
Φ4+2n

Example:

Field “stuck” by Hubble friction

Scalar Condensate



p = 0

Approximate Moduli

∆Φ → ∆E

Scalar Condensate forms

ρm ∼ 1
a3

Typically evolve like pressure-less matter

Density grows relative to radiation 
-->  Danger for BBN!

V (ϕ)

ϕ
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Γϕ ∼

m3
ϕ

M2
p

Fate of Moduli

Decay Gravitationally

τϕ =
!
Γϕ

= 1000
(

TeV

mϕ

)3

s

ρmod < ρc −→ mϕ < 10
−26 eVmϕ < TeV

Two possibilities:

Stable

mϕ > TeV Tr > 1 MeV (BBN) −→ mϕ > 10 TeV

Decay

τϕ < 1s (BBN)



Scalars and the CDM inverse problem



• From this the ΩLSP parameter is found and agreement with observation points at Wino or
Higgsino-like candidates.

The critical parameters in this model were,

• Q-ball decay temperature and initial charge (many hidden assumptions about SUSY break-
ing?)

• Annihilation cross-section of LSPs

6.3 Effects of Inflatons and Quintessence
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A. Useful relations and formulae

A.1 Complex scalar potentials

Given the complex potential, V = V (|Φ|),

∂V

∂Φ∗ =
∂|Φ|2

∂Φ∗
∂V

∂|Φ|2 = Φ
∂V

∂x
, (A.1)

m2
eff =

∂V

∂Φ∂Φ∗

∣∣∣∣
min

=
∂V

∂x
+ x

∂2V

∂x2
, (A.2)

where x ≡ |Φ|2.

A.2 E.O.S. for oscillating scalar

From (1), for a potential of the form V (Φ) ∼ Φγ , the equation of state of an oscillating scalar (with
averaged KE term) is given by

p =
(

2γ

2 + γ
− 1

)
ρ. (A.3)

Some examples of interest include:

γ = 0 p = −ρ, Λ
γ = 1 p = − 1

3ρ, tadpole
γ = 2 p = 0, matter
γ = 4 p = 1

3ρ, radiation
γ = ±∞ p = ρ, stiff fluid

(A.4)

For a loop correction to a non-interacting particle we have a potential

V = m2Φ2

[
1 + K log

(
Φ2

M2

)]
, (A.5)

and the equation of state is

p =
K

2
ρ, (A.6)

where K can be positive of negative and to derive this we assume the correction to be small and
we used γ = log(V )/ log Φ.
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Scalar Condensates and Modified Expansion History

Coherent Oscillations

Nonrenormalizable Operators

V (ϕ)

ϕ



x =

m

T

Y
eq

x
Increasing  H

Y
eq

x

Y
std
x

Yx ∼
nx

T 3

(1)  Modified Expansion History

Y
eq

x

Y
std
x

Less time for 
particle annihilations

H
〈σv〉

Moduli can increase expansion rate

Increase: 

Increase: 

“Freeze-out” H > nX〈σv〉

Y ∼ Hf

〈σv〉fT 3
f
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Scalar Decay to Dark Matter

Tr ≈
( mϕ

10 TeV

)3/2
MeV

Moduli Decay
(2)  Entropy production 
       ( dilute existing dark matter )

ϕ→ γγ



x =

m

T

Yx =

nx

s

Y
eq

x

Y
eq

x

Y
std
x

Tf

Scalar Decay to Dark Matter

Tr ≈
( mϕ

10 TeV

)3/2
MeV

Moduli Decay
(2)  Entropy production 
       ( dilute existing dark matter )

ϕ→ γγ

Tr < Tf No Annihilation !!!

Tr

Scalar Decays

ϕ→ XX

Tf ≈
( mX

100 GeV

)
GeV

(3) Dark matter from decay
Non-thermal Production



Scalars and CDM Inverse Problem

ΩX ∼ mX

〈σv〉Tr
∼ Ωstd

X

(
Tf

Tr

)

ΩX =
10−10 GeV −2

〈σv〉
√

1 + r

ΩX = Ωstd
X

√
1 + r

Modified expansion Non-thermal Production

• Modified Expansion History -- larger cross-sections allowed

• Non-thermal Production -- larger cross-sections allowed

• Entropy Production can dilute existing CDM



Scalars and CDM Inverse Problem

ΩX ∼ mX

〈σv〉Tr
∼ Ωstd

X

(
Tf

Tr

)

ΩX =
10−10 GeV −2

〈σv〉
√

1 + r

ΩX = Ωstd
X

√
1 + r

Modified expansion Non-thermal Production

All have parametric dependence on 
fundamental theory !!!!

• Modified Expansion History -- larger cross-sections allowed

• Non-thermal Production -- larger cross-sections allowed

• Entropy Production can dilute existing CDM
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Ωcdm h2 = 0.111± 0.006

Example: Dark matter in the MSSM

χ̃

Neutralino WIMPs ( light, stable, neutral )

〈σv〉 ∼ 10−9 GeV −2 Ωlsp h2 ∼ 0.1
Bino-like cross-section ( P-wave suppression )

Ωlsp h2 ∼ 10−4〈σv〉 ∼ 10−6 GeV −2

Wino-like cross-section ( S-wave suppression )

ΩXh2 =
10−10 GeV −2

〈σv〉

WMAP ResultThermal Relic Density

?



Example: Dark matter in the MSSM

“Anomaly” Mediated SUSY Breaking (AMSB) (e.g. Moroi / Randall )

• Gaugino masses loop suppressed (arise via anomaly)
• Gravitino naturally 10-100 TeV
• Wino-like LSP

1



Example: Dark matter in the MSSM

“Anomaly” Mediated SUSY Breaking (AMSB) (e.g. Moroi / Randall )

• Gaugino masses loop suppressed (arise via anomaly)
• Gravitino naturally 10-100 TeV
• Wino-like LSP

1

“Cosmology of the G2 MSSM”  -- (to appear soon)
  B. Acharya, K. Bobkov, G. Kane, P. Kumar, J. Shao and S.W.  

• M-theory compactification all moduli are geometric

• 50 TeV gravitino -- no gravitino problem(s)

• Many light moduli

m3/2 = 50 TeV

i = 1 . . . N − 1mXi = 2 m3/2

mϕ = 2m3/2mXN = 600m3/2

2
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Wino-like Neutralinos - Positron Excess

χ + χ→W + W → e+ + X

Wino leading decay channel:

Could excess be due to annihilating dark matter?

Flux ∼ 〈σv〉 ×
(

ρhalo
χ

mχ

)2

Bino-like requires large “boost” factor
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Positron Excess -- Annihilating Dark Matter?

Energy (GeV )

Pamela data on the way...?
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LHC

Ωcdm

CDM

Theoretical Models
( that are predictive!)

Direct Detection

Indirect Detection

Cosmo Observations



Conclusions and Outlook

• If we are CLEVER (model independent methods) and LUCKY (1 candidate, thermal equil): 
LHC may tell us the completely story

• Most likely we will not be so lucky (or clever):

• Many CDM candidates (axions, neutrinos)

• Many degeneracies

• Many ways thermal abundance picture can fail

• Condensates could lead to non-thermal production 

• Non-thermal production --> Probe on early universe

• Constraints on interaction cross-sections lifted (e.g. Wino-like Neutralino becomes good 
candidate)

• Larger cross-sections --> Detection more possible (e.g. gamma ray bursts / positrons / etc.)

• Baryon asymmetry (AD)?  Coincidence problems (baryons/cdm)?

• Robust approach: 
LHC + other colliders + direct / indirect detection + cosmology probes


