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What standard model doesn't answer:

● Homogeneity and Isotropy

● Flatness 

● Seed perturbations

John C. Mather

1978 Nobel Prize
in Physics

George Smoot

CMB

WMAP

COBE

2006 Nobel Prize
in Physics

Robert Wilson and Arno Penzias 



  

Let's start at the very beginning- a very good place to start 

Inflation is one of the most promising theories of the early universe. 
By exponentially expanding a small region of the universe, Inflation 
solves several standard model problems 

● it solves the problems with standard model (flatness, homogeneity and isotropy)

● it also gives seed perturbations for the structure formation and

● other testable predictions (n
s
, n

t
 , f

NL
 ) 

BEWARE!

Inflation is not the only theory we have

Cyclic/Ekpyrotic model



  

Inflationary Universe
● The expansion of the universe decelerates when matter or 

radiation dominates
– Matter (w=0)
– Radiation (w=1/3)

● Universe accelerates (i.e inflation happens) when w<-1/3
– density decreases slower than a-2

– For the cosmological constant (w= -1), the energy 
density is constant.

– What is causing w<-1/3   (Inflaton field)

For p=w at ∝ t
2

3 1w a∝a−31w

a∝a−3

a∝a−4



  

A. Starobinsky (1979)

K. Sato (1981)

Alan Guth (1981)

Implications for cosmology. 

Accelerating universe can solve 

some of the problems of the 

standard cosmology  flatness, 

homogeneity, monopole... 

Universe can accelerate
● Quantum effects             
●Left side of Einstein's Eq 

  

Universe can accelerate
● First order phase transition

Inflationary Universe



  

H 2=
8

3m pl
2 [V 1

2
̇2]

̈3H ̇=−V ' 

Slow roll 

Gives rise to accelerated
expansion

Kinetic energy is converted to
matter and radiationReheating

Slow roll

● Canonical Inflation (single field with slow roll approximation)

● Inflationary Zoo

Inflation generates fluctuations
in space time



  

● Probes of inflation:
– Inflation generates primordial fluctuations in space-time

●  Fluctuations in radiation
– CMB T
– CMB E-polarization 

●  Fluctuations in matter
– Dark matter distribution (Gravitational lensing etc.)
– Galaxy and gas distribution (Redshift surveys, Lyman-alpha clouds, 

cosmological 21-cm radiation, etc)
●  Fluctuations in space time itself

– Primordial Gravitational Waves (eg. Primordial B-modes of CMB)

Testing Inflationary Paradigm



  

(i) Flat, homogeneous and isotropic
(ii) Seed perturbations: canonical models predict

 - Nearly adiabatic:
 

- Close to Gaussian

 -Nearly Scale Invariant
                           
 : 

 i
̇i

=

̇



m

〈k k ' 〉=Pk 
3k−k ' 

k 3 Pk =Ak
ns−1

Eg: WMAP 06

Eg: WMAP 06

Testing Inflationary Paradigm



  

● NO!
● Different inflationary model predict different amount 

of NG so detection of NG helps distinguishing them.
● Even the 2nd order GR perturbations produce some 

NG (f
NL

~ 1)

Do we expect primordial perturbations really 
Gaussian ?

Amplitude of non-Gaussianity. fNL=0 for Gaussian perturbations 
and larger the value larger the non-Gaussianity



  

    

      
  
Sensitivity goal: Δf

NL
~ 1

 2nd order GR produces f
NL

~ 1 so that sets the lower limit on NG one may hope to detect.

               Non-Gaussianity from the Early Universe

f
NL 

~ 0.05 canonical inflation (single field, couple of derivatives) 
                                             (Maldacena 2003, Acquaviva etal 2003 )

f
NL 

 ~ 0.1--100  higher order derivatives  

                             DBI inflation (Alishahiha et. al 2004)

                             UV cutoff  (Creminelli  2003)

f
NL 

 >10  curvaton models    (Lyth et. al 2003)

f
NL 

~100  ghost inflation    (Arkani-Hamed et al.,  2004)

f
NL 

~20-100  New Ekpyrotic models   (Creminelli and Senatore 2007,      
                                                     Buchbinder et. al 2007, Koyama et. al 2007)

Are primordial perturbations really Gaussian ?



  

Shape of non-Gaussianities

〈 k 1 k 2 k3〉=233 k 1 k 2 k3F k1 , k 2 , k 3

Primordial non-Gaussianity can be described in terms of the n-point 
correlation function of curvature perturbations.

F k1 , k2 , k 3 is large for the configuration for which k 1≪k 2 , k3

F k1 , k2 , k 3 is large for the configuration for which k 1≈k 2≈k3

Depending on the shape of 3-point function, non-Gaussianity can 
be broadly classified into two classes       (Babich et. al 2004)
●  The local (squeezed) non-Gaussianity

   e.g. Curvaton models, New  Ekpyrotic models, ..
● The equilateral non-Gaussianity 

e.g. Ghost inflation, DBI, ...



  

Shape of non-Gaussianities

For different models the NG shape is different i.e shape of NG can be 
used to rule out inflationary models BUT
current data is not sensitive to the shape of NG but only sensitive to an 
overall amplitude 

Babich et. al. 2004

f
NL

f
NL

feq
NL



Outline

● How to search for primordial non-Gaussianity
● How to search for fNL

● What we find
● How to interpret our result
● Future prospects



  

Two approaches for testing non-Gaussianity

[1]  Null test approach (most widely used)

   - use your favorite statistical tool and test for NG in the data 

   - Pros: model independent

   - Cons:  hard to interpret
                 hard to compare different methods
Examples (Land and Magueijo 2005, Larson and Wandelt 2004, Eriksen et. al 2004, etc):

l North-south asymmetry

l Quadrupole-octopole alignment

l Hot and cold spots in CMB 

l Axis of Evil�  
l Large-scale modulation



  

Two approaches for testing non-Gaussianity

[2]  Model testing approach  (much recent approach)

   - Constrain non-Gaussianity parameter(s)  eg f
NL

   - Pros: easy to interpret
              easy to compare different models
   -Cons: model dependent

Examples:
constrain NG parameter f

NL
using 

– Bispectrum

– Trispectrum

–  Minkowski functionals



How to search for (weak) primordial non-
Gaussianity in 3 easy steps

● Reconstruct curvature perturbation from data
● Test for non-Gaussian features
● Compute error bars using Gaussian Monte 

Carlo realizations of the data



Reconstructed Primordial Perturbations

Φ
lm

=O
l 
a

lm

CMB DATA a
lm

Reconstructed Primordial perturbations with T alone 

r=rdec

SW limit

Response function 
O

l
=βl/Cl




=−1
3

T
T



 x=G x f NLG
2 x 

How to search for fNL – a specific parameterization 

Characterizes the amplitude of non-Gaussianity

               Non-Gaussianity from the Early Universe

f
NL 

~ 0.05 canonical inflation (single field, couple of derivatives) 
                                             (Maldacena 2003, Acquaviva et al 2003 )

f
NL 

 ~ 0.1--100  higher order derivatives  

                             DBI inflation (Alishahiha, Silverstein and Tong 2004)

                             UV cutoff  (Creminelli  2003)

f
NL 

 >10  curvaton models    (Lyth, Ungarelli and Wands, 2003)

f
NL 

~100  ghost inflation    (Arkani-Hamed et al. 2004)

f
NL 

~20-100  New Ekpyrotic models   (Creminelli and Senatore 2007,      
                                                     Buchbinder et. al 2007, Koyama et. al 2007)

Salopek & Bond 1990
Komatsu & Spergel 2001



f NL=0

Liguori, Yadav, Hansen, Komatsu, Matarrese, Wandelt, PRD (2007)



f NL=101

Liguori, Yadav, Hansen, Komatsu, Matarrese, Wandelt, PRD (2007)



f NL=102

Liguori, Yadav, Hansen, Komatsu, Matarrese, Wandelt, PRD (2007)



f NL=103

Liguori, Yadav, Hansen, Komatsu, Matarrese, Wandelt, PRD (2007)



f NL=104

Liguori, Yadav, Hansen, Komatsu, Matarrese, Wandelt, PRD (2007)



Why use the bispectrum?

Cl non-Gaussian= Cl Gaussian+ fNL
2 δCl  

B non-Gaussian= 0 + fNLb
2 

Tnon-Gaussian= TGaussian+ fNL
2 δT  

For weak non-Gaussianity any even moment has a much larger 
contribution from Gaussian perturbations. This makes 
measuring the non-Gaussian component difficult.

Babich (2005) demonstrated that the bispectrum contains 
nearly all the information about fNL.

Unfortunately evaluating all Bl l' l'' is too expensive.



fNL phenomenology from the bispectrum 
using CMB Temperature data

● Komatsu & Spergel 2001 – CMB bispectrum from fNL 

● Komatsu Spergel & Wandelt 2003 – fast fNL estimator for T 

● Komatsu et al (WMAP team) 2003 – WMAP1 analysis using 
KSW

● Creminelli, Nicolis, Senatore, Tegmark, Zaldarriaga 2006 – 
introduce linear term to improve KSW estimator 

● Spergel et al (WMAP team) 2006 – WMAP3 analysis using 
KSW

● Creminelli, Senatore, Tegmark, Zaldarriaga 2006 – apply cubic 
+ linear term to WMAP3 data



Cubic Statistic: 

           

            B(r) is a map of reconstructed primordial perturbations

              A(r) picks out relevant configurations of the bispectrum

    Above statistics combine combine all configurations of bispectrum 
such that it most sensitive to “local” primordial non-Gaussianity i.e f

NL`

Komatsu, Spergel and Wandelt 2005 

Fast, bispectrum based estimator of local fNL



WMAP 1yr using KSW

WMAP 3yr using KSW

Status up to last month

-36< f
NL

 <100 (95%) Creminelli et. al. 2006,WMAP3

2Δf
NL

 ~ 70

-58< f
NL

 <137 (95%)

-54< f
NL

 <114 (95%)

    Creminelli et al 2006 
Q+V+W       

● 10% improvement WMAP --> Creminelli et. al

● No evidence of primordial non-Gaussianity

● Unique minimum in the variance curve

● Only partial WMAP data has been analyzed 

● We are far from Δf
NL

 ~ 1 but can already start    
putting constraints on some models like DBI 
inflation, ghost inflation etc.

-27< f
NL

 <121 (95%) Creminelli et. al. 2006,WMAP1



Our Result

Yadav, Komatsu, Wandelt, Liguori, Hansen, Matarrese Apj  (submitted)
27<fNL <147 at 95% Confidence



Y
adav, et al.
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rem

inelli, et al.

WMAP 1yr using KSW

WMAP 3yr using KSW

Status now!

-36< f
NL

 <100 (95%) Creminelli et. al. 2006,WMAP3

2Δf
NL

 ~ 70

-58< f
NL

 <137 (95%)

-54< f
NL

 <114 (95%)

    Creminelli et al 2006 
Q+V+W       ● 10% improvement WMAP --> Creminelli et. al

● No evidence of primordial non-Gaussianity

● Unique minimum in the variance curve

● Only partial WMAP data has been analyzed 

● We are far from Δf
NL

 ~ 1 but can already start    
putting constraints on some models like DBI 
inflation, ghost inflation etc.

-27< f
NL

 <121 (95%) Creminelli et. al. 2006,WMAP1

27< f
NL

 <147 (95%) Yadav and Wandelt, WMAP3

Yadav, et al.

Variance converges!!



● 27<fNL <147 at 95% Confidence, for all of WMAP 3 using 
YKWLHM07

● First bispectrum-based analysis of the full WMAP3 data

● First significant departure of fNL from 0.

● Estimators tested against Gaussian and non-Gaussian 
simulations with and without inhomogeneous noise

 If our result holds up under scrutiny and the statistical 
weight of future data [...]  the data disfavors all single 
field slow-roll inflation models.



Questions you might ask

Might his result be due to...
● Instrument systematics?
● Foregrounds?
● Just rediscovery of other non-Gaussian 

signals?
● Noise fluctuation?



Instrument systematics?
● Beam asymmetries?

– If the CMB is Gaussian, no asymmetry of the main beam can 
produce non-vanishing bispectrum.

– If there are large side-lobes that spread foreground around the 
sky they will produce large scale features

– unlikely to affect the high l regime. Also, on large scales positively 
skewed foregrounds give negative contribution to fNL.

● Noise correlations (striping)
– As long as noise is Gaussian, no noise correlations will 

produce a bispectrum.
● So to explain this effect with an instrumental systematic  it has 

to be non-Gaussian and also mimic the bispectrum signature of 
fNL.



Kp0++Kp0

Kp2Kp12

● We test the impact of foregrounds as a function of frequency 
and as a function of mask.

● V and W channels are the least foreground contaminated. 
Choice of V+W is driven by foreground considerations.

Foregrounds ?



Foregrounds II
● Remember – large scale skewness in the 

Temperature map corresponds to negative fNL . 
● The added l modes

at 400<l<550
correspond to modes
where positive skewness
also gives negative 
contributions.

● At intermediate scales
positive skewness gives positive fNL.

Response O
l 



Re-discovery of another non-Gaussian signal?

● Larson/Wandelt (hot and cold spots not hot or cold 
enough):
– at smaller angular scales 
– symmetric-> no odd correlation.

● The Cold Spot (Vielva et al. 2004) is localized in the map 
and covers a particular range in scale. Very unlikely to give 
large contribution to fNL and was also discovered as 
kurtosis. But should be checked.

● Axis of Evil? Can check by redoing analysis removing large 
scale signal. Preliminary result: 

Removing l<21, fNL=135.21 +/-48

X

X



Noise fluctuation?
● Possible. 
● It's a 2.5-3 sigma result. P~1/100



  

We conclude that the WMAP 3-year data contains 
evidence for primordial non-Gaussianity. If our result 
holds up under scrutiny and the statistical weight of 
future data [...]  the data disfavors all single field slow-
roll inflation models.



Non-Gaussianity post WMAP

● Probes of inflation:
– Inflation generates primordial fluctuations in space-time

●  Fluctuations in radiation
– CMB T
– CMB E-polarization
– Neutrino background

●  Fluctuations in matter
– Dark matter distribution (Gravitational lensing, cosmological 21-cm 

radiation)
– Galaxy and gas distribution (Redshift surveys, Lyman-alpha clouds)

●  Fluctuations in space time itself
– Primordial Gravitational Waves (eg. Primordial B-modes of CMB)



  2500500 1000 1500 2000

 WMAP3 (2006)
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Non-Gaussianity post WMAP
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Smaller scales

Temperature

E Polarization

Combined

Temperature

E Polarization

Combined

For and Ideal CMB experiment and using both temperature 
and polarization we can get down to Δf

NL
 ~ 1

For Planck the Cramer-Rao limit is Δf
NL

 ~3.

Yadav, Komatsu and Wandelt, ApJ (2007) 



  

Reconstructed Primordial Perturbations

Φ
lm

=O
l 
a

lm

CMB DATA a
lm

Reconstructed Primordial perturbations with T alone 




=
−1
3

T
T

On large scales

S prim=∫ B2 r  Ar  r 2dr
B(r) is a reconstructed primordial perturbations

Operator goes to zero
        => reconstruction fails

Weiner filter O
l 




=
−1
3

T
T



  

Temperature and polarization are 
complementary

Out of phase

CMB E

CMB TWeiner filter O
l 

S prim=∫ B2 r  Ar  r 2dr
B(r) is a reconstructed primordial perturbations

Yadav, and Wandelt, PRD (2005) 



Yadav, and Wandelt, PRD (2005) 



Yadav, and Wandelt, PRD (2005) 



Reconstructed perturbations at different radii

Yadav, and Wandelt, PRD (2005) 

Decoupling

Curvature fluctuations

Movie



Curvature fluctuations

Tomographic reconstruction of inflationary 
scalar curvature perturbations from CMB 

temperature and polarization.
We construct filters that invert 
linear radiative transport.

Generates a single scalar that 
contains all the information from 
T&E.

Anyone intending to test 
primordial non-Gaussianity and 
anisotropy in T&E data should 
do so using curvature 
perturbations obtained with our 
filters.

Yadav and Wandelt 2005

Movie



● Babich & Zaldarriaga 2004 – CMB T+E bispectrum from fnl
● Yadav & Wandelt 2005 – reconstruction of curvature 

perturbation
● Yadav, Komatsu  & Wandelt 2007 – KSW generalized to T+P
● Liguori, Yadav, Hansen, Komatsu, Matarrese, Wandelt 2007 – 

calibrate YKW estimator against non-Gaussian simulations
● Yadav, Komatsu, Wandelt, Liguori, Hansen, Matarrese 2007 – 

Creminelli et al. corrected and generalized to T+P
● Yadav & Wandelt 2007 – application of YKWLHM07 to WMAP3

fNL phenomenology from the bispectrum 
using CMB combined T & E-Polarization 



  

Non-Gaussianity using Bispectrum

● Physical non-Gaussianity is generated in real space so our statistic 
should be sensitive to real space NG

● The Central Limit Theorem makes alm coefficients more Gaussian.

Cubic Statistics: 

             B(r) is a reconstructed primordial perturbations

              A(r) picks out relevant configurations of the bispectrum

    Above statistics combine combine all configurations of bispectrum 
such that it most sensitive to the primordial non-Gaussianity i.e f

NL

S prim=∫ B2 r  Ar  r 2dr ∝ f NL

CMB T+E       Yadav, Komatsu, and Wandelt 2007 



  

Fast estimator of f
NL

 using combined 
T and E polarization data

● Our estimator scales as N3/2 as compared to N5/2 

    scaling of the brute force bispectrum evaluation.
● For Planck this translates to speed-up by 

factors of millions
–  Allows us to study the properties of estimator
– Estimator is optimal for homogeneous noise  

Yadav, Komatsu, and Wandelt, ApJ (2007)



  Yadav, Komatsu, and Wandelt, ApJ (2007)

Estimator using combined CMB T+E



● The estimators we wrote down are 
optimal only for uniform sky 
coverage and noise distribution. 
Anisotropic noise distribution couples 
different l and produces excess 
variance.

● For non-uniform noise the addition of 
a linear term reduces the variance of 
the estimator (Creminelli et al. 2005)

● We (Yadav, Komatsu, Wandelt, et al. 
arxiv:0711.4933) generalized this 
estimator to include polarization; and 
discovered and corrected an error in 
the linear term.

Anisotropic sky coverage

  6



Anisotropic noise
● Linear weight maps make linear term maximally 

anticorrelated with the cubic term to reduce its 
variance due to anisotropic noise

SSBBBBSSABAB



  

CMB+ Inhomogeneous noise +
Kp0 Temp mask + Po6 polarization mask

CMB+ Homogeneous noise + Flat sky cut 

Estimator using combined CMB T+E

Yadav, Komatsu, Wandelt, Liguori, Hansen, Matarrese Apj  (submitted)



  

Non-Gaussian CMB T and E-Polarization 
Map Making

● Non-Gaussian maps are crucial for 
characterizing the estimator
– Testing for unbiasedness
– Testing for systematics

● We have developed an efficient tool for 
generating non-Gaussian CMB T and E-
polarization maps

Liguori, Yadav, Hansen, Komatsu, Matarrese, Wandelt, PRD (2007)



Non-Gaussian CMB T & E Maps
f NL=0 f NL=3000

Liguori, Yadav, Hansen, Komatsu, Matarrese, Wandelt, PRD (2007)



Unbiasedness of the Estimator

Yadav, Komatsu, Wandelt, Liguori, Hansen, Matarrese Apj  (submitted)



f
NL

 dependent Variance

 2

 0
2−1= 2n2

 ln2 N pix

f NL=n0

● Using non-Gaussian simulations we find a f
NL

 
dependent correction to the variance!

●   In agreement with predictions by Creminelli, 
Senatore and Zaldarriaga 2007

Using Gaussian simulations

Using non-Gaussian simulations



● We are now ready to use both the temperature 
and polarization data from to constrain fNL.

● Planck ready



Conclusions and Outlook
● “If our result holds up to scrutiny and the statistical 

weight of future data [...] we conclude that single field 
slow roll inflation is disfavored by the WMAP data.”

● Komatsu for WMAP team: “Independent analysis 
showed a similar level of fNL local....”

● Further tests should and will be done. This requires 
detailed look at dust and synchrotron foreground 
models.

– We are doing these tests and so far everything we have 
done confirms our results

● Other bispectrum combinations can also be tested to 
test for non-specific vs specific non-Gaussianity. 



Outlook
● New data to come soon! Forecasts:

– WMAP 5 year: Δf
NL

 ~25

– WMAP 8 year: Δf
NL

 ~21

● Δf
NL

 ~5 from Planck T and E polarization (in ~5 yrs!)



  

EXECUTIVE SUMMARY

● Detection of non-Gaussianity will give huge information 
about the early universe (class of inflationary models)

● Sensitivity goal Δf
NL

~ 1

● Current status: Δf
NL

 ~ 30 (using CMB T, Yadav, et. al. estimator)

– Hints of primordial non-Gaussianity!!
● T and E polarization are complimentary

● With CMB T and E polarization: Δf
NL

 ~5  (within 5-10 yrs)

– Fast estimator exists!
– Estimator Tested against non-Gaussian simulations





Q+V+W Channels

V+W channels

giant mask

giant mask


